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ABSTRACT 

Polyhedron is a solid figure bounded by plane faces. Face and vertex regular 

polyhedra are the polyhedra whose faces are regular polygons and the arrangement of 

polygons around each vertex is identical. Here general equations to calculate the 

properties o f the face and vertex regular polyhedra are developed. This includes 

equations for radius o f the escribed sphere and internal solid angle of a vertex. Using 

these equations the radius of the escribed sphere o f face and vertex regular polyhedrda 

are found including that of Snub Cube and Snub Dodecahedron. It is also shown that 

sphere is a l imit ing case of a polyhedron. 

As application to finite element analysis, approximating the boundary by the sides of 

the finite elements is proposed. Also a method o f defining the Lagrange interpolating 

polynomial is proposed. 2D tessellations are f i l l ing of infinite plane using polygons 

and 3D tessellations are filling of infinite space using polyhedra. With the piecewise 

polynomial selected in the above manner it is shown that the only possible regular 

tessellations that can be used in finite elements are Equilateral Triangle and Square in 

2D and Triangular Regular Prism and Cube in 3D. It is shown in general that "any 

polygon having two axis of symmetry with nodes are selected at vertices cannot be 

used as a finite element i f its Lagrange polynomial contains the complete polynomial 

of degree two" and "any polyhedron having a polygonal face with two axis of 

symmetry and having six or more number of vertices wi th the nodes are selected at 

vertices cannot be used as a finite element i f its Lagrange polynomial contains a two 

variable complete polynomial of degree two". 
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C H A P T E R 1 

T E S S E L L A T I O N S A N D P O L Y H E D R A 

INTRODUCTION 

Polygon is a convex planner figure with straight edges. Regular polygon is a polygon 

with equal sides and equal internal angles. Regular polygon wi l l be the theme thought 

this thesis. 

2D tessellations are f i l l ing of infinite plane using polygons. 

Polyhedron is the 3 dimensional version of polygon. They are 3D convex objects 

bounded by plane faces. Face and vertex regular polyhedra are the polyhedra whose 

faces are regular polygons and the arrangement o f the polygons around each vertex is 

identical. 

3D tessellations are filling of space using polyhedra. 

1 



1.1 REGULAR POLYGONS 

Polygon is a convex planner figure with straight edges. Regular polygon is a polygon 

with equal sides and equal internal angles. 

Here only the regular polygons are considered for the constructions. 

There are infinitely many types of regular polygons. 

1.2 2D TESSELLATIONS [31 

2D tessellations are filling of infinite plane using polygons. A necessary requirement 

is that the sum of vertex angles of polygons = In .Here we use only the regular 

polygons for f i l l ing and we keep the arrangement of polygons around each vertex 

identical. They can be categorized as follows. 

1. Regular 2D Tessellations: 

Only one type o f polygon is used. 3 types exists. 

2. Semi-Regular 2D Tessellations: 

Different types of polygons are used. 8 types exists. 

1.2.1 REGULAR 2D TESSELLATIONS 

Note: Here 3 6 means that 6 Triangles (3 sides) meet at a vertex. 

Figure 1.1 



Figure 1.2 

Figure 1.3 

3 



1.2.2 S E M I - R E G U L A R 2D T E S S E L L A T I O N S 

1. 3 2 6 2 

Note: Here 3 2 6 2 means that 2 Triangles (3 sides) and 2 Hexagons (6 sides) meet at a 

vertex. 

Figure 1.4 

2. 3 3 4 2 

• 

Figure 1.5 

4 
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3. 3 24,3,4, 3 ^ , 3 , 4 , ^ ) 

Note: There are Left hand(L) and Right hand(R) versions of this 

Figure 1.6 

4. 3,4 26, 

Figure 1.7 

* 
5 



3,12 

Figure 1.8 

Figure 1.9 



7. 4,8 2 

Figure 1.10 

8. 3 4 6, e.g: 3 4 6 , ( J ? ) 

Note: There are Left haiid(L) and Right hand(R) versions 

Figure 1.11 



1.3 FACE AND VERTEX REGULAR POLYHEDRA 

Polyhedron is the 3 dimensional version of polygon. They are 3D convex objects 

bounded by plane faces. 

A necessary requirement is that the sum of vertex angles of polygons < 2n . 

Face and vertex regular polyhedra are the polyhedra whose faces are regular polygons 

and the arrangement o f the polygons around each vertex is identical. They can be 

categorized as 

1. Regular Polyhedra (Platonic Solids): 

Only one type o f polygon is used. 5 types exists. 

2. Archimedean Polyhedra: 

Different types o f polygons are used. 13 types exists. 

3. Regular Prisms: 

Polygons are used for top and bottom with squares as sides, oo types exists. 

4. Regular Anti-prisms: 

Polygons are used for top and bottom with triangles as sides.oo types exists. 

1.3.1 REGULAR POLYHEDRA (PLATONIC SOLIDS) 

1. 3 3 - Tetrahedron 

Note: Here 3 3 means that 3 Triangles (3 sides) meet at a vertex. 

This has 4 triangular faces, 4 vertices and 6 edges 

Figure 1.12 

S 



2. 4 3 - Hexahedron(Cube) 

Figure 1.13 

3. 5 3 - Dodecahedron 

Figure 1.14 



4. 3 4 - Octahedron 

5. 3 5 - Icosahedron 

Figure 1.15 

Figure 1.16 

10 



1.3.2 A R C H I M E D E A N P O L Y H E D R A 

1. 3,6 2 - Truncated Tetrahedron 

Note: Here 3,6 2 means that 1 Triangle (3 sides) and 2 Hexagons (6 Sides) meet at a 

vertex. This has 4 triangular and 4 hexagonal faces, 12 vertices and 18 edges 

» 

Figure 1.17 

2. 3,8 2 - Truncated Cube 

9 

Figure 1.18 

11 







7. 4,6,10, - Great Rhombicosidodecahedron 

Figure 1.23 

8. 3,4 3 - Small Rhombicuboctahedron 



• 



1 1. 3,4 25, - Small Rhombicosidodecahedron 

Figure 1.27 

12. 344l-SnubCube e.g : 3 4 4, (L) 

Note: There are Left hand (L) and Right hand (R) versions of this 

Figure 1.28 
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13. 3 4 5 , - Snub Dodecahedron e.g : 3 45,(/?) 

Note: There are Left hand (L) and Right hand (R) versions o f this 

Figure 1.29 

1.3.3 R E G U L A R PRISMS 

1. 42 ; n * 4 e.g : 4 2 6 , - Hexagonal Regular Prism 

Figure 1.30 
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1.3.4 REGULAR ANTI-PRISMS 

1. «, 3 3 ,n * 3 e.g : 3 3 6, - Hexagonal Regular AntiPrism 

1.4 3D TESSELLATIONS [41 

3D tessellations are filling o f space using polyhedra. 

A necessary requirement is that the sum of vertex solid angles o f polyhedra = An. 

Here we use only the face and vertex regular polyhedra for filling and we keep the 

arrangement o f polyhedra around each vertex identical. They can be categorized as 

follows. 

1. Regular 3D Tessellations: 

Only one type o f Platonic and Archimedean Polyhedra are used. 2 types e x i s t s 

2. Regular Prism 3D Tessellations: 

Only one type o f Regular Prism is used. 2 types exists. 

3. Semi-Regular 3D Tessellations: 

Combinations o f Polyhedra are used. 11 types exists. 

4. Semi-Regular Prism 3D Tessellations: 

Different types o f Regular Prisms are used. 8 types exists. 

18 



UNIVERSm 

1.4.1 R E G U L A R 3D T E S S E L L A T I O N S 

1. ( 4 , ) . 

Note: Here (4 3 ) 8 means that 8 cubes ( 4 3 ) meet at a vertex. 

Figure 1.32 

2- ( 4 , 6 2 ) 4 

Figure 1.33 

85384 



• 
1.4.2 R E G U L A R PRISM 3D T E S S E L L A T I O N S 

1- ( 3 ,4 2 ) 1 2 

* Figure 1.34 

2- ( 6 , 4 2 ) 6 



1.4.3 S E M I - R E G U L A R 3D T E S S E L L A T I O N S 

1. ( 3 , ) 8 ( 3 4 ) 6 

Note: Here (3 3 ) g means that 8 Tetradedra( 3 3 ) and 6 Octahedra( 3 4 ) meet at a vertex. 

2- ( 3 , ) 2 ( 3 , 6 2 ) 6 

Figure 1.37 

2 1 





( 4 , ) , ( 4 ,6 2 ) 1 ( 4 1 6 ,8 , ) 2 

23 



( 4 3 ) 2 ( 3 2 4 2 ) , ( 3 , 4 3 ) 2 

Figure 1.42 

( 3 3 ) 1 ( 4 3 ) 1 ( 3 1 4 3 ) 3 

Figure 1.43 

24 



9. ( 3 , 6 2 ) 2 ( 3 2 4 2 ) , ( 4 , 6 2 ) 2 

Figure 1.45 
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11. ( 4 , ) 1 ( 4 2 8 1 ) 2 ( 3 I 8 2 ) 1 ( 3 , 4 , ) I 

Figure 1.46 

1.4.4 S E M I - R E G U L A R PRISM 3D T E S S E L L A T I O N S 

1. ( 3 , 4 2 ) 4 ( 6 , 4 2 ) 4 

2- ( 3 , 4 2 ) 6 ( 4 3 ) 4 

3. ( 3 , 4 2 ) 4 ( 4 3 ) 2 ( 3 , 4 2 ) 2 ( 4 3 ) 2 

4. ( 3 , 4 2 ) 2 ( 4 3 ) 4 ( 6 , 4 2 ) 2 

5. ( 3 , 4 2 ) 2 ( 1 2 , 4 2 ) 4 

• 6. ( 4 3 ) 2 ( 6 , 4 2 ) 2 ( 1 2 , 4 2 ) 2 

7. ( 4 3 ) 2 ( 8 , 4 2 ) 4 

8. ( 3 , 4 2 ) g ( 6 , 4 2 ) 2 

26 



C H A P T E R 2 

C A L C U L A T I O N S ON F A C E A N D V E R T E X 

R E G U L A R P O L Y H E D R A 

INTRODUCTION 

Due to the similarity of their vertices Face and Vertex Regular Polyhedra have a 

unique escribed sphere. Any geometrical property of the above Polyhedra can be 

found i f this is known. Here equations wi l l be developed to f ind the exact escribed 

radii values for Face and Vertex Regular Polyhedra. 

27 



2.1 ESCRIBED RADIUS OF A FACE A N D V E R T E X R E G U L A R 

P O L Y H E D R O N H I 

When the vertices o f a regular polygon with ni number of sides are joined to its center 

O, /?, number o f equilateral triangle are formed as shown in figure 2.1. 

2 », 

A — C B 
2 

Figure 2.1 

Suppose that this polygon is placed inside a sphere of radius i?, and center G. Then all 

the vertices wi l l touch the surface of the sphere and the triangle A B O is seen as in the 

fol lowing figures. 

Figure 2.3 

28 
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A spherical triangle ABD is formed when the triangle ABO is projected on to the 

surface of the sphere. Let the angles of the spherical triangle ABD be Ai,Bi and D,. 

