LB/ DON/ 19/2012

57

LIBRARY UNIVERSITY OF MORATUWA, SRI LANK

A Neural Network Approach to Classification of Textile Defects

£.

 \sim

J.T.S. Priyadarshani University of Moratuwa, Sri Lanka. Electronic These Dissertations www.lib.mrt.ac.lk

004~11" 004 (043)

University of Moratuwa

TH

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa for the partial fulfillment of the requirements of the of M.Sc. (PG Dip) in Information Technology

February 2011

102481

Declaration

I declare this thesis is my own work and has not been submitted in any form for another degree or diploma at any other university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

JTS Priyadarshani Name of Student

Signature of Student

Date: 19/09/2011 .

Supervised by

University of Moratuwa, Sri Lanka. Prof. AS Karunananda Electronic Theses & Disconversion Name of Supervisor(s)WWW.lib.mrt.ac.lk Signature of Supervisor(s)

Date: 19/09/2011

Dedication

This Outcome is lovingly dedicated to Thaththa, Amma and Upul.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgments

While I am preparing this report, I turned back to convey my gratitude to many people for their valuable time spend towards me. This research will be benefited in many ways through their generosity and opinions which are expressed are not to be interpreted as held by those whose courtesy and helpfulness are here acknowledged. First, I wish to sincerely thank the research supervisor, Prof. A S Karunananda, Dean, Faculty of Information Technology, for guiding me to complete this valuable research project.

Secondly, I wish to express my sincere gratitude to the senior lecturers, Mr. Saminda Premaratne in Department of Information Technology and Dr Ranga Rodrigo Department of Electronic and Telecommunication Engineering for their valuable advices on the technical matters. Further I would like to express my heartfelt appreciation to Mr. Sahan Ranasinghe, Department of Electrical and Information Engineering in the University of Ruhuna and Rasika Jayewardena, Instructor in the Department of Electrical Engineering for spending their valuable time in sharing their

knowledge with me. University of Moratuwa, Sri Lanka.

In fact, I would like to thank, MrcUpue Dharmadasa and Ms. Nilupa Liyanage, Indika Samarasinghe and Dilhan Thilakarathic for assisting me in different ways in making this project a success in the initial stage.

In addition, I wish to convey my heartiest gratitude to Mourice Jochim, Product Dvelopment manager of Penguine Sportswear, Mr. Chandika Dharmadasa, Quality Executive, Brandix Casualwear, Mr. Mr. Sisira Bandaranayake, Group Sample Room Manager, Emjeyi Apparel Ltd, Mr. Kapila Jayesundara, Quality manager in MAS Casual Line, Mr. Lahiru Ranasinghe, Metropolitan Ltd by providing me in requiring hardware and software.

Last but not least I convey my heartiest gratitude to my dearest parents and all the others who guided me even in a word to make this outcome a perfectly one.

Finally I would like to thank Ms. Judith Labrooy for proof reading this report within very short period of time.

Thank you all!

JTS Priyadarshani Faculty of IT

Abstract

All textile industries aim to produce competitive textiles. The competition enhancement depends mainly on productivity and quality of the textiles produced by each industry. Especially in the least developed countries like Sri Lanka, India, Bangladesh where textile is one of the main incomes of economy, still using manual quality control techniques to identify defects in their textile products. Therefore this study carries out to classify defects in textiles with minimum intervention of human being using artificial neural network technology and some principles of image processing techniques.

My approach is to identify defects in textile comprises three steps, namely, image processing, image classification and producing the output as a classification chart. I have used the standard techniques of image processing; while the image classification is handled by an ANN trained in the supervised mode with the aid of back propagation training algorithm. I have selected three major defect types of defects from textile quality process. They are cut hole damages, open seam of the garment and pen marks. Input data is as 185220 and matrix and it is representing 30 samples of 185220 elements. The loutput of the system will be fail image file with a defect classification ehart. In fact, basically this system is able to classify defects in to three categories.

This system mainly is divided in to three sections namely; image processing module, neural network module and output generator module. But the system design is separated in to two parts. The first part of the research processes the images to fit for the input layer of the neural network. The second part uses the input set to classify the defects and adapts the neural net.

The prototype develop in this project have been trained to identify cut hole damages, open seam and pen mark of the garments by considering 300 images. A concatenate image, which contained 300 samples of each defect type, was trained and tested. The accuracy rate of recognizing the numbers and symbols were 77%. However this accuracy rate is very high.

Using the neural network technology and back propagation learning algorithm, to classify textile defects were successful even there was a high probability to misclassify different types of defect images with different range of severity rates. *Keywords*: Neural network, Back propagation learning algorithm

v

Contents

.

