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A b s t r a c t 

This thesis focuses on trajectory planning for industrial robot manipulators. It 
describes the existing problem of trajectory planning and proposes an appropriate 
solution. The proposed solution has been devised, implemented and verified for ef­
fective functionality. Trajectory planning in this context is the process of planning 
time-based joint position trajectories for a desired end-effector motion. It needs to 
consider all relevant constraints of the manipulator and given task specifications, 
because the final end-effector performance totally depends on the way the joint tra­
jectories are planned. However, most trajectory planners in industrial robotics, even 
today, have adapted the technique of direct sampling of the desired end-effector mo­
tion, and transform such Cartesian positions to joint space using inverse kinematics. 
Then, the planned joint trajectories are simulated to check if they are realizable 
within the constraints. It is also inspected if the given task specifications are fulfilled 
sufficiently. Planned end-effector trajectory is iteratively adjusted by trial-and-error, 
until an optimum trajectory is obtained. This process has many demerits and it is 
therefore necessary to develop an appropriate trajectory planning algorithm which 
has provisions to consider constraints and task specifications in planning end-effector 
trajectories. It should also be generally applicable to industrial manipulators. 

Through constant collaboration with Yaskawa Robotics Inc., the major con­
siderations of trajectory planning were identified as being : 1. trajectory allowance, 
2. sharp corners, 3. joint acceleration limit, 4. assigned end-effector velocity, 5. jerk 
reduction, and 6. delay dynamics. They were considered one-by-one, and techniques 
were developed to incorporate them into a single trajectory planner. Usually, desired 
end-effector trajectory is not the optimal trajectory. Therefore, the trajectory plan­
ner plans a realizable trajectory with the mentioned considerations above. Realizable 
trajectory is the optimal trajectory within the given trajectory allowance. At sharp 
corners, a circular arc is introduced within the trajectory allowance. Joint acceler­
ation limit refers to the power amplifier current rating of the servo controller, and 
assigned end-effector velocity is the speed specification. End-effector trajectory can 
be planned using maximum joint acceleration as long as the end-effector remains be­
low the assigned velocity. However, as the end-effector reaches assigned velocity, joint 
accelerations should be reduced and the speed should be uniformly maintained. Jerk 
can be reduced by fitting a spline approximation to the planned joint trajectories. 
Delay dynamics can be compensated by way of pole placement techniques and opti­
mizing the pole by considering servo control input. The proposed trajectory planner 
was devised and implemented to control an industrial robot manipulator (Performer 
MK3s) so that a significant improvement of end-effector performance could be demon­
strated. The same trajectory planner was rearranged into an autonomous module and 
incorporated with real-time control. This new implementation was proposed and im­
plemented for supervisory controlled telerobotics applications. It was also applied for 
welfare robotics applications. 

Proposed trajectory planner is an off-line process, and it does not require hard­
ware alterations. Thus, it could be conveniently implemented with existing robot 
manipulator systems. 
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