Also let the corresponding angles between lines joining to the center G be a^b, and 

d, respectively. A l l the angles around the point D w i l l form a plane perpendicular to 

GD at the point D. Hence 

,?,.£>, = 2 * =>£>,= — (2) 
n i 

OA=OB=a gives 

A.=B. (3) 
i t v ' 

a.=b. (4) 

The triangles ABG and BGO can be separated as follows 

29 



By figure 2.4 and equation(l) 

s i n a, = — 
R, 

a 

2#,sin — 
n. 

(6) 

But by a theorem in spherical trigonometry 

sin a, sin b, sin d, 
sin ^, sin B; sin £), 

[APPENDIX A ] 

(2), (5), (6): 

a 

2R, sin 
2R> 

sin / i , 
s i n -

2K 

R.- = a 

This is the radius of the escribed sphere. 

Now suppose that different types of polygons are placed inside the sphere and the 

radius is adjusted in such a way that a 3D vertex(A) is formed with the adjacent sides 

of polygons are touching each other. At this position radii values calculated for 

different types o f polygons are equal.i.e. 

Rt = constant(R, say) 

n 
cos— 

n 
'- = constant (k, say) • 

sin A, 
(8) 

So the escribed sphere radius is R -
2 V T P 

(7) 

30 



When 3D vertex is formed at A, sum of angles A. w i l l add up to In creating a plane 

perpendicular to G A at A. 

I f M, number of polygons with n. number of sides meet at the vertex A, and because 

each polygon provides two angles this result can be written as 

To find the radius of the escribed sphere radius, R by (7) the value of the constant k 

must be found. To find k, equations (8) and (9) must be solved to eliminate A,. 

The equations (8) and (9) cannot be solved in closed form. But (7),(8) and (9) can be 

combined to give the fol lowing identity. 

Here a = length o f an edge which is constant for the polyhedron. 

2.2 C O M P U T A T I O N OF ESCRIBED RADIUS 

Due to the similarity of its vertices, face and vertex regular polyhedra have a unique 

escribed sphere. 

Escribed radius can be computed by solving 

(9) 

( 
71 

cos — 

71 
COS — 

constant = k (8) 
sin At 

(9) 

or 

71 7t 71 
C O S — COS COS — 

sin Ax sin A2 sin A3 

M]Ai + M2A2 + M}A3 + . 

(8) 

= 71 (9) 

31 



As stated early this system cannot be solved in closed form. 

However for a given 3D vertex, (8) and (9) can be solved to f ind At and then k . 

substituting it in (7) the radius of the escribed sphere can be found. Following 

illustrates how this can be done for the face and vertex regular polyhedra. 

(1) For 3 3 , 3 4 , 3 5 , 4 3 , 5 3(Regular Polyhedra) 

The vertex is of the form nM . Then 

MA = n (8) 

71 
cos — 

k = —JL (9) 
sin ,4 

71 
cos — 

(9) zz> k = n-
71 

sin — 
M 

So the radius is R = a a 
2 VlTrP 

1 -

7t 
cos— 

n 
. 71 

sin—-
M ) 

The calculated exact escribed radius values are 

32 



(2) For 3,62,3,82,3,102,4,62,5,62 

The vertex is of the form «1, n22 . Then 

4 +2A2 = 7 1 (8) 

7X 71 
cos — cos — 

sin At sin A2 

(8) => sin Ax = sin(7r - 2A2) = sin 2 ^ 2 = 2 sin A2 cos A2 

cos — 
Yl 

(9) => - s i n A2 = 2 s i n A cos ,4 
7t 

cos — 
"2 

cos 

=> cos 4 = — 
2 cos — 

"2 

The calculated exact escribed radius values are 
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(3) For 4,6,8,, 4,6,10, 

Ax + A2 + A2 = k • (8) 

cos- cos-
7t 

cos- n 

sin ,4, sin A sin A, 
= k -(9) 

(8) => sin(/J, + ^ 2 ) = sin(7r - /43) = sin A^ 

=> sin Ax cos A2 + cos Ax sin ^ 2 = sin A3 

m , 1 J , . \ n \ 
(9) => —cos—cos ^ 2 + c o s ^ , —cos— = —cos 

k n, k n2 k 

cos cos A cos — 

cos 
2 N 

- cos — cos A 
' 2 j 

7t 

n 
+ cos A cos 2 cos AK cos—cos 

= cos 2 — ( l - s i n 2 A2) 

= cos 
cos 

1-sin A, 
2 n cos — 

' 1 J 

COS COS n cos = 2coSy4. cos—cos 

cos + cos 
n 2 n - c o s — 

cos A, = 
71 71 

2 cos — cos — 

The calculated exact escribed radius values are 

Vl3 + 6V2 
/ V / ̂4,6,8, 

a/31 + 12V5 
^4,6,10, ? * 

34 
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(4) For 3,4 3 

The vertex is o f the form /?1, «23 . Then 

AX + 3A2 = n --
n n 

cos— cos — 

(8) 

sin A. sin A 
= k -(9) 

(8) => sin ,4, = S\V\{TX-3A2) = sm!>A2 = 3 s i n ^ 2 - 4 s i n 3 A2 

=> sin A} = s'm(n - 3A2) = s'm3A2 = 3sin A2 -4sin3 A2 

(9) => —cos— = — c o s — ( 3 - 4 s i n A21 
k n] k n2 

7X 

cos — 

4s in 2 A2 = 3 
cos-

71 

sin AT = — 
2 2 

3 -

IX 

cos — 

cos-
7X 

The calculated exact escribed radius values are 

R 
V5 + 2V2 

3,4, 
-0 

• 
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(5) For 3 2 4 2 , 3 2 5 2 

The vertex is o f the form n\2 n22 . Then 

2,4, + 2v42 = n • 

TV n 
cos— cos — 

sin A sin A, 

(8) => sin A. = sin 

(8) 

-(9) 

A7 
2 2 

cos-

= cos A 

(9 )=>s in^ 2 = cos A 

cos-
71 

cos-
7X 

tan A2 -

cos-
71 

The calculated exact escribed radius values are 

R 
_ ^2(3 + 7 5 ) 

3,5, a 
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(6) For 3,4 25, 

The vertex is of the form n\xn2xrih2 . Then 

Ax + A2 + 2A3 =n ( 8 ) 

TV 71 71 
C O S — COS COS 

sin Ax sin A2 sin A3 

"(9) 

( 8 ) = > s'm(Ax + A2) = sin(;r - 2A3) = sin 2 v 4 3 

=> sin Ax cos A2 + cos Ax sin A2 =2 sin A3 cos A3 

1 7 1 A A 1 * i 1 7 1 A => — cos — cos Y 4 2 + cos Ax — cos — = 2 — cos — cos ^ 3 

2 cos — cos A COS — COSv4 2 + cosAx cos — 
' 2 y 

4cos — c o s / * 3 - c o s —cos ^ 2 - c o s — c o s Ax 

7 1 n 

= 2 cos — cos — cos Ax cos A2 

nx n2 

= 2 cos — cos — (cos(^, + A2) + sin Ax sin A2) 
nx n2 

= 2 cos — cos — ( - cos 2A3 + sin ,4, sin A2) 

4cos 2 — ( l - s in 2 y 4 3 ) - c o s 2 — 
cos 

71 

1 - sin A, 
71 

cos 
- cos 

7t 

'3 y 

cos" — 

sin A3 

cos' 
'3 J 

71 71 
= 2 cos — cos — 

nx n2 

cos-
71 

cos-
7T 

2 s in 2 / 4 3 - 1 + sin A3 sin A3 — 
n 

cos — cos-
71 

*3 J 

4sin A 71 n 
cos + COS — cos-

V n nx n 2 j 

cos cos-
71 

\ 2 

2 y 

sin A3 = • 
2 71 71 71 

cos v cos — cos — 
/?3 nx n2 
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The calculated exact escribed radius value is 

Vll + 4V5 
^3,4,5, = 2 ° 

(7) F o r 3 , 4 4 ,3,5, 

The vertex is o f the form «1, «2 4 . Then 

At + 4A2 = n (8) 

IX 7X 
cos— cos — 
- ^ L = ̂  = k (9) 
sin 4̂, sin 4 
(8) => sinv4| = s'm(7x -4A2) = s'm4A2 = 2sin2v4 2 cos2A2 = 4sin A2 cos^ 2 (2cos 2 /I 2 - l) 

1 11 A 71 (~ 3 , A \ 
— cos— = 4—cos —12 cos A2 - c o s v 4 2 1 
k nx k n2 

7X 
cos — 

1 n 
cos3 Ay — c o s ^ j — = 0 

8 cos — 
n2 

This cubic equation must be solved to find the radius 

(see Appendix A) 

The calculated exact escribed radius values are 
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C H A P T E R 3 

O T H E R D E R I V A T I O N S 

INTRODUCTION 

Having found expressions for exact radii values o f the Face and Vertex Regular 

Polyhedra any other geometrical property can be found. Here such formulae are stated 

and the geometrical properties calculated form such equations are given. 

It is proven that sphere can be regarded as a regular polyhedron. 
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3.1 S P H E R E A S A L I M I T I N G C A S E O F A P O L Y H E D R O N 

Consider a regular polyhedron. There is only one type of polygon and hence nl = n 

and the number o f polygons meet at a vertex is M , = M. 

The number of faces is given by 

2 

F = - n 

M n 2 

With a = length of an edge o f a polygon ,the radius of the escribed sphere is given by 

R = 

cos — 
n 

sin-
~M 

sin-
M 

sin n 
~M 

• 2 7 1 2 n 

sin cos — 
I M n 

- c o s ^ -
( 1 n ( 1 

+ — cosn — n) 

sin-
7T 

M 
(f 

•cos-
M 

1 + cos 
2 * ^ 

sin-
M 

sin n 
i i n 

1 \ZQ>%TC 
M n 2) 

M n 

( 1 1 O 
Let a new variable define b y a = ^ v 

\M n 2 

J__ a__i 1 
M n n 2 

We can re write the expressions in terms of a as 

2 2 

n 2n 

_L + I _ 1 £ " a 

M n 2 n 

and 

sin n 

R M 
f 

sin n M n 2 
COS7T 

sin 7T 
M 

sin n 

J 

Kn n 2 j 

\ \_ 
M n 

r 

sin a cos n M n 

a 
cos a 

n 
n) 

(a \ \ \ 
sin a cos ^ H 

\n n 2 n 
sin a sin 

2n 
-a 
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no Ti 

With area o f a polygon = cot— , the total surface area o f the polyhedron . A is 
4 n 

= area of a polygon x total number of faces 

= area of a polygon x F 

71 

(no1 
71 

cot— 
4 n 

V 2n_ 
yna) 

Tia cot-

2a 

It is clear that both A and R —> oo as a 

. total surface area _ oo 
< 3 ,-> 0 (escribes sphere radius) 2 0 0 

= Lim-^— 
a->0 R2 

= Lim-
a->0 

2 ^ 

ttxx cot — 

2a 

0 . But the l imit 

sin 
= 2/T cot — Lim -p-

^2tt \ 

a 
) 

s i n « 

cos 
a 

a 
71 

n) 

o->0 
COS" a 

= 2tt 

71 2tt 
cos— sin 

n 
^ - l = 4/r 

a 71 7X 

n ) 
sin — cos 

n n 
4 . .(In 

sin or sin a 
V n 

The angle a introduced here has a physical meaning as follows, 

gap angle 

= 2/T - total angle provided by polygons at a vertex 

= 2tt - number of polygons x vertex angle of a polygon 

_ + i _ r 
M n 2 

= 2/T -M X7t\ 
2\ ( 1 

= 2nM 
n J 

= 2Ma 

It is clear that when gap angle or a —> 0 , the polyhedron becomes a 2D tessellation. 