•

Chapter 1 Introduction	Page 1
1.1 Introduction	1
1.2 Textile Quality Control System	1
1.3 Background and Motivation	3
1.4 Aim and Objectives	3
1.5 Towards the Technology and Solution	4
1.6 Resource Requirement	4
1.7 Structure of the Dissertation	4
1.8 Summary	5
Chapter 2 Review of Textile Defects Classification Systems	6
2.1 Introduction	6
2.2 Current Approaches for Textile Defects Recognition and classification Sy	stems 6
2.3 Discussion on Others' Approaches	8
2.4 Summary	8
Chapter 3 Principles of Image Processing and Artificial Neural Networks	10
3.1 Introduction	10
3.2 Review of Available Technologies	10
3.2.1 Principle Component Analysis (PCA)	10
3.2.1.1 Objectives of principal component analysis	10
3.2.1.2 Limitations of PCA	11
3.2.2 Statistical Models	11
3.2.3 Artificial Neural Network (ANN)	11
3.2.3.1 Why use neural networks?	11
3.3 Image Processing	12
3.4 Artificial Neural Network	13
3.4.1 Network layers	15

3.4.2 Types of Neural Networks	15
3.4.2.1 Multi-Layer Feed –forward Neural Networks	16
3.4.2.2. Feedback networks	17
3.4.2.3 Back Propagation Algorithm	17
3.5 Summary	19
Chapter 4 Approach	20
4.1 Introduction	20
4.2 Textile Defects classification Using Neural Network	20
4.2.1 Input	20
4.2.2 Output	21
4.2.3 User	21
4.2.4 Processes	22
4.2.5 Features	22
4.3 Summary Electronic Theses & Dissertations	22
Chapter 5 Analysis and Design lib.mrt.ac.lk	23
5.1 Introduction	23
5.2 Top Level Architecture	23
5.3 Image Processing Module	24
5.3.1 Normalization	24
5.3.2 Thresholding	24
5.3.3 Segmentation	25
5.3.4 Feature Extraction	25
5.4 Artificial Neural Network Module	25
5.5 Output Generator Module	26
5.6 Summary	26
Chapter 6 Implementation of the Textile Defects Classification System	28
6.1 Introduction	28

•

.

6.2 Creating the Textile Defects Classification System	. 28
6.3 Preparing Training and Testing Data Set	29
6.3.1 Training	30
6.3.2 Validation	30
6.3.3 Testing	30
6.3.4 Concatenate images;	30
6.4 Normalization and Reading Pixel Value of the Image	31
6.5 Neural Network Architecture	32
6.6 Training and Learning Mechanism	33
6.6.1 Setting the Weights	34
6.6.2 Backpropagation Algorithm	34
6.6.3 Training of Network	35
6.6.4 Training performance	37
6.7 Simulation Result lectronic Theses & Dissertations	39
6.8 Error Rate Estimation W.lib.mrt.ac.lk	39
6.9 Output Generator Module	40
6.10 Summary	41
Chapter 7 Evaluation of the Textiles Defects Classification System	42
7.1 Introduction	42
7.2 Evaluation of Textile Defects Classification System	42
7.3 Summary	43
Chapter 8 Conclusion and Further Works	44
8.1 Introduction	44
8.2 Conclusion	44
8.3 Limitations	46
8.4 Further Improvements	46
8.5 Summary	46

.

•

0

viii

References	47
Appendix A - Use Case Diagram for Recognition of Textile Defects	49
Appendix B – Source Code of Create a Neural Network	50
Appendix C – Source Code of GUI Design	51

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

	Page No.
Figure 3.1: Multi Layer Artificial Neural Networks	15
Figure 3.2: Three layers feed – forward neural net	16
Figure 3.3: Processing unit element	17
Figure 3.4: Multilayer feedback ANN	17
Figure 3.5: Forward and Backward propagation	18
Figure 5.1: Top Level Architecture of the System	23
Figure 6.1: System Design of Textile Defects Detector	29
Figure 6.2: Normalization (55 X 55 Open seam)	32
Figure 6.3: Neural Network Architecture	33
Figure 6.4: Flow Chart of Training the Network	36
Figure 6.5: Training the Network with nftool in Matlab	37
Figure 6.6: Training Performance	38
Figure A.1: Use case Diagram for Defect Recognition	50
University of Moratuwa, Sri Lanka.	

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 1.1: Discussions on Others' Approaches	08
Table 6.1: Results of Classification	38
Table 6.2: Output Layer Target Neuron Values	39

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk