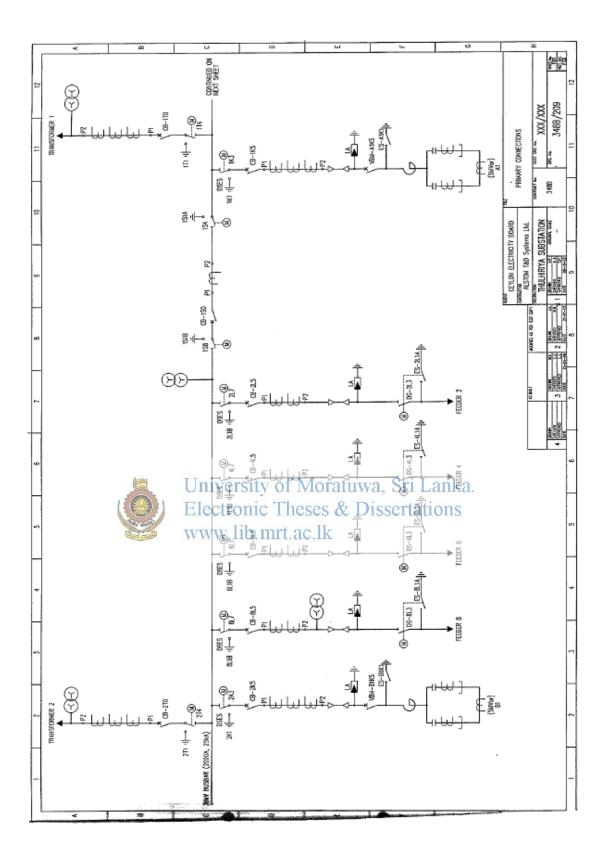
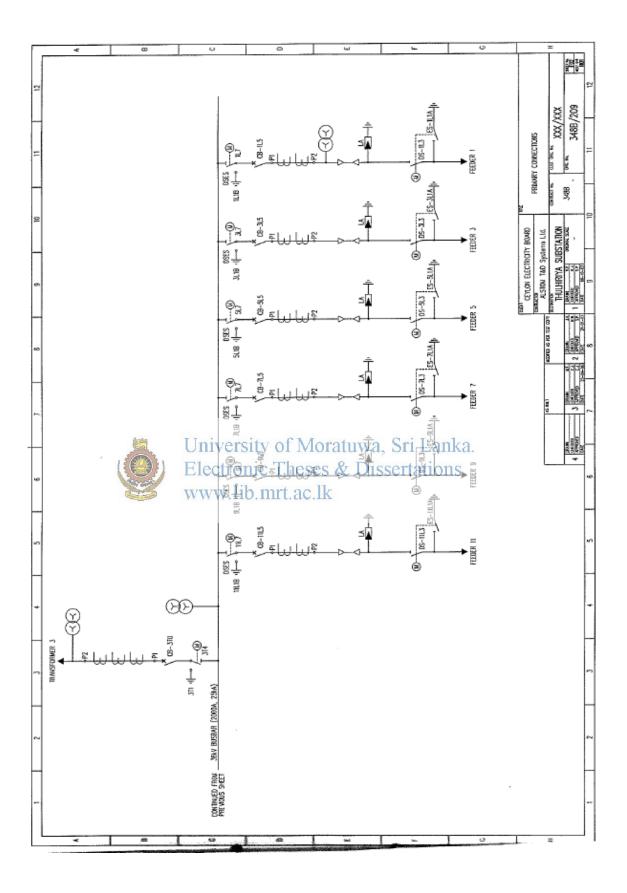

References

- [1] Zbigniew Leonowicz "Reactive power Compensation"
- [2] Dixon J "Reactive power Compensation Technologies, State of Art Reveiw".
- [3] *"CEB Statistical Digest-2011"*, Statistical Unit, Commercial & Corporate Branch, Distribution Region-3, PO Box 540, Colombo 02, Sri Lanka.
- [4] M.A.S. Masoum, M. Ladjevardi, A. Jafarian, M. Sarvi "Application of Fuzzy Theory and Local Variations Algorithm for Optimal Placement of Capacitor Banks in Distorted Distribution Feeders" Department of Electrical Engineering Iran University of Science & Technology Tehran, Iran, 168440
- [5] W.M.S. Deepika Wijesinghe "Study of optimal location for capacitor installation in a 220/132/33 kV Grid Substation" Department in Electrical Engineering, University of Moratuwa, February 2009
- [6] "Power Factor Basics" www.iea-4e.org/document/43/power-factor-basics
- [7] IEC 60871-1, "Shunt Capacitor for a.c. power systems having a rated voltage above 1000V"
- [8] IEEE States "2002 d for shunt Power Capacitors" Electronic Theses & Dissertations
- [9] ABB "Power Capacitor Units for improved power quality"
- [10] Ceylon Electricity Board "Specifications for CEB Grid Substations" Section 6-Employer's Requirement, Part B – Technical Specification
- [11] Grebe, T.E., "Application of Distribution System Capacitor Banks and their Impact on Power Quality"
- [12] Department of Electrical Engineering, University of Moratuwa, Sri Lanka "Report on Failures in the MVar capacitor bank at Pannipitiya 220/132/33 kV Grid Substation"
- [13] Silvio Segura, Ruben Romeo and Marcos J. Rider "*Efficient heuristic algorithm* used for optimal capacitor placement in distribution systems"
- [14] Durga Bhavani Mupparty "Capacitor switching transient modeling and analysis on and electrical utility distribution system using simulink software".
- [15] Larry M. Smith "A practical approach in substation capacitor bank applications to calculating, limiting, and reducing the effects of transient currents".


