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ABSTRACT

Polyhedron is a solid figure bounded by plane faces. Face and vertex regular
polyhedra are the polyhedra whose faces are regular polygons and the arrangement of
polygons around each vertex is identical. Here general equations to calculate the
properties of the face and vertex regular polyhedra are developed. This includes
equations for radius of the escribed sphere and internal solid angle of a vertex. Using
these equations the radius of the escribed sphere of face and vertex regular polyhedrda
are found including that of Snub Cube and Snub Dodecahedron. It is also shown that
sphere is a limiting case of a polyhedron.

As application to finite element analysis, approximating the boundary by the sides of
the finite elements is proposed. Also a method of defining the Lagrange interpolating
polynomial 1s proposed. 2D tessellations are filling of infinite plane using polygons
and 3D tessellations are filling of infinite space using polyhedra. With the piecewise
polynomial selected in the above manner it is shown that the only possible regular
tessellations that can be used in finite elements are Equilateral Triangle and Square in
2D and Triangular Regular Prism and Cube in 3D. It is shown in general that “any
polygon having two axis of symmetry wit ] elected at vertices cannot be
used as a finite element if its Lagrange polynomial contains the complete polynomial
of degree two” and “any polyhedron having a polygonal face with two axis of
symmetry and having six or more number of vertices with the nodes are selected at
vertices cannot be used as a finite element if its Lagrange polynomial contains a two

variable complete polynomial of degree two™.

xii



CHAPTER 1
TESSELLATIONS AND POLYHEDRA

INTRODUCTION

Polygon is a convex planner figure with straight edges. Regular polygon is a polygon
with equal sides and equal internal angles. Regular polygon will be the theme thought
this thesis.

2D tessellations are fillingiof infinite plane using polygons.

Polyhedron is the 3 dir 1 polyg [hey are 3D convex objects
bounded by plane faces. Face and vertex regular polyhedra are the polyhedra whose
faces are regular polygons and the arrangement of the polygons around each vertex is
identical.

3D tessellations are filling of space using polyhedra.



1.1 REGULAR POLYGONS

Polygon is a convex planner figure with straight edges. Regular polygon is a polygon
with equal sides and equal internal angles.
Here only the regular polygons are considered for the constructions.

There are infinitely many types of regular polygons.

1.2_2D TESSELLATIONS [3]

2D tessellations are filling of infinite plane using polygons. A necessary requirement
is that the sum of vertex angles of polygons= 2z .Here we use only the regular
polygons for filling and we keep the arrangement of polygons around each vertex
identical. They can be categorized as follows.
1. Regular 2D Tessellations:

Only one type of polygon is used. 3 types exists.
2. Semi-Regular 2D Tessellations:

Different types of polygons are used. 8 types exists.

1.2.1 REGULAR 2D TESSELLATIONS

1. 3,

Note: Here 3, means that 6 Triangles (3 sides) meet at a vertex.

VAVAV
/ /N - //’\ |
\/ /

Figure 1.1



Figure 1.2

Figure 1.3




1.2.2 SEMI-REGULAR 2D TESSELLATIONS

1. 3,6,

Note: Here 3,6, means that 2 Triangles (3 sides) and 2 Hexagons (6 sides) meet at a

vertex.
RN
N VAR
2. 3,4,
// /'/ /
/ . /
/

Figure 1.5



3. 3,434, eg:3,43,4,(R)
Note: There are Left hand(L) and Right hand(R) versions of this

/
7 /

//

ta

9,

D

Figure 1.6

4. 3,4,6,

—
\_
/ g - - i <
) T )/ o
AN / N\ /

Figure 1.7



3,12,

Figure 1.8

6. 4,6,12,

Figure 1.9



Figure 1.10

8. 3,6, eg: 3,6,(R)

Note: There are Left hand(LL) and Right hand(R) versions of this

AV\VAVARR

Figure 1.11



1.3 FACE AND VERTEX REGULAR POLYHEDRA

Polyhedron is the 3 dimensional version of polygon. They are 3D convex objects
bounded by plane faces.

A necessary requirement is that the sum of vertex angles of polygons < 27 .

Face and vertex regular polyhedra are the polyhedra whose faces are regular polygons
and the arrangement of the polygons around each vertex is identical. They can be
categorized as

1. Regular Polyhedra (Platonic Solids):

Only one type of polygon is used. 5 types exists.

o

. Archimedean Polyhedra:
Different types of polygons are used. 13 types exists.

. Regular Prisms:

(U8 )

Polygons are used for top and bottom with squares as sides. o types exists.

SN

. Regular Anti-prisms:

Polygons are used for top and bottom with triangles as sides.oo types exists.

1.3.1 REGULAR POL) 11%_ RA APLATONILCSOLIDS)

1. 3, —Tetrahedron
Note: Here 3, means that 3 Triangles (3 sides) meet at a vertex.

This has 4 triangular faces, 4 vertices and 6 edges

Figure 1.12



2. 4, — Hexahedron(Cube)

Figure 1.13

3. 5, — Dodecahedron

Figure 1.14



-~

3, — Octahedron

Figure 1.15

3, — Icosahedron

Figure 1.16
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1.3.2 ARCHIMEDEAN POLYHEDRA

1. 3,6, —Truncated Tetrahedron
Note: Here 3,6, means that 1 Triangle (3 sides) and 2 Hexagons (6 Sides) meet at a

vertex. This has 4 triangular and 4 hexagonal faces, 12 vertices and 18 edges

»
-
Figure .17
2. 3,8, —Truncated Cube
“

Figure 1.18
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3. 3,10, —Truncated Dodecahedron

Figure 1.19

4. 4,6, —Truncated Octahedron

Figure 1.20



5. 5,6, —Truncated Icosahedron

Figure 1.21

Q

6. 4,68, — Great Rhombicuboctahedron

Figure 1.22



7. 4,6,10, — Great Rhombicosidodecahedron

Figure 1.23

8. 3,4, —Small Rhombicuboctahedron

Figure 1.24
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9. 3.4, —Cuboctahedron

Figure 1.25

10. 3,5, — Icosidodecahedron

Figure 1.26

15



11. 3,4,5, — Small Rhombicosidodecahedron

"
Figure 1.27
»
)
12. 3,4, —Snub Cube e.g:3,4,(L)
Note: There are Left hand (L) and Right hand (R) versions of this
‘

Figure 1.28



13. 3,5, = Snub Dodecahedron e.g:3,5,(R)
Note: There are Left hand (L) and Right hand (R) versions of this

Figure 1.29

A

1.3.3 REGULAR PRISM5

1. n4,;n#4 eg:4,6,— Hexagonal Regular Prism

Figure 1.30

17



1.3.4 REGULAR ANTI-PRISMS

1. n3,;n#3 eg:3,6, — Hexagonal Regular AntiPrism

Figure 1.31

1.4 3D TESSELLATIONS |[4]

3D tessellations are filling of space using polyhedra.

A necessary requirement is that the sum of vertex solid angles of polyhedra= 47 .
Here we use only the face and vertex regular polyhedra for filling and we keep the
arrangement of polyhedra around each vertex identical. They can be categorized as

follows.

[—

. Regular 3D Tessellations:

Only one type of Platonic and Archimedean Polyhedra are used. 2 types exists.

o

. Regular Prism 3D Tessellations:
Only one type of Regular Prism is used. 2 types exists.
3. Semi-Regular 3D Tessellations:
Combinations of Polyhedra are used. 11 types exists.
4. Semi-Regular Prism 3D Tessellations:

Different types of Regular Prisms are used. 8 types exists.

18
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1.4.1 REGULAR 3D TESSELLATIONS

1. (4,),

Note: Here (4,), means that 8 cubes (4, ) meet at a vertex.

“;n{ Fiburel] 32

2. 4,6,),

Figure 1.33

19
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1.4.2 REGULAR PRISM 3D TESSELLATIONS

Fionre 1 W

2. (6,%5),

Figure 1.35



1.4.3 SEMI-REGULAR 3D TESSELLATIONS

1. 134):03.)6

Note: Here (3,); means that 8 Tetradedra(3,) and 6 Octahedra(3, ) meet at a vertex.

2' (3})2(3162)()

Figure 1.37
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Figure 1.38

4. (3,),(3,%),

Figure 1.39



5. (41)|(4|63)|(4|6181)1

Figure 1.40

6. (3163)|(3|81)|(4l618| )2

Figure 1.41



Figure 1.42

8. (}\)1(4)|("’|4)

Figure 1.43



9. 13,6,),(3,4;),(4,6,),

Figure 1.44

10. (4,8,),(4,6,8)),

Figure 1.45

25



1. (45),(4,8,),(3,8,),(3,4;)

3

Figure 1.46

iy
1.4.4 SEMI-REGULAR PRiSV 3 1 ESSELLALTIUNS
1. (3,4,).,(6,4,),

3]
(S
NN
N

(S

(3:4,),(4,),(3,4,),(4,),
4. (3,4,),(4,),(6/4,),

5. 3,4,),(12,4,),

6. (4,),(6,4,),(12,4,),

7. (4,),(84,),

8. (314: )8(()143 ),

26



CHAPTER 2
CALCULATIONS ON FACE AND VERTEX

REGULAR POLYHEDRA

INTRODUCTION

Due to the similarity of their vertices Face and Vertex Regular Polyhedra have a
unique escribed sphere. Any geometrical 'he above Polyhedra can be

found if this is known. Here equations will be developed to find the exact escribed

radii values for Face and Vertex Regular Polyhedra.

27



2.1 ESCRIBED RADIUS OF A FACE AND VERTEX REGULAR
POLYHEDRON (1]

When the vertices of a regular polygon with », number of sides are joined to its center

O, n, number of equilateral triangle are formed as shown in figure 2.1.

