CAPACITOR SWITCHING TRANSIENT ANALYSIS ON A TRANSMISSION GRID SUBSTATION (CASE STUDY: THULHIRIYA GSS)

Don Lishan Prasanga Munasinghe

(119131 H)

Dissertation submitted in partial fulfillment of the requirement for the

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

June 2015

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:_		Date:	
	D.L.P. Munasingheof Moratuwa	Sri Lanka	

Electronic Theses & Dissertations

The above candidate has varied out research for the Masters Dissertation under our supervision.

Signatures of the supervisors:

Dr. K.T.M.U. Hemapala

Date: _____

Dr. U.N. Gnanarathna (University of Manitoba – Canada)

ACKNOWLEDGEMENT

I sincerely thank my supervisor, Dr. K.T.M.U. Hemapala for his great supervision and guidance offered for the successful completion of this study. I extent my sincere thanks to lecturers of Electrical Engineering Department, University of Moratuwa, who gave me the theoretical knowledge and the support during the study period to make the study practical and meaningful.

My special thanks go to Dr. U.N. Gnanarathna, University of Manitoba, Canada, who spent his valuable time to guide me and providing valuable information required for this study.

I am also grateful to Centralized section and Kandy region of Transmission Operation and maintenance branch and my colleagues in Ceylon Electricity Board, who supported and encourages me in numerous ways to successful completion of this study.

University of Moratuwa, Sri Lanka.

It is also the colleagues in the post graduate program and specially my parents and my wife. May be I could not have completed this research without their valuable support.

ABSTRACT

The quality of electric power system has a great concern and also it has been a constant topic of study. A transient originated from capacitor bank switching are main reason which affects the power quality. The analysis, simulation and optimal use of capacitor banks under harmonic conditions are required in a power network to optimally locate and sizing of a capacitor bank. If the capacitor banks are not properly selected and placed in the power system they could amplify and propagate harmonics, deteriorate the power quality to unacceptable levels and the transients produce under different conditions will be negatively affected to the switchgears in the substation.

The breaker switched capacitor (BSC) banks are commonly used for power factor correction, reactive power requirement and voltage support by many utilities in the world. Ceylon electricity board (CEB) has also installed total of 370 Mvar capacitor banks island-wide in transmission grid substations (GSS) in 33 kV level.

The motivation for the study is the failure of 100 Mvar BSC banks installed at the Pannipitiya GSS after putting in to operations. After this incident the Thulhiriya GSS and Athurugitriya GSS BSC banks were switched off since they also came under same project with same equipment. In this study the Thulhiriya GSS was selected as the case sudy to analyze the switching transients of the 33 kV BSC banks to the system.

Data for the selected substation were recorded and analyzed and the selected substation was modeled using PSCAD simulation program to analyze the transients and harmonics. The objective of the study is to investigate the particular BSC bank is safe for operations without under utilizing by comparing the obtained simulated results with the standards and specifications, observe the switching transients and harmonics, introduce a safe region for closing of the BSC banks, introduce a proper sequence for closing of the BSC banks and introduce time delays for back to back switching of the BSC banks with minimum effect to the quality of the waveform.

The results obtained for the particular substation are expected to be extrapolated to a general concept to suit the whole substations in the CEB network.

TABLE OF CONTENT

Decl	laration		i
Acknowledgment		ii	
Abstract			iii
Table of Content			iv
List of Figures		vii	
List	of Table	s	Х
List	of Abbre	eviations	xi
1.	Introc	luction	1
	1.1.	Back ground	1
	1.2.	Motivation of the study and Objectives	2
	1.3.	Scope of work	2
2.	Capac	citor banks in power systems	3
	2.1.	Active, reactive, apparent and power triangle	3
	2.2.	Power factor correction	3
	2.3.	Capacitor size and location	6
	2.4.	Application standards Flectronic Theses & Dissertations	7
	2.5.	The capacitoriunitart.ac.lk	7
	2.6.	Fuse technologies	9
	2.7.	Different types of capacitor banks	10
	2.8.	Capacitor bank configurations	11
	2.9.	Capacitor bank installation	12
	2.10.	Controlling philosophy	14
	2.11.	Problems with the capacitor banks	15
	2.12.	Capacitor bank switching equipment	15
	2.13.	CEB capacitor bank specification	15
	2.14.	CEB capacitor bank network	16
3.	Powe	r quality issues	17
	3.1.	Power quality problems	17
	3.2.	Different abnormal conditions in the power system	18
4.	The c	The case study	