- [16] Siemens India "Study Report Pallekele GSS 20Mar BSC bay installation"
- [17] Govind Gopakumar & Kalyan K Mustapi "Shunt Capacitor Bank Switching Transients: A tutorail and case study"
- [18] D.D. Magala, K Nareshkumar & K. Varatharaja "Design of a VAR componsation for Pannipitiya GSS"
- [19] J.C. Das "Analysis and control of large shunt capacitor bank switching transients"
- [20] ABB "Capacitor, Detuned capacitor & filter bank products"
- [21] Schneider Electric "Power factor correction and harmonic filtering guide"
- [22] Switching transient task force of the IEEE modeling and analysis of system transients working group "Modeling guidelines for switching transients"



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Appendix 01: Single line diagram of Thulhiriya substation

Appendix 2 : Technical Specification of 132 kV Areva Circuit Breaker

2 Technical Description

2.1 Technical Data: Circuit Breaker

Type (see nameplate)		GL311- F1/4031/VR	GL312- F1/4031/VR
Rated voltage	kV	123	145
Rated normal current	А	3150	3150
Rated frequency	Hz	50/60	50/60
Rated power-frequency withstand voltage 50 Hz, 1 min			
 To ground 	kV	230	275
 Across open switching device 	kV	230	275
Rated lightning impulse withstand voltage			
- To ground	kV	550	650
 Across open switching device 	kV	550	650
Rated switching impulse withstand voltage (Un > 245 kV)			
- To ground	kV	Not applicable	Not applicable
 Across open switching device 	kV	Not applicable	Not applicable
Rated short-circuit breaking current			
 R.m.s. value of the a.c. component of 	kA	40	40
- University of Moratuv	wa, Sri	Lanka. 36	36
MinimpopeElectronic Theses & I)1SSenta	itions 35	35
First-pole-to-deaviactorb.mrt.ac.lk Rated transient recovery voltage		1.5	1.5
 Peak value 	kV	211	249
 Rate of rise 	kV/μs	2.0	2.0
Short-line fault			
 Surge impedance 	Ω	450	450
 Peak factor 		1.6	1.6
Rated short-circuit making current	kA	104	104
Rated out-of-phase breaking current	kA	10	10
Rated duration of short circuit	s KA	3	3
Rated operating sequence	Ū	O-0.3s-CO or CO-1	-3min-CO
Rated line-charging breaking current	А	31.5	50
Rated cable-charging breaking current			
CE weight per breeker	A	140	160 12
SF ₆ weight per breaker	kg	12	12 r
			-

2.2 Technical Data: Spring Operating Mechanism

Type (see nameplate)		FK 3
Motor for charging the closing spring:		
Rated voltage (preferred values)		
 Direct voltage 	V	60/110/125/220/250 *)
 Alternating voltage 	V	120/230 *)
Allowable rated voltage deviation		85 to 110 % Un
Power consumption	W	<750 **)
Closing spring charging time	s	< 15
Shunt releases, closing and opening:		
Rated supply voltage (preferred values only with direct voltage)	v	60/110/125/220/250 *)
Allowable rated supply voltage deviation		
 Shunt closing release 		85 to 110 % Un
 Shunt opening release 		70 to 110 % Un
Power consumption of releases		
 Shunt closing release 	W	340
 Shunt opening release 	W	340
Minimum pulse duration	ms	10
Auxiliary circuits:		
Rated continuous load current	Α	10
Auxiliary contact tripping capability		
- Al 230 V Herinathan Moratuwa, S	ri Lanka	. 10
-(AD20 V times veltage in an industive circuit with americanstant of L/R = 20 ms Anti-condensation Weath, mrt.ac.lk	rtations	2
Rated voltage (alternating voltage)	V	120 or 230 *)
Power consumption	Ŵ	80
r owor consumption		00

*) Specify when ordering.**) The exact value is shown on the motor nameplate.