When the length o f a side of a polygon(<3) is not—> 0 its surface is a 

plane(tessellation) which is having oo radius. But when the length of a side of a 

polygon—> 0 a sphere with a finite radius may be obtained. 

This is conformed by the fact that we get An for the above ratio which is same as that 

for a sphere. Note that we have never used the equation for the surface area of the 

sphere in any o f the derivations(see Appendix B). 

This implies that the sphere can also be regarded as a l imit ing case of a polyhedron 

with its surface being a regular 2D tessellation. 

It can be shown that the tessellation need not be regular. 
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3.2 OTHER FORMULAE 

Following relations for the number of faces( F), vertices( V) and edges( E) are easily 

found by the Euler's formula F + V = 2 + E 

(1) Number o f faces [APPENDIX E] 

F = -

l + 5 > , 

(2) Number of vertices 

V = 

l + 5 > , 

(3) Number of edges 

Once the radius o f the escribed sphere is found any other geometrical property of the 

polyhedra can be easily calculated. For example volume can be found considering 

pyramids formed by jo in ing faces to the center of the escribed sphere, fol lowing are 

formulae for some properties. 

(4) Angle subtended at the center by an edge(angle of polyhedron) 

9 = 2cos" 
cos-

71 

sin A, 
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(5) Dihedral angle between adjacent faces[APPENDIX D] 

i.eclge 

cos Ai 

(sin 2 A, - cos 2 — 

' J 

(6) Internal solid angle of a vertex.[APPENDIX C] 

CO = 2n - Mtn + 2 ^ M. si sin 
cos At 

. n 
sin — 

V
 n< J 

(7) Sum of total internal solid angles of vertices 

( \ 

COS A; 
CO, lolal = 47T-2VYJMism 

. 71 

sin — 
V "/ J 

2ttF 

The calculated properties o f the face and vertex regular polyhedra using these data are 

given under N U M E R I C A L D A T A 

Due to the fact that the regular polyhedra have only one type of polygons closed 

expressions can be obtained for their properties 

(8) Number o f edges E = 2Mn 
2(M + n)-Mn 

(9) Number o f faces F = 
AM 

2(M + n)-Mn 

(10) Number o f vertices V 
An 

2(M + n)-Mn 
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(11) Radius o f the escribed sphere 

s i n -

R = M 
• 2 n l n 

sin cos — M 

(12) Radius of the inscribed sphere 

r = 

n n 
cot —cos — 

a n M 
• 2 n 2 x sin cos — 

M 

(13) Volume 

Mna 
v = 

2 IX 7X 
cot — cos — 

n M 
6(2(M + n)-Mn) 

2 7X 2

 n 

sin cos — 
M n 

(14) Angle subtended at the centre by an edge (angle of polyhedron) 

cos-
7X 

9 - 2cos" 
7X 

sin 
V M 
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3.3 NUMERICAL DATA 

3.3.1 GENERAL DATA (ORDERED BY THE SOLID ANGLE OF A VERTEX) 

NO SYMBOL N A M E 

N U M B E R OF 
POLYGONS 
MEET A T A 

VERTEX 

NUMBER OF 
FACES 

NUMBER OF 
EDGES 

N U M B E R OF 
VERTICES 

SUM OF VERTEX 
ANGES OF 

POLYGONS MEET 
A T A 

VERTEX/DEGREES 

1 3 3 
Tetrahedron 3 4 6 4 180 

2 4 2 3, Triangular Prism 3 5 9 6 240 

3 3 4 
Octahedron 4 8 12 6 240 

4 4 3 
Hexahedron(Cube) 3 6 12 8 270 

5 3 3 4, Square Anti Prism 4 10 16 8 270 

6 4 2 5, Pentagonal Prism 3 7 15 10 288 

7 3,6 2 

Truncated 
Tetrahedron 

j 8 18 12 300 

8 3 35, Pentagonal Anti 
Prism 

4 12 20 10 288 

9 4 2 6, Hexagonal Prism - i 
_> 8 18 12 300 

10 3 36, Hexagonal Anti 
Prism 

4 14 24 12 300 



NO SYMBOL N A M E 

NUMBER OF 
POLYGONS 
MEET A T A 

VERTEX 

NUMBER OF 
FACES 

NUMBER OF 
EDGES 

N U M B E R OF 
VERTICES 

SUM OF VERTEX 
ANGES OF 

POLYGONS MEET 
A T A 

VERTEX/DEGREES 

11 4 2 8, Octagonal Prism 3 10 24 16 315 

12 3 2 4 2 Cuboctahedron 4 14 24 12 300 

13 3 38, Octagonal Ant i 
Prism 

4 18 32 16 315 

14 4 210, Decagonal Prism 3 12 30 20 324 

15 3,10, 
Decagonal Ant i 

Prism 
4 22 40 20 324 

16 4 212, Dodecagonal Prism 3 14 36 24 330 

17 3 5 
Icosahedron 5 20 30 12 300 

18 3,12, 
Dodecagonal Ant i 

Prism 
4 26 48 24 330 

19 3,8 2 Truncated Cube -> 14 36 24 330 

20 5 3 
Dodecahedron 12 30 20 324 
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NO SYMBOL N A M E 

N U M B E R OF 
POLYGONS 
MEET A T A 

VERTEX 

NUMBER OF 
FACES 

N U M B E R OF 
EDGES 

N U M B E R OF 
VERTICES 

SUM OF VERTEX 
ANGES OF 

POLYGONS MEET 
A T A 

VERTEX/DEGREES 

21 4 ,6 2 Truncated Octahedron 3 14 36 24 330 

22 3,4 3 

Small 
Rhombicuboctahedron 

4 26 48 24 330 

23 3 4 4, Snub Cube 5 38 60 24 330 

24 3 2 5 2 Icosidodecahedron 4 32 60 30 336 

25 3,102 Truncated Dodecahedron 3 32 90 60 348 

26 4,6,8, Great 
Rhombicuboctahedron 

26 72 48 345 

27 5,6 2 Truncated lcosahedron 3 32 90 60 348 

28 3,4 25, Small 
Rhombicosidodecahedron 

4 62 120 60 348 

29 3 4 5 1 Snub Dodecahedron 5 92 150 60 348 

30 4,6,10, Great 
Rhombicosidodecahedron 

3 62 180 120 354 

Table 3.1 
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3.3.2 D A T A C A L C U L A T E D F R O M D E R I V E D EQUATIONS ( O R D E R E D BY T H E SOLID A N G L E OF A V E R T E X ) 

NO SYMBOL N A M E 
SOLID ANGLE OF A 

VERTEX/4PI sr 

RADIUS 
/LENGTH 

OF A N EDGE 

V O L U M E / 
LENGTH 

OF A N 
EDGE A 3 

V O L U M E / 
RADIUS A 3 

A N G L E 
SUBTENDED 

A T THE 
CENTRE B Y 
A N EDGE/ 
DEGREES 

1 3 3 
Tetrahedron 0.043869914022955452628 0.61237243569579452455 0.12 0.5132 109.47 

2 4 2 3, Triangular Prism 0.08333333333333333333 0.76376261582597333443 0.43 0.9719 81.79 

3 3 4 
Octahedron 0.10817344796939272983 0.70710678118654752440 0.47 1.3333 90.00 

4 4 3 
Hexahedron(Cube) 0.1250000000000000000 0.86602540378443864676 1.00 1.5396 70.53 

5 3 3 4, Square Ant i Prism 0.14274378718068905088 0.82266438800803628873 0.96 1.7189 74.86 

6 4 2 5, Pentagonal Prism 0.15000000000000000000 0.98671515532598310732 1.72 1.7909 60.89 

7 3,6 2 

Truncated 
Tetrahedron 

0.15204336199234818246 1.1726039399551573886 2.71 1.6812 50.48 

8 3 35, Pentagonal Anti 
Prism 

0.16389445018831418952 0.95105651629515357212 1.58 1.8352 63.43 

9 4 2 6, Hexagonal Prism 0.16666666666666666667 1.1180339887498948482 2.60 1.8590 53.13 

10 3 3 6, Hexagonal Anti 
Prism 

0.17811477836587375037 1.0876638735805374369 2.34 1.8167 54.74 
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NO SYMBOL N A M E 
SOLID ANGLE OF A 

VERTEX/4PI sr 

RADIUS 
/LENGTH 

OF A N EDGE 

V O L U M E / 
LENGTH 

OF A N 
EDGE A 3 

V O L U M E / 
RADIUS A 3 

ANGLE 
SUBTENDED 

A T THE 
CENTRE BY 
A N EDGE/ 
DEGREES 

11 4 2 8, Octagonal Prism 0.18750000000000000000 1.3989663259659067020 4.83 1.7635 41.88 

12 3 2 4 2 Cuboctahedron 0.19591327601530363509 1.0000000000000000000 2.36 2.3570 60.00 

13 3 38, Octagonal Anti Prism 0.19599139196000959929 1.3755485807735077127 4.27 1.6398 42.63 

14 4 210, Decagonal Prism 0.20000000000000000000 1.6935270853310539386 7.69 1.5841 34.34 

15 3 310, Decagonal Anti Prism 0.20675875319410803684 1.6745047437425603068 6.75 1.4375 34.75 

16 4 212, Dodecagonal Prism 0.20833333333333333333 1.9955076566049245038 11.20 1.4090 29.02 

17 3 5 
lcosahedron 0.20965059100153751343 0.95105651629515357212 2.18 2.5362 63.43 

18 3 312, Dodecagonal Anti 
Prism 

0.21395022502107160677 1.9795119433363656367 9.78 1.2611 29.26 

19 3,8 2 Truncated Cube 0.22295663800765181754 1.7788236456639244509 13.60 2.4162 32.65 

20 5 3 
Dodecahedron 0.23568771323782495563 1.4012585384440735447 7.66 2.7852 41.81 
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NO S Y M B O L N A M E 
SOLID ANGLE OF A 

VERTEX/4PI sr 

RADIUS 
/LENGTH 

OF A N EDGE 

V O L U M E / 
LENGTH 

OF A N 
EDGE A 3 

V O L U M E / 
RADIUS A 3 

ANGLE 
SUBTENDED 

A T THE 
CENTRE B Y 
A N EDGE/ 
DEGREES 

21 4 ,6 2 Truncated Octahedron 0.25000000000000000000 1.5811388300841896660 11.31 2.8622 36.87 

22 3,4 3 

Small 
Rhombicuboctahedron 

0.27704336199234818246 1.3989663259659067020 8.71 3.1827 41.88 

23 3 4 4, Snub Cube 0.27565364345454073491 1.3437133737446017013 7.89 3.2518 43.69 

24 3 2 5 2 Icosidodecahedron 0.29234795477416835754 1.6180339887498948482 13.84 3.2661 36.00 

25 3,102 Truncated Dodecahedron 0.30806988179969249731 2.9694490158633984670 85.04 3.2478 19.39 

26 4,6,8, Great 
Rhombicuboctahedron 

0.31250000000000000000 2.3176109128927665138 41.80 3.3577 24.92 

27 5,6 2 Truncated Icosahedron 0.33810409558739168146 2.4780186590676155376 55.29 3.6334 23.28 

28 3,4 25, 
Small 

Rhombicosidodecahedron 
0.35382602261291582123 2.2329505094156900495 41.62 3.7378 25.88 

29 3,5, Snub Dodecahedron 0.35886935933301325883 2.1558373751156397018 37.62 3.7543 26.82 

30 4,6,10, Great 
Rhombicosidodecahedron 0.37500000000000000000 3.8023944998512935848 206.80 3.7617 15.11 

Table 3.2 
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C H A P T E R 4 

A P P L I C A T I O N T O FINITE E L E M E N T ANALYSIS 

INTRODUCTION 

The relation between the finite element analysis and tessellations lies on the fact that 

tessellations can cover 2D or 3D space. Here possibility of using these tessellations in 

finite element analysis is analyzed. 

