06 LB/DON/26/2012

UNIVERSITY OF MORATUWA, SWI LANDA IMPROVEMENT OF PEATY CLAYS BY DEEP MIXING AND PRELOADING

Don Raja Saputhantiri 06/8897

••••

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Dissertation Submitted in partial fulfillment of the requirement for the degree of

Master of Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

University of Moratuwa

102506

December 2011

624 "11" 624 · 15(043)

TH

102506

102506

ACKNOWLEDGEMENT

I am extremely grateful to my supervisor, Professor Athula Kulathilake, Head of the Division of Geotechnical Engineering, University of Moratuwa for his enthusiastic guidance, invaluable help, and encouragement in all aspects of this Master Project. His numerous comments, criticisms and suggestions during the preparation of this project are gratefully acknowledged. Also his patience and availability for any help whenever needed with his heavy workload is highly appreciated.

I would like to thank fellow postgraduate students of Foundation Engineering and Earth Retaining Structures program in Geotechnical Engineering for their discussions, support, and social interaction during my study. My appreciation is also extended to all academic and non-academic member of Department of Civil Engineering at University of Moratuwa, for their warm hearted co-operation during my study.

Acknowledgement is not complete without thanking to the assistance given to me by the laboratory staff, Mr. K.R. Pitipanarachchi, Mr. D. Bandulasena, Mr. D.G.S. Vithanage and Mrs. Pradeepa Peiris. Their assistance enabled me to complete this project report successfully.

I would also thanks to all the staff members of the Computer Division of Civil Engineering for their support given to me in this report documentation work.

My special thanks go to Dr. Lilantha Samaranayake of NANO Technological Institute of Free Trade Zone, Biyagama, who helped me to get micro-structural and mineralogical changes by scanning electron microscope (SEM) of natural and treated peaty clay specimens,

I also thank the Director Principal, Deputy Principals and entire Academic and Non Academic staff members of Civil Engineering Department of Institute of Engineering Technology Katunayake for their support given to me in this report documentation work.

Finally my heartfelt and sincere acknowledgements are extended to my wife, my baby girl vinuji, our parents, for their sacrifices, support and encouragement given to me during the difficult times of my study.

i

ABSTRACT

One major problem related to construction on peaty clay deposit is the low shear strength of the soil. However previous researches have shown that the shear strength could increase significantly by mixing with cement and various stabilizers. Hence some improvement methods have been developed to increase the bearing capacity of the peaty clay deposit by mixing with stabilizers and cement.

The aim of this project is to evaluate the increase of shear strength of peaty clays due to mixing with cement and the application of preloading pressure during the curing period. The initial undrained shear strength was obtained from untreated remoulded peaty clay subject to preloading pressures.

For this study, samples were prepared for untreated peaty clay samples and treated peaty clay by mixing with 15% and 20% cement by wet weight and keeping under two preloading pressures of; 20kN/m² and 40kN/m². The shear strength of the samples was obtained by triaxial compression test under unconsolidated undrained condition. The results proved that there is an increase in the range of 150% to 240% in shear strength due to mixing with cement and application of preloading pressure University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The other major problem related to construction on peaty clay deposit is the high settlement of the soil. The previous researches have proven that the settlement of soft soil has decreases significantly with the addition of stabilizers and cement.

For the analysis of compressibility characteristics, peaty clay samples were mixed with 0%, 15% and 20% cement by wet weight and keeping under two preloading pressures of; 20kN/m² and 40kN/m². Consolidation characteristics of the untreated and treated peaty clay are determined through the series of laboratory consolidation testing.

From the consolidation test results, coefficient of volume compressibility (m_v) and the coefficient of secondary consolidation (C_{α}) were evaluated in all the loading and reloading increments. The values of compression index (C_c) and recompression index (C_r) were also evaluated using the e Vs log σ plot. The improvement of the stiffness is assessed and compared by the measurement of compressibility characteristics of the treated peaty clay with untreated peaty clay.

ii

List of Figures

.

_

... .