	END.A.Ş.		Fb.N 3162 Sheet						
2.01	Rated po	ower:							
	23/31,5	(ONAN / ON	IAF)						
2.02	Power de	efinition :							
	Design a	nd power de	finition in	n line with IB	EC 76				
2.03	Voltage a	and current	<u>s :</u>						
		HV			LV				
Pos	Voltages (V)	Curr (A		Voltage (V)		rents A)			
1	145 200	0NAN 91,5	0NAF		ONAN	ONAF			
9	127 600		142,5	33 000	402,4	551.1			
16	#12 200	Universi	-						
	YNd1	Electron roup symbo www.lib ce voltage a	.mrt.a	c.lk	15541				
	Pos.	Base (k)	VA)	Windings	, II	mpedance (%)	voltage		
	7	31 500		HV / LV					
						-			
2.06	No - load	losses :							
2.06		losses : (1,00 x Un)	1						
	15 200 W.								
	15 200 W.	(1,00 x Un)	:	Windings		Load los (W)	ses		
	15 200 W. Load loss	(1,00 x Un) esat75°C	<u>:</u> /A)	Windings HV / LV					

Appendix 3 : Technical Specification of Alsthom power transformer

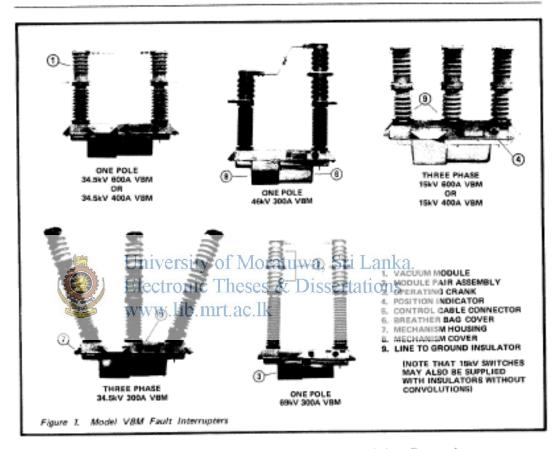
Max. operating voltage duration power frequency Impulse Windings Um withstand voltage AC Voltage	STOM TRIK END.A.Ş.	2.Tech	Fb.Nr 316272 Sheet 2/3	
Windings Max. operating voltage Um (effective value) (kV) duration power frequency withstand voltage AC (effective value) (kV) Impulse Withstand voltage L (peak value) (kV) HV 145 230 550 HV-N - 95 250 LV 36 70 170 209 Frequency : 50 Hz. 50 Hz 210 170 210 On-load tap changer : 50 Hz. MR onatuwa y Stick analysis of they at your of Meonatuwa y Stick analysis of they at your of Meonatuwa y Stick analysis of they at your of steps onic The Sci & 10 issertations 211 Motor drive unit: ED 100 S E12 Cooling method : 0NAN / ONAF 0 °C issertations 213 Temperature rise limits : Max ambient temperature : 40 °C Top oil : 60 K. Winding : 65 K. 20 °C 214 Setting of monitoring devices: For oil temperature CT 031 1.Gr Fan Stop : 50 °C	2.08 Insulation	level :		
HV-N - 95 250 LV 36 70 170 2.09 Frequency : 50 Hz. 50 Hz. 50 Hz. 2.10 On-load tap changer : M8 50 Hz. 2.11 On-load tap changer : M8 50 Hz. 2.11 Motor drive unit: ED 100 S 50 Hz. 2.12 Cooling method : 0 °C 70 Hz. 0 NAN / ONAF 60 K. 60 K. 2.13 Temperature rise limits : 60 K. Max ambient temperature : 40 °C Top oil : 60 K. Winding : 65 K. .14 Setting of monitoring devices: For oil temperature CT 031 1.Gr Fan Stop : 50 °C	Windings	voltage Um (effective value)	duration power frequency withstand voltage AC (effective value)	Withstand voltage LI (peak value)
LV 36 70 170 LV 36 70 170 2.09 Frequency : 50 Hz. 50 Hz. 2.10 On-load tap changer : 50 Hz. Make University of Meonatuwa y Strigtsenkenasor for of steps onic These's & Dissertations Dissertations Contract drive unit: ED 100 S 2.12 Cooling method : ONAN / ONAF Cooling method : ONAN / ONAF Aux ambient temperature : 40 °C Top oil : 60 K. Winding : 65 K. 2.14 Setting of monitoring devices: For oil temperature CT 031 1.Gr Fan Stop : 50 °C	HV	145	230	550
