CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions:

It is accepted that the extension of the Internet messaging system to more and more
individuals and institutions is needed mainly for their benefit. It is also accepted that
comprehensive message exchange with Multi-media and other features is becoming
essential in that messaging system. However, at the same time, not every site has the
capacity or preparedness to adapt to this without the coordinated help of the messaging
system as a whole. The HAT concept proposed by this project is inevitably a service-
oriented strategy to relieve such sites. An added advantage of the approach is that it
implements administrative policies for controlling traffic and congestion arising from
MIME mail to a mailserver site and the level of MIME services made available to users
connected to that site. Further, the technique also integrates conventional and primitive
messaging mechanisms, such as postal mail, courier by diskettes/tapes, facsimile and

paging, into the realm of electronic messaging.

Although, the technique is very much appreciated by low-capacity mail environments, it is
to be noted that it also allows a mail site using state-of-the-art e-mail infrastructure today,
to adapt itself to keep up with the rapidly evolving computer and communications

technology, until it is time to replace the existing infrastructure.

The reduction of transmission cost and network traffic are also advantages offered by
these proposals as seen for instance by the physical delivery (courier) and keeping
messages in the server database. Reduction of the receipt of junk mail and irrelevant

messages will make most users happy.

It will not be difficult for a server to handle a large number of sites since the

administration is de-centralized by allowing automatic updating. Incorporation of artificial

104

intelligence features(see Section 7.3 below), which is a future enhancement will fully

automate the system and make it smarter.

7.2. Recommendations:

Discussions are carried out very frequently among the IETF(Internet Engineering Task
Force) regarding new media types and headers. Some of those are just confined to
informational RFCs whereas some become draft or proposed standards, and if several

implementations were introduced such a proposed standard would become a standard.

One such ongoing discussion (during the time of writing this thesis) is how URLs could
be referenced in MIME objects. This is not handled smartly in this project as yet, though
the server may be asked to take limited actions on it. The reason is that when the

specifications were finalised for this project, the discussions about URL's had just begun.

Similar discussions could be found from time to time, and some of them are application or
field specific(e.g. anatomy, imolecular science, etc.) while some are globally required.
However, it is not feasible to pay attentio hem and include support for
everything in the technical specifications for the HAT concept, until such time there is a
stable implementation. Once that is done, the modifications could be introduced to the
implementation by way of proposing addendums to the existing technical documentation

such as [16] and [17].

For any new addition to the MIME standard some solution could always be achieved on
the requests of nodes by defining some rule in the ACTIONS file, and it is not necessary
to make addendums to the existing documents, the reason being that the HAT concept was

proposed with the expectation of future developments.

105

7.3. Enhancements: Looking into the Future:

It would have been better if we could incorporate “Artificial Intelligence”(Al), by way of
implementing an inference engine so that the server could observe how nodes respond to
certain types of messages. But it is better to embark such a project after this stage of

implementation comes to a steady state.

There are several advantages that the incorporation of Al could bring. One would be the
ability of the server to monitor how nodes receive messages and how the nodes request
services for particular types of messages during an appropriate time period. Depending on
such patterns, the server may suggest to the end node some changes in the ACTIONS file
that the server would think best for those respective nodes to cope with the situation,

without waiting until the node user requests such services.

Another feature may be pre-fetching media types referenced in a message, before the
request comes from the node. To decide on what should be pre-fetched, the server may
analyse the past behaviour of that node. This will enhance the download time for the user.
~Or else it may be able to do'such actions like fip during off-peak (or reduced-load) times

to make the other resources available during resource intensive times.

It is also possible to keep track of how the gateways used for providing services behave,
so that the server will be able to handle the messages to such gateways in a smart way. For
example, if it is known that the fax gateway has a higher efficiency during a particular
time of the day, due to congestion of communication lines caused during peak hours, it
may keep a backup of such messages, in case the fax gateway abandons the sending of the

fax after several re-tries, as is the case with many fax gateways.