Finite element analysis requires a region to be divided into non overlapping sub 

regions called finite elements. A method for dividing the region into finite elements 

and a method for defining the Lagrange interpolating polynomial are investigated. 

With the piecewise polynomial selected in the above manner the limitations of the 

regular tessellations as finite elements are investigated. 
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4.1 FINITE D I F F E R E N C E A N D FINITE E L E M E N T M E T H O D S 

There are two main numerical techniques to solve partial differential equations. They 

are the finite difference method and the finite element method. 

In both methods the region of the range o f the problem is discretized in to non 

overlapping sub regions which are called finite elements. Hence these methods have a 

strong connection with geometry. 

In finite difference method the region is discretized in to finite elements with their 

sides parallel to variable axes. In contrast to this in the finite element method the 

region is discretized in to finite elements in any suitable way and the function of 

concern is assumed going over and through points above these regions(interpolating 

function is found). Because of the flexibil i ty o f the choose of the regions, finite 

element method is preferred over the finite difference method. Here we restrict the 

discussion to finite element method. 

The ideas discussed are not restricted to the solution of partial differential equations. 

They are equally applicable to numerical differentiation, numerical integration etc. 

4.2 FINITE E L E M E N T M E T H O D S [51 

Let partial the differential equation be written in operator form as L(V) = r within the 

region R .To apply the finite element methods we divide the region in to non 

overlapping finite elements e. We approximate the original function within each 

finite element R{e)as follows. 

Where N{e)aie shape functions and v ( e ) are the values o f the original function. Here 

—(<o 

TV is the extended shape function to include all the function values v within the 

region R{e). 
We can write the total function for the region R as 

The shape functions are found as follows. 
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Normally the function is assumed as a Lagrange polynomial and written as 

V(X) = f{X)A where f{X) is the polynomial terms and A is the set of 

coefficients to be determined. Here X = (x,y) in 2D X = (x,y,z) in 3D. 

Normally the function values are set at nodes of the finite element and hence the node 

set o f the finite element is P = (X). To find the shape functions we evaluate the 

function at each node and find the coefficients A as follows. 

V(P) = v = f(P)A = BA 

V(X) = f(X)B-\ 

V{X) = Nv 

To find the Lagrange polynomial V(X) we need to find the shape 

matrix TV = f(X)(f(P))~]. 

To find the shape matrix we need to find B~]. Hence B should be non singular. 

The matrix B = f(P) is only depend on the geometry of the finite element in the form 

of vertex set P and the selected piecewise polynomial / . 

Weighted residual and Variational methods are the main methods of solving 

differential equations by finite elements. A l l these methods are based on some integral 

and the integral over the region is the sum of element contributions. Hence we can 

substitute the assumed polynomial V(e)(X) in the element integral and come up with 

the total integral. 

4.3 WEIGHTED RESIDUAL METHODS 

In these methods the residual due to the substitution of the piecewise polynomial to 

the differential equation is found. Its weighted integral is used to find the function 

values. 

E(V) = L(V)-r 

£«-')({/«-•)) = L(V(e))-r 



4.3.1 LEAST SQUARE METHOD 

This is a main weighted residual method where the weight is taken to be E itself. 

WE(V) = $E2dR 
K 

d". « dv, RL dv, 

dWE(c) 

dv(c) 1 dv{e) 

4.3.2 GALERKIN METHOD 

This is a main weighted residual method where the weight is taken to be A^ ( L , ). 

\NE(V)dR= | J V W)dR = J] \N EM(V(e))dRie) = $N{e) Ele)(yie))dRle) =0 

4.4 VARIATIONAL METHODS 

This is a method based on the criterion of the calculus of variations. 

4.4.1 RITZ METHOD 

In this method the given differential equation is written as a the Euler equation of 

some variational problem. 

M M 

J(V) = jF(V)dR = £ JF{e\V{e))dR{e) = £ j ( e ) = > L(V) = r 
K e=\ ,,(<) e=\ 

dJ(V) 
dv 

dJ dJ dJ 

dv, dv2 dvN 

= 0 

dJ _ ^ dJ(c) _ 

c-l 5V / 
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4.5 USE OF REGULAR TESSELLATIONS IN FINITE ELEMENTS 

As discussed earlier tessellations do cover infinite regions and can be made to cover a 

finite region of arbitrary shape i f the size of elements are made small according to the 

accuracy requirement. This is the link with tessellations and finite elements. As we did 

earlier we restrict overselves to 2D tessellations made with regular polygons and 3D 

tessellations made with face and vertex regular polyhedra. 

Criteria 

1) Interior as a regular tessellation and 

2) Boundary by different elements. 

Or 

1) Whole region as a regular tessellation 

2) Boundary achieved by making the size of the elements small. 

Figure 4.1 

Advantages 

1) Easy discretitation o f the region in to finite elements 

(Regular polygons have a escribed circle and face and vertex regular polyhedra have a 

escribed sphere. So this is a matter of f i l l ing the region by overlapping circles or 

spheres). 

2) Easy computation and interpretation 

(Since properties o f the finite elements used are known. Each node is situated at a 

constant distance away from the neighboring nodes). 
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3) Higher degree of accuracy 

( i f we select polygons or polyhedra with higher number of nodes as finite elements 

and/or i f we decide to make the size of finite elements small to achieve the boundary). 

4.6 C H O O S I N G L A G R A N G E P O L Y N O M I A L OF M O R E T H A N O N E 

V A R I A B L E . 

We also need to choose the two variable(or higher) Lagrange polynomial V{X) for 

given number of points. Unlike in one variable polynomial which has only one term 

for one degree there is no unique polynomial in two variables since there is more than 

one term corresponding to one degree. 

I propose the fol lowing criteria of selecting the polynomial 

Criteria 

1. Select the complete polynomial of immediate lesser number of terms. 

2. Select the other terms from the immediate symmetric higher degree terms. 

3. When there is more than one possibility always select terms with more types of 

product terms. 

Advantage o f each procedure is 

1. Complexity o f calculation due to higher degree terms is avoided. 

2. A l low the function to take any arbitrary value irrespective o f the point. 

3. A l low the function to vary arbitrarily in both positive and negative directions. 

4.7 F I N I T E E L E M E N T A N A L Y S I S I N 2D 

4.7.1 POSSIBLE R E G U L A R 2D T E S S E L L A T I O N S 

Vertex angle of a regular polygon of n number of sides is given by 

2n f 

n = n 
n 

To construct a 2D tessellation we require that the sum of vertex angles is 2tt which is 

the sum of plane angles around a point. I f M number of polygons used at a vertex this 

relation reeds as 

7l\\ 
V n) 

», n 1 1 1 
M = 2n or — + — = — 

n M 2 
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It is easily seen that 3 < M < 6 . So we left with only a finite number of solutions for 

(n,M) which is symbolized as nM given by 3 6 , 4 4 , 6 3 . This means that no more than 

Equilateral Triangle(3), Square(4), Regular Hexagon(6) w i l l cover 2D space. 

The corresponding regular 2D tessellations are given below. 

(1 )3 , 

(2) 4 4 

Figure 4.2 

• 

Figure 4.3 
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(3) 6 3 

Figure 4.4 

4.7.2 2D T E S S E L L A T I O N S I N F I N I T E E L E M E N T S 

We have categorized all the possible kinds of 2D space f i l l ing or tessellations using 

Regular polygons. They were categorized as 

1. Regular 2D Tessellations : 3 types( discussed). 

2. Semi-Regular 2D Tessellations : 8 types. 

Here we restrict ourselves to regular 2D tessellations only. 

In 2D finite elements, it can be shown that the number of terms in 2 variable Lagrange 

polynomial is equal to 

N N (N + 2)(N + \) 
1.2 

r = Z 2 / / < - = X 2 + r " ' c r = A , + 2 c 2 = 
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The number and nature o f terms are given in the fol lowing table 

degree 
terms 

correspond to 
terms partial sum sum 

cumulative 

sum 

0 0 1 1 1 1 

1 1 x,y 2 2 -» j 

2 
2 x\y2 2 

6 
1+1 xy 1 

3 
3 2 

4 10 
2+1 x2y,y2x 2 

10 

4 4 4 

x ,y 2 

4 3+1 x*y,y*x 2 5 15 

2+2 1 

Table 4.1 

4.7.3 REGULAR 2D TESSELLATIONS IN FINITE ELEMENTS 

(1) Equilateral Triangle(3). 

The selected polynomial by the above criteria is V(x,y) = ax + a2x + a3y. 

Figure 4.5 

(2) Square(4). 

The selected polynomial by the above criteria is V(x,y) - ax + a2x + a3y + aAxy. 

Figure 4.6 
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(3) Regular Hexagon(6). 

The selected polynomial by the above criteria is 

V(x,y) = fl, + a2x + a3y + a4x2 + a5xy + a6y2. 

Figure 4.7 

4.7.4 L I M I T A T I O N S OF R E G U L A R P O L Y G O N S AS F I N I T E E L E M E N T S 

(1) Equilateral Triangle(3). 

The selected polynomial is V{x,y) = a, + a2x + a3y. For any other orientation we can 

transform the coordinates by x = pX + qY + r and y = uX + vY + w . We obtain 

V(X,Y) = Ax + A2X + A3Y which is similar to the original equation. So both ,4, and 

a(.exist or not exist together. Therefore all the orientations are such that either B is 

singular or non singular. 

Consider the fol lowing orientation with length of an edge is 2^3 the coordinate set of 

nodes are P = { (0,2) , ( -1 - V 3 ) , ( l - V 3 ) } . " 

Figure 4.8 

Here \B\ = 

1 0 2 

1 - 1 - V 3 

1 1 - V 3 

= 4 + 2V3 * 0 

Hence for any other orientation matrix B is non singular. 

