

62

Reference

[1] J. H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence”, 2
nd

Edition, The MIT Press, 1992.

[2] J. R. Koza, “Genetic Programming: On the Programming of Computers by

Means of Natural Selection”, Cambridge, MA: The MIT Press, 1992.

[3] D. A. Augusto and H. J. C. Barbosa, “Symbolic Regression via Genetic

Programming”, Proc.of the 6
th

 Brazilian Symposium on Neural Networks

(SBRN'00), 2000, pp. 173 – 178.

[4] W. Banzhaf, J.R. Koza, C. Ryan, L. Spector and C. Jacob, “Genetic

programming”, IEEE Intelligent Systems and their Applications, vol. 15, no. 3,

2000, pp. 74 – 84.

[5] J. R. Koza, “Darwinian invention and problem solving by means of genetic

programming”, Proc. of the IEEE International Conference on Systems, Man, and

Cybernetics (IEEE SMC '99), vol. 3, 1999, pp. 604 – 609.

[6] Microsoft Visual Studio 2010, http://www.microsoft.com/visualstudio/en-us,

2012.

[7] Microsoft .NET Framework, http://www.microsoft.com/net, 2012.

[8] AForge.NET Framework, http://www.aforgenet.com/, 2012.

[9] Microsoft SQL Server Compact, http://msdn.microsoft.com/en-

us/data/ff687142.aspx, 2012.

[10] D. F. Specht, “A General Regression Neural Network”, IEEE Transactions on

Neural Networks, vol. 2, no. 6, 1991, pp. 568 – 576.

[11] S. Tomioka, S. Nisiyama, and T. Enoto, “Nonlinear Least Square Regression by

Adaptive Domain Method with Multiple Genetic Algorithms”, IEEE Transactions

on Evolutionary Computation, vol. 11, no. 1, 2007, pp. 1 – 16.

[12] S. Crino and D.E. Brown, “Global Optimization with Multivariate Adaptive

Regression Splines”, IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics, vol. 37, no. 2, 2007, pp. 333 – 340.

[13] A. L. Samuel, “Some Studies in Machine Learning Using the Game of

Checkers”, IBM Journal of Research and Development, vol. 3, no. 3, 1959, pp.

210 – 229.

63

[14] R. Balzer, “A 15 Year Perspective on Automatic Programming”, IEEE

Transactions on Software Engineering, vol. SE-11, no. 11, 1985, pp. 1257 – 1268.

[15] N. L. Cramer, “A Representation for the Adaptive Generation of Simple

Sequential Programs”, Proc. of an International Conference on Genetic

Algorithms and Their Applications (ICGA85), 1985, pp. 183-187.

[16] R. Poli, W. B. Langdon and N. F. McPhee, “A Field Guide to Genetic

Programming”, 2008.

[17] J. R. Koza, “Genetically Breeding Populations of Computer Programs to Solve

Problems in Artificial Intelligence”, Proc. of the 2
nd

 International IEEE

Conference on Tools for Artificial Intelligence, 1990, pp. 819 – 827.

[18] H. Tuan-Hao, R. I. McKay, D. Essam, and N. X. Hoai, “Solving Symbolic

Regression Problems Using Incremental Evaluation in Genetic Programming”,

IEEE Congress on Evolutionary Computation (CEC 2006), 2006, pp. 2134 –

2141.

[19] G.Dworman, S.O.Kimbrough, and J.D.Laing, “On Automated Discovery of

Models Using Genetic Programming in Game-Theoretic Contexts”, Proc. of the

28
th

 Hawaii International Conference on System Sciences, vol. 3, 1995, pp. 428 –

438.

[20] GPdotNET, Genetic Programming Tool, http://gpdotnet.codeplex.com/, 2012.

[21] GPLAB, A Genetic Programming Toolbox for MATLAB,

http://gplab.sourceforge.net/, 2012.

[22] MathWorks MATLAB, http://www.mathworks.in/products/matlab/, 2012.

[23] GNU Octave, http://www.gnu.org/software/octave/, 2012.

[24] World Bank Data Catalog, http://data.worldbank.org/, 2012.