4.1.	Failure of capacitor banks at Pannipitiya substation	20
4.2.	Thulhiriya substation details	20
4.3.	Capacitor controller at Thulhiriya substation	21
4.4.	Data collection	22
	4.4.1. Log Sheets	23
	4.4.2. Power Quality Analyzer (PQA)	25
4.5.	Power factor variation	27
4.6.	Mvar requirement	27
4.7.	Harmonics in the system	29
4.8.	Capacitor switching pattern in an average day	30
4.9.	CBT 400 Measurements	30
Meth	odology	32
5.1.	PSCAD modeling and simulation tool	32
5.2.	Grid model	33
5.3.	Capacitor bank model	35
5.4.	Control panel	36
5.5.	Harmonic model Harmonic model	37
5.6.	Fast Fourier transform	38
5.7.	Model validation	38
5.8.	Measured parameter from the simulation	39
5.9.	Step by step simulation	40
Resul	Its and analysis	41
6.1.	Separate witching of capacitor banks	41
	6.1.1. Capacitor bank No 01	41
	6.1.2. Capacitor bank No 02	43
	6.1.3. Switching with different 33kV loading	45
6.2.	Back to back switching	47
	6.2.1. Sequence Capacitor bank 01, 02	47
	6.2.2. Sequence Capacitor bank 02, 01	48
6.3.	Fast switching	51
	6.3.1. Sequence Capacitor bank 01, 02	51
	6.3.2. Sequence Capacitor bank 02, 01	52

5.

6.

	6.3.3. Switching with different 33kV loading	54
6.4.	Harmonics present in the system	55
6.5.	Harmonics and Total Harmonic Distortion	57
	6.5.1. After energizing capacitor bank 01	57
	6.5.2. After energizing capacitor bank 02	57
	6.5.3. After energizing both capacitor banks	58
6.6.	Summary of analysis and results (for the model)	59
7. Concl	usions and recommendations	62
Reference Lis	t	65
Appendix 1	Single line diagram of Thulhiriya substation	67
Appendix 2	Technical Specification of 132 kV Areva Circuit Breaker	70
Appendix 3	Technical Specification of Alsthom power transformer	72
Appendix 4	132 kV conductor data sheet	75
Appendix 5	Manual of Joslyn Circuit Breaker	76
Appendix 6	Installation of capacitor bank at Thulhiriya GSS	84
Appendix 7	Technical Specification of Novar 300 Controller	85
Appendix 8	Waveforms obtained for model validation	88
Appendix 8 Appendix 9	University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing	88 89
Appendix Appendix Appendix 10	University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing www.lib.mrt.ac.lk Simulated waveforms for capacitor bank two closing	88 89 92
Appendix Appendix 10 Appendix 11	University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing WWW.110.mrt.ac.1k Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at	88 89 92
Appendix Appendix 10 Appendix 11	University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing WWW.110.mrt.ac.1K Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak	88 89 92 95
Appendix Appendix 10 Appendix 11 Appendix 12	University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing WWW.110.mtt.ac.1K Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak Switching of capacitor bank two for randomly selected loads at	88 89 92 95
Appendix 3 Appendix 10 Appendix 11 Appendix 12	 University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing WW.10.mtt.ac.IK Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak Switching of capacitor bank two for randomly selected loads at voltage peak 	88 89 92 95 98
Appendix 3 Appendix 10 Appendix 11 Appendix 12 Appendix 13	 University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak Switching of capacitor bank two for randomly selected loads at voltage peak Fast switching of capacitor banks sequence of bank one to two 	8889929598
Appendix 3 Appendix 10 Appendix 11 Appendix 12 Appendix 13	 University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations Simulated waveforms for capacitor bank one closing Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak Switching of capacitor bank two for randomly selected loads at voltage peak Fast switching of capacitor banks sequence of bank one to two with 1 ms delay time increasing 	 88 89 92 95 98 101
Appendix 3 Appendix 10 Appendix 10 Appendix 11 Appendix 12 Appendix 13 Appendix 14	 University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations imulated waveforms for capacitor bank one closing Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak Switching of capacitor bank two for randomly selected loads at voltage peak Fast switching of capacitor banks sequence of bank one to two with 1 ms delay time increasing Fast switching of capacitor banks sequence of bank two to one 	 88 89 92 95 98 101
Appendix 3 Appendix 10 Appendix 10 Appendix 11 Appendix 12 Appendix 13 Appendix 14	 University of Moratuwa, Sri Lanka. Waveforms obtained for model validation Electronic Theses & Dissertations imulated waveforms for capacitor bank one closing Simulated waveforms for capacitor bank two closing Switching of capacitor bank one for randomly selected loads at voltage peak Switching of capacitor bank two for randomly selected loads at voltage peak Fast switching of capacitor banks sequence of bank one to two with 1 ms delay time increasing Fast switching of capacitor banks sequence of bank two to one with 1 ms delay time increasing 	 88 89 92 95 98 101 103