Therefore equilateral triangle can be used as a finite element in any orientation. 
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(2) Square(4). 

The selected polynomial is V(x,y) = a, + a2x + a3y + a4xy . For any other orientation 

we can transform the coordinates by x = pX + qY + r and y = uX + vY + w . We 

obtain V(X,Y) = At + A2X + A3Y + A4X2 + A5Y2 + A6XY which is not the same as 

the original equation. Hence we can't predict the behavior of B using the above 

technique. It can be singular or non singular depending on the orientation. 

Consider the fol lowing orientation with length of an edge is 2 the coordinate set of 

nodes are P = {(1,1),(1,-!) ,(- ! -1),(1 - 1 ) } . 

Figure 4.9 

Here \B\ = 

1 1 1 1 

1 - 1 1 - 1 

1 - 1 - 1 1 

1 1 - 1 - 1 

= - 1 6 * 0 

Therefore square can be used as a finite element in this orientation. 

Square can be placed in such a way that all its nodes lie on the two axes as follows. 
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B is singular in this orientation. This is because all the nodes has at least one of x or 

y zero and the polynomial contains a xy term. 

But there is only one orientation where this occurs wi th coordinate set of nodes are 

P = {(1,0), (0,1), (-1,0), (0,-1)} i f length of an edge is 72. 

(3) Regular Hexagon(6). 

The selected polynomial is V(x,y) = a, + a2x + a3y + a4x2 + a5xy + a6y2. For any 

other orientation we can transform the coordinates by x = pX + qY + rand 

y = uX + vY+w. We obtain V(X,Y) = Ax + A2X + AZY + AAX2 + AJ2 + AbXY 

which is same as the original equation. So both Ai and a, exist or not exist together. 

Therefore all the orientations are such that either B is singular or non singular. 

For the fol lowing orientation with length of an edge is 2 the coordinate set of nodes 

are P = {(2,0), (1, V3), (-1, V3), (-2,0), (-1,-73), (1,-73)} 

Here B = 
-2 
- 1 

1 

0 
73" 
73-
0 

-73- 1 
-73 1 

0 
73 

-73" 
0 

73" 
-73 

Figure 4. 

0̂  
3 

3 

0 
3 

3 

We need to f ind whether B is singular or not. For that we perform elementary raw 

operations as follows. 
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B = 

2 0 4 0 °1 
1 1 VI 1 VI 3 

- R , + R * — - — R * 
\ - 1 vi 1 -VI 3 i 

-R*+Ri * 1^>R. 
1 - 2 0 4 0 0 4 1 

1 - 1 -VI 1 VI 3 

V 1 -vi 1 -VI 2 

(0 1 0 0 0 

0 1 0 0 VI 0 

1 - 1 VI 1 -VI 3 R 2 + R 6 
— L~> R* 1 - 2 0 4 0 0 2 6 

1 - 1 -VI 1 VI 3 

,0 1 0 0 -VI 
' 0 1 0 0 0 6s 

0 1 0 0 VI 0 

1 - 1 VI 1 -VI 3 
-R.+R.^yR, VI -VI -R.+R.^yR, 

1 - 2 0 4 0 0 0 1 1 

1 - 1 -vi 1 VI 3 

1 0 0 0 

\° 
0 0 0 0 oN 

0 1 0 0 VI 0 

1 - 1 VI 1 -VI 3 

1 - 2 0 4 0 0 

1 - 1 -VI 1 VI 3 

,0 1 0 0 0 0, 

Therefore matrix B is singular, (same thing may be shown by performing 

4 C , - C 4 - C 6 ^ C ) 

Hence for any other orientation matrix B is singular. 

Therefore regular hexagon cannot be used as a finite element in any orientation. 

4.7.5 PROOF O F A G E N E R A L RESULT 

1. Suppose that we have a regular polygon of n number o f sides with unit escribed 

sphere radius. Then the coordinate set of vertices is 
P = 

2n . 2n 
cos — *,sin — z 

n n ) 
i = \,2,....,n\. 

2. Suppose we select the nodes(points where function values are assumed) at vertices. 



3. Suppose we have the complete polynomial o f degree 2 (\,X,Y,X2 ,XY,Y2 terms) 

in the Lagrange polynomial V(X,Y) = f(X,Y)A. 

4. Since 1 = cos' 
in . . 2 (In \ 
— i + s i n — / 

\ n ) { n J 
the columns of f(P) correspond to \,X2,Y' 

are linearly dependent. 

5. Hence \f(P)\ = 0 

6.Hence we can't use the above regular polygon as a finite element. 

We wi l l show here that this is independent of the coordinate axes. 

1. Suppose that the above coordinate system is X,Yand any scaling, translation or 

rotation of the above coordinate system can be represented by the x,y coordinate 

system where x - pX + qY + r and y - uX + vY + w . 

2. Then the columns of V(x,y) = V(pX + qY + r,uX+ vY + w) corresponding to 

\,x,y,x2 ,xy,y2 w i l l be 6 linear combinations of columns of V(X,Y) corresponding 

\o\,X,Y,X2,XY,Y2. 

3. Earlier we showed that f(P) where P = (X,Y) is singular or has dependent 

columns. 

4. Now f(P') where P' = (x,y) has columns which are linear combinations of 

columns of f(P) which are linearly dependent. 

5. We have the theorem " i f S is a set of n linearly dependent vectors than any set of 

n or higher number o f vectors spanned by S are linearly dependent". 

6. Hence f(P') has linearly dependent columns. 

7. Therefore \f(P')\ = 0 

8. Hence we can't use bi axis symmetric versions of the above polygons as finite 

elements in any orientation. 

4.7.6 CONCLUSION 

Any polygon having two axis of symmetry with nodes are selected at vertices 

cannot be used as a finite element if its Lagrange polynomial contains the 

complete polynomial of degree two. 



4.7.7 DEDUCTIONS 

(1) With the Lagrange polynomial selected in the above manner the only possible 

regular polygons that can be used as finite element in 2D are Equilateral Triangle and 

Square. 

(2) Regular Hexagon cannot be used as a finite element since the piecewise 

polynomial is a 2D complete polynomial. 

Therefore the only possible regular 2D tessellations in finite element analysis are 3 6 

and 4 4 . 

The corresponding finite elements are Equilateral Triangle and Square. 

(3) From the other tessellations only the fol lowing tessellations containing equilateral 

triangles and squares are possible in finite element analysis 

1. 3 3 4 2 

2. 3,4,3,4, 

4.8 FINITE ELEMET ANALYSIS IN 3D 

4.8.1 POSSIBLE REGULAR 3D TESSELLATIONS 

A necessary condition for the existence of a 3D tessellation is that the sum of solid 

angles of the polyhedra meet at a vertex should be An . 

The solid angle of a vertex of a regular polyhedron is given by 

f \ 
cos At 

CO = 2n-nYJMi+2'YJMi sin 
sin-n 

For the possible types o f regular 3D tessellations we verify that this requirement is 

met. For all the possible types it w i l l be found out that polyhedra are of the form 

wl, n22. Hence the angles Ax and A2 are found to be 
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7t 
cos-

cos A2 = — 
2 cos — 

and 

cos^42 = 

71 
cos — 

1 
cos 

n \ 1 " l 

2cos — 2 
COS 

7C 

n i n 2 

1 sin 

2 sin A 

sin ^4, = sin 2 ^ 2 

Ax = 2A2 or Ax - n - 2A2 

( 1 ) 3 , 4 2 

Here nx = 3 and « 2 = 4 

cos-
C O S ^ 2 = 

And 

n, 
71 

COS — 
3 2 

2 c o s — 2 cos— 2 ' n 2V2 
vV2y 

f , A 2 

cos ̂ , = cos(;r - 2/4 2) = - 2 cos 2 ^ 2 +1 = - 2 

Then 

V2V2y 4 

cos A cos A 4 . 7T , COS A COS A ? J ? 1 . 71 
- - = — = sin— and - = -

. 71 . 7T 71 2 
s i n — s i n v 

3 2 
. 7r 

s i n — s i n 

= — = s i n — 
7T \ 2 6 
4 V2 

So co = 2tz - n^ Mi + 2 ^ Mi sin 
cos ^4, 

. 71 

sin — 
v "/ J 

= 2n-n(\ + 2) + 2 
7T 

Therefore \2a> = An. 

So i f the 3D tessellation exists it should be of the form (3 ,4 2 ) 1 2 which actually exists. 
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Figure 4.12 

( 1 ) 4 , = 4 , 4 , 

Here = 4 and n2 = 4 

cos n 
e.o$A2 = 

And 

cos 
4 1 

2 cos 2 cos — 
4 

/ 1 \ 
+ 1 = cos / I , = cos(;r - 2A2) = - 2 cos 2 A2 +1 = - 2 

Then 

1 ^ 
cos A cos/I , 2 1 • * , cos A cos A, 7 1 . n 

= = ^ = - p r = sin— and = = - 4 - — = sin 
. n n 1 7 2 s i n - sin 4 V2 

n . n 1 V2 s i n - s i n -
4 V2 

So <y = In-n^M, + 2 ^ M , si sin 
cos A. 
. 71 

sin — 
= 27r-7r(\ + 2) + 2 ' I . £ . 2 . £ * 

4 4 

,7 

2 
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Alternatively we view this polyhedron as a regular one 4 , for which 

nt = 4 and Mt = 3. Then to find At 

YMA =MA = t t ^ > A , = — = -
V M. 3 

7T 
cos — 

cos/1, M, 

n 

n 
cos — 

3_ 
n . n s i n — s i n 

n. n, 

1 
1 * 

—= = sin -
V 2 4 

0) = 2 ^ - ^ X ^ + 2 X M , s i n 
cos A, 
. n 

s i n — 

J 

= 2n-x(3) + 2.3.- = -
4 2 

Therefore Sco = An . 

So i f the 3D tessellation exists it should be of the form (4,4 2 ) g = (4, ) 8 which actually 

exists. 

Figure 4.13 
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( 1 ) 6 , 4 2 

Here n] = 6 and n2 = 4 , 

cos cos 
cos,42 = 

And 

71 

n V3 
6 2 s 
n 

s — 4 

cos 4 = cos(;r - 2^2) = -2cos 2 A2 +1 = -2 

Then 

' 3 ^ 

UV2J + 1 = I 
4 

1 
cos 4 cos 4 4 1 . T 

L = - = - r = — = sin — and 
n it 1 2 6 

sin — sin 

V3 

6 2 

cos ,4, cos/ I , 2V2 V3 
= —-— = — = sin — 

n 7i 1 2 3 
sin — sin 

4 y[2 

So <a = 2n-7T'YtMl+2YiMi sin 

( \ 

cos 4 
. 7t 

sin — 
J 

= 2 t t - 7 t ( \ + 2) + 2 
6 3 

Therefore 6 0 ) = 4tx . 

So i f the 3D tessellation exists it should be of the form (6,4 2 ) 6 which actually exists. 