AOAC:A_O_Bizﬁ
2 n,
S r = (M)
2sin—
n

Here a=length of a side of the polygon

B
Figure 2.1
Suppose that this polygon is placed inside a sphere of radius R, and center G. Then all
the vertices will touch the surface of the sph iangle ABO is seen as in the

following figures.

Figure 2.3

Figure 2.2

28



A spherical triangle ABD is formed when the triangle ABO is projected on to the

surface of the sphere. Let the angles of the spherical triangle ABD be A4,,B, and D,.
Also let the corresponding angles between lines joining to the center G be a,,b, and
d, respectively. All the angles around the point D will form a plane perpendicular to

GD at the point D. Hence

nD =2r=>D =——-———- (2)
ni
OA=0B=a gives
A = Bi ————— 3)
a.=b ————-— 4

o r
= HrePeT — 1 D
Figure 2.4
Figure 2.5
From figure 2.5
a’=R*+R’-2RR cosd,
2 2
= cosd, = 2R 2a
2R,
’4R.2 2
—sind =N 4 )
2R}

29



By figure 2.4 and equation(1)

sing=—t=—%2 _____ (6)

R 2R, sin =
n.

i

But by a theorem in spherical trigonometry

sing; _sinb, _sind,

- =— =— [APPENDIX A]
sin4, sinB; sinD,

(2),(5),(6) =

a
o aw/4R,.2—a2
2R, sin— ————
n,o 2R,
sin 4; . 2w
sin—
h;
=R, =

This is the radius of the escribed sphere.

Now suppose that different types of polygons are placed inside the sphere and the
radius is adjusted in such a way that a 3D vertex(A) is formed with the adjacent sides
of polygons are touching each other. At this position radii values calculated for
different types of polygons are equal.i.e.

R, = constant(R, say)

T
cos—
= ——L = constant(ksay) — — ——— 8)
sin A4,
a 1
So the escribed sphere radiusis R=———=--—-—-——— (7N
2 J1-k?

30




When 3D vertex is formed at A, sum of angles 4, will add up to 27 creating a plane
perpendicular to GA at A.
If M, number of polygons with n, number of sides meet at the vertex A, and because

each polygon provides two angles this result can be written as

D 2M 4, =27

To find the radius of the escribed sphere radius, R by (7) the value of the constant &
must be found. To find &, equations (8) and (9) must be solved to eliminate 4,.

The equations (8) and (9) cannot be solved in closed form. But (7),(8) and (9) can be

combined to give the following identity.

cosl
ZMi sin™ —LT =7
i 1_ i
2R
Here a =length of an edge which is constant for the polyhedron.

2.2 COMPUTATION OF ESCRIBED RADIUS

Due to the similarity of its vertices, face and vertex regular polyhedra have a unique
escribed sphere.

Escribed radius can be computed by solving

T
COS—
—' = constant =k ——— -~ (8)
sin 4,
Y M A === ©)
or

T V3 /4
COS— COS — COS —
n n, _ n _ 8)

sin A4, " sin A, ~ sin A, B
M A +MyA) + MyAy + . B 9)

31



As stated early this system cannot be solved in closed form.
However for a given 3D vertex, (8) and (9) can be solved to find 4, and then k. By

substituting it in (7) the radius of the escribed sphere can be found. Following

illustrates how this can be done for the face and vertex regular polyhedra.

(1) For 3,,3,, 3,, 4,, 5, (Regular Polyhedra)

The vertex is of the form »n,,. Then

MA=me—— e ——— (8)
COS—
k=B 9
sin 4 ®)
w
H=>4=—
® Y,
COS—
9)= k=—1"
sin —

32



(2) For 3,6,,3,8,,3,10,,4,6,,5,6,

The vertex is of the form nl,n2, . Then

(8) = sin 4, =sin(r —24,) =sin24, =2sin 4, cos 4,

T
COS —
n,

®) =

sin 4, = 2sin 4, cos 4,
coOs—

N7 +442

Ryg=—7F ¢
_2B7+15V5)
310, 4 a
J10
Ry, =5 ¢
_J209+945)
‘R5|6z B 4 a



(3) For 4,6,8,, 4,6,10,

The vertex is of the form nl,n2 #3, . Then

A+A4,+A, = ————————— 8)
b4 T T

COS— COS — cCOS—
m n, 1,

st ==k )
sind, sinAd, sinA4,

(8) = sin(A4, + 4,) =sin{mr — 4,) =sin 4,
=> sin 4, cos A, + cos 4, sin 4, =sin 4,

1 1
%= lcoslcos A, +cos 4, —cos- = —cos—
k k

n, n, k n
2 2
Y3 4 T
=} cos— —c0s 4, cos— | =| COS—COS A4,
hy n, h

n n Tz
= c0s’ — +cos’ 4, cos’ - 2¢0s 4, C0s—cos-—
1y n, n, s

= cos’ l(l—sinz Az)

n,
T
cos’=—-
/1 ) ]
=cos’ —|1-sin’ 4,
n, 2 T
cos® —
n

n n n T o
= cos’ — +cos’ — —cos’ — = 2¢0s 4, cos— cos—

ny n, n 1, ny
P 7 T
cos? = +cos? — —cos? —
n n n
= cos 4, = : 2 '

b3 T
2¢c0s—Ccos—
n, n,

The calculated exact escribed radius values are

V134642
468" 5 ¢
J31+1245
Rig10=" 5 ¢



(4) For 3,4,

The vertex is of the form nl,n2, . Then

(8) = sin 4, =sin(r —34,) =sin34, =3sin 4, —4sin’ 4,

= sin 4, =sin(zr —34,) =sin34, =3sin 4, —4sin’ 4,

i 1 .
(9) = —cos = = —cos—’r—(3—4sm2 A:,_)
k n k n,
r
cos—
n

= 4sin’ 4, =3 -

The calculated exact escribed radius values

5422

R3.4.‘ - 2 a



(5) For 3,4,,3,5,
The vertex is of the form nl,n2, . Then

24, 424, =g ————————— (8)
w

COS— COS—
. 1Y RIS E——— )

sin 4, B sin 4, -
8) = sin 4, =sin Z—A =cos 4
| 2 2 2

m
cos—
n
L =cos 4,

(9) = sin 4,
COS—
n,

/3
COS—
n,

= tan 4, =
V4

Cos—
h

The calculated exact escribed radius values are

_w/2i3+\/§ia

Rys ="

36



(6) For 3,4,5,
The vertex is of the form nl,n2,n3, . Then
A+A,+24, =7 ————————— (8)

/2 /s

COS— COS— COS—
‘”1=.”2=.”3=k ________ ©)

sin4, sinA4, sinA,

(8) = sin(4, + A4,) =sin(r —24,) =sin 24,

= sin A4, cos 4, + cos 4, sin 4, =2sin 4, cos 4,

1 1 1
z;cos—”—cosA2 +C0S 4, ;cos—’i=2—coslcosA3

n, n, k n,
2
/2 7 /2
=|2cos—cos A, | =|cos—cos 4, +cos A4, cos—
s h, h,

T T 4
= 4cos’ —cos’ 4, —cos’ —cos’ 4, —cos? —cos’

n, n n,

7 7
=2¢€0S—Cc0Ss—C0s 4, cos 4,
h n,

=2 cosicosl(cos(Al + A,)+sin A4, sin 4, )

2

4

w .
—cos? =|1-sin’ 4,

h n,
Tz . .
=2cos—cos—(— c0s 2 43 sin'A;'sin 45)
n, o,
=
m
cos® —
m : n : n
4cosz—(1—sm2A3)—cosz— 1-sin’ 4, 2
3 n : 7
cos’ —
h;
m
cos — cos—
T om|. . n o n
=2cos—cos—| 2sin’ 4, —1+sin 4, L sin 4, 2
n, o, w
cos — cos —
13 s

. w /4 w
= 4sin’ 4,| cos’ — + cos—cos—
ny n, n,

7 P P 7 P 7
=4cos? — —cos® = +2cos—cos— —cos’ —=4cos® — —

n, n n n, n,

2

V1 T
4cos? = —| cos— — cos —
Ny n, n,

. 1
= sin A4, =5

) T T 2
€0S” — + COS— COS —
n, n, n,
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The calculated exact escribed radius value is

_V+45
Ria4,5= 2

(7) For 3,4, 3,5,

The vertex is of the form nl n2, . Then

sin 4, " sin A,
(8) = sin A4, =sin(wr —4A4,) =sin44, =2sin2A4, cos2A4, = 4sin A4, cos 4, (2 cos® 4, - l)

1
= —cos— = 410052(20053 A, —cosAz)
k k

n n,
T
| coS —
n
= c0s’ A, ——COSA,— L =0
2 Vi1
8cos—

This cubic equation must be solved to find the radius
(see Appendix A)

The calculated exact escribed radius values are

-(3{2(3\/5+«/ﬁ)+3\5(3«/7—\/ﬁ))2
R - > a
472V o (ol i)+ )+ 3265 -11))

18-l
(VB 52 0 ) 9]
o (Vo 15 207275 ARG+ ) 2 1)

Rjs.=

38



CHAPTER 3
OTHER DERIVATIONS

INTRODUCTION

Having found expressions for exact radii values of the Face and Vertex Regular

C~

Polyhedra any other geometrical property Here such formulae are stated
and the geometrical properties calculated form such equations are given.

It is proven that sphere can be regarded as a regular polyhedron.
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3.1 SPHERE AS A LIMITING CASE OF A POLYHEDRON

Consider a regular polyhedron. There is only one type of polygon and hence n, = n
and the number of polygons meet at a vertex is M, = M .