5

Figure 1.1	Flow chart of Cement Stabilizing Principal
Figure 2.1	Effect of vertical drainage path due to Preloading without vertical drains
Figure 2.2	Effect of vertical drainage path due to Preloading with vertical drains
Figure 2.3	Vacuum Consolidation System
Figure 2.4	Consolidation of soft soil with Vacuum Consolidation system and Preloading
Figure 2.5	Electrode Reactions and Electro Osmotic Water Flow
Figure 2.6a	Installation Equipment for the Dry Mixing Method
Figure 2.6b	General Process of Dry Mixing Method
Figure 2.7	Equipment for Wet Mixing Method
Figure 2.8	Single Shaft with Stationary Blade
Figure 2.9	Twin shaft Methoder Relative Rotation Method i Lanka.
Figure 2.10	Co-Axial shaft Method - Relative Rotation Method ons
Figure 2.11	Column Arrangements for Stabilization
Figure 2.12a	Typical Method of Mass Stabilization
Figure 2.12b	Mass stabilization technique
Figure 2.13	Combine Mass – Column Stabilization Techniques
Figure 3.1	Mixing the Sample with Cement
Figure 3.2	Preloading the Samples with weights
Figure 4.1	Scanned Electron Micrograph of a Fibrous Peat
Figure 4.2	SEM micrographs of Amorphous Peat used in this Study
Figure 4.3(a)	Microstructure of Natural Peat
Figure 4.3(b)	Microstructure of Stabilized Peat
Figure 4.4(a)	SEM micrographs of Peaty clay mixed with 15% cement after seven (7) day curing

Figure 4.4(b)	SEM micrographs of Peaty clay mixed with 20% cement after seven (7) day curing
Figure 4.5(a)	SEM micrographs of Peaty clay mixed with 15% cement after 28 days for hardening process
Figure 4.5(b)	SEM micrographs of Peaty clay mixed with 20% cement after 28 days for hardening process
Figure 4.6(a)	SEM micrographs of Peaty clay mixed with 15% cement after 249 days for hardening process
Figure 4.6(b)	SEM micrographs of Peaty clay mixed with 20% cement after 249 days for hardening process
Figure 5.1	e vs log σ plot for Remoulded and Cement mixed peaty clay samples cured under an applied surcharge of 20kN/m ²
Figure 5.2	e vs log σ plot for Remoulded and Cement mixed Peaty clay samples cured under an applied surcharge of $40 kN/m^2$
Figure 5.3	e vs log σ plot for Remoulded Peat samples cured under an applied surcharge of $20 k N/m^2$ & $40 k N/m^2$
Figure 5.4a	e vs log o plot for Remoulded and Cement mixed Peaty clay Samples Electronic Theses & Dissertations
Figure 5.4b	e vs log σ plot for Remotted and Cement mixed Peaty clay Samples (Only Loading)
Figure 5.5a	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples
Figure 5.5b	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples (Only Loading)
Figure 5.6a	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples
Figure 5.6b	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples (Only Loading)
Figure 5.7a	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples
Figure 5.7b	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples (Only Loading)
Figure 5.8a	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples
Figure 5.8b	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples (Only Loading)
Figure 5.9a	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples
Figure 5.9b	e vs log σ plot for Remoulded & Cement mixed Peaty clay Samples (Only Loading)

4

iv

- Figure 5.10 $m_v vs \log \sigma$ plot for Remoulded and Cement mixed peaty clay samples cured under an applied surcharge of $20kN/m^2$
- Figure 5.11 $m_v vs \log \sigma$ plot for Remoulded and Cement mixed peaty clay samples cured under an applied surcharge of $40kN/m^2$
- Figure 5.12 $m_v vs \log \sigma$ plot for Remoulded Peat Samples
- Figure 5.13 m_v vs log σ plot for Remoulded & Cement mixed Peaty clay Samples for Applied Surcharge of 20kN/m²
- Figure 5.14 m_v vs log σ plot for Remoulded & Cement mixed Peaty clay Samples for Applied Surcharge of $40kN/m^2$
- Figure 5.15 $m_v vs \log \sigma$ plot for Remoulded & Cement mixed Peaty clay Samples for Applied Surcharge of $20kN/m^2$
- Figure 5.16 m_v vs log σ plot for Remoulded & Cement mixed Peaty clay Samples for Applied Surcharge of $40kN/m^2$
- Figure 5.17 m_v vs log σ plot for Remoulded & Cement mixed Peaty clay Samples for Applied Surcharge of 20kN/m²
- Figure 5.18 m_v vs log σ plot for Remoulded & Cement mixed Peaty clay Samples for Applied Surcharge of 40kN/m²nic Theses & Dissertations
- Figure 5.19 Typical plot of Void ratio, (c) Vs log (Time)
- Figure 5.20 C_{α} vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples
- Figure 5.21 C_{α} vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples
- Figure 5.22 C_{α} vs log σ plot for Remoulded and Cement mixed peaty clay samples cured at $20kN/m^2$
- Figure 5.23 C_{α} vs log σ plot for Remoulded and Cement mixed peaty clay samples cured at $20kN/m^2$
- Figure 5.24 C_{α} vs log σ plot for Remoulded and Cement mixed peaty clay samples cured at 40kN/m^2
- Figure 5.25 C_{α} vs log σ plot for Remoulded and Cement mixed peaty clay samples cured at $40kN/m^2$
- Figure 5.26 C_{α} vs log σ plot for Remoulded and Cement mixed peaty clay samples cured at 20kN/m^2
- Figure 5.27 C_{α} vs log σ plot for Remoulded and Cement mixed peaty clay samples cured at $40kN/m^2$