Figure 4.14 
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( 1 ) 4 , 6 2 

Here ni = 4 and n2 = 6 

cos-n 

COSv42 = 
cos — 

4 V2 J _ 

V 6 2 c o s — 2 cos— 2 — 
"2

 6 2 v z y 

And 

cos A = cos(;r - 2 A , ) = -2 cos 2 A2 +1 = -2| 

Then 

+ 1 

cos A, _ cos A 
n . n 1 

s i n — sin — 

1 

, 3 Z-yJZ , COS A COS A JfS 2 

- - and - - -
2V2 

4 V2 
s i n — sin— — ^ 

n, 6 2 
So 

CO = 2n - n^ M i + 2 ^ M, sin 
cos A, 

. 71 

sin — 
V "/ J 

= 27t-7T(\ + 2) + 2 
' . _, 2V2 „ . , 2 
sin + 2 sin —=• | 

3 V 6 
= -71 + 2sin" 

2V2 + 1 02_ V 2 

3 V6 V 6 

\ 

= -71 + 2sin~ 0 = -71 + 2n = n 

Therefore Aco = An . 

So i f the 3D tessellation exists it should be of the form (4,6 2 ) 4 which actually exists. 
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Figure 4.15 

4.8.2 D I H E D R A L A N G L E S OF T R U N C A T E D O C T A H E D R O N 

To find the coordinates its nodes we need to find the dihedral angles of 4 ,6 , . It can be 

calculated as follows 

4 ,6 2 

Here n, = 4 and n2 = 6 

We have shown that 

cos A, = — and cos A, = —j= 
3 V6 

Equation for dihedral angle is 

'.edge 

cos A. 

sin 2 A - cos 2 — 

The dihedral angle between two hexagonal(6) faces is 
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a6,6 =2 t a n " 
cos A 

/s in 2 A - cos 2 — 

' _ j _ ^ 

= 2 tan" 1 
1 

J IV6 4 J 
= 2 tan 1 V2 = tan" = tan" 1 (-2V2) = n- tan" 1 2V2 

The dihedral angle between a hexagonal(6) faces and square(4) face is 

f \ f \ 

or„_6 = tan - 1 cos A 

• 1 a 2 n 

sin A, - cos — 

+ tan - 1 cos A-, 

/s in 2 A, - cos 2 — 

= tan' 

f 
2 

f 1 ^ 

3 + tan 1 Vo~ 
I s . 1 

+ tan 1 

I5-3 

IV9 2) / 6 4 J 
= tan" 1 2V2+ tan"' V2~ = tan" 

2V2+V2 
1 -4 

= tan" 1 (-V2) = n - tan" 1 V2 

4.8.3 3D T E S S E L L A T I O N S IN FINITE E L E M E N T S 

We have categorized all the possible kinds of 3D space filling or tessellations using 

Face and vertex regular polyhedra. They were categorized as 

1. Regular 3D Tessellations : 2 types(discussed). 

2. Regular prism 3D Tessellations : 2 types(discussed). 

3. Semi-Regular 3D Tessellations : 11 types. 

4. Semi-Regular prism 3D Tessellations : 8 types. 

Here we restrict overselves to regular 3D tessellations only. 

In 3D finite elements it can be shown that the number of terms in 3 variable Lagrange 

polynomial is equal to 

T = YJ

3Hr = YJ

3+r~]C=N+3C2 = 
(N + 3)(N + 2)(N + \) 

r=l r=\ 1.2.3 

The number and nature o f terms are given in the fol lowing table 

• 
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degree 

terms 

correspond 

to 

terms 
partial 

sum 
sum 

cumulative 

sum 

0 0 1 1 1 1 

1 1 x,y,z 3 j 4 

2 
2 2 2 2 

x ,y ,z 3 
6 10 

1+1 xy,yz,zx j 

3 3 

3 2+1 x2 y, x2 z, y2 x, y2 z, z2 x, z2 y 6 10 20 

1+1+1 xyz 1 

4 v 4 v 4 - 4 

x ,y , L 
3 

4 
3+1 x3 y,x} z,y3x,y* z,zix,zi y 6 

15 35 
2+2 x2y2,x2z2,y2z2 3 

15 35 

2+1+1 x2yz,y2xz,z2xy j 

5 -> j 

4+1 4 4 4 4 4 4 

x y,x z,y x,y z,z x,z y 6 

5 3+2 3 2 3 2 3 2 3 2 3 2 3 ? 

x y ,x z ,y x\y z ,z x \ z y 6 21 56 

3+1+1 xiyz,yixz,zixy ^ 

j 

2+2+1 2 2 2 2 2 2 

x y z,y z x,z x y 
~> 

6 6 6 6 

x ,y ,z _> 

5+1 x5y,x5z,y5x,y5z,zsx,z5y 6 

4+2 x<y2,x<z2,y<x2,y<z2,z*x2,z*y2 6 

6 3+3 ^ 28 84 

4+1 + 1 4 4 4 

x yz,y xz,z xy 

3+2+1 x 3 y2 z ,x 3 z2 _v,_v3x2 z,y3 z2 x, z 3 x 2 _y,z3 y2 x 6 

2+2+2 x2y2z2 1 

Table 4.2 



4.8.4 R E G U L A R 3D T E S S E L L A T I O N S I N F I N I T E E L E M E N T S 

(1) Triangular Regular Prism(3,4 2). 
This has 6 nodes. The selected polynomial by the above criteria is 
V(x,y,z) = a, + a2x + a^y + a4z + a5xyz + a6x2y2z2. 

Figure 4.16 

(2) Cube(4,). 

This has 8 nodes. The selected polynomial by the above criteria is. 

V(x,y,z) = a, + a2x + a3y + a^z + a5xy + a6yz + a7zx + a%xyz 

Figure 4.17 
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(3) Hexagonal Regular Pr ism(4 2 6,). 

This has 12 nodes. The selected polynomial by the above criteria is 

V(x,y,z) = a , + a2x + ayy + aAz + a5x2 + a6y2 + a7z2 + atxy + a9yz + a]0zx + auxyz + aX2x2 y2 

Figure 4.18 

• (4) Truncated Octahedron( 4 ,6 2 ) . 

This has 24 nodes. The selected polynomial by the above criteria is 

V( x, y, z) = a , + a2x + a^y + a4z + a$x2 + a6y2 + anz2 + asxy + agyz + awzx 

+ a n x 3 + auyi +auzJ + aux2 y + a]5x2 z + al6y2 x + axly2 z + anz2 x + al9z7 y + a2Qxyz 

+ a2Xx2yz + a22y2xz + a2iz2xy + a2Ax2y2z2 

Figure 4.19 



4.8.5 L I M I T A T I O N S OF FACE A N D V E R T E X R E G U L A R P O L Y H E D R A AS 

F I N I T E E L E M E N T S 

(1) Triangular Regular Pr ism(3,4 2 ) . 

The selected polynomial is V(x,y,z) = a, + a2x + a3j> + aAz + a5xyz + a6x y z . For 

any other orientation we can transform the coordinates by x = 6, + b2X + byY + b^Z, 

y = c, +c2X + c 3 y + c 4 Z and z = dx +d2X + diY -\-dAZ . But we don't obtain a 

similar equation.. Hence we cant predict the behavior of B using the above technique. 

It can be singular or non singular depending on the orientation. 

Consider the fol lowing orientation wi th length of an edge is 2V7 the coordinate set of 

nodes are P = {(0, V7,0),(-2V3,0,3),(0,-V7,0),(2V3, V7,4),(0,0,7),(2^3 -V7,4)}. 

Here 5 = 

Figure 4.20 

0 V7 0 0 0 
-2V3 0 3 0 0 

0 -V? 0 0 0 
2V3 4 8V2T 1344 

0 0 7 0 0 
2V3 -V? 4 -8V2T 1344 

= - 1 2 6 4 4 3 5 2 * 0 

Hence Regular triangular prism can be used as a finite element in this orientation. 

Consider the fol lowing orientation with length o f an edge is 2^3 the coordinate set of 

nodes 

P = {(0,2, V3) , ( -1 , -V3,V3) , (1 , -V3, V3) , (0 ,2 , -V3) , ( - l , - V 3 , - V 3 ) , ( l - V 3 - V 3 ) } 

are 
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Figure 4.21 

1 0 2 VI 0 0 

1 - 1 -VI VI 3 9 

1 1 -VI VI - 3 

1 0 2 -VI 0 0 

1 - 1 -VI -VI - 3 9 

1 1 -VI -VI 3 9 

Hence matrix B is singular. This is because the raws are depend on each other. 
Triangular Regular Prism can be placed in such a way that all its nodes contained in 
two coordinate planes as follows. 

9 

• 

Figure 4.22 



B is singular in this orientation. This is because all the nodes has at least one of 

x,y,z zero and the polynomial contains xyz product terms. 

There are infinitely many orientations where this occurs. 

An example is where coordinate set o f nodes are 

P = {(0, V3,1), (-1,0,1), (1,0,1), (0, V 3 , - l ) , ( - l , 0 , - l ) , (1,0,-1)} wi th length of an edge is 2 

(2) Cube(4 3 ) . 

The selected polynomial is 

V(x,y,z) = a, + a2x + a3y + a4z + a5xy + abyz + a7zx + asxyz. For any other 

orientation we can transform the coordinates by x = bx + b2X + b^Y + b4Z, 

y = c, + c2X + CtY + cAZ and z = dx+ d2X + d^Y + d4Z . But we don't obtain a 

similar equation.. Hence we cant predict the behavior o f B by the above technique. It 

can be singular or non singular depending on the orientation. 

Consider the fol lowing orientation with length of an edge is 2 the coordinate set of 

nodes are P = {(1,1,1),(-1,1,1),(-1 -1,1),(1 , - l , l ) , ( l , l , -1) ,(-1,1,-1) ,(-1 -1 - 1 ) , ( 1 - 1 - 1 ) } . 

Figure 4.23 
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Here 5 = 

1 1 1 1 1 1 1 
- 1 1 1 - 1 1 - 1 - 1 
- 1 - 1 1 1 - 1 - 1 1 
1 - 1 1 - 1 - 1 1 - 1 
1 1 - 1 1 - 1 - 1 - 1 

- 1 1 - 1 - 1 - 1 1 1 
- 1 - 1 - 1 1 1 1 - 1 

1 - 1 - 1 - 1 1 - 1 1 

= 4096 * 0 

Hence cube can be used as a finite element in this orientation. 

Cube can be placed in such a way that all its nodes contained in two coordinate planes 

as follows. 

Figure 4.24 

B is singular in this orientation. This is because all the nodes has at least one of 

x,y,z zero and the polynomial contains xyz product terms. 

There are infinitely many orientations where this occurs. 

An example is where coordinate set of nodes are 

P = {(1,0,1),(0,1,1),(-1,0,1),(0,-1,1),(1,0-1),(0,1-1),(-1,0-1),(0-1-1)} 

with length o f an edge is V 2 . 
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(3) Hexagonal Regular Pr ism(4 2 6, ) . 

The selected polynomial is 

V{ x, y, z) = o, + a2x + a3y + aAz + asx2 +a6y2 +a1z1 + atxy + a9yz + awzx + auxyz + anx2 y2 z 

For any other orientation we can transform the coordinates by 

x = 6, + b2X + b3Y + b4Z, y = c, +c2X + c 3 T + c 4 Z and z = ci, + ^2^ + d^Y + d4Z . 