The number of faces is given by

2

4=—n
F 1 1

1
M n 2

With a = length of an edge of a polygon ,the radius of the escribed sphere is given by

.7 .
4 1 sin— sin—
R=5 > = =
z sin? = —cos? T (12 cos 2 =14 cos 2E
. cosn \/ IY; " > v; .
.
sin—
M
.7 .
sin— sin—
- M -
1 1 i)y o Mpratuf S Lankh 1) (1 1)
—cosz| — +— |cosm| — [ adsin ). — 4 — |cosz| — ——
M n L Ay | 2 M n
Let a new variable define by o =7 L+l—l :>_L:ﬁ_l+l
n 2 M = n 2

We can re write the expressions in terms of o as

2 2
F L L === and
T, 1 a na
M n 2 nx
. T . T
Sin — sin —
M

) 1 1 1 1 1 ) 1 1)
sinw| —+———|cosz| ——— sinq@ cos | — ——
M n 2 M n M n
) a 1 1 i1
sin 7| ———+— cos|l o ——
T n 2 n

. (a 11 1) L (2;: ]
simecosnt| ———+——— Simasin|l ——«o
T n 2 n n
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2

With area of a polygon = %cotz , the total surface area of the polyhedron , 4 is
n

A
= area of a polygon x total number of faces

= area of a polygon x F

2 tf

na*  n 27:) ot

=| —cot— || =~ |=— 1"
4 n \no 2a

It is clear that both 4 and R > o« as ¢ — 0 . But the limit

. total surface area 0
Lim : — = —
>0 (escribes sphere radius)’ %
oA
=Lim—
a—0 R2
m® cot—
n : 27[ Y/ 271'
———2— . s — -« sing COS — Sin -
. ) n
= Lim a =2mcot— Lim =2 1 " \=dn
a—0 2 T n a—0 5 V4 o 4 5 T
, cos'la—— cos’| ¢ —— sin— cos” -
a n n n n
) .27 \
singsin| — — o
n

The angle « introduced here has a physical meaning as follows.

gap angle
= 2 - total angle provided by polygons at a vertex
= 27 - number of polygons x vertex angle of a polygon

=27r-Mx7r(n_2)=27IM(L+l—lj:2Ma
M 2

n n

It is clear that when gap angle or @ — 0, the polyhedron becomes a 2D tessellation.

When the length of a side of a polygon(a) is not— 0 its surface is a
plane(tessellation) which is having oo radius. But when the length of a side of a
polygon — 0 a sphere with a finite radius may be obtained.

This is conformed by the fact that we get 47 for the above ratio which is same as that
for a sphere. Note that we have never used the equation for the surface area of the
sphere in any of the derivations(see Appendix B).

This implies that the sphere can also be regarded as a limiting case of a polyhedron
with its surface being a regular 2D tessellation.

[t can be shown that the tessellation need not be regular.
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3.2 OTHER FORMULAE

Following relations for the number of faces( F' ), vertices(V ) and edges( E) are easily

found by the Euler’s formula F +V =2+ FE

(1) Number of faces [APPENDIX E]}
M,
o) Yt
2%

B 1 1
23]

F

(2) Number of vertices

V= 2
1+> M 1.1
— n, 2
(3) Number of edges
S,
E

B 1
1+ZM,(’1—’—EJ

Once the radius of the escribed sphere is found any other geometrical property of the
polyhedra can be easily calculated. For example volume can be found considering
pyramids formed by joining faces to the center of the escribed sphere. following are

formulae for some properties.

(4) Angle subtended at the center by an edge(angle of polyhedron)

T
COS —

6 =2cos™| —
sin A

i
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(5) Dihedral angle between adjacent faces] APPENDIX D]

_ ) cos 4,
aedgc - Zta‘n P
i edge .
hedke \/smz A —cos® =
n.

i

(6) Internal solid angle of a vertex.[APPENDIX C]

1| COs 4,

a)=2ﬂ—7rZM,7r+2ZM, sin

. T
sin—
n

!

(7) Sum of total internal solid angles of vertices

s

A T . ]
O =47 =2V ) M 5] | el

( (1iSIme== 4
\ n

The calculated properties of the face and vertex regular polyhedra using these data are
given under NUMERICAL DATA

Due to the fact that the regular polyhedra have only one type of polygons closed

expressions can be obtained for their properties

(8) Number of edges E = 2Mn
2(M + n)— Mn
(9) Number of faces F = aM
2(M + I’Z)— Mn
: 4n
(10) Number of vertices ¥V =
2(M + }’I)— Mn
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(11) Radius of the escribed sphere

. T
sSin—

sin® — —cos” —
M

n

R =

o

(12) Radius of the inscribed sphere

V2
cot—cos—

a
r=5 n
. T T
\/smz——cosz—
M n
(13) Volume
cot? Zcos Z~
v = Mna® n

2 T

6(2(M +n)-Mn) [, x

A

(14) Angle subtended at the centre by an edge (angle of polyhedron)

7
cos=
6 =2cos™ h

.
Sin—
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[ ] » [ 4
3.3 NUMERICAL DATA
3.3.1 GENERAL DATA (ORDERED BY THE SOLID ANGLE OF A VERTEX)
NUMBER OF S O o %
POLYGONS NUMBER OF NUMBER OF NUMBER OF
NO| SYMBOL NAME MEET AT A FACES EDGES VERTICES | TOLYGONS MEET
VERTEX AT A
VERTEX/DEGREES
1 3 Tetrahedron 3 4 6 4 180
2 4,3, Triangular Prism 3 5 9 6 240
3 3, Octahedron 4 8 12 6 240
4 4, Hexahedron(Cube) 3 6 12 8 270
5 3,4, Square Anti Prism 4 10 16 8 270
6 4,5, Pentagonal Prism 3 7 15 10 288
n Truncated o
7 3,6, Tetrahedron 3 8 18 12 300
$ | 3.5 Pentagonal Anti 4 12 20 10 288
Prism
9 4,6, Hexagonal Prism 3 8 18 12 300
10| 3.6 Hexagonal Anti 4 14 24 12 300

Prism




7] ) ' 4
NUMBER OF SU%\?(I;EVSE(I)‘; EX
POLYGONS NUMBER OF NUMBER OF NUMBER OF
NO | SYMBOL NAME MEET AT A FACES EDGES VERTICES | POLYGONS MEET
VERTEX AT A
VERTEX/DEGREES
11 4,8, Octagonal Prism 3 10 24 16 315
12 3,4, Cuboctahedron 4 14 24 12 300
13| 3.8, Octagonal Anti 4 18 32 16 315
Prism
14 4,10, Decagonal Prism 3 12 30 20 324
15 | 3,10, | DecagonalAnt 4 2 40 20 324
Prism
16 4,12, Dodecagonal Prism 3 14 36 24 330
17 35 Icosahedron 5 20 30 12 300
18 3,12, Dodecagonal Anti 4 2% 48 24 330
Prism
19 3,8, Truncated Cube 3 14 36 24 330
20 5, Dodecahedron 3 12 30 20 324
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8 o | 4
NUMBER OF sm:l\c])ggslsgg EX
POLYGONS NUMBER OF NUMBER OF NUMBER OF
NO | SYMBOL NAME MEET AT A FACES EDGES VERTICES POLYGA%Ni MEET
VERTEX VERTEX/DEGREES

21 4,6, Truncated Octahedron 3 14 36 24 330

Small
22 34 Rhombicuboctahedron 4 26 48 24 330
23 3,4, Snub Cube 5 38 60 24 330
24 3,5, Icosidodecahedron 4 32 60 30 336
25 3,10, Truncated Dodecahedron 3 e 90 60 348

Great \
26 46,8, Rhombicuboctahedron > 26 2 48 345
27 5,6, Truncated Icosahedron 3 32 90 60 348

Small
28 31423, Rhombicosidodecahedron 4 62 120 60 348
29 3,5 Snub Dodecahedron 5 92 150 60 348

Great
30 46,10, Rhombicosidodecahedron 3 62 180 120 354

Table 3.1
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3.3.2 DATA CALCULATED FROM DERIVED EQUATIONS (ORDERED BY THE SOLID ANGLE OF A VERTEX)

ANGLE
RADIUS VOLUME/ SUBTENDED
SOLID ANGLE OF A LENGTH | VOLUME/| AT THE
NO | SYMBOL NAME VERTEX/4PI sr O{:LEE%E%E OF AN | RADIUS”3 | CENTRE BY
EDGE"3 AN EDGE/
DEGREES
1 3, Tetrahedron 0.043869914022955452628 | 0.61237243569579452455 0.12 0.5132 109.47
2 4,3, Triangular Prism | 0.08333333333333333333 | 0.76376261582597333443 0.43 0.9719 81.79
3 3, Octahedron 0.10817344796939272983 | 0.70710678118654752440 0.47 1.3333 90.00
4 4, Hexahedron(Cube) | 0.1250000000000000000 | 0.86602540378443864676 1.00 1.5396 70.53
5 3,4, Square Anti Prism | 0.14274378718068905088 | 0.82266438800803628873 0.96 1.7189 74.86
6 | 4,5, Pentagonal Prism | 0.15000000000000000000 | 0.98671515532598310732 1.72 1.7909 60.89
7 3,6, Truncated 0.15204336199234818246 | 1.1726039399551573886 2.71 1.6812 50.48
Tetrahedron
8 3,5, Pe“tagfi‘s‘;‘ Ant 0.16389445018831418952 | 0.95105651629515357212 1.58 1.8352 63.43
9 4,6, Hexagonal Prism | 0.16666666666666666667 | 1.1180339887498948482 2.60 1.8590 53.13
10| 36 Hexagonal Anti 1 1901 1477836587375037 | 1.0876638735805374369 234 1.8167 54.74

