A Fuzzy Mathematical Model to Motion Detection with Monocular Vision

Registration Number : 119160U

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of MSc in Artificial Intelligence

November 2013

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

K P P S Pathirana

Signature University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations: www.lib.mrt.ac.lk

Supervised by:

Prof. Asoka Karunananda

Dr. Jayathu Samarawickrama

Signature

Date:

Signature

Date:

Contents

		Page
Chapte	er 1 Introduction	1
1.	1 Prolegomena	1
1.	2 Background and Motivation	1
1.	3 The Research Objectives	2
1.	4 The Postulated Solution and How We Implemented It	2
1.	5 Outline of the Dissertation	5
1.	6 Summary	5
Chapte	er 2 Recent Trends in Obstacle Avoidance with Monocular	7
Vision		
2.	1 Introduction	7
2.	2 Monocular Vision based object recognition - how it is done	7
2.	3 Attempts of use of Fuzzy For Vision Aided Decision Making	20
2.	⁴ Summary University of Moratuwa, Sri Lanka.	22
Chapte	er 3 Fuzy-Mathematical Modeling: A Novel Approach	21
3.	1 Introductionww.lib.mrt.ac.lk	23
3.	2 The Hypothesis	23
3.	3 Technology Adapted	23
3.	3.1 Users	23
3.	3.2 Inputs	23
3.	3.3 Outputs	23
3.	3.4 Process	24
3.	4 A Comprehensive Study on Desired Solution	24
3.	5 The Problem Re-Defined	27
3.	6 Why Not Mathematical Modeling? In-Detailed Discussion	27
3.	7 Summary	29
Chapte	er 4 Analysis and Design	27
4.	1 Introduction	30
4.	2 The Image Processing Module	31
4.	3 Fuzzy Mathematical Model	32
4.	3.1 Interesting Findings	32

	4.3.2	Modeling behavior of Sk and m with fuzzy for m range -0.1 to	34
		-0.6 (Sk 1.00 - 0.00)	
	4.3.3	Another interesting finding	38
	4.3.4	Note on gradients not concerned above	43
	4.4	The Robot	44
	4.5	The proposed strategy of avoiding an obstacle	45
	4.6	Summary	46
Cha	pter 5	Implementation	48
	5.1	Introduction	48
	5.2	Image Processing Module	48
	5.2.1	Statistical Approach I	50
	5.2.2	Statistical Approach II	51
	5.3	Fuzzy Mathematical Model	54
	5.4	The real time application	57
	5.5	Hardware implementation : The mobile robot	58
	5.5. 1	Theory of motor control f Moratuwa, Sri Lanka.	60
	5.6	Summary Electronic Theses & Dissertations	60
Cha	pter 6	Evaluation/www.lib.mrt.ac.lk	62
	6.1	Introduction	62
	6.2	Evaluating Image Processing Module	62
	6.2.1	Note on Motion Path Generator	63
	6.3	Fuzzy Mathematical Model (Simulator)	65
	6.4	Evaluating the Fuzzy Inference Engine , Real Time version	67
	6.5	Time taken to achieve an accuracy level (Response time)	69
	6.6	Summary	71
Cha	pter 7	Conclusion	72
	7.1	Introduction	72
	7.2	Problem with real time version of the Fuzzy Inference Engine	72
	7.3	Improvements required for the current model	75
	7.4	Practical applications of the concept	75
	7.5	Final conclusion	75
	7.6	Recommendations and future developments	76