209 Frequency : 50 Hz. 50 Hz. 50 Hz. Make University of Maonatuses y Str25.act kansage University of Maonatuses y Str25.act kansage University of Maonatuse y Str25.act kansage	HV-N	-	95	250
50 Hz. 2.10 On-load tap changer : Make University of Meanatuwa y Stielsankanasor Dependent factories (MR) Stielsankanasor Dissertations (Interpretent factories (Interpretent) (Interpretent) (Interpretent) Stielsankanasor (Interpretent) (Interpretent) Stielsankanasor (Interpretent) Stielsankanasor (Interpretent) (Inte	LV	36	70	170
ONAN / ONAF 2.13 Temperature rise limits : Max ambient temperature : 40 °C Top oil : 60 K. Winding : 65 K. 2.14 Setting of monitoring devices: For oil temperature CT 031 1.Gr Fan Stop : 50 °C	Make Tabe U Strider of Hered three	Iniversity of Mo lectronic These www.libmrt.act	s & Dissertations	
2.13 <u>Temperature rise limits :</u> Max ambient temperature : 40 °C Top oil : 60 K. Winding : 65 K. 2.14 <u>Setting of monitoring devices:</u> <u>For oil temperature CT 031</u> 1.Gr Fan Stop : 50 °C	Make Detiment der of der of d through	Iniversity of Mo lectronic These www.libmrt.act	s & Dissertations	
Max ambient temperature : 40 °C Top oil : 60 K. Winding : 65 K. 2.14 Setting of monitoring devices: For oil temperature CT 031 1.Gr Fan Stop : 50 °C	Make Ustiment Construction of And thread ED 100 S	Iniversity of Mo lectronic These www.lib.mrt.ac.l	s & Dissertations	
Top oil : 60 K. Winding : 65 K. 2.14 <u>Setting of monitoring devices:</u> <u>For oil temperature CT 031</u> 1.Gr Fan Stop : 50 °C	Make Line U Line U Line of Articler of ED 100 S 2.12 <u>Cooling m</u>	Iniversity of Ma lectronic These www.lib.mrt.ac.l. unit.	s & Dissertations	
For oil temperature CT 031 1.Gr Fan Stop : 50 °C	Make Line U Line of And three ED 100 S 2.12 <u>Cooling m</u> ONAN / ON	Iniversity of Ma legtonic These www.libmmrt.action unit: ethod : AF	s & Dissertations	
1.Gr Fan Stop : 50 °C	Make Ustment Ver of ED 100 S 2.12 <u>Cooling m</u> ONAN / ON 2.13 <u>Temperatu</u> Max ambier Top oil	Iniversity of Mao Iccironic These www.dibomrt.acol unit: ethod : AF ire rise limits : it temperature : 40 : 60	& Dissertations	
	Make Ustiment ider of ED 100 S 2.12 <u>Cooling m</u> ONAN / ON 2.13 <u>Temperatu</u> Max ambier Top oil Winding	Iniversity of Mao Iccironic These www.difermrt.acel unit: AF Ire rise limits : It temperature : 40 : 60 : 65	& Dissertations	
	Make Under drive ED 100 S 2.12 Cooling m ONAN / ON 2.13 Temperatu Max ambier Top oil Winding 2.14 Setting of	Iniversity of Mao Sectionic These www.dionmrt.acol sunit: AF Int temperature : 40 : 60 : 65 monitoring devices:	& Dissertations	

