Using Agent Negotiations for Weather Forecasting from Multiple Perspectives

M.D.W Srimal

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Artificial Intelligence

October 2012

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

M.D.W Srimal

Name of Student

Signature of Student

Date:

Supervised by

Prof. Asoka S. Karunananda

Name of Supervisor

Signature of Supervisor

Date:

Dedication

To my parents . . .

With love and gratitude

Acknowledgements

I am heartily thankful to my supervisor, Prof. Asoka S. Karunananda, for his supervision, advice and guidance from the very early stage of this work till the last level as well as providing me encouragement & support in various ways which enabled me to develop an understanding of this subject.

I owe my deepest gratitude to Dr. Koliya Pulasinghe and Dr Malitha Wijesundara for their encouragement and support to have MSc opportunity at University of Moratuwa.

The invaluable guidance and support given me when I was in disarray and in need of some assistance by Nuwan Wijeweera and all the other MSc in AI batch mates is highly appreciated. I have learned so much from them.

Life would have been much harder and tougher if there were not my colleagues Sujith Fernando, Nilmini Wijegunasekara, Asanka Pathirana, Lasitha Niwanka and Sachini Weerawardhana. Their unlimited support on fulfillment of this work is remembered with much gratitude and special thank goes to Renuka Pathirana for language editing of this thesis.

I also express my sincere thanks to my friends Pubudu Nuwanthika, Janaka Wijekoon and Saneth Dharmakeerthi for their encouragement to complete this work and provision of useful resources to success the work.

I am grateful to all my lecturers and teachers for sharing their invaluable knowledge, experience and providing advises to improve the quality of my life.

And of course, I need to thank my parents. Their unconditional love and support have helped me through some very difficult times. I did my best to give them a reason to be proud.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

M.D.W Srimal October, 2012

Abstract

Most of the real world problems can be solved using more than one method which may return slightly different solutions. For instance, a number of methods including statistical methods, artificial neural networks, fuzzy logic and genetic algorithm can be used to model many real world problems such as weather forecasting. Yet these methodologies in isolation may have a common issue of considerably high false positive rate. However, it is evident that human beings can modify/improve solutions generated in the individual capacity through negotiations among them. This concept has been employed in the Multi Agent Systems (MAS) technology which can model complex real world problems to achieve quality solutions beyond the individual capacity.

In this project, MAS has been used to ensemble weather forecasting results individually generated by Artificial Neural Network (ANN) and Genetic Algorithms (GA) through negotiation among solutions. It considers ANN and GA as two agents. It has selected this application domain to demonstrate the concept since weather forecasting importanty for it many Nectors is uch Sas Lagriculture, fisheries and transportation A reliable weather forecast reports is of greats importance for those sectors to plan their activities by mitigating difficulties they face from bad weather conditions. Many countries have also used ANN and GA for the weather forecasting domain. Our MAS solution forecasts the rainfall for next twenty four hours with the use of Maximum temperature, Minimum temperature, Relative humidity day time, relative humidity night time and Rainfall as inputs for ANN and GA agents. The defined two agents are used to operate on an Artificial Neural Network and Genetic Algorithm solutions that start negotiation & deliberation to produce a more rational forecasting. Historical weather data based on the Colombo city area was used to train the Artificial Neural Networks and genetic algorithm based forecasting models. The trained dataset includes two months of daily basis temperature, relative humidity and rainfall data. In order to evaluate the solution part of the historical weather data set has been used as the test data. The experiment concludes that even when solutions by ANN agent and GA agent shows a disparity at the beginning, they reach to commonly agreeable solution through the negotiation in the multi agent solution with a 65% of overall success.

Contents

		Page
Chapter 1	Introduction	1
1.1	Introduction	1
1.2	Background and Motivation	1
1.3	Problem in Brief	3
1.4	Aim and Objectives	3
1.5	Proposed Solution	4
1.6	Structure of the Report	5
1.7	Summary	6
Chapter 2	Existing Weather Forecasting Models	7
2.1	Introduction	7
2.2	Studies on ANN, FL and GA Based Forecasting Models	7
	2.2.1 Artificial Neural Network Based Models	7
	2.2.2 Genetic Algorithm Based Models	11
2.3	University of Moratuwa, Sri Lanka. Fuzzy Logic Based Combined Models Electronic Theses & Dissertations Summary of Reviewed Models	12 14
2.4	Problem in Brief	15
2.5	Summary	15
Chapter 3 C	Overview of Technologies Adapted	16
3.1	Introduction	16
3.2	Artificial Neural Networks	16
	3.2.1 Feed Forward Back Propagation Networks	17
3.3	Genetic Algorithm	17
3.4	The Agent Concept	18
3.5	Multi Agent Systems	19
3.6	Multi Agent Negotiation	19
	3.6.1 Generic Framework for Automated Negotiation	20
3.7	Multi Agent Negotiations for Weather Forecasting	20
3.8	Summary	21