But we don't obtain a similar equation. Hence we can't predict the behavior of B by 

the above technique. It can be singular or non singular depending on the orientation. 

Consider the fol lowing situation where the coordinate set of the nodes are given by 

P = {(4A3) , (2 ,2V3 ,3) , (-2 ,2V3 ,3) , (^,0 ,3) , (-2 , -2V3 ,3) , (2 , -2V3 ,3) , 

( 4 A - l ) , ( 2 , 2 ^ , - l ) , ( - 2 ^ , - l ) , H A - l ) , ( - 2 - 2 V 3 , - l ) , ( 2 , - 2 V 3 , - l ) ^ 

with length o f an edge is 4 . 

Figure 4.25 
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Here 

B\ = 

4 0 3 16 0 9 0 0 12 0 0 

2 2V3 3 4 12 9 4^3 6V3 6 12V3 432 

- 2 2V3 3 4 12 9 -4V3 6V3 - 6 -12V3 432 

- 4 0 3 16 0 9 0 0 - 1 2 0 0 

- 2 -2V3 3 4 12 9 4V3 -6V3 - 6 12V3 432 

2 - 2 V 3 3 4 12 9 - 4 V 3 - 6 V 3 6 -12V3 432 

4 0 - 1 16 0 1 0 0 - 4 0 0 

2 2V3 - 1 4 12 1 4V3 -2V3 - 2 -4V3 48 

- 2 2V3 - 1 4 12 1 -4V3 -2V3 2 4V3 48 

= 0 

- 4 0 16 0 1 0 0 4 0 0 

4 12 1 4V3 2V3 2 -4V3 48 

4 12 1 - 4 V 3 2^3 - 2 4 V 3 48 

- 2 

2 

-2V3 -
-2V3 -

Hence Hexagonal Regular Prism cannot be used as a finite element in this orientation. 

There are no orientation problems in the form o f xyz terms becoming zero regarding 

Hexagonal Regular Prism since all its nodes cannot be contained in coordinate planes. 

Later we w i l l show that matrix B is singular independent of the orientation which 

implies that Hexagonal Regular Prism can never be used as a finite element. 

(4) Truncated Octahedron(4,6 2). 

The selected polynomial is 

V(x,y,z) = a l 

+ a2x + a^y + a4z + a5x2 + a 6 y 2 + < 3 7 z 2 + asxy + agyz + al0zx 

+ aux3 + auy3 + auz3 + aMx2 y + aX5x2z + a]6y2x + axly2z + a]&z2x + awz2 y + a20xyz 

+ a2Xx2yz + a22y2xz + a23z2xy 

+ a24x2y2z2 

For any other orientation we can transform the coordinates by 

x = bx +b2X + biY + b4Z, y = c, + c2X + c 3 7 + c 4 Z and z = dx + d2X + d3Y + dAZ . 

But we don't obtain a similar equation.. Hence we cant predict the behavior of B by 

the above technique. It can be singular or non singular depending on the orientation. 
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Consider the fol lowing orientation with length of an edge is 2 the coordinate set of 

nodes are 

P = {(3-1,0),(3,1,0),(1,3,0),(-1,3,0),(-3,1,0),(-3 -1,0),(-1,-3,0),(1,-3,0), 

( l , l , 2 V 2 ) , ( l , l , - 2 V 2 ) , ( - l , l , - 2 v^ ) , ( -U , 2 V 2 ) , ( l , - l , 2 V 2 ) , ( l , - l - 2 V 2 ) , 

(-1,-1 , -2 V2), (-1,-1 ,2 V2), 

(2,-2, yfl), (2,2, yfl), (-2,2,yfl), ( -2 , -2, V2), (2-2-yfl), (2 ,2 -V2) , (-2,2 ,->/2), (-2,-2,-y[2) 

Figure4.26 

The matrix B is as follows 
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3 - 1 0 9 1 0 - 3 0 0 27 - 1 0 - 9 0 3 0 0 0 0 0 0 0 0 

3 1 0 9 1 0 3 0 0 27 1 0 9 0 3 0 0 0 0 0 0 0 0 

1 3 0 1 9 0 3 0 0 1 27 0 3 0 9 0 0 0 0 0 0 0 0 

- 1 3 0 1 9 0 - 3 0 0 - 1 27 0 3 0 - 9 0 0 0 0 0 0 0 0 

- 3 1 0 9 1 0 - 3 0 0 - 2 7 1 0 9 0 - 3 0 0 0 0 0 0 0 0 

- 3 - 1 0 9 1 0 3 0 0 - 2 7 - 1 0 - 9 0 - 3 0 0 0 0 0 0 0 0 

- 1 - 3 0 1 9 0 3 0 0 - 1 - 2 7 0 - 3 0 - 9 0 0 0 0 0 0 0 0 

1 - 3 0 1 9 0 - 3 0 0 1 - 2 7 0 - 3 0 9 0 0 0 0 0 0 0 0 

1 1 2V2 1 1 8 1 2V2 2V2 1 1 16V2 1 2V2 1 2V2 8 8 2V2 2V2 2V2 8 8 

1 1 - 2 V 2 1 1 8 1 - 2 V 2 - 2 V 2 1 1 -16V2 1 - 2 V 2 1 - 2 V 2 8 8 - 2 V 2 - 2 V 2 - 2 V 2 8 8 

- 1 1 - 2 V 2 1 1 8 -1 - 2 V 2 2V2 - 1 1 -16V2 1 - 2 V 2 - 1 - 2 V 2 - 8 8 2V2 - 2 V 2 2V2 - 8 8 

- 1 1 2V2 1 1 8 - 1 2V2 - 2 V 2 - 1 1 16V2 1 2V2 - 1 2V2 - 8 8 - 2 V 2 2V2 - 2 V 2 - 8 8 

1 - 1 2V2 1 1 8 - 1 - 2 V 2 2V2 1 - 1 16V2 - 1 2V2 1 2V2 8 - 8 - 2 V 2 - 2 V 2 2V2 - 8 8 

1 - 1 - 2 V 2 1 1 8 - 1 2V2 - 2 V 2 1 - 1 -16V2 - 1 - 2 V 2 1 - 2 V 2 8 - 8 2V2 2V2 - 2 V 2 - 8 8 

- 1 -1 - 2 V 2 1 1 8 1 2V2 2V2 - 1 - 1 -16V2 - 1 - 2 V 2 - 1 - 2 V 2 - 8 - 8 - 2 V 2 2V2 2V2 8 8 

-1 - 1 2^2 1 1 8 1 - 2 V 2 - 2 V 2 - 1 - 1 16V2 - 1 2V2 - 1 2V2 - 8 - 8 2V2 - 2 V 2 - 2 V 2 8 8 

2 -2 4i 4 4 2 - 4 - 2 V 2 2V2 8 - 8 2V2 - 8 4V2 8 4V2 4 - 4 -4V2 -8V2 8V2 - 8 32 

2 2 4 4 2 4 2V2 2V2 8 8 2V2 8 4V2 8 4V2 4 4 4V2 8V2 8V2 8 32 

- 2 2 r i 4 4 2 - 4 2V2 - 2 V 2 - 8 8 2V2 8 4V2 - 8 4V2 - 4 4 -4V2 8V2 -8V2 - 8 32 

- 2 -2 r i 4 4 2 4 - 2 V 2 - 2 V 2 - 8 - 8 2V2 - 8 4^2 - 8 4V2 - 4 - 4 4V2 - 8 V 2 -8V2 8 32 

2 - 2 -4~2 4 4 2 - 4 2V2 - 2 V 2 8 - 8 - 2 V 2 - 8 -4V2 8 - 4 V 2 4 - 4 4V2 8V2 -8V2 - 8 32 

2 2 4 4 2 4 - 2 V 2 - 2 V 2 8 8 - 2 V 2 8 -4V2 8 - 4 V 2 4 4 -4V2 -8V2 -8V2 8 32 

- 2 2 - V 2 4 4 2 - 4 - 2 V 2 2V2 - 8 8 - 2 V 2 8 -4V2 - 8 - 4 V 2 - 4 4 4V2 -8V2 8V2 - 8 32 

- 2 - 2 -4~2 4 4 2 4 2V2 2V2 - 8 - 8 - 2 V 2 - 8 -4V2 - 8 - 4 V 2 - 4 - 4 -4V2 8V2 8V2 8 32 
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Truncated Octahedron can be placed in such a way that all its nodes contained the 

three coordinate planes as follows. 

Figure 4.27 

B is singular in this orientation. This is because all the nodes has at least one of 

x,y,z zero and the polynomial contains xyz product terms. 

But there is only one orientation where this occurs wi th coordinate set o f nodes are 

P = { ( l , 0 ,2 ) , (0 , l , 2 ) , ( - l , 0 ,2 ) , (0 - l , 2 ) , ( l , 0 -2 ) , (0 , l , -2 ) , ( - l , 0 -2 ) , (0 , - l . -2 ) , 

( l ,2 ,0 ) , (0 ,2 , l ) , ( - l ,2 ,0 ) , (0 ,2 - l ) , ( l -2 ,0 ) , (0 , -2 , l ) , ( - l , -2 ,0 ) , (0 . -2 . - l ) . 

(2,1,0), (2,0,1), (2 ,-1,0), (2,0,-1), (-2,1,0), (-2,0,1), ( -2 -1,0), (-2,0.-1)} 

i f length o f an edge is V2 . 

Later we wi l l show that matrix B is singular independent o f the orientation w h i c h 

implies that Hexagonal Regular Prism can never be used as a finite element. 
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4.8.6 PROOF OF A GENERAL RESULT 
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1 .Assume that the selected 3D Lagrange polynomial for the polyhedron includes the 

2D complete polynomial of degree 2. 

2.Suppose we have a polygonal face with 6 or more number of sides in the 

polyhedron. 

3.We select the nodes(points where function values are assumed) at vertices. 

4.We select the X,Y,Z coordinate system in such a way that the polygon is confined 

to XY plane. Thus Z = 0 for all the vertices. 

5. We can transform the nodes to x,y,z coordinate system by 

x = 6, + b2X + b3Y + b4Z, y = c, +c2X + c}Y + cAZ and z = cV, + d2X + d3Y + d4Z . 

6. Since Z = 0 , this reduces to x = 6, + b2X + b3Y , y = c, + c2X + c3Y for x,y.z 

coordinates. 

7. Thus the situation is similar to that discussed under 2D finite element. 

8. Hence | / ( / > ' ) | = 0 where P' = (x,y,z) is the coordinate set of vertices. 

9. Hence we can't use the above polyhedron as a finite element. 

4.8.7 CONCLUSION 

Any polyhedron having a polygonal face with two axis of symmetry and having 

six or more number of vertices with the nodes are selected at vertices cannot be 

used as a finite element if its Lagrange polynomial contains a two variable 

complete polynomial of degree two. 

4.8.8 DEDUCTIONS 

(1) Among face and vertex regular polyhedra with nodes > 10 (wi l l automatically 

contain the two variable complete polynomial of degree 2) and having a face with 

> 6 vertices cannot be used as finite element. So the only possible polyhera that can 

be used as finite elements in 3D are as follows. Some o f them cannot fill space. 

