Agent Based Solution for

Artificial Neural Network Optimisation

119155J

Faculty of Information Technology

University of Moratuwa

January 2014

Agent Based Solution for

Artificial Neural Network Optimisation

119155J

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of MSc in Artificial Intelligence

January 2014

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.

Name of Student: P.S.M. Dharmakeerthi

S.M. Dharmakeerthi Signature of Student University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations: www.lib.mrt.ac.lk

Supervised by

Name of Supervisor: Prof. Asoka S. Karunananda

Signature of Supervisor

Date:

Dedication

This thesis is dedicated to

my mother, father

and my beloved wife Ranmalee University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations for their sacrifice and Unwavering confidence.

Standing by me burning the midnight oil many

times.

Acknowledgement

This thesis is a result of cumbersome work of much dedication and commitment where I was assisted, accompanied and guided by several good hearted people. I would like to take this opportunity to extend my sincere thanks and appreciation to my supervisor Prof. Asoka S. Karunananda for all the support and for being a pillar of strength throughout this research project. I am grateful to all my lecturers and teachers for sharing their invaluable knowledge, experience and the words of advises which no doubt will improve the quality of my life. The support extended by the staff of the Faculty of Information Technology, University of Moratuwa is highly appreciated. Special word of thanks to my team mates and the management of Cambio Healthcare Systems Pvt Ltd, for all the support and understanding. I also express my sincere thanks to my friends in MSc in AI batch. The unlimited support extended by my friend Woshan Srimal is remembered with much gratitude. Special thanks to my wife Ranmalee, our parents and nangi for their understanding, endless patience, encouragement, unconditional love and support. I offer my heartfelt of Moratuwa, Sri Lanka, e supported me in any aspect for the successful Theses & Dissertations regards to one and all who have completion of the project.

Abstract

Artificial neural networks are highly used in the areas of pattern recognition, feature extraction, function approximation, scientific classification, control systems, noise reduction and prediction. Feed-forward and back-propagation neural networks are the most commonly used artificial neural networks. Many researchers face difficulties when selecting a proper ANN architecture and training parameters. The manual ANN training process is not the best practical solution because it is a much time consuming task. Also most of the people conduct the manual process in an ad-hoc manner without having a proper knowledge about artificial neural networks. At the end of this research project a multi-agent system: MASAnnt (Multi Agent System for Artificial Neural Network Training) was developed to automate the neural network training for feed-forward and back-propagation neural network. Interaction among agents enables emergence of quality training sessions which cannot be archived by an ad-hoc training sessions conducted by humanic must straight forward to recognize training parameters such as number of hidden layers, number of neurons in each hidden layer, momentum, learning rate, Emax (Error goal) and activate function of an ANN as a set of agents. Inherent features of agents including coordination, communication and negotiation are able to mimic the ANN optimizing and training process by manipulating theses parameters. Our experiments show that the more rational results can be obtained from the system with both simple data sets like XOR as well as with real life data sets. We can conclude that the neural network optimization and training tasks are successfully accomplished by the agent based approach by analysing the results of the evaluation.

Contents

Page

Chapte	er 1 Introduction	1			
1.1	Introduction				
1.2	Background and Motivation				
1.3	Aim				
1.4	Objective				
1.5	Users	3			
1.6	Inputs and Outputs	3			
1.7	Resource requirements	4			
1.8	Overview of the Report				
1.9	Summary	5			
Chapte	er 2 Current Movements in Artificial Neural Network Optimization	7			
2.1	Introduction	7			
2.2	Artificial Neural Neuroiouko Training tuwa, Sri Lanka.	7			
2.3	Manual ProEsses TO NEUral Network Training tations				
2.4	Automated Approaches to Neural Network Training				
2.5	Comparison of Available Researches				
2.6	Summary	14			
Chapte	er 3 Technology Adapted In This Project	15			
3.1	Introduction	15			
3.2	Artificial Neural Network	15			
3.2	E.1 Feed-Forward and Back-Propagation Neural Network	15			
3.2 16	2.2 Training Parameters of	ANN			
3.3	Multi Agent Systems	18			
3.3	Complex Systems	18			
3.3	Attempts to Solve Complex Problems Using Multi Agents Tech	nology 18			
3.4	Multi Agent Technology for Neural Network Optimization	19			
3.5	Summary	20			