LIST OF FIGURES

Figure 2.1	The power triangle	3
Figure 2.2	Relationship of Capacitance, Reactance and working power	6
Figure 2.3	The capacitor unit and cross section	9
Figure 2.4	Fuse technologies	10
Figure 2.5	Multiple units Grounded single Wye	11
Figure 2.6	Multiple units in series phase to ground double Wye	11
Figure 2.7	Multiple units ungrounded single Wye	12
Figure 2.8	Multiple units ungrounded double Wye	12
Figure 2.9	Metal Enclosed types	13
Figure 2.10	Pad mounted	13
Figure 2.11	Stacked rack mounted	13
Figure 2.12	Pole mounted	14
Figure 3.1	Types of power disturbances	17
Figure 3.2	Switching Transient Moratuwa Sri Lanka	18
Figure 4.1	Novæ Rool Controllerseses & Dissertations	22
Figure 4.2	Novar/300/blockDiagramk	22
Figure 4.3	Mvar Requirment in Bus Section 01	23
Figure 4.4	Mvar Requirment in Bus Section 02	23
Figure 4.5	Power Factor variation in Bus Section 01	24
Figure 4.6	Power Factor variation in Bus Section 02	24
Figure 4.7	Set up of Power Quality Analyzer	25
Figure 4.8:	Voltage waveform	26
Figure 4.9	Current Waveform	26
Figure 4.10	Active power measurement	26
Figure 4.11	Power Factor Variation	27
Figure 4.12	Reactive Power Requirement	28
Figure 4.13	Harmonics in Current waveform	29
Figure 4.14	Harmonics in Voltage waveform	29
Figure 4.15	Switching pattern for Capacitor Banks at Thulhiriya GSS	30