ALSTOM ELEKTRIK END.A.Ş.	2.T	echnical Data	Fb.Nr 316272 Sheet 3/3
Alarm Tripping		: 79 °C : 89 °C	
Winding	temperature CT 033		
1.Gr Fan 2.Gr Fan Alarm Tripping	Start Start	: 70 °C : 80 °C : 94 °C : 104 °C	
Winding	temperature CT 034		
1.Gr Fan 2.Gr Fan Alarm Tripping		: 70 °C : 80 °C : 95 °C : 105 °C	
2.15 Current	transformer :		
(Canada)		Moratuwa, Sri Lanka. eses & Dissertations c.lk	
<u>T24:</u> Burden Class Ratio		: 10 VA : 3 : 700 / 2 A	
2.16 Weights	(kg):		
Total wei	t weight(without oil)	: 59 500 kg. : 41 000 kg. : 14 600 kg. : 31 500 kg.	
	STOR To deploy and to pain over to the		

BRIT Calculated Ma breaking r load	breaking load	Steel Total kN Ω/km	602 58.0	726 69.2	506 35.7		587 41.1	388 974 92.3 0.1363	1095 100.5	111.2	1489 135.8	1718 156.3	1411 118.5	1444 120.9		671 46.6	91 671 46.6 0.1367 785 1971 178.5 0.0673
Weights	weight	Aluminium ka/km		437	437	507	507	586	659	730	896	1034	1032	1056	580		1186
		Total mm ²	161.8	194.9	167.5	226.2	194.5	261.6	293.9	326.1	400.0	462.6	422.6	431.2	222.3		529.8
Larea Larea	a enive	ersi Tistee	30.62	38.88 Jo	N. 8.81	01 42.79	rat		09 ² 29 /a,		15.67	Es 28 Lar	148.49 148.49		11.70		100.20
Elec www	lecu /ww		13D	rt.	ac		528 K	2127	23873	2653	324-3		37451	381.7	210.6		429.0
Overall diameter	Overall diameter	Ē	16.52	18.13	16.75	19.53	18.05	21	22.26	23.45	25.97	27.93	26.73	27	19.3	00000	29.83
nding wire leter		Steel	7/2.36	7/2.59	1/3.35	7/2.79	1/3.61	7/3.00	7/3.18	7/3.35	7/3.71	7/3.99	712.97	7/3.00	1/3.86	LC VIL	17.41
Strand and wi diamef	_ EI.	Aluminium	30/2.36	30/2.59	18/3.35	30/2.79	18/3.61	30/3.00	30/3.18	30/3.35	30/3.71	30/3.99	54/2.97	54/3.00	18/3.86	20 M 27	17:100
Equivalent copper area	copper area	mm ²	80.7	96.8	97.9	113	113.7	129	145	161	194	226	226	226	130	258	
	aluminium area	mm ²	125	150	150	175	175	200	225	250	300	350	350	350	200	400	
Code Name	Code Name		£	5	DINGO	LYNX	RACAL	PANTHER	Z	BEAR	AT	Ъ	ANTELOPE	NO	JAGUAR	ER	

Appendix 4 : 132 kV Conductor data sheet

Appendix 5 : Manual of Joslyn Circuit Breaker


JOSLYN

Joslyn Hi-Voltage Corporation 4000 East 116th Street Claveland, Ohio 44105

Telephone (216) 271-6600 Fax (216) 341-3515 I, 750-310 Revised September, 1995 Supersedes May, 1992

Model VBM Fault Interrupter

Instructions

Contents

General

- 1. Description
- 2. Servicing
- 3. Renewal Parts

Installation

- 1. Inspection and Uncrating
- 2. Mounting
- 3. Control Wiring
- 4. High Voltage Connections

Testing Vacuum Contacts

- 1. High Potential
- 2. Contact Resistance

Servicing Procedures

- 1. Removal and Replacement of Housing Cover and Breather Bag
- Removal and Replacement of a Module Assembly
- Synchronization of Replacement Module Assembly
- 4. The Solenoid Operator
 - Solenoid Assembly Replacement
 Wiring Harness and Auxiliary
 Switch Assembly Replacement
 - c. Auxiliary Switch Adjustment
- 5. Switches Rated 1,000 Amperes
- or Higher
- 6. The Motor Operator

I. GENERAL

DESCRIPTION (Figures 1, 2, & 3) 1.

The VBM Vacuum Interrupter is manufactured in voltage ratings from 15 to 69 kV with continuous current capabilities from 300 amperes. The mechanism may be operated manually, or electrically by solenoid or motor operators.

The assembly containing the vacuum interrupter is called a module (Figure 2). Each module has an interrupter contact (Figure 3) sealed in Joslyte, a solidified foam which provides mechanical strength, high dielectric strength and complete moleture series. moisture staling. The module housings are cycloalephetic or EPR rubber bonded to a fibergias tube. One or two modules are mounted on each insulator and connected to the machanism by a high strength pull rod.

The completely sealed operating mechansim housing supports line-to-ground insulators and the modules. An expansion bag in the housing prevents "breathing-in" contaminants or moisture and contains a desiccant package to maintain dry air.

All electrical control connections to the mechanism are made through a single environmental control cable connector.

An "Open-Closed" position indicator is directly coupled to An "Open-closed position indicator is directly coupled to the machanism. A separate operating crank enables manual operation of the switch. The entire assembly can withstand several G's without damage. Depending upon rating there may be one or more mechanisms for a three phase switch.

SERVICING 2.

Servicing of VBM switches is easily accomplished by refer-ring to the appropriate section of these instructions. The following tools are required: a. 0 to 1.000" dial indicator, graduated in .001",

- b. Continuity lamps as required,
 c. 0-150 inch-pound torque wrench,
- d. Socket or wrench set.
- e. C-Clamp. f. 30kV AC High Potential Test Set.

REPLACEMENT PARTS а.

Replacement parts are stocked in Cleveland, Ohio. Furnish complete nameplate data and the Hi-Voltage Corporation G. O. Number, applying to the original purchase, along with description of the part and quantity required.

II. INSTALLATION

INSPECTION AND UNCRATING ۱.

Carefully inspect the equipment on arrival and report any damage to the carrier, file a claim, and contact Jostyn for replacement parts and service.