Chapte	r 4 An Approach to Use M	ulti Agent Technology to ANN Training	21
4.1	Introduction		21
4.2	Hypothesis		21
4.3	Users		21
4.4	Inputs and Outputs		21
4.5	Process		22
4.6	Technology that Implemen	ts the Solution	22
4.7	Features		23
4.8	Summary		23
Chapte	r 5 Design of MASAnnt To	olkit	24
5.1	Introduction		24
5.2	Program Flow		24
5.3	High Level Design of MAS	Annt Toolkit	26
5.4	System ControliAgensity C	of Moratuwa, Sri Lanka.	26
5.4. 26	¹ Electronic T www.lib.mr	heses & Dissertations Beha t.ac.lk	aviour
5.4. 27	2 Negotiation	Beha	iviour
5.4. 27	3 Message	Space Beha	aviour
5.5	Training Unit		28
5.6	Expert Agent Unit		28
5.7	Ontology		29
5.8	Training Data		29
5.9	Summary		30
Chapte	r 6 Implementation of MAS	SAnnt Toolkit	31
6.1	Introduction		31
6.2	Development Environment		31
6.3	Implementation of System	Control Agent	31
6.3. 32	1 Implementation	of	GUI

6.3 34	.2 Implementation	of	System	Control	Agent	Behaviours
6.4	Training Agent					37
6.4 38	.1 Neural		Ne	twork		Unit
6.5	Expert Agent					38
6.6	Ontology					39
						Page
6.7	Summary					41
Chapte	r 7 Evaluation of MAS	SAnnt '	Toolkit			42
7.1	Introduction					42
7.2	Overall Functionality	of the S	System			42
7.3	User Interface Evaluat	ion				43
7.4	Evaluation with XOR					44
7.5	Evaluation with Iris D	ata Set				45
7.6	Summary					47
Chapte	r 8 Conclusion and Fu	rther	Moratuw	a, Sri Lar	ıka.	48
8.1	Introduction	1C I I	leses & D ac lk	1ssertatio	15	48
8.2	Overall Conclusion	·ιι.	av.IK			48
8.3	Achievements of the C	Objectiv	ves			49
8.4	Problems Encountered	l				49
8.5	Further Work					50
8.6	Summary					50
Referen	ices					51
Append	lix A: XOR Training (Graphs	5			54
Append	lix B: Isis Data Set Tra	aining	Graphs			56

List of Figures

Page

Figure 3.1: Structure of a Feed-Forward and Back-Propagation Neural Network	16
Figure 4.1: Inputs and Outputs	21
Figure 5.1: Program Flow	25
Figure 5.2: High Level Design of MASAnnt Toolkit	26
Figure 5.3: Message Space	27
Figure 5.4: Expert Agent and Ontology	28
Figure 5.5: Training Pataversity of Moratuwa, Sri Lanka.	30
Figure 6.1 (Initial) zat The AppTibations & Dissertations	31
Figure 6.2: MASAnntwoser Interfacet. ac.lk	33
Figure 7.1: User Interface Evaluation	43

List of Tables

Page

Table 2.1: Comparison of Available Researches	13
Table 7.1: Evaluation of UI Components	44
Table 7.2: XOR Training Data	44
Table 7.3: XOR Training Results	44
Table 7.4: Iris Data Set Training Results - Max Cycles: 50,000	45
Table 7.5: Iris Data Set Training Results - Max Cycles: 100,000	46

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Code Fragments

Code	Fragment	6.1:	Activation	of	Exp	oert	Agents
35							
Code	Fragment 6.2:	Request	Message	of S	ystem (Control	Agent
35							
Code	Fragment 6.3: Res	ponse Me	ssage from	Expert	Agents a	and Neg	gotiation
36							
Code I	Code Fragment 6.4: Training Agent f Moratuwa, Sri Lanka, 37						
Code	Code (Chagmentectronic Theses & Agentsertation Diction Making						
38	38 www.lib.mrt.ac.lk						
Code	Fragment	6.6:	Learn	ing	Rate	C	ntology
39							
Code	Fragment	6.7	7: 0	Commun	ication	С	ntology
40							
Code	Fragment		6.8:	Con	nmon	C	ntology
40							
Code	Fragment	6.9:	Training]	Parameter	C	ntology
41							