 C_{n}/C_{C} vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples of A – 1, Figure 5.28 C-1, C-3, C-4, E-1, E-3 & E-4 loaded to Stress of 20kN/m² C_{α}/C_{C} vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples of B - 1, Figure 5.29 D = 1, D = 3, D = 4, F = 1, F = 3 & F = 4 loaded to Stress of 40kN/m^2 C_v vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples of A – 1, Figure 5.30 C = 1, C = 3 & C = 4, Subjected to preload of 20kN/m² C_V vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples of A - 1, Figure 5.31 E = 1, E = 3 & E = 4 Subjected to preload of 20kN/m² C_v vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples of B - 1, Figure 5.32 D - 1, D - 3 & D - 4 Subjected to preload of 40kN/m² C_v vs log σ plot for Remoulded and Cement mixed Peaty Clay Samples of B - 1, Figure 5.33 F - 1, F - 3 & F - 4 Subjected to preload of 40kN/m² Figure 6.1 A specimen Prepared for the Unconsolidated Undrained (UU) Triaxial Test A specimen Subjected to (UU) Triaxial Test Figure 6.2 Stressys Strain Plot for Remolded Peat sample A - SI Figure 6.3(a) Mohr's Circle Plot for Remolded Pear sample Atatsons Figure 6.3(b) www.lib.mrt.ac.lk Stress vs Strain Plot for Remoulded Peaty Clay Sample B - S1, Figure 6.4(a)Mohr's Circle Plot for Remolded Peaty Clay Sample B - S1, Figure 6.4(b) Figure 6.5(a) Stress vs Strain Plot for Peaty Clay Sample C - S1Figure 6.5(a) Mohr's Circle Plot for Peaty Clay Sample C - S1Stress vs Strain Plot for Peaty Clay C - S2 Figure 6.6(a)Mohr's Circle Plot for Peaty Clay Sample C - S2Figure 6.6(b) Stress vs Strain Plot for Peaty Clay Sample C – S3 Figure 6.7(a) Mohr's Circle Plot for Peaty Clay Sample mixed C -Figure 6.7(b)Stress vs Strain Plot for Peaty Clay Sample D - S1 Figure 6.8(a) Mohr's Circle Plot for Peaty Clay Sample D - S1 Figure 6.8(b) Stress vs Strain Plot for Peaty Clay Sample D - S2 Figure 6.9(a) Mohr's Circle Plot for Peaty Clay Sample D – S2 Figure 6.9(b) vi

