70 1B/DON/25/2012

UNIVERSITY OF MORATUWA, STILLANDA WORATUWA Plagiarism Detection Tool for Students' Programming Assignments

Upul Bandara

MS IT 05/10036

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

004 "11" 004.8(043)

79 8-

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Information Technology

102505

March 2011

102505

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

÷ •

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Name of the Student: M.M.C.U.Bandara

Signature of Student: upul Ber Date: 14 - 11 - 2011

Supervised by

Name of the Supervisor: Dr. GaminiWijayarathna

Majak Signature of Supervisor:

Date:

Dedication

I dedicate this thesis to Dr. Gamini Wijayarathna with a heart full of gratitude. Without his guidance, support, commitment and his uncommendable patience as the supervisor, the successful completion of this work would not have been possible.

Acknowledgments

I would like to extend my sincere gratitude to Dr. Gamini Wijayarathna for his keen supervision, valuable advice, and dearly guidance from the initial stage of the project. It is also my duty to mention here that I have gained a vast knowledge on every aspect of Information Technology by completing this project under the supervision of Dr. Wijayarathna.

Further, I must make this an opportunity to thank my family members, colleagues and friends who helped me to make the project a success in every possible way.

Finally, many thanks go to the academic and non-academic staff members of the University of Moratuwa for their support in various ways.

Abstract

With the rapid development of Internet technology and freely availability of academic materials in electronic format, plagiarism has become a key issue in universities and colleges. Therefore researchers have been developing various tools to address plagiarism.

Plagiarism can be occurred in any academic field, but developing a generic tool to address all kind of plagiarism is not feasible. So we developed a product to detect plagiarism in programming assignments submitted by students those who are taking programming courses in universities and colleges.

Plagiarism detection in programming source codes can be done by various methods. Our proposed solution uses machine learning approach to plagiarism detection. In addition our proposed has been using several learning algorithms and ensemble learning approach to enhanced performance of the system.

At present this system is outperforming some plagiarism detection tools which are based on the machine learning approach to detect plagiarism.

Table of Contents

-

4

-

<u>،</u>

Chapter 1 - Introduction1
1.1 Introduction 1
1.2 Background and Motivation 1
1.3 Problems and Weaknesses of Existing Approaches 2
1.4 Aim and Objective 3
1.5 Proposed Solution 3
1.6 Expected Outcomes4
1.7 Structure of the Dissertation4
Chapter 2 - Literature Review5
2.1 Introduction 5
2.2 Source Code Linearization Techniques for Detecting Plagiarized Programs [8] 5
2.3 Plagiarism Detection using Feature-Based Neural Networks [10] 6
2.4 Code Metric Histograms and Genetic Algorithms to Perform Author Identification for Software Forensics [9] Sri Lanka 7
2.5 Plagiarism Detection across Programming Languages [3] 9
2.6 Summarywww.lib.mrt.ac.lk 9
Chapter 3 - Machine Learning Techniques for Pattern Recognition11
3.1 Introduction 11
3.2 Naïve Bayes Classifier 11
3.2.1 How to Apply Naïve for Document Classification 12
3.3 k-Nearest Neighbor Algorithm(kNN) 14
3.4 Summary 14
Chapter 4 - Pattern Recognition Techniques for Source Code Author Identification16
4.1 Introduction 16
4.2 Source Code Metrics 16
4.3 Converting the Source Code Metrics to a Set of Tokens 18
4.4 Naïve Bayes Classifier for Source Code Author Identification 20
4.4.1 Maximum Likelihood Estimators for Bernoulli and Multinomial Naïve Bayes Learners 21
4.5 k-Nearest Neighbor (kNN) Algorithm for Source Code Author Identification 22

4.6 Summary	22
Chapter 5 - Implementing the Source Code Author Identification System.	24
5.1 Introduction	24
5.2 Data Set	24
5.3 High-Level Architecture of the System	25
5.4 Training the System	25
5.4.1 Training the Multinomial Naïve Bayes Learner	26
5.4.2 Training the Bernoulli Naïve Bayes Learner	28
5.4.3 Training the k-Nearest Neighbor (kNN) Learner	30
5.4.4 Ensemble Learning	31
5.4.5 Different Ways of Combining Weak-Learners	33
5.4.6 Using AdaBoost to Improve the Accuracy of Sourc Author Identification Process	e Code 34
Chapter 6 - Evaluation and Results	35
6.1 Introduction	35
6.2 Evaluation by the Validation Dataset	35
6.3 Comparing the Research Results with the Results Published by	Robert
6.4 Summary WWW.lib.mrt.ac.lk	37 38
Chapter 7 - Conclusion and Further Works	
7.1 Introduction	39
7.2 Different ways to improve the accuracy of the system	39
7.2.1 Changing the Training Dataset Size	39
7.2.2 Using More Weaker-Learners	39
7.3 Limitations of the System	40
7.4 Addressing the Limitations of the System	40
7.5 Summary	41
References	42
Appendix A - Machine Learning Algorithms Used in the Research	43
Annendix B - Contents of the CD-ROM	52

•

7.