[25] WEKA (Waikato Environment for Knowledge Analysis), Version 3.6.4,

http://www.cs.waikato.ac.nz/~ml/weka/, 2012

64

Appendix A

Detailed Design Diagram

A.1 Introduction

In this section it is going to present the detailed design diagram. Figure A.1 shows a

detailed diagram of the GPVLab software.

A.2 A Detailed Design Diagram of GPVLab

Figure A.1 – A detailed design diagram of GPVLab

65

Appendix B

Genetic Programming Process

B.1 Introduction

In this section it is going to describe the genetic programming process in detail. An

example scenario is taken to describe the genetic programming process.

B.2 Genetic Programming Process

For an example consider the dataset shown in Table B.1. This is a hypothetical dataset

that contains data about nitrogen (N), phosphorus (P), and potassium (K) content of

different fertilizers which have been used on farms. The output column shows the

output yield of each farm corresponding to different fertilizers.

Table B.1: Example input dataset

N P K Output (Y)

2 4 1 200

4 8 2 300

6 12 3 400

8 16 4 500

10 20 5 600

Think of this as an input dataset which the system is going to use to discover a data

model. According to the system it has to select the reference attribute. Think that it

has selected the output column „Y‟ as the reference column. Now remaining columns

are „N‟, „P‟, and „K‟ which the system is going to use to generate a model. In here

„N‟, „P‟, and „K‟ are the terminals. That is, in the final outcome there will be an

evaluable expression which can be used to find the value of „Y‟ by entering „N‟, „P‟,

and „K‟ values. So these are the inputs of the final outcome. This application tries to

find the mathematical relationship between attributes. Therefore the functions of this

system will be mathematical operations such as, +. -, *, /. For this example author

consider only the basic arithmetic operators +,-,*, /. Normally in GP solution, it

execute each and every evaluable expression in the population and evaluate how well

those programs suites for the given problem. This can be done by taking the sum of

absolute errors over number of fitness cases, which is the number of records in our

dataset. Next the system has to determine the parameters for controlling the run.

66

Typically these parameters are the population size and the maximum number of

generations to be run. The termination criterion of this system is the event of

exceeding the maximum number of generations or finding a perfect solution. The

main GP process starts with generating the initial population. Table B.2 shows an

example initial population which may generate by this system.

Table B.2: Example initial population

10N+P/K

N+P*2K

2N/P+10K

4N-PK

7N*P-2K

N/5P+K

Each of these programs will execute and evaluate to find the fitness value. Usually all

the programs in the initial generation have a poor fitness. Nevertheless some

programs are better than others. These programs are more likely to be selected for

genetic operations. Most of the better ones will survive by copying them to the next

generation.

After applying cloning, crossover and mutation over the existing population it will get

the new population which may look like the ones given in Table B.3.

Table B.3: Example new population

10N+P/2K

N+P*K

2N/P+10K

7N-PK

4N*P-2K

N/5P/K

Finally after predefined number of generation it may possibly get to a perfect solution

which satisfies all the records of the input dataset. Think that user has obtained

“200N/P+100K” as the solution. Now this evaluable expression is similar to the

mathematical formula which represents “Y = 200N/P+100K”. This resultant

evaluable expression can take the input values of „N‟, „P‟, and „K‟ and calculate the

value of “Y”, which it gets as the output of the resultant evaluable expression.

67

Appendix C

How GPVLab Works

C.1 Introduction

In this section it is going to describe the GPVLab software in detail. An example

scenario is taken to explain the process and capabilities of GPVLab.

C.2 How GPVLab Works

Consider the dataset shown in Table C.1.

Table C.1: Sample dataset

A B C D

1 5 2 3

2 10 4 16

3 15 6 39

4 20 8 72

5 25 10 115

6 30 12 168

7 35 14 231

8 40 16 304

9 45 18 387

10 50 20 480

As you can see the above dataset has ten rows and it clearly has a pattern. Author has

created this dataset with the intension to have the model “D = (A* B) – C” in it. Now

it is going to present a step by step guide to discover a data model out of this sample

dataset. Once GPVLab has been installed into a computer, it can be accessed via the

GPVLab desktop icon (shown in Figure C.1) or through the „Start > All Programs >

GPVLab” menu. Screenshot of the GPVLab main window is shown in Figure C.2.