Remove crating surrounding the VBM switch. Do not unbolt the switch from the wooden bass. PERFORM HIGH POTENTIAL AND CONTACT RESISTANCE TEST DE-SCRIBED IN SUCTION III, PRIOR TO PUTTING EQUIP-MENT INTO SERVICE.

MOUNTING 2

Attach an erecting sling to each mochanism as shown in Figure 4. Make cortain the lift is stabilized. Remove the three nuts holding VBM to the wooden base. Hoist the switch to its mounting with the manual operating handle facing the desired direction. Fasten the VBM to its mounting with three 5/8" bolts and remove the crecting sling. THE STRUCTURE AND VBM MECHANISM HOUSING MUST BE SOLIDLY GROUNDED.

CONTROL WIRING

Control power must meet the requirements of the drawing supplied with the switch.

All control connections are made through either of the following, depending on the switch:

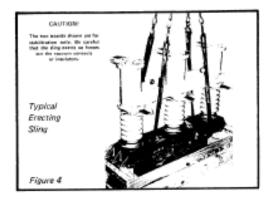

a. Environmental cable and connector. The cable may be ortened to desired length. Connection to the control en-

Figure 2. Cutaway drawing of single vacuum module on 15kV line to ground insulator.

Figure 3. Cutaway photograph of vacuum contact. Mov-ing contact separates 0.160" from fixed contact. Copper bellows preserves vacuum interrupting dielectric.

closure must be in accordance with the approved wiring diagram.

b. A NEMA 12 junction box mounted on the housing wired to the mechanism through conduit.

4. HIGH VOLTAGE CONNECTIONS

The terminal pads are aluminum alloy with standard NEMA two-hole drilling. The electrical connection at the terminal pad must be treated with Alcoa No. 2 joint compound or equivalent. Wire brashing through the compound will improve the connection.

III. TESTING AND EVALUATION OF VACUUM CONTACTS

Two tests may be performed to evaluate the vacuum contacts. They should be performed across each module apprately. Figure 5 indicates connection point for single and double recurm module assemblies.

1. HIGH POTENTIAL Low argum numiversity of Moratuwa open statement of a voltages below 30 kV, RMS. Only AC high statement of the control 10°C 1-10°C Sector Dis used states to kV RMS across each individual contact for 15 account and a polymore than the voltage of the statement of X-rays.

During the high potential testing, self-extinguishing, momentary breakdowns issting only a few microseconds may occur. These "barnacles" are not significant but can result in false indication of vacuum loss, if the test set utilizes a high speed overload relay or breakter.

During normal operation with the switch in service, loss of vacuum or a defective switch module may be indicated by exoessive radio noise with the switch open or observation of different surface temperatures of modules on the same switch. See Joshyn Engineering Memo T.D. 750-918.

2. CONTACT RESISTANCE

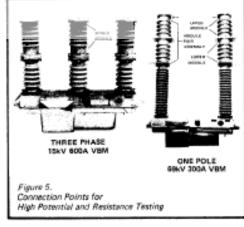
With the switch closed, the resistance across each module should be less than 200 micro-ohms. On switches with modules connected in parallel for higher current operation, remove the connecting bus to perform this test. If higher resistance values are measured contact the Joslyn H-Voltage Corporation.

IV. SERVICING PROCEDURES

1. REMOVAL AND REPLACEMENT OF THE HOUSING COVER AND BREATHER BAG

Remove screws that hold the machaniam cover to the switch base. Care must be taken to keep the gasket and mating surfaces free of tool marks, soratches, scars, and foreign material. The valve stem protrucing from the bottom of the mechanism housing should be kept seeled. It is intended only for leak testing during manufacture. The expansion chamber or breather bag is hold by one bolt accessable from inside the mechanism cover. It may be removed or replaced by opening the closure plates or the separate breather bag cover added to switches supplied beginning 1982.

Before replacing the cover, clean and dry the gasket and mating surfaces. Apply silicone grease (Dow Corning DC III or equivalent) to mating surfaces and position gasket. A new or revitalized desiceant package should be placed in the operator cavity section of the cover. Secure the twelve cover screws torqued to 50 inch-pounds.


2. REMOVAL AND REPLACEMENT OF A MODULE ASSEMBLY

A. REMOVAL

One or two modules are mounted on each insulator depending on switch rating. Module pair assemblies should not be separated in the field because special tools are required for assembly and adjustment. If one module of a module pair assembly is defective, the complete module pair assembly must be replaced.

