LB/DON/33/2012

UNIVERSITY OF CERTATURA, SRI LASTIA

Application of 'Line Drop Compensation' To improve voltage of 33 kV Distribution Network

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa

in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

By

University of Moraduwa, Sri Lanka. Electronic Theses & Dissertations SAMAN RANJANA KODAGODA GAMAGE

Supervised by Prof. H.Y.R.Perera and Dr.H.M.Wijekoon

Department of Electrical Engineering University of Moratuwa, Sri Lanka 621.3(043)

TH

November 2011

University of Moratuwa

102536

102536

Declaration

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

S. R. K. Gamage

Regd. No. 07/8434

Date: 01 11 2011
University of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations
www.lib.mrt.ae.lk

We/I endorse the declaration by the candidate.

UOM Verified Signature

Prof. H.Y.R. Perera

Date: 05/11/2011

UOM Verified Signature

Dr. H.M. Wijekoon Banda

Contents

	ation	
Abstrac	ct	iv
Acknov	wledgement	v
Index o	of Figures	vi
Index o	of Tables	vii
	riations	
1. In	troduction	1
	Background	
1.1.	Problem Statement	
1.2.		
1.3.	Motivation Objective of the study	
1.4.	Scope of Study	
1.5.		
2 14	ethodology University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	6
2.1.	Line Drop Compensation	
2.2.	Calculation of LDC Settings	
2.3.	The approach	
2.4.	Determination of LDC limits under planning criteria	12
2 M	odeling and Analysis of MV Distribution Network	15
3.1.	Existing Distribution Scheme of MV distribution network	
3.2.	GSS transformers and On Load Tap Changers	
3.3.	GSS transformers and On Load Tap Changers	
3.4.	Data Collection and modeling of MV Distribution Network	
3.5.		
3.6.	Analysis of Existing 33kV distribution network	24
4. M	V Distribution Network with LDC	30
4.1.	Application of LDC	
4.1.	Initial Calculation of LDC settings	
4.2.	Simulation of Automatic Tan adjustment of nower transformer with LDC	

4.4.	Performance of MV distribution system with LDC under normal conditions 34
4.5.	Performance of MV distribution system with LDC when feeder tripping39
4.6.	Performance of MV distribution system with LDC when feeder extended39
5. Re:	sults, discussion and conclusion40
5.1.	Results
5.2.	Implementation at Habarana GSS40
5.3.	Considerations for further developments
5.4.	Conclusion
Referen	ices44
Append	lix I - MV Distribution Feeders of Habarana Grid Substation
Append	ix II - Snapshot of nameplate data of power transformers of Habarana GSS
Append	ix III - Hourly Feeder Loads of Habarana GSS 1 st October 2009 to 15 th October 2009
	ix IV - Load Profile of GSS for two weeks, 1st - 14th October, 2009
	ix V - List of Heavy supply installations with load profile and sample load profiles
Appena	ix VI - Half-hourly Load readings of Feeders of Habarana GSS and Load profile of
	Feeders on 14 th October, 2009
Append	ix VII -Voltage profile of MV Feeders of Habarana GSS without LDC
	implementation, as at 14 th October, 2009
Append	ix VIII - Voltage profile of MV Feeders of Habarana GSS with LDC implementation,
	as at 14 th October, 2009

Abstract

Lengthy Medium Voltage lines are typical in Rural Electrification implementations. The voltage of ends of such lines varies drastically from the time of peak loading to mid-night owing to drastic difference in line loading in Sri Lanka. Therefore consumers at end of long feeders experience very low voltages during peak loading times. Although distribution transformers come with off-load tap adjustments to buck / boost LV voltage, effective use of the full range of this tap setting is restricted due to high variation of voltage drop during the day and night. Hence these off-load tap adjustment may not fully resolve the low voltage problem of some consumers. However, if voltage at the Grid Substation Medium Voltage bus is dynamically adjusted such that voltage at some mid location of the line is maintained constant irrespective of the line load, deviation of voltage along the line can be minimized. The 'Line Drop Compensation' feature available in MK20 Voltage Regulator provides this feature.

Voltage of MV lines of Polonnaruwa and suburbs are badly affected due to long distance from Habarana Grid Substation. As a remedy, implementation of LDC in Habarana GSS has been studied. The MV network was modeled and load flow study was carried out with and without LDC for peak and off-peak times. The voltage profiles so obtained were used for selection of optimum off-load tap of distribution transformers. The study indicates that the line end voltage is greatly improved, particularly in Polonnaruwa and suburbs, with the implementation of LDC. Hence LV terminal voltage of distribution transformers can be improved to provide customers with better voltage. Therefore, the study recommends suitable parameters of LDC for implementation at Habarana GSS.