	7.7	Final word and the summary	76	
Refe	References 7			
Appe	e ndix A	A: Improvements on Image Processing and Optical Flow	80	
Algo	rithms	- Code Level Implementation		
	A.1	Introduction	80	
	A.2	Structure of the Code - An Abstract View	80	
	A.3	Statistical Approach I	83	
	A.4.	Statistical Approach II to Mark ROI (Region of Interest)	86	
	A.5	Edge Detection to Image Segmentation	87	
Appe	endix I	3: Real-World Data Collected for Constructing the FMM	89	
	B.1	Introduction	89	
•	B.2	Apparent Size - Distance Variation	89	
•	B.3	Relationship between the Skewness and Gradient (m)	90	
	B.4	Relationship between the c , Initial Apparent Size and m	90	
	B.5	Real World Data to Realize Fuzzy Membership Functions	92	
	B.5 .1	Fuzzy Membership: of mand $Sk(0 \leq SK \leq 1.0)$ anka.	92	
	B.5.2	Fuzzy Membership iof mandesk & 010155 SK #1-0.52)	94	
	B.5 .3	Fuzzy Membership of <i>m</i> and Sk (-0.53 \leq SK \leq -3.0)	95	
•	B.5.4	Fuzzy Membership of c, m and Initial Apparent Size	98	
Appe	endix (C: Code Level Implementation of FMM	101	
	C.1	Introduction	101	
	C.2	Implementation of FMM-Simulator Version	101	
	C.3	Implementation of FMM: Real-Time Version	105	
Appe	endix I	D: Evaluation Results - Full Detailed View	108	
	D.1	Introduction	108	
	D.2	Evaluation of FMM-Simulator Version	108	
	D.3.1	Evaluation of FMM - Real Time Version by Accuracy	109	
		Reported After a Definite Time		
	D.3.2	Evaluation of FMM - Real Time Version by Time Elapsed to	109	
		Achieve an Accuracy Level		
Appe	endix I	E: Source Code of the Robot	112	
	E.1	Introduction	112	

List of Figures

			Page
Figure	3.1:	Variation of depth expected	25
Figure	3.2a.	Expected graph for apparent size change	25
Figure	3.2b.	Actual graph for apparent size change	25
Figure	3.3:	Variation of the subtended angle created by the object.	25
Figure	3.4:	A mathematical model for relationship between depth and	26
		apparent size	
Figure	3.5:	A generic case of object movement	27
Figure	3.6:	Equation of the curve of apparent size change	28
Figure	4.1:	System Design Overview	30
Figure	4.2 :	The defined coordinate system	33
Figure	4.3:	Hypothetical fuzzy membership function of m and sk	34
figure	4.4:	Look-up table for Sk and fuzzy membership values	35
Figure	4.5 :	Fuzzy membership function for $m=-0.1$ to -0.6	35
Figure	4.6	University of Moratuwa, Sri Lanka. Hypothetical fuzzy membership function for minus range of Electronic Theses & Dissertations	36
	An and a second	Sk, WR tov. 0:52 mrt. ac. 1k	
Figure	4.7:	The look-up table that keeps y values for minus Sks	37
Figure	4.8:	Fuzzy membership function for $m=-0.6$ to -1.0	37
Figure	4.9 :	Hypothetical fuzzy membership function for gradients lesser	38
		than -1.0	
Figure	4.10 :	Fuzzy membership function for gradients lesser than -1.0	38
Figure	4.11 :	Variation of c with m and initial size	39
Figure	4.12 :	Variation of, w.r.t. initial size change, at m=-0.1	40
Figure	4.13:	Variation of, w.r.t. initial size change, at m=-1.0	40
Figure	4.14:	Hypothetical fuzzy membership function of c Vs. initial size	41
Figure	4.15:	Fuzzy membership function of c with initial size	41
Figure	4.16	Finding actual c	42
Figure	4.17	Fuzzy membership function of gradient and c	42
Figure	4.18 .a :	A movement path with a negative gradient	43
Figure	4.18 .b :	A movement path with a positive gradient	43
Figure	4.19 :	A case where m<-0.1 and the obstacle first observed at a far-	44