- Stress vs Strain Plot for Peaty Clay Sample D S3Figure 6.10(a)
- Mohr's Circle Plot for Peaty Clay Sample D S3Figure 6.10(b)
- Stress vs Strain Plot for Peaty Clay Sample E S1 Figure 6.11(a)
- Mohr's Circle Plot for Peaty Clay Sample E S1 Figure 6.11(b)
- Stress vs Strain Plot for Peaty Clay Sample mixed E S2Figure 6.12(a)
- Mohr's Circle Plot for Peaty Clay Sample E S2 Figure 6.12(b)
- Stress vs Strain Plot for Peaty Clay Sample E S3Figure 6.13(a)
- Mohr's Circle Plot for Peaty Clay Sample E S3Figure 6.13(b)
- Stress vs Strain Plot for Peaty Clay Sample F S1 Figure 6.14(a)
- Mohr's Circle Plot for Peaty Clay Sample F S1 Figure 6.14(b)
- Stress vs Strain Plot for Peaty Clay Sample F S2 Figure 6.15(a)
- Mohr's Circle Plot for Peaty Clay Sample F S2 Figure 6.15(b)
- Stress vs Strain Plot for Pearly Clay Sample F Sts 3 Lanka. Figure 6.16(a) Mohr's Circle Plot for Peaty Clay Sample F – S3
- Figure 6.16(b)

List of Tables

.

.

:

...

...

--

4

•

Table 2.1	Improvements in compression index and compression ratio
Table 2.2	Improvements in Undrained Shear Strength
Table 2.3	Improvements in Shear Strength
Table 3.1	Details of the Samples
Table 3.2	Basic Physical Properties of the Remolded Peat and Cement Mixed Samples
Table 4.1(a)	The VON POST Scale of Humification of Peats [Von Post Humification Index (1922)] (source Ekono 1981)
Table 4.1(b)	Detailed VON POST Scale of Humification (source Ekono 1981)
Table 5.1	Void Ratio vs Stress data for samples cured under an applied surcharge of 20kN/m ²
Table 5.2	Void Ratio vs Stress data for samples cured under an applied surcharge of 40kN/m ²
Table 5.3	Summarized Data for sample A – 1 and B – 1 of C_r , C_c and p_c
Table 5.4	Summarized Data for sample $A = 1, C = 1, C = 3$ and $C = 4$ of C_r , C_c and p_c Electronic Theses & Dissertations
Table 5.5	Summarized Data for sample $B = 0, D - 1, D - 3$ and D - 4 of C _r , C _c and p _c
Table 5.6	Summarized Data for sample A $- 1$, E $- 1$, E $- 3$ and E $- 4$ of C _r , C _c and p _c
Table 5.7	Summarized Data for sample B – 1, E – 1, E – 3 and E - 4 of C_r , C_c and p_c
Table 5.8	Summarized Data for sample A $- 1$, C $- 4$ and E $- 4$ of C _r , C _c and p _c
Table 5.9	Summarized Data for sample $B - 1$, $D - 4$ and $F - 4$ of C_r , C_c and p_c
Table 5.10	m_V vs Stress Increment data for applied surcharge of 20kN/m ²
Table 5.11	m_V vs Stress Increment data for applied surcharge of $40 k N/m^2$
Table 5.12	C_{α} vs Stress Increments for samples loaded to stress of 20kN/m ²
Table 5.13	C_{α} vs Stress Increments for samples loaded to stress of $40 k \text{N/m}^2$
Table 5.14	Values of C_{α}/C_{C} Ratio
Table 5.15	Values of C_{α}/C_{r} Ratio
Table 5.16	Effects of Coefficient of Consolidation, C_v

Table 6.1	Details of the Samples Prepare for Unconsolidated Undrained (UU) Triaxial Test
Table 6.2	Details of Shear Strength Parameters, $[C_{U}, \Phi_{u}]$ for Peaty Clay Sample A – S1
Table 6.3	Details of Shear Strength Parameters, $[C_{U_i} \Phi_u]$ for Remolded Peaty Sample B – S1
Table 6.4	Comparison of Shear Strength Parameters, $[C_{U_i} \Phi_u]$ for Remolded Peaty Clay Sample $A - S1 \& B - S1$ with other Laboratory Test Data
Table 6.5	Details of Shear Strength Parameters, $[C_U, \Phi_u]$ for Peaty Clay Samples C – S1, C – S2 & C – S3
Table 6.6	Details of Shear Strength Parameters, $[C_{U_i} \Phi_u]$ for Peaty Clay Samples D – S1, D – S2 & D – S3
Table 6.7	Comparison of Shear Strength Parameters, $[C_U, \Phi_u]$ for Peaty Clay Samples mixed with 15% cement and with other Laboratory Test Data
Table 6.8	Details of Shear Strength Parameters, $[C_U, \Phi_u]$ for Peaty Clay Mixed with 20% Cement - Subjected to load of 20kN/m ²
Table 6.9	Details of Shear Strength Parameters, $[C_{U}, \Phi_{u}]$ for Peaty Clay Mixed with 20% Cement - Subjected to load of 40kN/m ² tuwa, Sri Lanka.
Table 6.10	Comparison of Shear Strength Parameters, $[C_U, \Phi_u]$ for Peaty Clay Samples mixed with 20% cement and with other Laboratory Test Data
Table 6.11	Undrained Shear Strength of Differently Treated Peaty Clays
Table 6.12	Improvements in Shear Strength for Other Research Works (After Kulathilaka, 2008)

