
 

35 

 

References 

[1] A. Saxena, M. Sun and Y. Andrew, “3-D Depth Reconstruction from a Single Still 

Image”,    International Journal of Computer Vision (IJCV), vol. 76, no 1, January 

2008. 

[2] C. Martin, “Evolving Visual Sonar: Depth From Monocular Images”, Pattern 

Recognition Letters, 27, 2006 

[3] J. Cardillo and A. Sid-Ahmed, “3-D position sensing using a passive monocular 

vision system”, IEEE transactions on pattern analysis and machine intelligence, 

vol. 13 no 8, August 1991. 

[4] J. M Loomis, “Looking down is looking up”. Nature News and Views, 2001, pp. 

155–156.  

[5] R. Kumar, S. Sawhney and R. Hanson, “3D model acquisition from monocular 

image sequences”, Proc. IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, IEEE Computer Society, 1992. 

[6] S. H. Schwartz, “Visual perception (2nd ed.)”. Connecticut: Appletonand Lange, 

1999 

[7] S. Sawhney and R. Hanson, “Identification and 3D description of ‘shallow’ 

environmental structure in a sequence of images”, Proc. IEEE Conference on 

Computer Vision and Pattern Recognition, IEEE Computer Society, 1992, pp. 

179-186 

[8] S. Sawhney and R. Hanson, “Affine Trackability aids Obstacle Detection”, Proc. 

IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer 

Society, 1992, pp. 418 – 424 

[9] The foundation for intelligent physical agents, FIPA Specifications, Available at: 

http://www.fipa.org/repository/aclspecs.html 

[10] E. de Croon, E. de Weerdt, C. de Wagter, W. Remes, “The appearance variation 

cue for obstacle avoidance”, Proc. IEEE International Conference on Robotics 

and Biomimetics (ROBIO), 2010, pp. 1606 - 1611 

[11] V. Leroy, T. Simon and F. Deschênes, “An efficient method for monocular depth 

from defocus”, Proc. 50th International Symposium(ELMAR), IEEE Computer 

Society, 2008, pp. 133 – 136 

[12] X. Lin and H. Wei, “The Depth Estimate of Interesting Points from Monocular 

Vision”, Proc. International Conference on Artificial Intelligence and 

http://www.fipa.org/repository/aclspecs.html


 

36 

 

Computational Intelligence(AICI 2009), IEEE Computer Society, 2009, pp. 190-

195 

[13]  Y Fujii, K. Wehe, E. Weymouth, “Robust Monocular Depth Perception Using 

Feature Pairs and Approximate Motion”, Proc. IEEE International Conference on 

Robotics and Automation, IEEE Computer Society, 1992, pp. 33 – 39 

[14] B.K.P. Horn and B.G. Schunck, “Determining optical flow”, Artificial 

Intelligence, vol. 17, 1981, pp. 185-203. 

 

 



 

37 

 

Appendix A - Optical Flow estimation 

A.1 Introduction 

In this chapter it is going to discuss the Lucas-Kanade Optical Flow estimation, which 

is one of the widely used Optical Flow estimation methods. 

A.2 Lucas–Kanade method for Optical Flow estimation 

Optical flow methods try to compute Optical flow using two images taken in time t 

and t+ δt. Lucas–Kanade is such a optical flow estimation method developed by 

Bruce D. Lucas and Takeo Kanade. Initial algorithm works for small displacements of 

interested points and it assumes that the intensity of the same object location is a 

constant over time. This is also called as the image constraint equation, which is 

mathematically expressed as: 

 

Above statement refers to the same object location, but having two different image 

coordinates in two different consecutive image frames. Based on this constraint, 

Optical flow algorithms can track interested points between two consecutive image 

frames. One drawback of this assumption is that it requires the displacement of the 

object point to be very small and does not work for object points having a large speed. 

Assuming the movement to be small, the Taylor expansion of the above equation 

becomes  

 

Where H.O.T are the higher order terms, which can be safely ignored. From these 

equations it follows that: 

 

  

Or  simply as: 

 



 

38 

 

Where Vx and Vy are the x and y components of the 2D optical flow vector associated 

with the considered pixel. 

In addition to the image constraint equation, Lucas–Kanade method holds an 

additional hypothesis where given a pixel P, all the pixels in the neighborhood of P 

have the same velocity as P. this allows us to consider an image window m x m 

centered at pixel P and allows to write the following equation. 

 

This can also be represented by the following matrix: 

 

Above equation can be represented as: 

 

Where 

 

 

The least square method holds: 

 

By expanding this equation we get: 

 

Given a window W, This is same as writing the equation S as: 



 

39 

 

 

Since we assume that the velocity is same over W, We can further simplify this 

equation as: 

 

This is the final equation to be solved and can be implemented using the OpenCV 

image processing library. 

 



 

40 

 

Appendix B - Shannon’s entropy 

B.1 Introduction 

In this chapter it is going to discuss the Shannon’s entropy, which is used as an 

average measure of information contained in an image. 

B.2 Calculating Shannon’s entropy 

Shannon’s entropy represents the average amount of information contained in a 

random variable, which is defined by the equation: 

 

Where X is a discrete random variable with n outcomes and p(xi) is the probability 

mass function of outcome xi. A probability mass function is used to calculate the 

probability that a discrete random variable is exactly equal to some value. Base of the 

logarithm b is considered as 10. For a gray-scaled image, n represents the value 256 

and the range of the random variable is from 0 to 255.  

When the outcome of the Shannon’s entropy is low, the difference of gray levels in 

the input image is low and considered to be an obstacle.    

 

 

 

 

 

 



 

41 

 

Appendix C - Emulating Optical Flow 

C.1 Introduction 

This chapter contains the details of the developed Optical Flow agent, emulated inside 

the android emulator. 

C.2 Implementation of the Optical Flow agent 

Figure C.1 represents a screen-shot of the optical flow agent implemented using the 

Android emulator. Lines represent optical flow vectors. 

 

Figure C.1 - Implementation of the optical Flow agent 

 

 

 

 



 

42 

 



 

43 

 

Appendix D - Sample obstacle detection scenarios 

D.1 Introduction 

This chapter contains some additional obstacle detection scenarios, apart from the 

scenarios discussed in the evaluation chapter. 

D.2 Sample scenarios 

Figure D.1 represents a scenario where an obstacle is moved towards the camera and 

Figure D.2 represents a scenario where the camera is moved towards an obstacle. The 

system was able to detect the obstacle and produce a warning in both scenarios. 

 

 

Figure D.1 – Moving an obstacle (a human hand) towards the camera 

 

 

Figure D.2 – Moving the camera towards an obstacle 