away distance

	away astance	
Figure 4.20 :	Design of the robot	45
Figure 4.21 :	The Risk Boundary - Checking whether the motion is risk or	45
	safe	
Figure 4.22:	Diverting the motion path of robot due to high risk factor	46
	estimated	
Figure 5.1:	The anatomy of the IPM	48
Figure 5.2:	Classification of optical flow vectors in to belonging	50
	quadrants	
Figure 5.3:	Before Statistical approach (I)	50
Figure 5.4:	After Statistical approach (I)	51
Figure 5.5:	Finding the 'Centre of Gravity' of optical flow vectors	51
Figure 5.6:	Results of Statistical approach (II)	52
Figure 5.7:	Recognizing the ROI	52
Figure 5.8:	Tracking multiple moving objects	53
Figure 5.9 :	Identifying the only appropriate object of movements	53
Figure 5.10	Final stage of imagenesses sing issertations	54
Figure 5.11	They Motion Bath Generator	55
Figure 5.12:	An arbitrary generated obstacle motion using Motion Path	56
	Generator	
Figure 5.13:	Recovery of the actual motion path by the Fuzzy system	56
	when the two graphs are provided	
Figure 5.14:	The Real Time Application	57
Figure 5.15:	The mobile robot	58
Figure 5.16:	Velocity encoders	59
Figure 5.17:	Relationships between the encoder resolution and desired	60
	angle to turn	
Figure 6.1:	Actual apparent size Vs. detected apparent size	62
Figure 6.2:	Accuracy of Image Processing Module	63
Figure 6.3:	The measuring the actual distance	63
Figure 6.4:	Actual relationship of distance and apparent size of the	64
	object	
Figure 6.5:	Correlation with distance and apparent size of the object	64

Figure	6.6:	Variation of error, m & c with gradients	65
Figure	6.7 :	Accuracy of estimated m and c from Fuzzy Inference Engine	66
		- Simulator version	
Figure	6.8:	Accuracy of c varies with the actual value itself	66
Figure	6.9 :	Percentages of accuracy ranges	68
Figure	6.10:	Accuracy achievement of c alone	69
Figure	7.1:	Effect of shadows for the accuracy of Image Processing	72
		Module	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 2.1:	Summary of some interesting research in domain of monocular vision	Page 19
Table 4.1 :	The relationship between the skewness and the gradient, for +ve Sks	33
Table 4.2 :	The relationship between the skewness and the gradient, for -ve Sks	34
Table 4.3 :	The relationship between the skewness and the gradient, for m<- 0.6	36
Table 4.4	The relationship between the skewness and the gradient, for $m < -1.0$	37
Table 6.1:	Count of accuracy achievement, c alone	68
Table 6.2:	Time taken to achieve the accuracy level, for both m and c	69
Table 6.3:	Average time consumed to achieve an accuracy level	70
Table 6.4:	Time taken to achieve the acouracy devel Scialonenka.	70
Table 6.5:	Average Ethos toonsime Thosachieve Disaccutationere	71
Table 7.1:	Response delay (Min. reaction time) of camera	73
Table 7.2:	Frame rate processed by image processing module	74

Abstract

Vision based decision making and obstacle avoidance of a mobile robot are the most attracted areas of the domains of Computer Vision and Robotics respectively. The link between them is, Computer Vision, more specifically the vision for intelligent machines is heavily used for mobile robots as a primary sensory input to perceive the external world. Vision based obstacle avoidance is one of the major areas of study Robotics. Estimating and predicting the motion behavior of a dynamic object with a single camera, known as monocular vision, is a real challenge. We postulated this can be done by analyzing a sequence of image frames extracted from a live video stream. But, these analytical techniques must be extremely fast in real time processing, because the decisions drawn within reasonably short response time are the only factors to ensure the safety of the robot. Therefore, we postulated a fuzzy mathematical model - an artificial intelligence approach to perform that task, which has a significant impact in terms of simplicity (reduced complexity) together with efficiency (minimized computational overhead : resource consumption), rather than conventional complicated mathematical modeling. The evaluation results of the all major modeled of the software Thrases developsactiation the hypothesis of the research, namely Image Processing Module, Fuzzy Mathematical Model exhibit the validity of the concept postulated. For example, average accuracy of the Image Processing Module and the Fuzzy Mathematical Model (Simulator version) are 89% and 92% respectively. Finally, it is proven with strong evidences that, fuzzy mathematical modeling is appropriate to recover motion even from simple inputs such as apparent size variation, while monocular vision is adequate perceive to capture those primary inputs. Therefore the ultimate milestone of the research, developing an artifact (a strategy) to test the conceptually postulated theory in both theoretical (perfect i.e. simulation environments) and practical (real world noisy environments) aspects, has been achieved successfully.