Chapter 4 A	n Approach to Using Multi Agent Negotiations for Weather	
F	orecasting	22
4.1	Introduction	22
4.2	Hypothesis	22
4.3	Users	22
4.4	Input	22
4.5	Output	22
4.6	Process	22
4.7	Technology that Implements the Solution	23
4.8	Features	23
4.9	Summary	23
Chapter 5 D	esign of Multi Agent Negotiations Based Weather Forecastin	g
M	lodel	24
5.1	Introduction	24
5.2	Top Level Design	24
5.3	Design of User Interface and User Interface Agent	25
5.4	University of Moratuwa, Sri Lanka. Message Space Electronic Theses & Dissertations	25
5.5	ANN Based Agent www.lfo.mrt.ac.lk	26
5.6	GA Based Agent	26
5.7	MATLAB Interface Agent	27
5.8	Ontology	27
	5.8.1 Ontology Related to ANN	27
	5.8.2 Ontology Related to GA	28
	5.8.3 Rule Based Knowledge	28
5.9	Summary	28
Chapter 6 Ir	mplementation of Multi Agent Negotiations Based Weather	
Fe	orecasting Model	29
6.1	Introduction	29
6.2	Implementation of User Interface and Associated Agent	29
6.3	Implementation of Message Space	30
6.4	Implementation of Resource Agents	31
	6.4.1 Implementation of ANN Based Agent	31
	6.4.2 Implementation of GA Based Agent	33

6.5	Implementation of MATLAB Interface Agent	35
6.6	Implementation of the Ontology	35
	6.6.1 Implementation of ANN Model	36
	6.6.2 Implementation of GA Model	38
	6.6.3 Implementation of Rule Based Knowledge	41
6.7	Summary	42
Chapter 7 How Multi Agent Negotiations System Works		43
7.1	Introduction	43
7.2	Overall Operation of the System	43
7.3	Information about the Main GUI	44
7.4	Rainfall Forecast for 20 th Nov 2011	44
7.5	Rainfall Forecast for 21st Nov 2011	45
7.6	Summary	48
Chapter 8 Evaluation		49
8.1	Introduction	49
8.2	Evaluation Strategy	49
8.3	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	49
8.4	Reporting on Results WWW.hb.mirt.ac.lk	50
8.5	Summary	56
Chapter 9 C	onclusion and Further Work	57
9.1	Introduction	57
9.2	Conclusion	57
9.3	Achievements of the Objectives	57
9.4	Problems Encountered	58
9.5	Further Work	59
9.6	Summary	60
References		61

Appendix A	: The Block Diagram of the Ontology	64
A.1	Introduction	64
Appendix B: The Training Dataset		65
B.1	Introduction	65
Appendix C: The Test Dataset		68
C.1	Introduction	68
Appendix D: Results		69
D.1	Introduction	69
D.2	Results of Five Negotiation Attempts	69
D.3	Summarized Results of Five Negotiation Attempts	70
D.4	Results of Ten Negotiation Attempts	71
D.5	Summarized Results of Ten Negotiation Attempts	73
D.6	Results of Twenty Negotiation Attempts	74
D.7	Summarized Results of Twenty Negotiation Attempts	77
Appendix E	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	78

List of Figures

	Page
Figure 5.1:Multi agent negotiations architecture	25
Figure 6.1: Pseudo code of the GUI Agent	30
Figure 6.2: Part of the message space	30
Figure 6.3: Pseudo code of the ANN Agent	32
Figure 6.4: Pseudo code of the GA Agent	34
Figure 6.5: Pseudo code of the MATLAB Interface Agent	35
Figure 6.6: The architecture of the neural network	36
Figure 6.7: A chromosome organization in the GA model	39
Figure 6.8: Gene level constraints in a chromosome	39
Figure 7.1: Main GUI interface	44
Figure 7.2: Detailed forecasting process	45
Figure 7.3: Weather database updating process	46
Figure 7.4: Start of a new forecast	47
Figure 7.5: Forecast for 21st Now 201f Moratuwa, Sri Lanka.	48
Figure 8.1: Experimentat cesults with five segotlation cutterious s	51
Figure 8.2: Summary of experimental results with five negotiation attempts	52
Figure 8.3: Experimental results with ten negotiation attempts	53
Figure 8.4: Summary of experimental results with ten negotiation attempts	54
Figure 8.5: Experimental results with twenty negotiation attempts	55
Figure 8.6: Summary of experimental results with twenty negotiation attempts	56

List of Tables

	Page
Table 2.1: Summary of reviewed forecasting models	15
Table 8.1: Mean square error of each negotiations experiment	56