Figure C.1 – GPVLab Desktop Icon

As you can see, the main window contains a menu bar and a tool bar. First of all one

should open a new explorer instance through the main window.

68

Figure C.2 – A screenshot of GPVLab main window

User can open a new explorer instance, either by clicking on the “New Explorer” icon

(first icon in the tool bar) or through the GPVLab menu “Explorer > New”. Inside the

explorer window there are two ways to input data. Using “Data Input Methods”, users

can either create a dataset through GPVLab or export data from a comma separated

value (.csv) file. If the user selects “Enter Dataset” then the system will prompt the

user to enter the required number of columns for the dataset. Column names will be

automatically generated. Once user enters a value and click “OK”, the system will

generate an empty dataset with defined number of columns. Now user can enter data

into it using the space available at the bottom of the explorer window.

If user has a digital form of the dataset, it should be converted into a .csv file before

exporting into GPVLab. Once the .csv file is in place, user can click on the “Upload

csv File” button and select the required .csv file from the file system to import data

into the GPVLab explorer window. Figure C.3 shows a screenshot of the explorer

window. In this figure number „1‟ shows the “Data Input Method‟ Section. Number

„2‟ shows the dataset area which shows the current dataset. This area is editable and

users can add, modify or delete data from the dataset. The drop down list shown in „3‟

is the column name list, where user selects the reference column. Number „4‟ shows

the “Advanced Settings” section. Number „5‟ and „6‟ shows the resultant expression

in reverse polish notation (RPN) and infix notation, respectively. Number „7‟ shows

69

the visualization area where it shows the progress of the current model discovering

process by the means of fitness of the best individual of each generation.

Figure C.3 – A screenshot of GPVLab explorer window

70

Once the user created or uploaded the dataset the next important thing is to select a

reference column. This can be done through the reference column drop down list

which lists down all the column names. Since the author has intentionally created this

dataset to have the “D = (A* B) – C” data model, author has selected „D‟ as the

reference column. This means GPVLab will try to generate a data model using other

columns which ultimately satisfy the data in the reference column. Next step is

adjusting advanced settings. This is not a mandatory step, because default settings will

be more than adequate for finding data models from most of the datasets.

Advanced settings section contains six major parameter settings.

 Maximum Number of Generations

This is one of the termination criteria of the Genetic Programming process.

Default value is „1000‟.

 Maximum Number of Population

Default value is „100‟

 Selection method

This contains three values, namely “Elite”, “Rank” and “Roulette Wheel”.

Default value is “Elite”.

 Function set

GPVLab has an option to select one out of two function sets, namely basic and

extended. Basic function set contains operators such as addition, substation,

multiplication and division. Extended faction set has the ability to generate

models consisting of sqrt (Square root), sin, cos, ln and exp (exponential) in

addition to the basic operators. Please note that GPVLab can convert resultant

evaluable expression in reverse polish notation (RPN), which only contains

basic functions, into more human readable infix notation. Default is „Basic‟.

 Crossover rate

Default value is „75%‟

 Mutation rate.

Default value is „10%‟

Furthermore, if the dataset contains noisy data, users have the facility to enable noise

reduction from the „Advanced settings‟. Once enabled, the system allows users to

71

change two important parameters. Those are the maximum error rate and the

minimum success rate. Default values are „0.05%‟ and „80%‟, respectively.

After selecting the reference column and adjusting advanced settings user can initiate

the model discovering process by clicking on the „Generate Model‟ button. Users can

see the progress of the discovering process through the visualization section which

shows a dynamic graph of fitness of the best individual of each generation. Once the

process is completed, either by exceeding the maximum number of generations or

discovering a 100% accurate model, GPVLab presents the best expression as the

result. For the example provided in this section, GPVLab has found a solution in just

47 generations. Nevertheless it was a different data model than expected. Interestingly

this data model satisfied all the data records. GPVLab has found “((A + (B * C)) – B)

/ 2” as the solution. However the author was expecting “D = (A* B) – C” as the

solution.

After obtaining the data model, users can directly evaluate it by clicking on the

„Evaluate Model‟ button. This opens up a dynamically generated window based on

the expression. Inside this window users can enter values for each terminal of the

output expression and get a result by evaluating the expression. Figure C.4 shows a

screenshot of the dynamically generated “Evaluate Data Model” window for the

resultant data model. In this dialog author has entered values of 5, 25 and 10 for A, B

and C respectively. After successful evaluation GPVLab has obtained the value 115

which is the same as the respective reference column value. Now this model is ready

to evaluate for the numbers which were not on the input dataset as well. This is so

important in predicting next numbers of the sequence and evaluating for unknown

numbers.

Figure C.4 – A screenshot of “Evaluate Data Model” dialog

72

Furthermore, if the user has decided to keep this model, there is an option to save the

resultant model into the model library by clicking on “Add to Model Library” button

in the explorer window. Once clicked, GPVLab prompts the user to provide a

description about the data model before saving it to the library. Figure C.5 shows a

screenshot of an „Add to Library‟ dialog box.

Figure C.5 – A screenshot of “Add to Library” dialog

Once the user has successfully saved a resultant expression into the library, it can be

accessed anytime through the model library. Users can go to model library through

the main menu “Tools > Library”. Figure C.6 shows a screenshot of the Model

Library with the model that has been discovered under this experiment. In the model

library users can evaluate each model by clicking on respective “Evaluate Model”

button. Users can remove unwanted obsolete models as well. Library contains a

special feature, which helps users to export a data model as a standalone executable.

Once user clicks on “Export to EXE”, the system will open up a save as dialog to let

the users to select a location and enter a name for the exe. Once selected GPVLab will

automatically extract the data model from the library and generate a folder in the

73

selected location with all the necessary files including the standalone executable.

Inside the folder, which has the same name as the executable name that user has

provided, users can find the standalone executable file.

Figure C.6 – A screenshot of “Model Library” window

If user needs any help on GPVLab, there is a comprehensive integrated help file

which can be opened at any time via the help icon on the tool bar. This can also be

accessed via the menu “Help > Contents”. Figure C.7 shows a screenshot of

GPVLab‟s integrated help window.

Figure C.7 – GPVLab integrated help window

74

Figure C.8 shows a screenshot of exported standalone executable and the folder which

has been created after the exporting process. The “AForge.dll” which is inside that

folder is a necessary DLL, which comes with the AForge.NET Framework. Now this

folder is highly portable. Users can take this folder anywhere and the application

inside this folder can be executed at any time on any computer which has .NET

Framework 4.0 installed.

Figure C.8– Generated executable files and related screens

75

Appendix D

Main Dataset for Evaluation

D.1 Introduction

In this section it is going to present the data which author has taken for the main

experiment. All the data were taken from the World Bank Data Catalog. This catalog

contains data related to countries which were taken from World Bank datasets. This

catalog contains various datasets under “Sri Lanka”. All these datasets have important

data collections related to Sri Lanka.

D.2 Main Dataset for Evaluation

For the purpose of the main experiment author has downloaded the data sheet under

“World Development Indicators” section of Sri Lanka. This dataset contains a large

collection of indicators and author has decided to take eight indicators from this.

Author has taken “Total reserves (includes gold, current US$)” (TR), “Inflation from

consumer prices (annual %)” (I.CP), “General government final consumption

expenditure (% of GDP)” (GGFCE), “Exports of goods and services (current US$)”

(EOG.S), “Gross domestic product (current US$)” (GDP), “Official exchange rate

(LCU per US$, period average)” (OER), “Life expectancy at birth” (LEABT) and

“Total population” (PT) and formed the dataset which is given under Table D.1.

Please note that LCU means the Local Currency Unit.

Table D.1: Main Dataset for Evaluation (1960 – 2010)

Y
ea

r

TR I.CP GGFCE EOG.S GDP OER LEABT PT

1960 90000000 1.13444364 13.36763212 400490164.7 1454342131 4.761900004 58.20097561 10168000

1961 85000000 1.503579953 13.81374177 405386561.3 1458609620 4.761900004 58.54982927 10443000

1962 75000000 2.2729054 13.68384964 319741827.2 1241387714 4.761900004 58.92892683 10582000

1963 52000000 3.195647176 13.85840559 325377936.1 1321840726 4.761900004 59.3502439 10903000

1964 73000000 0.222783306 14.31222167 439915966.4 1698319328 4.761900004 59.82309756 11164000

1965 43000000 -0.15560166 13.88988845 391806722.7 1751470588 4.761900004 60.34978049 11439000

76

1966 55000000 2.189239332 13.72136771 380452674.9 1859465021 4.861105837 60.91353659 11703000

1967 52000000 5.860566449 13.13800504 371428571.4 1801176471 5.952370005 61.50109756 11992000

1968 40000000 7.456952734 12.5780248 361512605 1965546218 5.952370005 62.10285366 12252000

1969 42740000 5.866956078 11.8779274 584537815.1 2296470588 5.952370005 62.70878049 12514000

1970 50332571.3 2.665380209 12.55516014 583136593.6 2369308600 5.934948621 63.30995122 12690000

1971 59464516.69 6.34948605 12.44179183 570184254.6 2553936348 5.970317182 63.8984878 12861000

1972 86601280.49 9.626643102 10.9541404 700156250 2875625000 6.402499999 64.47041463 13091000

1973 77591857.49 12.3028868 11.53927054 944812030.1 3574586466 6.650749999 65.02268293 13284000

1974 57431421.39 6.625992553 9.331376754 1042225392 3791298146 7.007166666 65.56114634 13496000

1975 92329928.59 1.329518681 10.00231765 1043162901 3591319857 8.411999999 66.09865854 13717000

1976 292587699.3 1.224879588 8.564287088 1387936866 4104509583 8.872833333 66.64207317 13942000

1977 407115535.2 12.14159728 9.476151412 950352338.2 2733183857 15.61066667 67.18829268 14190000

1978 549102731.2 10.73192143 9.158760761 1134232498 3364611432 15.57183333 67.72478049 14472000

1979 282580139.5 26.1454101 8.545402618 1296672716 4024621900 16.53441667 68.22192683 14747000

1980 352359571.1 17.9689955 7.423092759 1345038961 4415844156 19.24575 68.64512195 14847000

1981 380230502.2 10.82574917 8.305286281 1304565113 4768765017 20.81225 68.972 15196000

1982 320947606 13.96438801 8.132334438 1360645984 5167913302 23.52858333 69.19482927 15417000

1983 530159878.2 16.63825375 7.762803585 1740762579 6043474843 25.43816667 69.31990244 15603000

1984 471725052.2 1.481180122 10.22263279 1555117820 5978460972 27.16258333 69.37273171 15842000

1985 377188000.9 7.976361936 10.29675608 1519200571 6405210564 28.01733333 69.39380488 16127000

1986 309506426.7 7.717165606 9.931731419 1683389946 6682167120 29.44475 69.422 16373000

1987 247726248.3 13.9915489 9.842689948 1819710783 6978371581 31.80675 69.48190244 16599000

1988 269432865.8 11.56753609 10.48469378 1904743412 6987267684 36.04708333 69.57804878 16825000

1989 447030482.6 21.49525205 9.759652438 2424288567 8032551173 40.06291667 69.67868293 17015000

1990 724220186.1 12.18563072 9.83845627 2586802030 9000362582 41.3715 69.73139024 17267000

1991 979864996.3 11.38343705 9.634055441 3082683094 9703011636 43.829625 69.69912195 17426000

1992 1653805525 11.74673702 9.166174572 3494577815 10338679636 48.3221675 69.57797561 17646000

1993 2069716975 8.448712487 9.670790421 3962059895 11717604209 49.41514167 69.39526829 17891000

1994 2111952732 7.674848734 11.47158012 4638263415 13029697561 51.25158917 69.22885366 18136000

1995 1984681138 15.93583104 10.5478514 4860502985 13897738375 55.27144417 69.1782439 18336000