1. 4 3 - Cube 

2. 3,4 2 - Triangular Re gular Pr ism 

3. 3 3 -Tetrahedron 

4. 5 3 - Dodecahedron 



5. 3 4 - Octahedron 

6. 3 5 - Icosahedron 

7. 3,4 3 - Small Rhombicuboctahedron 

8. 3 2 4 2 - Cuboctahedron 

9. 3 2 5 2 - Icosidodecahedron 

10. 3,425, - Small Rhombicosidodecahedron 

11. 3 4 4, - Snub Cube 

12. 3 4 5, - Snub Dodecahedron 

13. 4 2 5, - Pentagonal Re gu/ar Pr wm 

14. 3 35, - Pentagonal Re gw/ar ,4/7/7 Pr z's/r/ 

(2) Hexagonal Regular Prism and Truncated Octahedron cannot be used as finite 

elements in 3D with the selected polynomial since they contain regular hexagonal 

faces and the 3D Lagrange polynomial contains the corresponding 2D complete 

polynomial of degree 2. 

Therefore the only possible regular 3D tessellations for finite elements are 

(3 ,4 2 ) , 2 and ( 4 3 ) 8 . 

The corresponding finite elements are Tr iangu lar Regular Pr ism and Cube. 

(3) Other 3D tessellations which can be used in finite element analysis are 

1. ( 3 3 ) 8 ( 3 4 ) 6 

2. ( 3 4 ) 2 ( 3 2 4 2 ) 4 

3. ( 4 3 ) 2 ( 3 2 4 2 ) , ( 3 , 4 3 ) 2 

4- ( 3 3 ) I ( 4 , ) I ( 3 1 4 3 ) 3 

5- ( 3 , 4 2 ) 6 ( 4 3 ) 4 

6. ( 3 , 4 2 ) 4 ( 4 3 ) 2 ( 3 , 4 2 ) 2 ( 4 3 ) 2 
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C H A P T E R 5 

C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 
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CONCLUSIONS 

(1) Following criteria is proposed for defining the piecewise Lagrange polynomial 

1. Select the complete polynomial of immediate lesser number of terms. 

2. Select the other terms from the immediate symmetric higher degree terms. 

3. When there is more than one possibility always select terms with more types of 

product terms. 

(2) With the piecewise polynomial selected in the above manner the only possible 

regular tessellations for finite elements are 

2D-Equilateral Triangle, Square 

3D-Regular Triangular Prism, Cube 

(3) Any polygon having two axis of symmetry with nodes are selected at vertices 

cannot be used as a finite element i f its Lagrange polynomial contains the complete 

polynomial o f degree two 

(4) Any polyhedron having a polygonal face with two axis of symmetry and having 

six or more number o f vertices with the nodes are selected at vertices cannot be used 

as a finite element i f its Lagrange polynomial contains a two variable complete 

polynomial o f degree two 

(5) Radius( R) of the escribed sphere of a face and vertex regular polyhedron in which 

M\ number o f polygons of nt number of sides of length a meet, satisfies 

cos — 
1 -

sin At 

V 

(6) Sphere is a l imit ing case of a polyhedron. 
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RECOMMENDATIONS 

It is recommended to carryout an investigation to find out the fourth and higher 

dimensional regular polytopes and tessellations. 

Analyzing these combinations for finite elements w i l l be useful in solving the partial 

differential equations of four or higher variables. 

It is also recommended to study the criteria of selecting the second and higher order 

piecewise polynomial which wi l l define a way to avoid the possible non existing ones. 

The result that the sphere can be treated as a polyhedron can be used for finite element 

analysis on surfaces. 

89 



REFERENCES 

1. Jayatilake, U.C. "Calculations on Face and Vertex Regular Polyhedra", 

Mathematical Gazette-UK, March 2005, p 76-81. 

2. Hogben, Lancelot. Mathematics for the Million. London: Pan Books, 1967. 

3. Wells, David. The Penguin Dictionary of Curious and Interesting Geometry. 

England: Penguin Books, 1991. 

4. Pearce, Peter. Structure in Nature is a Strategy of Design. Cambridge: M I T 

press, 1978. 

5. Jain, M.K.. Numerical Solution of Differential Equations. New Delhi: Wiley 

Eastern Limited, 1984. 

6. Bathe, Klaus-Jurgen. Finite Element Procedures. New Delhi: Prentice Hall o f lndi 

1997. 

7. Duchateau, Paul and Zachmann, David W.. Theory and Problems of Partial 

Differential Equations. Singapore: McGraw-Hi l l Book Co., 1986. 

8. Scheid, Francis. Numerical Analysis. Delhi: Tata McGraw-Hi l l Publishing 

Company Limited, 2004. 

9.Jain, M.K., Lyengar, S.R.K. and Jain, R.K.. Numerical Methods for Scientific and 

Engineering Computation. New Delhi: Wiley Eastern Limited, 1991. 

10. Rao, K. Sankara. Introduction to Partial Differential Equations. New Delhi: 

Prentice Hall o f India, 1997. 

11. West, Douglas B.. Introduction to Graph Theory. New Delhi: Prentice Hall of 

India, 1999. 

90 



• 

A P P E N D I X • 

m 
91 



APPENDIX A 

Figure A 

From figure A. 1 we have 

CD . CD 
= sin B (1) 

DF DE 
When the spherical triangle is flattened on a surface we get the figureA.2. So we have 

= sin A (2) 

DE 
= sin 6 - (3) — - = sin a • 

DG DG 

From( l ) , (2), (3), (4) 

DE.DF sin b sin a 

-(4) 

"(5) 
DG.CD sin B sin A 

Similarly by drawing perpendiculars from vertex B to the plane A D G we have 

s'md sin a 

s'mD sin A 
(5),(6)=> 

sintf _ sin6 _ s'md 

s'mA sin B sin D 

-(6) 
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PROOF OF THE SINE FORMULA IN SPHERICAL TRIGONOMETRY 

Let ABC be a spherical triangle on the surface of a sphere with centre G. 

Let the perpendicular drop from the vertex D meet the plane A B G at point C. Lets 

complete the right triangle triangles CDE and CFD as in the figure A. 1. 



APPENDIX B 

By eliminating v from (3) and (4) 

( 
P_ 

. 3 \ 2 „ / . 3 \ , „ 3 

q = u + 

= > 0 3 ) 2 - q ( u s ) + ps = 0 

q± 

( 4 ) ^ v 3 ^ _ u 3 = i T V Z E v 

We choose 

q + yjq2-4p3 

u3 = 

v 3 = 

u = 
q + 

=>v = 
q-4q*-*p3 

So the final solution is 

x = y + r = u + v + r 
? W ? J - V l 3 , (q-^q2-*p 

+ r 
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SOLUTION OF THE CUBIC EQUATION 

Let the general cubic equation be ax 3 + bx2 + cx + d = 0 ;a * 0 . 

By letting x = y + r and choosing 3ar + b = 0 the original equation can be transferred 

to yi-3py-q = 0 (1) . 

Now since 

(u + v) 3 = w3 + 3u2v + 3uv2 + v 3 

(u + v ) 3 - 3uv(u + v) - (w3 + v 3 ) = 0 

We choose y = u + v hence 

y3-3uvy-(ui + v 3 ) = 0 (2) 

We compare the coefficients of (1) and (2) 

- 3uv = -3p => p = uv (3) 

-q = - (w 3 + v 3 ) => q = w3 + v 3 (4) 



t 

A P P E N D I X C 

This is the internal solid angle of a vertex of the polyhedron. Due to the similarity of 
its vertices this is a constant for face and vertex regular polyhedra. 
Consider the fol lowing spherical triangle BEF. 

D 

G F 
By the sin formula we have 
sin E, sin F, sin Ht 

B 

Figure C.l 

1 

sine,. s i n / . sin/.,. 

sin Ai sin Ht 1 

dt n cos b 
cos— cos — 

2 n, 
.2 

' 2 
F,=A, 

_n dt 

i - 2 2 

r _ 7 1 n 

J * ~ ~ 2 n. 

h,=--b, 2 

: . s in 2 H, = 

a 2 n 
1 r-cosec — 

cos b, cos a. 1-s in a, 4R 

l - ( l - r C 2 ) c o s e c J 
7T 

.2 

.2 7T 

2 * 

cos — 

= cosec — 
n. 

cot 
2 n n, 

1 -

sin 
71 

1 - sin A, 
• 2 n sin — 

( \ 

cos Ai 

. 71 

sin — 
n i J 

sin H, 
cos A, 

s i n -
7T 

Area o f the spherical triangle BEF is 
71 

A^ci'iEi+Fi+Ht - 7 r ) = al\^- + Ai+Hi-7r 

The solid angle due to the ith type of polygon is 

= a A, + H, 
71 

co, = 2M. — = 2M 
' a2 

A, +H, 
v 2 

= 2M,A-*M, +2M,Ht 

Total solid angle is 
0 = ^ 0 ) , =2YuMiAi-7iYJMs+2YuMiHi=2n-nYJMl+2Y^M,H, 

i i i i i i 
f \ 

cos A, 
27r-7rYJMi+2j^Mi sin 

. 71 
sin — 

n i J 
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APPENDIX D 
DIHEDRAL ANGLE 

Dihedral angle is the plane angle between faces of the polyhedron. This can be 
calculated by considering the spherical triangle as in the earlier calculations. 

B 

Figure D.l 

s i n a , -
a 

2R sin 
71 

tancr = 
r.. cot a, 

n 
rt cos — 

n. 

tan a. 

2 2 X 

= cot a, sec — 

71 
47?'s in ' — 

n 
'--\ 

a 

. 2 n - 2 

sec 
71 

n, 

4s in 2 — 
n; a 

sin —sin A - s i n A + c o s ' 

• 2 A 2 7 1 

sin A - cos — 

a 

7t 

- 1 
2 T 

cos — 

sin ,4 

sec" 
9 

-sec — 
n 

cos 2 — (l - s in 2 At) 

-sec 
71 

sin A - cos 
71 

cos A 

• 2 2 7 1 

sin A - cos — 

Therefore the dihedral angle is 

a « t e ! = S a ' = Z t a n 
-1 COS A 

s in 2 A - cos 2 — 
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APPENDIX E 

FACES, VERTICES AND EDGES 

nt = number o f edges(= vertices) of the /' th type polygon 

Mj = number o f / th type polygons meet at a vertex of the polyhedron 

Nt = number of / th type polygons in the polyhedron 

F = total number o f faces in the polyhedron 
V = total number of vertices in the polyhedron 
E = total number of edges in the polyhedron 

As every vertex is identical and each polygon type contributes to the vertices the 
number of vertices can be calculated by considering only one type o f a polygon, i.e 

M; 
Two edges of polygons produce one edge of the polyhedron 

YjniNi vfjMi 

E = ^ = —!• 
2 2 

Total number of faces is 

By substituting these in the Euler's equation [11] 

F + V = 2 + E 

VYMI 

V = 

The total number of edges is 

VYJM1 

E = 

1+ ] > > , . 

The total number of faces is 

2 ^ 

\N> 2J 
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