Prism
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ANGLE
RADIUS VOLUME/ SUBTENDED
SOLID ANGLE OF A LENGTH | VOLUME/| AT THE
NO | SYMBOL NAME VERTEX/API st OQES%E%E OF AN |RADIUS*3 | CENTRE BY
EDGE™3 AN EDGE/
DEGREES
1| 4 Octagonal Prism | 0.18750000000000000000 | 1.3989663259659067020 4.83 17635 41.88
12| 3,4, Cuboctahedron | 0.19591327601530363509 | 1.0000000000000000000 236 2.3570 60.00
13| 3,8, | Octagonal Anti Prism | 0.19599139196000050020 | 13755485807735077127 4.27 1.6398 42.63
- il & Sri
14| 4,10, Decagonal Prism | 0.20000000000000000000. | 1.6 10539386 7.69 1.5841 34.34
15| 3,10, | Decagonal Anti Prism | 0.20675875319410803684 | 1.6745047437425603068 6.75 1.4375 34.75
16 | 4,12, | Dodecagonal Prism | 0.20833333333333333333 | 1.9955076566049245038 |  11.20 1.4090 29.02
17| 3, Icosahedron 0.20965059100153751343 | 0.95105651629515357212 |  2.18 2.5362 63.43
18| 3,12, D"dec}‘}rgi‘;“ma' ANl 6 91395022502107160677 | 1.9795119433363656367 9.78 12611 29.26
19| 38, Truncated Cube | 0.22295663800765181754 | 1.7788236456639244509 |  13.60 24162 32,65
20 s, Dodecahedron | 0.23568771323782495563 | 1.4012585384440735447 7.66 2.7852 4181
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ANGLE
RADIUS VOLUME/ SUBTENDED
SOLID ANGLE OF A LENGTH | VOLUME/ | AT THE
NO | SYMBOL NAME VERTEX/4PI st OI/FL[EE%TD%E OF AN | RADIUS*3 | CENTRE BY
EDGE™3 AN EDGE/
DEGREES
20| 4,6, Truncated Octahedron | 0.25000000000000000000 | 1.5811388300841896660 |  11.31 2.8622 36.87
2| 34, Small 0.27704336199234818246 | 1.3989663259659067020 |  8.71 3.1827 41.88
Rhombicuboctahedron
3| 3,4, Snub Cube 0.27565364345454073491 | 1.3437133737446017013 | 7.89 3.2518 43.69
24 | 3,5, Icosidodecahedron | 0.29234795477416835754 | 1 6180330887498948482 | 13.84 3.2661 36.00
25| 3,10, | Truncated Dodecahedron | 0.30806988179969249731 | 2.9694490158633984670 |  85.04 3.2478 19.39
26 | 4,68,  Great 0.31250000000000000000 | 2.3176109128927665138 |  41.80 3.3577 24.92
Rhombicuboctahedron
27| 5.6, Truncated Icosahedron | 0.33810409558739168146 | 2.4780186590676155376 |  55.29 3.6334 23.28
28 | 34,5, . Small 0.35382602261291582123 | 2.2329505094156900495 |  41.62 3.7378 25.88
Rhombicosidodecahedron
29| 3,5 Snub Dodecahedron | 0.35886935933301325883 | 2.1558373751156397018 | 37.62 3.7543 26.82
30 | 4,610, Great 0.37500000000000000000 | 3.8023944998512935848 |  206.80 3.7617 15.11

Rhombicosidodecahedron

Table 3.2
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CHAPTER 4
APPLICATION TO FINITE ELEMENT ANALYSIS

INTRODUCTION

The relation between the finite element analysis and tessellations lies on the fact that
tessellations can cover 2D or 3D space. Here possibility of using these tessellations in
finite element analysis

Finite element analysis requires a region to be divided into non overlapping sub
regions called finite elements. A method for dividing the region into finite elements
and a method for defining the Lagrange interpolating polynomial are investigated.
With the piecewise polynomial selected in the above manner the limitations of the

regular tessellations as finite elements are investigated.
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4.1 FINITE DIFFERENCE AND FINITE ELEMENT METHODS

There are two main numerical techniques to solve partial differential equations. They
are the finite difference method and the finite element method.

In both methods the region of the range of the problem is discretized in to non
overlapping sub regions which are called finite elements. Hence these methods have a
strong connection with geometry.

In finite difference method the region is discretized in to finite elements with their
sides parallel to variable axes. In contrast to this in the finite element method the
region is discretized in to finite elements in any suitable way and the function of
concern is assumed going over and through points above these regions(interpolating
function is found). Because of the flexibility of the choose of the regions, finite
element method is preferred over the finite difference method. Here we restrict the
discussion to finite element method.

The ideas discussed are not restricted to the solution of partial differential equations.

They are equally applicable to numerical differentiation, numerical integration etc.

4.2 FINITE ELEMENT METHODS (5]

Let partial the differential equation be written in operator form as L(V) = r within the
region R .To apply the finite element methods we divide the region in to non
overlapping finite elements e. We approximate the original function within each
finite element R as follows.

yo — yoy© 2 N,

Where N“are shape functions and v“are the values of the original function. Here

—_p

© . : . . -
N " is the extended shape function to include all the function values v  within the
region R,
We can write the total function for the region R as

M G — () () =
V=ZV(")=ZN v=(ZN ]v=Nv
e=l e=|

e=l|

The shape functions are found as follows.
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Normally the function is assumed as a Lagrange polynomial and written as
V(X)=f(X)A where f(X) is the polynomial terms and A4 is the set of
coefficients to be determined. Here X =(x,y) in2D X =(x,y,z) in 3D.

Normally the function values are set at nodes of the finite element and hence the node
set of the finite element is P =(X). To find the shape functions we evaluate the

function at each node and find the coefficients 4 as follows.

V(P)y=v= f(P)A=BA

V(X)=f(X)Bv

V(X)=Nv

To find the Lagrange polynomial V(X) we need to find the shape

matrix N = f(X)(7(P))".

To find the shape matrix we need to find B™'. Hence B should be non singular.

The matrix B = f(P) is only depend on the geometry of the finite element in the form
of vertex set P and the selected piecewise polynomial f .

Weighted residual and Variational methods are the main methods of solving

differential equations by finite elements. All these methods are based on some integral

and the integral over the region is the sum of element contributions. Hence we can
substitute the assumed polynomial ¥ ‘“(X)in the element integral and come up with

the total integral.

4.3 WEIGHTED RESIDUAL METHODS

In these methods the residual due to the substitution of the piecewise polynomial to
the differential equation is found. Its weighted integral is used to find the function
values.

EWV)=L(V)-r

EOW®Y= L7 @y_r



4.3.1 LEAST SQUARE METHOD

This is a main weighted residual method where the weight is taken to be E itself.

WE(V) = IEzdR

R

aavﬂ_zjc “—dR = Zz IE(‘) O jr =0
! , e=] R 1
7 (¢)
WE— f =2 IE("—daE() R =0
av ¢) A av e

4.3.2 GALERKIN METHOD

This is a main weighted residual method where the weight is taken to be N

Mo M . ¢
[NE@)ar= || DN )JE(V)dR - Z[ ¥ )E(")(V(”))dR(“)J = [NYE9W)dr =0
R

R\ e=l e=| R(!) R(f)

4.4 VARIATIONAL METHODS

This is a method based on the criterion of the calculus of variations.

4.4.1 RITZ METHOD

In this method the given differential equation is written as a the Euler equation of

some variational problem.

J(V)= [F()dR = i [FO@e)drR® = ZJ“) = L(V)=r

=|R() e=1

Q

ww (a1 & a|_,
v |ov, o, av, |
o _¥as

_ = :O

avi e=1 avi
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4.5 USE OF REGULAR TESSELLATIONS IN FINITE ELEMENTS

As discussed earlier tessellations do cover infinite regions and can be made to cover a

finite region of arbitrary shape if the size of elements are made small according to the
accuracy requirement. This is the link with tessellations and finite elements. As we did
earlier we restrict overselves to 2D tessellations made with regular polygons and 3D

tessellations made with face and vertex regular polyhedra.

Criteria

1) Interior as a regular tessellation and
2) Boundary by different elements.

Or

1) Whole region as a regular tessellation

2) Boundary achieved by making the size of the elements small.

%\\ “
TN/
QZL' g /'\,A.'\ /ﬁ‘\{\ ;\7‘* e >
NN N NN/ NN
NN NN NN/

Figure 4.1
Advantages
1) Easy discretitation of the region in to finite elements
(Regular polygons have a escribed circle and face and vertex regular polyhedra have a
escribed sphere. So this is a matter of filling the region by overlapping circles or
spheres).
2) Easy computation and interpretation
(Since properties of the finite elements used are known. Each node is situated at a

constant distance away from the neighboring nodes).
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3) Higher degree of accuracy
(if we select polygons or polyhedra with higher number of nodes as finite elements

and/or if we decide to make the size of finite elements small to achieve the boundary).

4.6 CHOOSING LAGRANGE POLYNOMIAL OF MORE THAN ONE
VARIABLE.

We also need to choose the two variable(or higher) Lagrange polynomial V(X) for
given number of points. Unlike in one variable polynomial which has only one term
for one degree there is no unique polynomial in two variables since there is more than
one term corresponding to one degree.

I propose the following criteria of selecting the polynomial

Criteria

1. Select the complete polynomial of immediate lesser number of terms.

2. Select the other terms from the immediate symmetric higher degree terms.

3. When there is more than one possibility always select terms with more types of

product terms.