-

٤

List of Figures

*

7

Figure 5.1 - High-level Architecture of the System 25
Figure 5.2 - Confusion matrix for multinomial naïve bayes for 100 source code
files 26
Figure 5.3 - Confusion matrix for multinomial naïve bayes for 800 source code files 27
Figure 5.4 - Confusion matrix for multinomial naïve bayes for hideout data set 27
Figure 5.5 - Confusion matrix for Bernoulli naïve bayes for 100 source code files 28
Figure 5.6 - Confusion matrix for Bernoulli naïve bayes for 800 source code files 29
Figure 5.7 - Confusion matrix for Bernoulli naïve bayes for hideout dataset 29
Figure 5.8 - Success Rate vs. Sample Size of the kNN algorithm training dataset 30
Figure 5.9 - Confusion matrix of kNN algorithm for hideout dataset.31
Figure 5.10 - Confusion matrix of the AdaBoost algorithm for the hideout dataset 34
Figure 6.1 - Confusion matrix for multinomial naïve bayes for hideout data set 35
Figure 6.2 Confusion matrix for Bernoulli naïve bayes for hideout dataset 36
Figure 6.3 - Confusion matrix of kNN algorithm for hideout dataset.36
Figure 6.4 - Confusion matrix of AdaBoost algorithm for hideout dataset37
Figure A.1 - Naïve Bayes Multinomial Algorithm44
Figure A.2 - Confusion matrix for multinomial naïve bayes for 200 source code files 44
Figure A.3 - Confusion matrix for multinomial naïve bayes for 300 source code files 44
Figure A.4 - Confusion matrix for multinomial naïve bayes for 400 source code files 45
Figure A.5 - Confusion matrix for multinomial naïve bayes for 500 source code files 46
Figure A.6 - Confusion matrix for multinomial naïve bayes for 600 source code files 46
Figure A.7 - Confusion matrix for multinomial naïve bayes for 700 source code files 46
Figure A.8 - Naïve Bayes Bernoulli Algorithm. 47

Figure A.9 - Confusion matrix for Bernoulli naïve bayes for 200 source code	files 48
Figure A.10 - Confusion matrix for Bernoulli naïve bayes for 300 source files	code 49
Figure A.11 - Confusion matrix for Bernoulli naïve bayes for 400 source files	code 49
Figure A.12 - Confusion matrix for Bernoulli naïve bayes for 500 source files	code 50
Figure A.13 - Confusion matrix for Bernoulli naïve bayes for 600 source files	code 50
Figure A.14 - Confusion matrix for Bernoulli naïve bayes for 700 source files	code 51
Figure A.15 - kNN Algorithm	51
Figure A.16 - Ada Boost Algorithm.	52

2

List of Tables

Table 2.1 - Recall and Precision for Plagiarism Detection using Feature-Ba Neural Networks	ised 6
Table 2.2 - Source code metrics used by Robert Lange and et al [9]	8
Table 2.3 - Performance of Plagiarism Detection across Programming Langua Technique at Various Precision Levels	iges 9
Table 3.1 - Multinomial vs. Bernoulli Models	13
Table 4.1 - Source Code Metrics Used for Source Code Author Identification	17
Table 4.2 - Document Collection for Naïve Bayes Example	18
Table 4.3 - Coding System of Source Code Metrics	19
Table 4.4 - Output of LineLengthCalculator Metric	20
Table 4.5 - Token Frequencies of LineLengthCalculator Metric	20
Table 6.1 - Comparing results between our the research system and the system developed by Robert Lange and et al [9]	tem 38

:£

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

х

List of Equations

Equation 2.1 - Nearest Neighbor Algorithm	8
Equation 3.1 - Naïve Bayes Algorithm	12
Equation 3.2 - Probability of Document d being in Class c	12
Equation 3.3 - The Best Class in the Naïve Bayes Classification	12
Equation 3.4 - Euclidian Distance Between xi and xj	14

٤