1996 2042319918 9.573696264 10.35592453 5514307510 15091930836 58.994605 69.3162439 18568000

77

1997 1997795288 9.364243007 9.798268346 5724701319 15794972847 64.45011833 69.67714634 18784000

1998 1653728954 4.69170563 9.028413221 5555450170 15656342016 70.63545 70.25170732 19056000

1999 1131355393 6.17627591 10.51091344 6371581613 16330810304 77.00511667 70.98429268 19102000

2000 1357451877 14.1584558 10.26298513 5878254366 15746224410 89.38301333 71.78380488 18797000

2001 1705155579 9.55103167 12.71884438 5971095547 17102623876 95.662065 72.54390244 18921000

2002 2333781492 6.314637871 12.16054274 6543193121 18881765437 96.52095083 73.18156098 19173000

2003 2204869012 7.57592583 12.62979825 7300256942 20662525941 101.1944575 73.66514634 19435000

2004 2734967980 11.6396861 13.08868868 7892069652 24405791045 100.4980517 73.98934146 19644000

2005 2832098006 10.02018361 15.36193121 8516554444 28267410543 103.9144458 74.18263415 19858000

2006 3518418324 15.84211149 15.27221708 9419020069 32351184234 110.6232333 74.31207317 20039000

2007 2616559604 22.56449553 16.18316256 10114271208 40715249700 108.3337627 74.43326829 20217000

2008 5353610184 3.464963221 17.61111842 8972411693 42067965895 114.9447833 74.56660976 20450000

2009 7195358272 6.217648893 15.57091018 10746568194 49567521670 113.0644804 74.72260976 20653000

2010 90000000 1.13444364 13.36763212 400490164.7 1454342131 4.761900004 58.20097561 10168000

78

Appendix E

Dataset for Noise Reduction Experiment

E.1 Introduction

In this section it is going to present another dataset which author has taken for

evaluation purposes. All the data were taken from the World Bank Data Catalog.

E.2 Dataset for Noise Reduction Experiment

Author has decided to take two indicators from the same dataset which was used for

the main evaluation dataset. We have taken “Life expectancy at birth, total (in years)”

and “Official exchange rate (LCU per US$, period average)” and formed the dataset

which is given under Table E.1. Please note that LCU means the Local Currency Unit.

Table E.1: Life expectancy vs. exchange rate (1960 – 2010)

Year Life expectancy at birth,

total (in years)

Official exchange rate

(LCU per US$, period

average)

1960 57.86034 4.7619

1961 58.20098 4.7619

1962 58.54983 4.7619

1963 58.92893 4.7619

1964 59.35024 4.7619

1965 59.8231 4.7619

1966 60.34978 4.7619

1967 60.91354 4.861106

1968 61.5011 5.95237

1969 62.10285 5.95237

1970 62.70878 5.95237

1971 63.30995 5.934949

79

1972 63.89849 5.970317

1973 64.47041 6.4025

1974 65.02268 6.65075

1975 65.56115 7.007167

1976 66.09866 8.412

1977 66.64207 8.872833

1978 67.18829 15.61067

1979 67.72478 15.57183

1980 68.22193 16.53442

1981 68.64512 19.24575

1982 68.972 20.81225

1983 69.19483 23.52858

1984 69.3199 25.43817

1985 69.37273 27.16258

1986 69.3938 28.01733

1987 69.422 29.44475

1988 69.4819 31.80675

1989 69.57805 36.04708

1990 69.67868 40.06292

1991 69.73139 41.3715

1992 69.69912 43.82963

1993 69.57798 48.32217

1994 69.39527 49.41514

1995 69.22885 51.25159

1996 69.17824 55.27144

1997 69.31624 58.99461

80

1998 69.67715 64.45012

1999 70.25171 70.63545

2000 70.98429 77.00512

2001 71.7838 89.38301

2002 72.5439 95.66207

2003 73.18156 96.52095

2004 73.66515 101.1945

2005 73.98934 100.4981

2006 74.18263 103.9144

2007 74.31207 110.6232

2008 74.43327 108.3338

2009 74.56661 114.9448

2010 74.72261 113.0645