Advantage of each procedure is
1. Complexity of calculation due to higher degree terms is avoided.
2. Allow the function to take any arbitrary value irrespective of the point.

3. Allow the function to vary arbitrarily in both positive and negative directions.

4.7 FINITE ELEMENT ANALYSIS IN 2D
4.7.1 POSSIBLE REGULAR 2D TESSELLATIONS

Vertex angle of a regular polygon of » number of sides is given by

27 ( 2)
AT——=m1——.
n n

To construct a 2D tessellation we require that the sum of vertex angles is 27 which is
the sum of plane angles around a point. If M number of polygons used at a vertex this
relation reeds as

ﬂ(l—z)M=27{ or l+L=l
n n M 2
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It is easily seen that 3 < M < 6. So we left with only a finite number of solutions for

(n, M) which is symbolized as n,, given by 3,,4,,6,. This means that no more than

Equilateral Triangle(3), Square(4), Regular Hexagon(6) will cover 2D space.

The corresponding regular 2D tessellations are given below.

(1) 34

Figure 4.2

2) 4,

Figure 4.3
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(3) 6,

Figure 4.4

4.7.2 2D TESSELLATIONS IN FINITE ELEMENTS

We have categorized all the possible kinds of 2D space filling or tessellations using
Regular polygons. They were categorized as

1. Regular 2D Tessellations : 3 types( discussed).

2. Semi-Regular 2D Tessellations : 8 types.

Here we restrict ourselves to regular 2D tessellations only.

In 2D finite elements, it can be shown that the number of terms in 2 variable Lagrange
polynomial is equal to

N N
2 24r-1 N+2 (N+2)(N +1)
T:Zl H"=§-1 C, = C2=—T
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The number and nature of terms are given in the following table

terms . cumulative
degree terms partial sum | sum
correspond to sum
0 0 1 1 1 1
1 1 X,y 2 2 3
2 x?,y? 2
2 3 6
1+1 Xy 1
3 x’,y 2
3 4 10
2+1 xty, yix 2
4 x4,y 2
4 3+1 X'y, y’x 2 5 15
2+2 x?y? 1
Table 4.1

4.7.3 REGULAR 2D TESSELLATIONS IN FINITE ELEMENTS

(1) Equilateral Triangle(3)

The selected polynomial by the above criteriais V(x,y) =a, +a,x +a,y.

Figure 4.5
(2) Square(4).

The selected polynomial by the above criteriais V(x,y) = a, + a,x +ayy +a,xy.

Figure 4.6
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(3) Regular Hexagon(6).
The selected polynomial by the above criteria is

V(x,y)=a, +a,x+a,y+a,x> +axy+agy’.

Figure 4.7
4.7.4 LIMITATIONS OF REGULAR POLYGONS AS FINITE ELEMENTS

(1) Equilateral Triangle(3).

The selected polynomial is ¥ (x,y) = a, +a,x +a,y. For any other orientation we can
transform the coordinates by x = pX +¢Y + rand y =uX +vY + w. We obtain
V(X,Y)=A,+ 4,X + AY which is similar to the original equation. So both 4, and
a;exist or not exist together. Therefore all the orientations are such that either B is

singular or non singular.

Consider the following orientation with length of an edge is 243 the coordinate set of

nodes are P = {(0,2),(~1,—/3),(1,~v3)}.

3

v

VAR

Figure 4.8

1 0 2
Here [Bl=]l -1 -+3|=4+23%0
I 1 =43

Hence for any other orientation matrix B is non singular.

Therefore equilateral triangle can be used as a finite element in any orientation.
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(2) Square(4).

The selected polynomial is V(x,y) =a, +a,x+a,y+a,xy . For any other orientation
we can transform the coordinates by x=pX +gY+rand y=uX+vY+w. We
obtain V(X,Y)=A, +A4,X +AY + A, X’ + A, Y’ + A, XY which is not the same as

the original equation. Hence we can’t predict the behavior of B using the above

technique. It can be singular or non singular depending on the orientation.

Consider the following orientation with length of an edge is 2 the coordinate set of

nodes are P = {(1,1),(1,-1),(-1,-1),(1,-1)}.

v

1y lsLllb *.7

-1
=-16#0

Therefore square can be used as a finite element in this orientation.

Square can be placed in such a way that all its nodes lie on the two axes as follows.

1\

v

Figure 4.10
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B is singular in this orientation. This is because all the nodes has at least one of x or

y zero and the polynomial contains a xy term.
But there is only one orientation where this occurs with coordinate set of nodes are

P ={(1,0),(0,1),(~1,0),(0,=1)} if length of an edge is /2 .

(3) Regular Hexagon(6).

The selected polynomial is V(x,y)=a, +a,x+a,y+a,x’ +asxy+asy’. For any
other orientation we can transform the coordinates by x= pX +¢qY +rand
y=uX+vY+w. We obtain V(X,Y)=4 +A4,X+A4Y+A,X>+AY* +A4XY
which is same as the original equation. So both 4, and a,exist or not exist together.

Therefore all the orientations are such that either B is singular or non singular.

For the following orientation with length of an edge is 2 the coordinate set of nodes

are P = {(2,0),(1,+/3),(=1,4/3),(=2,0), (-1,=/3), (1,—/3)}

/LN

Figure 4.11
1 2 0 4 0 0
11 3 1 3 3
- 3 1 -3 3
Here B = J—
1 -2 0 4 0 0
1 -1 =43 1 3 3
1 1 =43 1 -3 3

We need to find whether B is singular or not. For that we perform elementary raw

operations as follows.
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1 2 0 4 0 0
11 A3 1 43 3#—*&
so|t ! 31 -3 3 “R R
1 -2 0 4 0 O 4 !
-1 =3 1 3 3|2 RtR
I 1 =31 -3 3) 2
01 0 0 0 0
01 0 0 3 0
-1 3 -3 3Rt Rs
1 -2 0 4 0 0] 2 ¢
1 -1 =3 1 3 3
01 0 0 =430
o1 0 0 0 0
01 0 0 3 0
IR
1 -1 =3 1 3 3
o1 0 0 0 0
(0 0 0 O )
0 1 0 0543 0]
1 -1 3 1 =43 3
It 22 0 4 0 0
1 -1 =3 1 3 3
o1 0 0 0 0

Therefore matrix B is singular. (same thing may be shown by performing
4C, -C,-C, > C))
Hence for any other orientation matrix B is singular.

Therefore regular hexagon cannot be used as a finite element in any orientation.

4.7.5 PROOF OF A GENERAL RESULT

1. Suppose that we have a regular polygon of » number of sides with unit escribed

sphere radius. Then the coordinate set of vertices 1S

P= {(cos2—”i,sin2—ﬂi)i = 1,2,....,n}.
n n

2. Suppose we select the nodes(points where function values are assumed) at vertices.




3. Suppose we have the complete polynomial of degree 2 (1,.X,Y, X* XY.V? terms)
in the Lagrange polynomial V(X,Y)= f(X,Y)A.

. 2 . 2 2
4. Since 1= cosz(—ﬂi)+sm2(2—”ij, the columns of f(P) correspond to 1, X, V"
n n

are linearly dependent.
5. Hence |f(P)|=0

6."Hence we can’t use the above regular polygon as a finite element.
We will show here that this is independent of the coordinate axes.

1. Suppose that the above coordinate system is X,Y and any scaling, translation or
rotation of the above coordinate system can be represented by the x,y coordinate
system where x = pX +qY +randy =uX +vY +w.

2. Then the columns of V(x,y)=V(pX +qY +r,uX +vY +w) corresponding to
I,x,y,x%,xp,y* will be 6 linear combinations of columns of V(X ,Y) corresponding
tol, X,Y,X* XY Y?.

3. Earlier we showed f(P) wi (X,Y) is singular or has dependent

columns.

4. Now f(P') where P'=(x,y) has columns which are linear combinations of
columns of f(P) which are linearly dependent.

5. We have the theorem “if S is a set of »linearly dependent vectors than any set of
nor higher number of vectors spanned by S are linearly dependent”.

6. Hence f(P') has linearly dependent columns.
7. Therefore |f(P')| =0

8. Hence we can’t use bi axis symmetric versions of the above polygons as finite

elements in any orientation.

4.7.6 CONCLUSION

Any polygon having two axis of symmetry with nodes are selected at vertices
cannot be used as a finite element if its Lagrange polynomial contains the

complete polynomial of degree two.
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4.7.7 DEDUCTIONS

(1) With the Lagrange polynomial selected in the above manner the only possible
regular polygons that can be used as finite element in 2D are Equilateral Triangle and

Square.

(2) Regular Hexagon cannot be used as a finite element since the piecewise

polynomial is a 2D complete polynomial.

Therefore the only possible regular 2D tessellations in finite element analysis are 3,
and 4,.

The corresponding finite elements are Equilateral Triangle and Square.

(3) From the other tessellations only the following tessellations containing equilateral
triangles and squares are possible in finite element analysis
1. 3,4,

2. 3,434,

4.8 FINITE ELEMET ANALYSIS IN 3D
4.8.1 POSSIBLE REGULAR 3D TESSELLATIONS

A necessary condition for the existence of a 3D tessellation is that the sum of solid
angles of the polyhedra meet at a vertex should be 47 .