Figure 4.16	Capacitor Breaker of bank one closing	31
Figure 4.17	Capacitor Breaker of bank one opening	31
Figure 4.18	Capacitor Breaker of bank one close opening	31
Figure 4.19	Capacitor Breaker of bank two closing	31
Figure 4.20	Capacitor Breaker of bank two opening	31
Figure 4.21	Capacitor Breaker of bank two close open	31
Figure 5.1	Typical working window of PSCAD software	33
Figure 5.2	Grid Model	34
Figure 5.3	Configuration of 132 kV incomers	34
Figure 5.4	Configuration of 132/ 33 kV transformer	35
Figure 5.5	Capacitor Bank 01	36
Figure 5.6	Capacitor Bank 02	36
Figure 5.7	Time Delay Blocks for switching	36
Figure 5.8	Control Panel of Circuit Breakers	37
Figure 5.9	Addition of Harmonics	37
Figure 5.10	Online Fast Fourier Transformer	38
Figure 6.1	Average loading configuration Electronic Theses & Dissertations	41 42
Figure 6.3	Energizing of capacitor bank one at voltage peak	42
Figure 6.4	Energizing of capacitor bank two at zero crossing	42
Figure 6.5	Energizing of capacitor bank two at zero crossing	44
Figure 6.6	Back to hack switching sequence of consister bank one to	44
Figure 0.0	two at zero arossing	17
Eiguro 67	Pack to hack switching sequence of consuitor bank one to	4/
Figure 0.7	two at voltage peak	10
Eigung (9	two at voltage peak	40
Figure 6.8	Back to back switching sequence of capacitor bank two to one	40
E'	at zero crossing	49
Figure 6.9	Back to back switching sequence of capacitor bank two to one	50
	at voltage peak	50
Figure 6.10	Fast switching sequence of bank one to two at 3ms delay	51
Figure 6.11	Fast switching sequence of bank one to two at 10ms delay	52
Figure 6.12	Fast switching sequence of bank one to two at 17ms delay	52

Figure 6.13	Fast switching sequence of bank two to one at 12ms delay	53
Figure 6.14	Fast switching sequence of bank two to one at 38ms delay	53
Figure 6.15	Fast switching sequence of bank two to one at 12ms delay	54
Figure 6.16	Harmonic present in the system without capacitor banks	56
Figure 6.17	Harmonics in the system after switching capacitor bank one	57
Figure 6.18	Harmonics in the system after switching capacitor bank two	58
Figure 6.19	Harmonics in the system after switching both the capacitor banks	58
Figure 6.20	Implementation of RTU and PLC	63
Figure 6.21	Flow chart	64

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 2.1	Capacitor banks in Sri Lankan network	16
Table 4.1	Major equipment available at Thulhiriya Substation	21
Table 4.2	Unserved peak reactive power more than 5 Mvar in bus section one	28
Table 5.1	Comparison between measured and simulated data	39
Table 6.1	Voltage and current transient percentage for different switching	
	time of bank one	43
Table 6.2	Voltage and current transient percentage for different switching	
	time of bank two	44
Table 6.3	Randomly selected real loads for sensitivity analysis	45
Table 6.4	Voltage and current transient percentage for different switching	
	time of bank one for randomly selected loads	46
Table 6.5	Voltage and current transient percentage for different switching	
	time of bank two for randomly selected loads	46
Table 6.6	Minimum fast switching time delays to avoid transient	55
Table 6.7	Measured harmonics in the system Dissertations	56
Table 6.8	Comparison of harmonic magnitudes with different capacitor	
	energizing	59

LIST OF ABBREVIATIONS

AIS	Air Insulated Switchgear
BSC	Breaker Switched Capacitor
CEB	Ceylon Electricity Board
CBT	Circuit Breaker Tester
EMTP	Electro Magnetic Transient Program
FFT	Fast Fourier Transform
GIS	Gas Insulated Switchgear
GUI	Graphical User Interphase
GSS	Grid Substation
IEEE	Institute of Electrical and Electronic Engineers
IEC	International Electrotechnical Commission
PCB	Poly Chlorinated Biphenyl
PQA	Power Quality Analyzer
PSCAD	Power System Computer Aided Design
PLC	UniversProgrammabletuogic, Controanka.
RTU	ElectronemotersemanaDinaertations
RMS 🥁	www.lib.mrt.ac.lk Root Mean Square
THD	Total Harmonic Distortion