These recommendations and enhancements are relative to the current state of the project.
As it is being developed and the scope is widened there would be new suggestions that

would further enrich the concept. However the concept itself will remain the same.

106

(1]

(2]

[3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

REFERENCES

Borenstein, N., and N. Freed, “MIME (Multipurpose Internet Mail Extensions):
Mechanisms for Specifying and Describing the Format of Internet Message

Bodies”, RFC 1341, Bellcore, Innosoft, June 1992.

Borenstein, N., and N. Freed, “MIME (Multipurpose Internet Mail Extensions):
Mechanisms for Specifying and Describing the Format of Internet Message
Bodies”, RFC 1521, Bellcore, Innosoft, September, 1993.

Borenstein, N., and N. Freed, “MIME (Multipurpose Internet Mail Extensions):
Format of Internet Message Bodies”, Internet Draft - <draft-ietf-822ext-mime-imb-

04.txt> , December, 1995.

Postel, J. and J. Reynolds, “File Transfer Protocol”, STD 9, RFC 959,

USC/Information Sciences Institute, October 1985.

Crocker, D., “Standard for the Format of ARPA Internet Text Messages”, STD 11,
RFC 822, UDEL, AUEL B 0 VS

Borenstein, N., “A User Agent Configuration Mechanism for Multimedia Mail

Format Information”, RFC 1524, Bellcore, September 1993.

Sollins, K.R., “TFTP Protocol (revision 2)”, RFC-783, MIT, June 1981.

Borenstein, N., “Implications of MIME for Internet Mail Gateways”, RFC 1344,
Bellcore, June 1992.

Moore, K., “Representation of Non-ASCII Text in Internet Message Headers”,

RFC 1522, University of Tennessee, September 1993.

Moore, K., “Representation of Non-Ascii Text in Internet Message Headers”, RFC

1342, University of Tennessee, June 1992.

107

[11]

(12]

[13]

[14]

[15]

[16)

[17]

[18]

[19]

Sirbu, M., “Content-Type Header Field for Internet Messages”, STD 11, RFC
1049, CMU, March 1988.

Rose, M., and E. Stefferud, “Proposed Standard for Message Encapsulation”, RFC
934, Delaware and NMA, January 1985.

Fernando MSD, Wijesoma WS and Dias Gihan V., “Multimedia Message
Distribution in a Constrained Environment”, Proc. Inet '95, Vol. 1, pp. 49-58, Inet

'95, Honolulu, Hawaii, June 27-30 1995.

Fernando MSD, Wijesoma WS and Dias Gihan V., “A Strategy for Multimedia
Message Routing and Delivery for the Less Privileged”, Proc. SEARCC '95(South
East Asia Regional Computer Confederation), pp. 760-771, SEARCC '95,
Colombo, Sri Lanka, September 5-8 1995.

Bryan Costale with Eric Allman & Neil Rickert, “sendmail”: Help for UNIX

System Administrators, O'Reilly & Associates, Inc., September 199%4.

Fernando MSD., “Adaptive Multimedia Mail Server” Progress Report 2, Internal
report, Dept. of Computer Science & Engineering, Univ. of Moratuwa, November

1995(revised version).

Fernando MSD., “Adaptive Multimedia Mail Server: Implementation Project
Report”, Internal report, Dept. of Computer Science & Engineering, Univ. of

Moratuwa, January 1996.

Borenstein, N., and N. Freed, “MIME (Multipurpose Internet Mail Extensions):
Conformance Criteria and Examples”, Internet Draft - <draft-ietf-822ext-mime-

conf-03.txt> , December, 1995.

R. Troost and S. Dorner, “Communicating Presentation Information in Internet
Messages: The Content-Disposition Header”, RFC1806, QUALCOMM
Incorporated, June 1995.