The solid angle of a vertex of a regular polyhedron is given by

_1| COs 4,

. T
sSin—
n.

t

a)=27r—7rZMi +2ZM,sin

For the possible types of regular 3D tessellations we verify that this requirement is
met. For all the possible types it will be found out that polyhedra are of the form

nl,n2, . Hence the angles 4, and 4, are found to be
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n
cos 4, = .
2cos—
n,
and
T
cos — cos— )
cos A no 1 n _ 1sin4,
2 = - - .
2 T 2sin4,
2cos— cos—
n,

h,
=>sin 4, =sin24,

= A, =24, 0or 4, = 7 - 24,

(M 34,

Here n, =3 and n, =4

cos—  cos
cos A, = ' 5”
2cos— 2cos— 2
n, 4
And

Then

cos A, cosA4,

3
= 4 =
sin z sin i ﬁ
3 2

w| &

n

cos 4, = cos(r —24,) =-2cos’ 4, +1= —2( 1 J

A,
So w=2r—7) M, +2) M,sin™ ke

sin —

Therefore 120w = 4.

n;

/N

Y

242

=27z—7z(1+2)+2(1.§+2
J

So if the 3D tessellation exists it should be of the form (3,4, )12 which actually exists.
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Figure 4.12

(1) 4, = 4,4,

Here n, =4 and n, =4

i)
/1 P
cos ; C A :
cos A4, = == 5
, —
2cos 2cos
n,
And
9) o) : £ l
cos 4, =cos(w —24,) =-2cos" A, +1=-21 | +1=_
Then
1 1
cos A, cos A, 9 1 . T cosA4, cosA4, )
= ——— = =—==sin— and —=—-~— =
. % . 1 . 4 . K . & I
sin sin sin sin ,
n, - J2 n, V2
! - . . 1| cos 4, 5 _
So w =27 - frZA\I, + ~Z.\/, sin”| — |=2r-2(1+2)+2| 1.
v / . \
‘ sin
n,
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Alternatively we view this polyhedron as a regular one 4, for which

n, =4and M, =3. Then to find 4,

YMA =MA=r=4=-"--=2 =
: M, 3

4| cos A4,

©=2r-7% M, +2Y M,sin =2n—n(3)+2.3.%=§

sin —
n

Therefore 8w =4r.

So if the 3D tessellation exists it should be of the form (4,4, ), = (4, ), which actually

exists.

Figure 4.13
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(1) 6,4,

Here n, =6 and n, =4.

7 7 V3
coS COS -
n, 6 9) \E
cos A4, = = = = = \/_
‘ w w VD
2¢os 2¢os 2 1 s

n, 4 42

And

cos A, =cos(m —24,) =-2cos’ 4, +1= -2[

Then

1
cos A cos A 1 . T
L = L4 _"_sin? and
. . 1 2 6 ;
sin sin sin
n, 6 2 n,
cos 4,

So =27 - ﬁz M, + QZ M, sin™

¥

Therefore 6w = 4r .

So if the 3D tessellation exists it should be of the form (6,4, )

cosA, cosA,

sin

=271—7r(l+2‘)+2(]./7+2./7?::

6

[99)

6 3)

which actually exists.

Figure 4.14
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(1) 4,6,

Here n, =4 and n, =6

cos 2 ” 1
) n cosz h o
COSA2 = o = pn = —T
2cos— 2cos— 9 ﬁ 6
n, 6 )
And

2
i 2
cosAd, =cos(mr —24,)=-2cos’ 4, +1==2| — | +1==
i ( 2) 2 ( '_6] 3

Then

cosd, cosd _

. T . T
Sin— Sin—

n, 4 2 n,

So

2 1
3 22 g S04 _cosdy J6
1 1

2

w=2r-7y M, +2) M sin’| e |

=2r—-m(1+2)+ 2[sin'l ¥ +2sin™ i] =—7+ 23in"[2\/5 .[1 —2&) +

=—m+2sin"' 0= +27r=n

Therefore 4w = 4r .

So if the 3D tessellation exists it should be of the form (4,6, ), which actually exists.

4
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Figure 4.15

4.8.2 DIHEDRAL ANGLES OF TRUNCATED OCTAHEDRON

To find the coordinates its nodes we need to find the dihedral angles of 4,6, . It can be
calculated as follows
(o]
4,6, |
Here n, =4 and n, =6

We have shown that
A = —2 d A = —l

cos 4, =— and cos 4, =
'3 T \6

Equation for dihedral angle is

B . cos 4,
X oy = Ztan

Ledge .2 2 T
e \/sm A, —cos” —
n

I

The dihedral angle between two hexagonal(6) faces is
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SI-

cos 4,

\/sinz A, —cos?

Qg =2tan” =2tan”

N[ W
Hw

T
6

=2tan” v/2 = tan™ (%j =tan"'(-2v2) =7 —tan™ 242

The dihedral angle between a hexagonal(6) faces and square(4) face is

- cos 4, 4 cos 4,
a, ¢ = tan + tan
2

\/sinzA, —cos> 2 \/sinZAz —cos? Z
4 6
1
2 2
= tan™ 3 +tan” J6 =tan™' 242 + tan™' /2 = tan™ [ﬂj

> 1 fé_i 1=
9 2 6 4

=tan” (—v2) =7 —tan' V2

4.8.3 3D TESSELLATIONS IN FINITE ELEMENTS

We have categorized all the possible kinds of 3D space filling or tessellations using
Face and vertex regular polyhedra. They were categorized as

1. Regular 3D Tessellations : 2 types(discussed).

2. Regular prism 3D Tessellations : 2 types(discussed).

3. Semi-Regular 3D Tessellations : 11 types.

4. Semi-Regular prism 3D Tessellations : 8 types.

Here we restrict overselves to regular 3D tessellations only.

In 3D finite elements it can be shown that the number of terms in 3 variable Lagrange

polynomial is equal to

N N
T = Z3H,. = Z}+r—lcr=N+3c3 _ (N+3)(N+2)(N+l)

rel e 1.2.3

The number and nature of terms are given in the following table
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terms

degree | correspond | terms partial sum cumulative
o sum sum
0 0 1 1 1 1
1 1 X, ),z 3 3 4
2 : L ’ 6 |10
1+1 Xy, yz,2x 3
3 x3,y3,z3 3
3 2+1 xiy,x*z, v x,yz,2%x, 2%y 6 10 |20
1+1+1 xyz 1
4 x“,y",z4 3 )
3+1 X’y,x°z,y’x,y’z,2°x,2°y 6
4 15 |35
2+2 x2y? x2z%,y%z? 3
2+1+1 x2yz,yixz,z%xy 3
5 x*,y%,2° 3
4+1 x‘yx Y X, yh_;_ 6
5 3+2 X’y Pz v x? y a2k 2y 6 21 56
3+1+1 x yz,v3xz, 2’ xy 3
2+42+1 xty?z, yiztx, 2% x%y 3
6 x"’,yG,z6 3
5+1 x*y,x’z,y’x,y°z,2°x,2°y 6
4+2 x'y? xtz? y x?, vt 2 % 2ty 6
6 3+3 x*y’.y*2?, %X} 3 28 | 84
| 4+1+1 x*yz, yixz,z xy 3
3+2+1 x*yiz, X2y, yxtz, v i, 2y, 2yl | 6
2+2+2 xiy?z? 1

Table 4.2
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4.8.4 REGULAR 3D TESSELLATIONS IN FINITE ELEMENTS

(1) Triangular Regular Prism(34,).
This has 6 nodes. The selected polynomial by the above criteria 1s
V(x,y,2)=a, +a,x+a,y+a,z+axyz+a,x’y’z*.

i

(2) Cube(4,).
This has 8 nodes. The selected polynomial by the above criteria is.

V(x,y,z)=a,+a,x+a,y+a,z+a,xy+agsyz+a,zx + agxyz

Figure 4.17
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(3) Hexagonal Regular Prism( 4,6, ).

This has 12 nodes. The selected polynomial by the above criteria is

7 2 2 2 2
V(x,y,2)=a, +a,x+a,y+a,z+a,x” +agy” +a,z° + agxy + agyz + a, zx + a, xyz + a,,x

Figure 4.18
(4) Truncated Octahedron( 4 6. )
This has 24 nodes. The séleic pHlynonal by theé'above criteria is
Vix,y,z2)=a,+a,x+a,y+a,z+a,x" +agy” +a,z° +azxy +a,yz + a,,zx

3 3 3 .2 2 2. by - o 1 S I —
+a, X" +Q,Y 40,2 +A XY+ A X 2+ Y X8R Y ZF Q2 X+ gZ" Y+ Ay X2

p) o)

2 2 2 5
ta,x"yz+ayy xz+anz'xy+a,,x'yz

Figure 4.19
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4.8.5 LIMITATIONS OF FACE AND VERTEX REGULAR POLYHEDRA AS
FINITE ELEMENTS

(1) Triangular Regular Prism(3,4, ).

The selected polynomial is V(x,y,z) =a, +a,x+a,y+a,z+axyz+a,x’y’z>. For
any other orientation we can transform the coordinates by x =b, +b,X +b,Y +b,7 .
y=c¢,+c,X+c,Y+c¢,Z and z=d,+d, X +d,Y+d,Z . But we don’t obtain a

similar equation.. Hence we cant predict the behavior of B using the above technique.

It can be singular or non singular depending on the orientation.

Consider the following orientation with length of an edge is 247 the coordinate set of

nodes are P = {(0,+/7,0),(~2+/3,0,3),(0,—v/7,0),(2v/3,+/7.4),(0,0,7),(2+/3,-/7 .4)} .

Figure 4.20
10 V7.0 0 0
1 =243 0 3 0 0
Here|B|=1 0 V70 o 0 |- 1264435220
1 243 V7 4 821 1344
1 0 0 7 0 0
1 243 -7 4 —8J21 1344

Hence Regular triangular prism can be used as a finite element in this orientation.