To remove a module assembly, disconnect all power from the VBM and remove the mechanism cover. Disconnect pull rod from the switch mechanism by removing two bolts and washer plates (see Figure 6, Item 7). Remove four bolts at top of insulator and fift module assembly complete with lower terminal pad and pull rod from the insulator. Insulators may be removed by taking out four cap screws holding them to the solution of the sector of the screws holding them to the solution of the screws holding them to

Dissertations

3

B. REPLACEMENT

1. PREPARATION OF THE REPLACEMENT MODULE ASSEMBLY

Remove the bolts temporarily holding the lower termi plate to single replacement modules. WITH THE BOLTS RE-MOVED, EXTREME CARE MUST BE USED NOT TO PUT ANY FORCE WHATSOEVER ON THE LOOSE TERMINAL PAD SINCE THIS FORCE WOULD BE DIRECTLY TRANS-MITTED TO THE DELICATE BELLOWS OF THE VACUUM MODULES. ANY TWISTING COULD RESULT IN IMME-DIATE LOSS OF VACUUM. The double module assembly consists of two modules in series, an upper terminal plate and a lower terminal. It should not be disassembled. The single odule and module pair assemblies are mounted in the same manner. An aluminum clevis link may be bolted in the unit anism end of replacement pull rods. If so, remove the aluminum clavis link and discard it. DO NOT attempt to replace the link already in the mechanism.

All single replacement modules are supplied with a separate "screw-on" pull rod. It is installed by slowly screwing onto the bolt in base of the module. Stop as thread bottoms to a-void putting any stress or strain on the vacuum contact. Back the rod off a maximum of one turn as required to mate with the clevis link on mechanism.

Earlier modules utilized either a permanently attached pull rod or a "screw-in" dasign. To replace a "screw-in" pull rod, slip the 1" nylon bushing supplied over the bolt end of the rod and slowly screw into the threaded module base. Stop as thread bottoms and back rod out approximately three full turns as required for proper orientation with mechanism.

Double module assemblies of the present design utilize a pull rod which is holted to a draw bar in the lower module. All necessary hardware is suggited with replacement double module assemblies. The former design utilized a "acrew-on" pull rod system.

All module assemblies are interchangeable and may be used All module assembles are interchangeable and may be oded on the same mechanism, regardless of type of pull red, how-ever using a present and former design double module pair assembly on the same mechanism requires special considera-tions. If this singuion is required, contact the Joslyn H-Voltage Equipments Division. UNIVERSITY OF N

BUMPING OF BTING ANY PULL ROB WHEN AT. beinged (6) the holds the second at a reading midpoint be-TACHED TO THE CAN DO NOT THE VACTORS CS1 (0.5 LIGHT OLDS) to module assemblies on INTERRUPTION THE CAN DO NOT THE CAN DO NOT THE STATE OF THE WWW.lib.mrt.ac.liste from that shown in Figure 6. Torque the connecting bolts

2. MOUNTING THE REPLACEMENT

MODULE ASSEMBLY

Apply silicone grease (Dow Corning DC III or equivalent) to all mating surfaces. Cork gaskets should be replaced. Rub-ber gaskets may be reused. Insert pull rod through insulator with module terminals in proper position. Fasten the replace-ment module to insulator with the 's'' bolts, nuts, and washers from the original module. Tighten the bolts evenly.

In mounting insulators and vacuum switch me dules, partic ular attention should be paid to torque values. If a bolt head or nut bears on porcelain it should be torqued to 25 inchpounds, otherwise torque to 50 inch-pounds

With switch mechanism closed, attach pull rod to the steel clevis link of the machanism with bronze bolts, nuts, lockwash-ers, and stainless steel washer plates placed outside the pull rod side pieces. Do not tighten the nuts to facilitate adjustment.

3. SYNCHRONIZATION OF REPLACEMENT MODULE ASSEMBLY (Figure 6)

Operation of a replacement module assembly must be synchronized with other module assemblies on the machanism. chronized with other module assemblies on the machanism. Module pair assemblies are synchronized using the lower con-tracts only. Synchronization refers to the difference in over-travel of modules (or lower contacts of module pair assemblies) on the same operating mechanism. Although the actual over-travel measurement will be dependent upon the ambient temperature, synchronization is not affected by the ambient temperature.

a. Place the continuity lamps across all modules connected to line-to-ground insulators on the mechanism. DO NOT AT-TEMPT TO SYNCHRONIZE A LOWER MODULE WITH AN UPPER MODULE ON A MODULE PAIR ASSEMBLY

b. Attach a dial indicator (1) to the mechanism to measure vertical movement of the switch actuating bar. Joslyn recommends the dial guage indicator be positioned against the bolt head as indicated by the arrows in Figure 6. It is shown out of position to enable photographing of other components.