108

[20]

(21]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

D. Crocker, “MIME Encapsulation of EDI Objects”, RFC1767, Brandenburg
Consulting, March 1995.

P. Faltstrom, D. Crocker, E. Fair, “MIME Encapsulation of Macintosh files -
MacMIME”, RFC1740, December 1994.

P. Faltstrom, D. Crocker, E. Fair, “MIME Content Type for BinHex Encoded
Files”, RFC1741, December 1994,

J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker, “SMTP Service
Extensions”, RFC1651, July 1994

J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker, “SMTP Service Extension
for 8bit-MIMEtransport”, RFC1652, July 1994.

J. Klensin, N. Freed, K. Moore, “SMTP Service Extension for Message Size
Declaration”, RFC1653, July 1994,

D. Goldsmith, M. [, fe Transformation Format of

Unicode”, RFC1642, July 1994.

N. Borenstein, “The text/enriched MIME Content-type”,RFC1563,January 1994.

H. Nussbacher, “Handling of Bi-directional Texts in MIME”,RFC1556, December
1993.

J. Myers, M. Rose, “The Content-MDS5 Header Field”, RFC1864, October 1995.

J. Linn, “Privacy Enhancement for Internet Electronic Mail: Part I. Message

Encryption and Authentication Procedures”, RFC1421, February 1993.

E. Huizer, “Multimedia E-mail (MIME) User Agent checklist”, RFC1844, August
1995.

109

[32]

[33]

[34]

[35]

(36]

[37]

[38]

(39]

[40]

E. Levinson, “SGML Media Types”, RFC1874, December 1995.

G. Vaudreuil, “The Multipart/Report Content Type for the Reporting of Mail
System Administrative Messages”, REC1892, January 1996.

E. Levinson, “The Application/CALS-1840 Content-type”, RFC1895, February
1996.

M. Elkins, “MIME Security with Pretty Good Privacy (PGP)”, RFC2015, The
Aerospace Corporation, October 1996.

N. Freed, K. Moore, “Definition of the URL MIME External-Body Access-Type”,
RFC2017, October 1996.

H. Alvestrand, “A MIME Body Part for FAX”, RFC2159, UNINETT, January
1998.

H. Alvestrand, “Carrying PostScript in X.400 and MIME”, RFC2160, UNINETT,
January 1998.

H. Alvestrand, “A MIME Body Part for ODA”, RFC2161, UNINETT, January
1998.

Fernando MSD, Wijesoma WS and Dias Gihan V., “Expansion of Multimedia
Message Distribution to Constrained Environments: An Implementation Launch”,
Proc. CSSL '96(Computer Society Sri Lanka), CSSL '96, Colombo, Sri Lanka,
1996.

110

APPENDIX A

Approach to the Implementation:

The strategy was to define configuration commands in sendmail.cf (or any file specified

explicitly for “sendmail) configuration file or to specify a command line option.

The above could be achieved through the following procedure:

ii.

iii.

v.

vi.

To activate ACTIONS file processing [1] define a command line option “-a”. If “-a”

is not specified, it will run in original “sendmail” mode.

To define the location of ACTIONS file, sendmail.cf (or any file specified explicitly

for “sendmail”) will be used as follows:

Aa<file name> (default /etc/actions)

RAa/etc/actions

To define the location of NODECAT file, sendmail.cf (or any file specified explicitly

for “sendmail’) will be used as follows:

An<file name (default /etc/nodecat)
An/etc/nodecat

To define the location of unknown headers file, sendmail.cf (or any file specified

explicitly for “sendmail”) will be used as follows:

Au<file name> (default /etc/headers)
Au/etc/headers

To define the location of log file, sendmail.cf (or any file specified explicitly for

“sendmail”) will be used as follows:

Al<file name> (default /var/adm/action.log)
Al/var/adm/action.log

To define UUCP command which is to be used when handling SIM has to be
specified immediately after “AU” in sendmail.cf (or any file specified explicitly for

“sendmail”) and this is mandatory if “-a” command line option is given.

IR

vii. To update databases used by “sendmail” to store ACTIONS file information “-bA”

command line switch or argv [0]==actionsdb is used.