Contents

Acknowledgements	i
Abstracts	ii
List of Figures	iii
List of Tables	viii
Contents	x

Chapters

Page No

1	Introduction	01
1.1	Background	01
1.2	Methods of Ground Improvement	01
1.3	Improvement of soft Organic Clays / Peaty Clays by Deep mixing	02
1.4	Methodology Adopted in this Research	02
1.5	Structure of the Thesis Electronic Theses & Dissertations	03
2	Literature Review	04
2.1	Need for Improvement of soft Peaty clays	04
2.2	Different Improvement Procedures	05
2.3	Methods based on consolidation with external loads	06
2.4	Methods Based on Consolidation without External Loads	07
2.5	Methods Based on Solidification (Chemical Reaction)	10
2.6	Mechanism of Stabilization with Cement Mixing	16
2.7	Other Binders used for Deep Mixing	16
2.8	Laboratory Studies on Improvement of Peaty clays	18
3	Mixing and Curing Process	21
3.1	Sample Preparation	21
3.2	Basic Properties of the Sample Prepared	23

e.

4	Formation of Peat and Changes in Microstructure due to Mixing with	25
	Cement	
4.1	Formation and Classification of Peat	25
4.2	Molecular Structure of Peaty Clay	28
4.3	Molecular Structure of Peaty Clay Mixed with Cement	29
5	Study of Improvement of compressible characteristics	31
5.1	Assessment of Compressible Characteristics through Consolidation	31
	Tests	
5.2	Behavior through e vs log σ plots	32
5.2.1	Details of Void Ratio, (e) for Applied Stresses of 20kN/m ² & 40kN/m ²	32
	for Remoulded Samples and Cement Mixed Peaty Clay Samples	
5.2.2	Concluding Comment	40
5.3	Improvement in Coefficient of Volume Compressibility (11.) due to Cement mixing Electronic Theses & Dissertations	41
5.4	The Improvement of Coefficient of Secondary Consolidation, C_{α} due	47
	to Cement Mixing	
5.4.1	Details of Coefficient of Secondary Consolidation, C_{α} for Applied	47
	Stress of 20kN/m ² & 40kN/m ² for Remoulded and Cement mixed	
	Peaty Clay Samples	
5.5	Effect of Cement Mixing on C_{α}/C_{C} Ratio	53
5.6	Effect on Coefficient of Consolidation, Cv	55
5.7	Concluding Comments on the Improvement of Compressibility	57
	Characteristics	

xi

6	Improvement of Shear Strength	59
6.1	Background	59
6.2	Undrained Shear Strength of Untreated Peaty Clay	59
6.2.1	Undrained Shear Strength of Sri Lankan Peaty Clay	59
6.2.2	Undrained Shear Strength of Sri Lankan Peaty Clays from Laboratory	60
	Research Projects	
6.3	Preparation of Samples for Unconsolidated Undrained Shear (UU)	60
	Strength Test	
6.4	Undrained Shear Strength of Untreated Peaty Clays in this Project	62
6.5	Undrained Shear Strength of Peaty Clay mixed with 15% Cement	64
6.6	Undrained Shear Strength of Peaty Clay mixed with 20% Cement	68
6.7	Concluding Comment on Improvement of Undrained Shear Strength of	72
	Peaty Clay	
6.8	Assessments of Improvement in Shear Strength, Sri Lanka. Electronic Theses & Dissertations	72
7	Conclusions www.lib.mrt.ac.lk	74
8	References	77
9	Appendix – Papers Publications	P – 1
	Paper published at IESL Annual Technical Session 2011 on "Enhancement of	
	Engineering Characteristics of Peaty Clay due to Mixing with Cement"	

xii