Consider the following orientation with length of an edge is 24/3 the coordinate set of

nodes are

P = {(0’2’\/3)’(_1,_[3,\/§),(1,_\/§,\@),(0,2,—\/§),(—1,—\5,—\5).(1.—\/3.—\/3 )} -
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Figure 4.21

1 0 2 3 0 0

1 -1 =43 3 3 9
llerc\B\zi . _;/5 \/;h - 9:O

1 -1 —+3 &3 ey |

1 1 —4/3 —vJ J 7|

Hence matrix B is singular. This is because the raws are depend on each other.
Triangular Regular Prism can be placed in such a way that all its nodes contained in
two coordinate planes as follows.

Figure 4.22
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,

B is singular in this orientation. This is because all the nodes has at least one of

x, Y,z zero and the polynomial contains xyz product terms.

There are infinitely many orientations where this occurs.

An example is where coordinate set of nodes are

P = {(0,/3,1),(~1,0,1),(1,0,1),(0,+/3,-1),(~1,0,-1), (1,0,— 1)} with length of an edge is 2

(2) Cube(4,).

The selected polynomial is

V(x,y,z)=a, +a,x+a,y+a,z+asxy+asyz+a,zx + agxyz . For any other
orientation we can transform the coordinates by x =b, +b,X +b,Y + 5,7,
y=¢+c,X+c,Y+c¢,Z and z=d, +d,X +d,Y +d,Z . But we don’t obtain a
similar equation.. Hence we cant predict the behavior of B by the above technique. It

can be singular or non singular depending on the orientation.

Consider the following ogientationwith:lengthsof an cdge is 2 the coordinate set of
]

nodes are P = {(1,1,1), (- 99), (sshsib by ¢ 1.1). (11— 1). (~1,1,=1), (=1~ 1,1),(1,=1.-1)} .

Figure 4.23

78



1
=4096 # 0

1
1
1
llcre|B|=1
| 1 -1 1 -1 -1 -1
1
1
1

Hence cube can be used as a finite element in this orientation.

Cube can be placed in such a way that all its nodes contained in two coordinate planes

as follows.

Figure 4.24

B is singular in this orientation. This is because all the nodes has at least one of

X, ¥,z zero and the polynomial contains xyz product terms.

There are infinitely many orientations where this occurs.
An example is where coordinate set of nodes are

P = {(1,0,),(0,L,1),(=1,0,1),(0,=1,1),(1,0,~1),(0,1,~1),(=1,0,~1), (0,—1,— 1)}

with length of an edge is V2.
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(3) Hexagonal Regular Prism(4,6,).
The selected polynomial is
V(x,y,z2)=a, +a,x+a,y+a,z+a,x* +a,y* +a,z* +a,xy +a,yz +a,,zx + a, xyz+a,x’y’

10 <~

For any other orientation we can transform the coordinates by

x=b+b,X+bY+bZ, y=c,+c,X+c;Y+¢,Z and z=d, +d, X +d,Y +d,Z .

But we don’t obtain a similar equation. Hence we can’t predict the behavior of B by

the above technique. It can be singular or non singular depending on the orientation.

Consider the following situation where the coordinate set of the nodes are given by
P ={(4,0,3),(2,23,3),(=2,243,3),(4,0,3),(-2,-2+/3,3),(2,-2+/3,3),
(4,0,-1),(2,24/3,-1),(=2,243,-1),(=4,0,-1), (=2,-24/3,-1), (2,23, 1)}

with length of an edge is 4.

Figure 4.25
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Here

4 0 3 16 0 0 0 12 0 0
2 23 3 4 12 43 63 6 1243 432
-2 243 3 12 9 -43 63 -6 -1243 432
-4 0 3 16 0 0 0 -12 0 0
-2 =243 3 432
18 2 -243 3 4 12 9 -4/3 -6/3 6 -1243 437 _ .
4 0 -116 0 0 0 -4 0 0

43 -243 -2 -43 48
43 —243 2 43 48

2 243 -1 4 12
—2 243 -1 4 12
-4 0 -116 0
—2 =23 -1 4 12
2 =243 -1 4 12

0 0o 4 0
43 243 2 -43 48

9
9
9
9
4 12 9 43 -6/3 -6 1243
9
1
1
i
1
1
1 -43 23 -2 43 48

—_— e = = = = = = = e = e

Hence Hexagonal Regular Prism cannot be used as a finite element in this orientation.

There are no orientation problems in the form of xyz terms becoming zero regarding

Hexagonal Regular Prism since all 1ts nc ot be contained in coordinate planes.
p

Later we will show that matrix B is singular independent of the orientation which

implies that Hexagonal Regular Prism can never be used as a finite element.

(4) Truncated Octahedron(4,6,).

The selected polynomial is

V(x,y,z)=a,

+a,X+a,y+a,z+axt +ay’ +a,zt +agxy +agyz +ag,zx

ta, X’ +a,y’ +a,2° +axyraxizragyix+anyiz+agz’x +anz’y +ayxyz
+a, X yz+a,,y Xz +ayz’xy

+ auxzyzzz

For any other orientation we can transform the coordinates by
x=b+bX+bY+bZ, y=c +c;X+c;Y+¢,Z and z=d, +d, X +d,Y +d,Z .
But we don’t obtain a similar equation.. Hence we cant predict the behavior of B by

the above technique. It can be singular or non singular depending on the orientation.
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Consider the following orientation with length of an edge is 2 the coordinate set of

nodes are

P ={(3,-1,0),(3,1,0),(1,3,0),(~1,3,0),(=3,1,0),(-3,~1,0), (~1,-3,0), (1,-3.0),
A1242).0,01-242)(-11,-242)(~11.2:42),0,-1.242),(1~1.-2+2),
(-1-1,2+2),(-1,-1,242),

(22,423, (2.2,42),(-22,42) (22 D), (22423, 22),(-2.2~/2),(~2,-2,~/2))

i

Fiplired.2

The matrix B is as follows



—

—_ =
—_ =

o |

[ e T g S ey

[
NK\)NN

0 910 -3 0 0 27 -l 0 -9 0 3 0 0 0 0 0 0 0
0O 910 3 0 0 27 1 0 9 0o 3 0 0 0 0 0 0 0
0O 190 3 0 0 127 0 3 0 9 0 0 0 0 0 0 0
0 190 -3 0 0 -1 27 0 3 0 -9 0 0 0 0 0 0 0
0 910 -3 0 0 -27 1 0 9 0 -3 0 0 0 0 0 0 0
0 910 3 0 0 -27 -l 0o -9 0 -3 0 0 0 0 0 0 0
0 190 3 0 0 -1 -272 0 -3 0 -9 0 0 0 0 0 0 0
0 190 -3 0 0 ] =27 0 -3 0 9 0 0 0 0 0 0 0
2272 11 8 1 2v2 22 116v2 1 242 1 242 8 8 22 22 22 8
“2V2 11 8 1 —242 —242 I —16v2 1 =242 1 -242 8 8 -242 -2/2 -242 8
22 11 8 -1 -242 22 1 162 1 22 -1 —242 -8 8 242 -242 22 -8
W2 11 8 -1 242 22 @ 462 L2 -1 242 -8 8 -2/2 22 -242 -3
W2 11 8 -1 -242 242 1642 1 242 8 -8 -242 -22 22 -3
22 1108 -1 242 —2d2 1 -1 —16v2 -1 —242 1 -242 8 -8 242 22 -2y2 -3
“22 11 08 1 242 2¥2 -1 -1 —16v2 -1 =242 -1 -242 -8 -8 -242 242 242 8
W2 11 08 1 =242 —2v2 -1 -1 162 -1 242 -1 242 -8 -8 242 -2v2 -2J2 3
V24 4 2 -4 —22 242 8 -8 22 -8 42 8 42 4 -4 -42 -82 &2 -3
V2442 4 22 242 8 8 242 8 42 8 42 4 4 a2 82 82 8
V244 2 -4 22 202 -8 8 22 8 42 -8 42 -4 4 -4/2 82 -8/2 -8
V24 42 4 22 —2¥2 -8 -8 22 -8 42 -8 42 -4 -4 a2 -8J2 -8J2 8
V2 4 4 2 -4 22 —242 8 -8 -2J2 -8 -42 8 -4V2 4 -4 42 82 -8J2 -8
V2 4 4 2 4 242 -242 8 8 -242 8 -42 8 -42 4 4 -—4J2 -8/2 -8J2 8
V2 4 4 2 -4 —2y2 242 -8 8 -2J/2 8 -42 -8 -42 -4 4 42 -8J2 82 -8
V2 44 2 4 22 22 -8 -8 -2J2 -8 -42 -8 -42 -4 -4 -4J2 82 82 8
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Truncated Octahedron can be placed in such a way that all its nodes contained the

three coordinate planes as follows.

Figure 4.27

B is singular in this « 'Q@.[;nn_u bhisvissbecausenall the nodes has at least one of
x, ¥,z zero and the polyn®ialcottaing: %)z product terms.
But there is only one orientation where this occurs with coordinate set of nodes are

P ={(1,0,2),(0,1,2),(~1,0,2),(0,~1,2),(1,0,~2), (0,1,-2), (~1,0,-2), (0,—1,-2),
(1,2,0),(0,2,1),(~1,2,0),(0,2,~1),(1,2,0), (0,~2,1), (~1,-2,0), (0,~2,~1),
(2,1,0),(2,0,1),(2,-1,0),(2,0,-1),(<2,1,0),(<2,0,1), (~2,~1,0),(~2.0,~1)}

if length of an edge is V2.

Later we will show that matrix B is singular independent of the orientation which

implies that Hexagonal Regular Prism can never be used as a finite element.
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4.8.6 PROOF OF A GENERAL RESULT

1.Assume that the selected 3D Lagrange polynomial for the polyhedron includes the
2D complete polynomial of degree 2.
2.Suppose we have a polygonal face with 6 or more number of sides in the

polyhedron.
3.We select the nodes(points where function values are assumed) at vertices.