Notes: 1. Options a, n, u, | and U are considered only if (i) is true (i.e. “-a” command line

switch is given).

2. All the options are to be handled only if “sendmail” is run as “root” or a trusted

user. Other users do not have permission to run in this mode of operation.

3. In (vi), AU command will take some form as follows depending on the UUCP

version being used.

AU/usr/lib/uucp/uucico -S$h (Taylor UUCP)
AU/usr/lib/uucp/myuucico -s$Sh (A shell script or a program
to do the job)

In this case “sendmail” has to lock all the other messages queued for that site and once the
connection is lost or completed it will unlock them. If the system crashes before transfer is
complete, next time all the messages will ! loch irst to allow receiving by the
remote site, but will lock them again if this server initiates it. (For reasoning, see
explanation for SIM) Therefore the server will keep a status file and during the startup of

“sendmail”, it will be checked to get the history of events.

112

APPENDIX B

Pseudo Code for the Implementation:

IF (-a) THEN
/* Get configuration options */
{
IF (Aa<filename>) THEN f actions=<filename>
ELSE f actions=/etc/actions
IF (An<filename>) THEN f nodecat=<filename>
ELSE f nodecat=/etc/nodecat
IF (Au<filename>) THEN f haeders=<filename>
ELSE f headers=/etc/headers
/* Non-existance of f_actions, f nodecat and f_headers
is silently ignored */
IF (Al<filename>) THEN f actionlog=<filename>
ELSE f actiolog=/var/adm/action.log
/* If log file does not exist, create it and update */
IF (AU<command>) THEN f uucommand=<command>
ELSE IF (command==null) give an error and exit
IF (-ac) THEN argv(0O]=actionsdb /* see next module */
IF found tc/print-servexr THEN print-server=that-server

ELSE

print-server=null
give a warning message and ignore
}
IF found /etc/fax-server THEN fax-server=that-server
ELSE

fax-server=null
give a warning message and ignore

}

IF found /etc/cur-server THEN cur-server=that-server

ELSE

cur-server=null

give a warning message and ignore

113

Define enumerated types for OPTIONS and NODETYPES /* ref. [1] */

WHILE NOT END OF f nodecat
{

Parse entry in f nodecat
IF correct keep correct entry temporarily till f actions is

processed
IF wrong (AND NOT fatal) ignore the wrong entry but produce
error notification

/* fatal errors are unlikely */

WHILE NOT END OF f actions
{

Parse entry for one host in f actions

IF correct update dabase
ELSE IF wrong AND NOT fatal THEN produce error report

and proceed
/* eg. fax-server not defined, S$SIM defined for LS, etc */

ELSE IF fatal THEN exit
}

Flush temporarw f nodecat wvariables from memory

}

IF argv([0]==actionsdb THEN exi

FOR each message DO

{
/* Look for system messages such as SIM-attempt-failures, FTP

attempt failures, etc. and node requests such as KDB requests,

ACTIONS file modifications etc. */

IF for this-host's-postmaster DO

{
OPTION={FTP, SPM, KDB, DIS, PRN, FAX, CUR, SIM, PGR, WWW}

get OPTION, flag
IF (OPTION-related)

{
set the flag
DO OPTION-module(null, flag)

114

/* eg. if OPTION==FTP then
OPTION-related=FTP-related and
OPTION-module=FTP-module */
IF (ACTIONS-related) AND (update allowed)
{
update f actions file
fork actionsdb
}
ELSE IF (ACTIONS-related) AND (update-not-allowed)
send to root
/* root will have to manually update ACTIONS file */
}
ELSE
{
Get next-host
Get node-category
IF (HS) skip the message /* i.e return */
ELSE
{
get info from actions database for next-host
IF (first.option==SPM)
{ set global.SPM true
get SL and $S values /* lines and size */
}
FTP.option=false
FOR all other options DO /* i.e. except SPM */
/* no need to check validity of options for this node
since it has been already parsed during f actions

file parsing */

IF option==FTP

{

FTP.option==True

DO FTP-module (string-in-actions-database, flag)