The study also established a methodology for determining LDC parameters and verifying LDC implementation in a GSS having more than one distribution feeder.

Acknowledgement

It is only through proper guidance and supervision a quality work can be delivered. If not for the valuable guidance and supervision, this work would not have ended in this manner. I would like to record my appreciation of Prof. H.Y.R Perera and Dr. H.M. Wijekoon Banada for their continuous guidance and supervision extended to me to complete this study.

I shall be thankful to Mr. M.D.Kularathnasiri, former Area Electrical Engineer – Minneriya and Mr. K.D.A Munasinghe – Chief Engineer (P & D) – Central Province of CEB for assisting me in the collection of data required for this study. Mr. K.G.Shyamal, Electrical Engineer (Planning)-Region 1 and Mr. K.K.P.Perera, CE (Development) – Region 1 of CEB too assisted me in numerous ways to carry out the modeling of the system. I would fail in my duty if I do not record my appreciation of their valuable assistance.

Finally, my sincere thanks shall extend to many individuals, friends and colleagues who have not been mentioned here, for their support in completing this study successfully. If not for their support, this work would not have been completed so successfully.

Index of Figures

Fig.	1.1: Coverage of Medium Voltage distribution network of Sri Lanka 1
Fig.	2.1: Principle of LDC6
Fig.	2.2: Band width and Time delay of LDC relay7
Fig.	2.3: Block diagram of LDC scheme implementation
Fig.	2.4: Front panel view and controls of MK20
Fig.	2.5: Typical MV distribution feeder
Fig.	3.1: MV lines fed off Habarana GSS
Fig.	3.2: Schematic diagram of Habarana GSS
Fig.	3.3: Load profile of Habarana GSS from 01/10/2009 to 07/10/2009, one week period 19
Fig.	3.4: Load profile of 33 kV feeders of Habarana GSS on 14th Oct 2009, Wednesday 20
Fig.	3.5: Voltage profile of 33 kV bus at Habarana GSS on 14th Oct 2009, Wednesday 21
Fig.	3.6: Voltage profile of MV Distribution system at 0230 hrs
Fig.	3.7: Voltage profile of MV Distribution system at 0600 hrs
Fig.	3.8: Voltage profile of MV Distribution system at 1130 hrs
Fig.	3.9: Voltage profile of MV Distribution system at 1930 hrs
Fig.	4.1: Voltage profile of MV distribution network with LDC at 0230 hrs
Fig.	4.2: Voltage profile of MV distribution network with LDC at 0600 hrs
Fig.	4.3: Voltage profile of MV distribution network with LDC at 1130 hrs
Fig.	4.4: Voltage profile of MV distribution network with LDC at 1900 hrs

Index of Tables

Table 2.1: Different voltage ratings of distribution transformers	12
Table 2.2: Voltage at consumer points with different distribution transformers	13
Table 2.3: Voltage at consumer points with LDC and without LDC	14
Table 3.1: Distribution feeders of Habarana GSS	15
Table 3.2: Name plate data of Power transformer at Habarana GSS	18
Table 3.3: Technical data of MK20 VR relay at Habarana GSS	18
Table 3.4: Feeder Demands of Habarana GSS on 14th Oct, 2009	23
Table 3.5: Voltage levels of selected few locations in MV Distribution system	27
Table 3.6: Voltage at LV terminals of 33kV/415V dist. trf. at selected locations in MV	
network	28
Table 4.1: GSS 33kV bus voltage with LDC	33
Table 4.2: Voltage levels of selected locations in MV Distribution network with LDC	37
Table 4.3: Voltage at LV terminals of 33kV/415V dist. trf. in MV network with LDC	38
Table 5.1: Proposed LDC settings of Habarana GSS	43

Abbreviations

AVR Automatic Voltage Regulator

CEB Ceylon Electricity Board

Dist. Distribution

GSS Grid Substation

HS Heavy Supply

km Killo meters

LDC Line Drop Compensation

LECO Lanka Electricity Company Limited

LTL Lanka Transformers Limited

LV Low Voltage

MR Maschinenfabrik Reinhausen

MV Medium Voltage

Nos. Numbers

OLTC On Load Tap Changer Chang

PSS Primary Substation metacik

RE Rural Electrification

Ref. Reference

Trf. Transformer

TX Transmission

VR Voltage Regulator