4.We select the X,Y,Z coordinate system in such a way that the polygon is confined
to XY plane. Thus Z =0 for all the vertices.

5.We can transform the nodes to x,y,z coordinate system by
x=b+b,X+b,Y+b,Z, y=c,+c,X+c;Y+c,Z and z=d, +d) X +d,Y +d,Z .
6. Since Z =0, this reduces to x=b, +b,X +b,Y, y=c +c,X +c¢,¥ for x,y,z
coordinates.

7. Thus the situation is similar to that discussed under 2D finite element.

8. Hence ]f(P')] =0 where P'=(x,y,z) is the coordinate set of vertices.

9. Hence we can’t use the above polyhedron as a finite element.

4.8.7 CONCLUSION

Any polyhedron having a polygonal face with two axis of symmetry and having
six or more number of vertices with the nodes are selected at vertices cannot be
used as a finite element if its Lagrange polynomial contains a two variable

complete polynomial of degree two.

4.8.8 DEDUCTIONS

(1) Among face and vertex regular polyhedra with nodes >10 (will automatically
contain the two variable complete polynomial of degree 2) and having a face with
> 6 vertices cannot be used as finite element. So the only possible polyhera that can

be used as finite elements in 3D are as follows. Some of them cannot fill space.

1. 4, —Cube

2. 3,4, —Triangular Re gular Prism
3. 3, —Tetrahedron
4. 5, = Dodecahedron
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5. 3, —Octahedron

6. 3, —Icosahedron

7. 3,4, — Small Rhombicuboctahedron

8. 3,4, —Cuboctahedron

9. 3,5, —Icosidodecahedron

10. 3,4,5, = Small Rhombicosidodecahedron
11. 3,4, — Snub Cube

12. 3,5, —=Snub Dodecahedron

13. 4,5, — Pentagonal Re gular Prism

14. 3,5, — Pentagonal Re gular Anti Prism

(2) Hexagonal Regular Prism and Truncated Octahedron cannot be used as finite
elements in 3D with the selected polynomial since they contain regular hexagonal
faces and the 3D Lagrange polynomial contains the corresponding 2D complete
polynomial of degree 2.

Therefore the only possible regular 3D tessellations for finite elements are

(3,4,),, and (4,),.

The corresponding finite elements are Triangular Regular Prism and Cube.

(3) Other 3D tessellations which can be used in finite element analysis are

Lo (35)5Ba)s

2. (3,),(3,4,),

3. (43),3,4,),3445),

4. B3 (4:),Gi45);

5. (3,4,)6(4,),

6. (3,4,),(4,),(3:4,),(%:),
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS
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CONCLUSIONS

(1) Following criteria is proposed for defining the piecewise Lagrange polynomial
1. Select the complete polynomial of immediate lesser number of terms.

2. Select the other terms from the immediate symmetric higher degree terms.

3. When there is more than one possibility always select terms with more types of

product terms.

(2) With the piecewise polynomial selected in the above manner the only possible
regular tessellations for finite elements are

2D-Equilateral Triangle, Square

3D-Regular Triangular Prism, Cube

(3) Any polygon having two axis of symmetry with nodes are selected at vertices
cannot be used as a finite element if its Lagrange polynomial contains the complete
polynomial of degree two

(4) Any polyhedron having a polygonal face with tw s of symmetry and having
six or more number of vertices with the nodes are selected at vertices cannot be used
as a finite element if its Lagrange polynomial contains a two variable complete

polynomial of degree two

(5) Radius( R ) of the escribed sphere of a face and vertex regular polyhedron in which

M number of polygons of »n, number of sides of length a meet, satisfies

where ZM,A, =7

(6) Sphere is a limiting case of a polyhedron.
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RECOMMENDATIONS

[t 1s recommended to carryout an investigation to find out the fourth and higher
dimensional regular polytopes and tessellations.

Analyzing these combinations for finite elements will be useful in solving the partial
differential equations of four or higher variables.

It is also recommended to study the criteria of selecting the second and higher order
piecewise polynomial which will define a way to avoid the possible non existing ones.
The result that the sphere can be treated as a polyhedron can be used for finite element

analysis on surfaces.
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APPENDIX A
PROOF OF THE SINE FORMULA IN SPHERICAL TRIGONOMETRY

Let ABC be a spherical triangle on the surface of a sphere with centre G.

Let the perpendicular drop from the vertex D meet the plane ABG at point C. Lets
complete the right triangle triangles CDE and CFD as in the figure A.1.

D

D

Figure A.1

Figure A.2

From figure A.1 we have

When the spherical triangle is flattened on a surface we get the figureA.2. So we have
Ezsinb—-——(3) ﬂ?—=Sina —————— (4)
DG DG

From (1), (2), (3), (4)
DE.DF _sinb _sina
DG.CD sinB sinA

Similarly by drawing perpendiculars from vertex B to the plane ADG we have

sind _ sina
sinD sinA4
(%),(6)=

———————— ©)

sina _ sinb _ sind
sind sinB sinD
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APPENDIX B
SOLUTION OF THE CUBIC EQUATION

Let the general cubic equation be ax® +bx> +cx+d =0 ;a#0.

By letting x = y + r and choosing 3ar + b = 0 the original equation can be transferred

Now since
(u+v) =u’ +3utv+3uv? +v°
(u+v) =3uvu+v)—@w* +v*)=0

We choose y =u +v hence

Y =3uvy - +v)=0-——————— (2)
We compare the coefficients of (1) and (2)
Buww=-3p=>p=uwv-———————- (3)
—g=—+V)q=u’+v' ————(4)

By eliminating v from (3) and (4)

3
G
u

= () ~q(u’)+ p* =0

s_gEJg’—4p’

=Uu

2
F q2_4p3
4) =y = u3—q
4) q >
We choose
1
u3=q+\/q2—4p’:uz[q+\/q2—4p3J3
2 2

So the final solution is

x=y+r=u+v+r=(



APPENDIX C
SOLID ANGLE OF A VERTEX

This is the internal solid angle of a vertex of the polyhedron. Due to the similarity of

its vertices this is a constant for face and vertex regular polyhedra.
Consider the following spherical triangle BEF.

T
E =—
2
F =4,
|
z d, |
“«=37% ‘
B < .
f_fr n
Ja 2 n’
r
v h, =—=b,
2
By the sin formula we have A
sinE, sinF, sinH, 1 sind, sinH, 1
sineg, sinf, sinh, d, T cosh, k
COs— COS—
2 n,
: Fia Vs
2 2 e 1= ec’ — 1-(1-k*)cosec’ ~—
2 cos“ b, cos I'=sih“a n, n,
~sin® H, = e = PE R = X = e
- cos® — 2
cot? = ____ " .
2 T n; k2 1 —sin® 4, cos 4, . cos 4,
=cosec’ ——-———= = = =smH, =
n, k .2 T LT . T
! sin” — sin” — sin— sin—
n n, n, n,

i ¢

Area of the spherical triangle BEF is

A=a*(E, +F +H, _”)zaz(%+Ai +H, _ﬂ):az(A' +4, _%)

The solid angle due to the ith type of polygon is
o, =2M, 2 - 2M,(A, +H, —%] =2M A—aM, +2M,H,

a I
Total solid angle is

w=Y 0, =2) MA -7y M, +2) M,H =217y M, +2Y MH,

1| COS A4,

. T
Sin—
n.

1

=2r-7my M, +2) M,sin
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APPENDIX D

DIHEDRAL ANGLE

Dihedral angle is the plane angle between faces of the polyhedron. This can be
calculated by considering the spherical triangle as in the earlier calculations.

D

: a
sina, =
.
2R sin—
nl
B
r,cota,
tanq, =
: Vs
R A Figure D.1 r, cos —
nl
2
tan® ¢,
7
= cot’ a, sec’ —
ni
L2 T L2 T
4R?sin® — 4sin® — ) |
. n, a Vs
= ——1 sec’ — = —— ~1{sec’ —
a n, a 4 n,
cos”® —
1-— 0
c 02
sin” A4;
L2 T . i1 /2 .
sin® —sin® 4, —sin’ 4, + cos’ — cos’ —(1 —sin’ A,)
n, n L, n, 2 T
= sec” — = sec” —
. T n. .2 T n.
sin? 4, —cos® — i sin® 4, —cos’ — i
n, n,
2
cos” A4,
. /4
sin® 4, —cos® —
h;
Therefore the dihedral angle is
4 cos 4,
e = D@, = ) tan
Ledge i edge . T
1,edge 1,edge \/511.12 A’ _ COSZ e
ni
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APPENDIX E

FACES, VERTICES AND EDGES

n,= number of edges(= vertices) of the i th type polygon
M = number of ith type polygons meet at a vertex of the polyhedron
N, = number of ith type polygons in the polyhedron

F = total number of faces in the polyhedron
V = total number of vertices in the polyhedron
E = total number of edges in the polyhedron

As every vertex is identical and each polygon type contributés to the vertices the
number of vertices can be calculated by considering only one type of a polygon. i.e
nN,

M,

1

V =

Two edges of polygons produce one edge of the polyhedron
YmN, VY M,
E - i - i

2 2

Total number of faces is

F=YN, =VZ%
i i N

By substituting these in the Euler’s equation [11]

F+V=2+F

VM,
VZ%+V=2+ '2

'

3 2
1 1
1+ M,| ———
Z I(”i 2]
The total number of edges 1s
VY M, > M,
1+ ) M| ———
Z ’(”.- 2]
The total number of faces is

2Z—M—

F=ry i T

i ni 1 1
1+ZM'{n, 2]

=V

E
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