}
IF option==SIM

DO SIM-module (string-in-actions-database, flag)
IF option==SPM

DO SPM-module (string-in-actions-database, flag)
IF option==KDB

DO KDB-module (string-in-actions-dtabase, flag)
IF option==DIS

DO DIS-module (string-in-actions-database, flag)
IF option==CUR

115

ftp://FTP.option=false
ftp://FTP.option==True

DO CUR-module
IF option==PRN

DO PRN-module
IF option==FAX

DO FAX-module
IF option==PGR

DO PGR-module
IF option==WWW

DO WWW-module
IF nodecategory==/{

DO FTP-module
IF nodecategory==N

DO CUR-module

}
} /* end ELSE */
} /* end ELSE */

FTP-module(string, flag)
{

(
DU

(
D

{

string-in-actions-database,

string-in-actions-database,

string-in-actions-database,

string-in-actions-database,

string-in-actions-database,

flag

flag

flag

flag

flag

OR ND) AND (FTP.option==False)

null, null)

null, null)

IF (string==null) AND (flag==null) THEN

{

FOR message-header AND body-part-headers DO

{
search “content-type: me
IF type IN ft el
{
get ftp in

/* “Site"

AN

fo

- the machine from which the file

may be obtained,

“name

” - name of the file that contains

actual body data
“type” - ftp/tftp/anon-ftp

*/

IF type==ftp {

get login-id and password

IF not found them
{

send a message asking for them

return
}
}

fork ftp session

age cternal-body; access-type”

store “server-trying-ftp” file in the data base
/* ref. KDB */ '

116

ftp://FTP.option==False

update KDBINFO without ftp info
store ftp info in a file temporarily for
trapping
change header to “Access-type: mailserver with
parameters server=this-server
} /* end IF */
} /* end FOR */
} /* end IF */
ELSE IF (string!=null) AND (flag==null) THEN
{
FOR message-header AND body-part-headers DO
FOR condition(i] in string /* condition for FTP */

{

IF found condition. found{i]=True

}
for all condition.found[i] parse according to boolean
statement in the string

IF the above returned True DO

{

search “content-type: message/external-body; access-type”
IF type IN { ftp, tftp, anon-ftp }
{

get ftp info

/2 “site” the “h i ‘rom which the file
ained,
“name” - name of the file that contains

actual body data
“type” - ftp/tftp/anon-ftp
*/
IF type==ftp ({
get login-id and password
IF not found them
{

send a message asking for them

return

}
fork ftp session
store “server-~trying-ftp” file in the data base
/* ref. KDB */
update KDBINFO without ftp info
store ftp info in a file temporarily for
trapping

change header to “Access-type: mailserver with

117

parameters server=this-server

} /* end IF type IN */
} /* end IF above */

} /* end ELSE IF */
ELSE IF (flag==failed) DO
{

get ftp info from the temporary trapping file

send an e-mail asking for verification of data

keep “server-tried ftp and failed” file in the data base

update KDBINFO without ftp info

/* keep stored ftp info temporary trapping file further */
} /* end ELSE IF */
ELSE IF (flag==recipient.request) /* with altered parameters for

login id & password */

check temporary file info and get them
fork ftp session with given parameters /* file information
should not get changed */
store “server-trying-ftp-again-with-given-parameters” file
update KDBINFO without ftp info
} /* end ELSE IF */
ELSE IF (flag==recipient.request. failed)
{
store “server-unable=to-get -1
update KDBINFO without ftp info
remove temporary ftp info file
}
ELSE IF (flag==success)
{
IF (global.SPM==true) split message
store file
update KDBINFO with ftp info
remove temporary ftp info file
}
ELSE IF (flag==FTP.request) /* this is from KDB links to FTP */
{
fork ftp session with given parameters in string
/* file and site information should be taken from string */
store “server-trying-ftp” file
update KDBINFO without ftp info
store ftp info in a file temporarily for trapping
}
} /* end FTP-module */

118

ftp://FTP.request

/* Note: ftp session should send messages to postmaster of this server
with required flags.
ftp session program should have mechanisms for re-trying in
case of time-outs.

updating KDBINFO should consider EXn */

SIM-module (string, flag) /* flag cannot have SIM.request */

{
IF (nodecategory==DU) DO
! (
IF (flag==null) AND (condition found) DO
/* refer how condition evaluated in FTP-module */
{
lock all messages for the remote site
lock receiving from the remote site
fork f uucommand with this message spooled
}
ELSE IF (flag==SIM.failed.first)
fork f uucommand with this message spooled
ELSE IF (flag==SIM.failed.second) DO
{

unlock all messages
» unlock recegidwing
send this message las'norn
}
ELSE IF (flag==SIM.success)
{
unlock all messages
unlock receiving

}
} /* end nodecategory */

ELSE IF (nodecategory==LS)
insert “Precedence: Special-delivery” header

7 } /* end SIM-module */

SPM-module (string, flag)
{
search for “Message/partial”
IF (flag==null) AND (message/partial not present) DO
{
IF SL OR $S given get lower of them ELSE assume default values
IF Content-Type: Application/* {

119

encode base64
add CTE header
}
add Mesage/Partial header
split message
} /* end IF */
ELSE IF (flag==null) AND (message/partial present) DO
{
update partial-message-status file (temporary)
IF all parts found DO
{
combine all parts
remove message/partial header
/* this will be handled normally in the next call to
this procedure and hence leave it at this stage */
}
} /* end ELSE IF */
ELSE IF (flag==SPM.request) DO /* this is the only user request that

could come through postmaster */

get file info from KDBINFO and verify authentication
IF SL OR $S given get lower of them ELSE assume defaults
IF Content_Tyna- Drnlication/* |

rase64d

header

add Mesage/partial header
split message
} /* end ELSE IF */
} /* end SPM-module */

KDB-module (string, flag)
{
IF (flag==null) and (condition found) DO
/* refer how condition evaluated in FTP-module */
{
types.found=false /* to handle ftp links */
get FTP.condition for this node
IF (condition found) OR (nodecategory==DU) DO
{
WHILE not end of message DO
{

look for “Message/external-body: access-type”

get typel[i]

120

ftp://FTP.condition

IF typeli] IN {ftp,tftp,anon-ftp}
{
get info-type[i] /* site, file, etc */
change to “Message/external-body:
access-type=mailserver” with
server=this-server
types. found=true
IF typel(i]==ftp
{
get login-id and password
IF not found them
{
send a message asking for them
store ftp info temporarily in a file

type(i)=ftp.wait /* just to avoid ftp'ing */

}
1++
} /* end WHILE */
} /* end IF */
IF global.SPM==true

{
split the message
store in data baselas! Mes 1
}
update KDBINFO with EXn
IF (types.found=true) FOR all i DO
{
IF typeli] IN {ftp,tftp,anon-ftp}
DO FTP-module (info.type(i], FTP.request)
}
} /* end flag==null */
ELSE (flag==KDB.request) DO
{
get file info from KDBINFO and verify authentication
send file as message
}
} /* end KDB-module */

DIS~module (string, flag)
{
IF (flag==null) DO
search condition in message headers OR see whether mesage stisfies
condition /* size, length etc..*/
/* refer how condition evaluated in FTP-module */

121

ftp://ftp.wait
ftp://FTP.request

IF found DO

{
IF SAB specified DO

{
search SAB condition
IF found { prepare abstract
send abstract }
} /* end IF SAB */
send notification to sender
} /* end IF */
IF (flag==DIS.request) DO /* this is to discard from the database */

{
get file info from KDBINFO and verify authentication

discard file
send a message to sender

}
} /* end DIS-module */

CUR-module (string, flag)
{
IF ({(string==null) AND (flag==null) DO /* nodetype is ND */
{
IF (cur-server==null) spool in courier base
ELSE send to cur-server
}
ELSE IF ((string!=null) AND (flag==null)) AND (condition found) DO
/* nodetype is LS or DU */
/* refer how condition evaluated in FTP-module */
{
IF (cur-server==null) spool in/courier base
ELSE send to
IF SAB found
{ check for condition
send abstract to recipient by e-mail
}
ELSE send abstract /* I choosed to send abstract by default */
} /* end ELSE IF */
ELSE IF (flag==CUR.request) DO
{
get file info from KDBINFO and verify authentication
IF (cur-server==null) spool in courier base
ELSE send to cur-server
/* no need to send abstract since it was sent when saved in
database */
} /* end ELSE IF */
} /* end CUR-module */

PRN-module (string, flag)

{

IF (print-server==null) print-server=this-server

122

IF (flag
/* refer
{

IF M

{

}
ELSE

{

} o/
} /* end
ELSE IF

ELSE print-server=that server
==null) AND (condition found) DO

how condition evaluated in FTP-module */

ime-version not present DO

insert address and blank lines [1]
IF print-server==this-server THEN send message to prn

ELSE send to print-server

IF Mime~version present DO

IF Message/partial present DO
{
update partial-message-status file (temporarily)
IF all prts found DO
{
combine the parts
remove Message/partial header
remove entry from partial-message-status file
}
ELSE return
}
IF Multipagy/Alternative present1
{
select first alternative
insert address and blank lines [1]
IF print-server==this-server THEN send message to prn
ELSE send message to print-server
}
ELSE IF audio/video/application found DO
/* application - for the time being only. later we will

handle it more precisely */

skip audio/video/application body parts
form one message using the rest of the message
insert address and blank lines [1]
IF print-server==this-server THEN send message to prn
ELSE send message to print-server

}

end ELSE IF Mime-version */

(flag==null)

(flag==PRN.request) DO

123

get file info from KDBINFO and verify authentication
insert address and blank lines [1]

IF print-server==this~server send file to prn

ELSE send to print-server

}
} /* end PRN-module */

FAX-module (string, flag)
{
IF {((condition found) AND (/etc/fax-server not found))
OR ((flag==FAX.request) AND (/etc/fax-server not found))

/* refer how condition evaluated in FTP-module */

give an error
IF nodecategory in (LS, DU}
send message as an e-mail - mention that server cannot fax

ELSE send to postmaster of this server

ELSE IF ({condition found) AND (/etc/fax-server found))
AND (flag==null) DO

IF Mime-version not present
{
insert /etc/fax-server file
replace FAXNUMBER
send message to fax-server
}
IF Mime-version present DO
{
IF Message/partial present DO
{
update partial-message-status file (temporarily)
IF all parts found
{ combine them
remove entry from partial-message-status file
}
ELSE return
}
ELSE IF Multipart/Alternative present DO
{

select first alternative

124

insert /etc/fax-server
replace FAXNUMBER
send that part to fax-server
. }
ELSE IF audio/video/application found DO
/* application - for the time being only. later we will

handle it more precisely */

skip audio/video/application body parts
form one message using the rest of the message
insert /etc/fax-server
replace FAXNUMBER
send message to fax-server
}
} /* end Mime-version */

} /* end ELSE IF ... flag==null */

ELSE IF (flag==FAX.request) DO /* non existance of fax-server

handled erlier */

get file info from KDBINFO and verify authentication

insert /etc/fax-server
1 replace FAXNUMBER
send to fax-senve

}
} /* end FAX-module */

/* The following modules are not yet designed */

PGR-module (string-in-actions-database, flag)
{

/* not implemented yet /

} /* end PGR-module */

WWW-module (string-in-actions-database, flag)
{

/* not implemented yet /
} /* end WWW-module */

P
o -~ - .

= S MORAT,
Sz?}ﬁ ii\Tyju;;\\\

125