e. CLOSED POSITION INITIAL REFERENCE

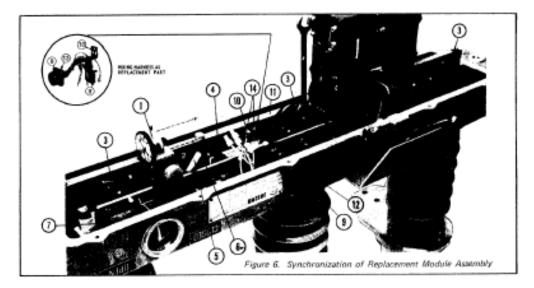
Put switch in closed position. The close stop (2) should be positioned so that toggle lines (3) are about one degree off vertical toward open position of the switch (see Figure 7 or 12 for solenoid or motor operators respectively). If adjust-ment is necessary, loosen the clamping bolts, reposition, and retorque to 120 inch-pounds. Adjust dial indicator to zero.

d. FULL TRAVEL

Put switch in open position. Dial indicator should read 0.205" ±0.005". If out of tolerance, adjust open stop (4). Retorque bolts to 120 inch-pounds.

OVERTRAVEL

With switch in closed position, slowly move the mechanism toward the open position with a %" wrench on a toggle link (3). Observe the dial gauge reading at which the continuity light(s) on the other module(s) goes out. This movement mea-sured is the "OVERTRAVEL". At ambient temperatures be-tween 50 and 50°F, the lights should go out at 0.040" 2.004" really were a Corer (3) barren the close stop (1) and


7) on the replacement assembly pull rod to 75 inch-po

f. SYNCHRONIZATION

Remove the spacer and close the mechanism. Slowly ope the mechanism and observe the continuity lamps. Note the dial readings at which the replacement and adjacent modules open. The last lamp must go out within 0.005" mechanism travel after the first lamp. If synchronization is not schived, loosen pull red varying the "set" position in appropriate di-rection until all single or lower contacts open within 0.005" of mechanism travel

g. After module pair assemblies have been synchronized using the lower contacts only, the synchronization between upper and lower contacts should be verified. The synchroni-zation of upper and lower contacts is related to ambient tem-ters. penature. At temperatures between 50°F, and 50°F, the dial gauge should measure a maximum of 0.010° travel of the act-uating has between the opening of each lower contact and its corresponding upper contact.

4

4. THE SOLENOID OPERATOR

In the single solenoid operator, two solenoids, one for opening and one for closing are used to move a toggle linkage over conter releasing stored spring energy to open and close the vacuum contacts. This operation is sequentially described in Figure 7.

a. SOLENOID ASSEMBLY REPLACEMENT (Fig. 7)

Open splicing connectors on the four black solenoid wires. Leave black wires as long as possible. Remove two bolts (F) and the solenoid assembly is released. As the assembly is removed, the nylon actuating pins (G) will fall out.

One or both solenoids can be replaced by removing and replacing the appropriate bolts holding the assembly together. All bolts should be torqued to 70 inch-pounds.

To remount the solenoid assembly, insert sylon actuating pins and position the assembly. Torque two mounting bolts (F) to 200 inch-pounds. Connect the four black solution coil leads to corresponding wires using new insulated compression splices.

To insure operating components freedom of movement necessary to achieve proper operation speed, use a feeler gauge to check that end play of each actuating pin should be between .070 and .090". Marmally change switch position to check other pins. End play is adjusted by adding or removing flat washer shims (H) under nylon spacer slateres.

b. WIRING HARNESS AND AUXILIARY SWITCH ASSEMBLY REPLACEMENT (Figure 6)

The auxiliary switch (8) and cable connector (9) are integral parts of the wiring harness assembly. The entire assembly must be removed as a unit. Open splicing connectors on the four black solenoid wires. Remove the auxiliary switch bracket (10) from the support bar (11). Remove four sortwas (12) which hold the environmental control cable connector and pull wiring harness assembly out of housing.

To Smelall write bases, clean surfaces of casting where bone-tor mouths. Apply a small amount of allicone grease (Dow Corning DC III or equivalent) to gasket (13) of new conbose in the second of the second of the second of the second liner switch and rewire.

c. AUXILIARY SWITCH ADJUSTMENT (Figure 6)

With mechanism in closed position, use a C-clamp to hold the operating crank to its cover, so the crank cannot move from the closed position. Attach dial indicator (1) and set at zero. With a wrench on toggle link (3) move the mechanism toward the open position. The auxiliary switch (8) should operate at or before .175" vertical movement is indicated. Slowly return mechanism to closed position. The auxiliary switch should operate before the mechanism has returned to within .025" of the fully closed position. If adjustment is not correct, release bolts (14) and reposition bracket in appropriate direction. Retighten the bolts and recheck operation. Repeat until auxiliary switch operations occur within the allowable range. Tighten bolts to 70 inch-pounds. If proper adjustment cannot be achieved, replace wiring harness and auxiliary switch as directed per instructions.

5. SWITCHES RATED 1,000 AMPERES AND HIGHER

These switches utilize modules connected in parallel. For some ratings more than one mechanism per pole is used. They are installed per instructions in Section II and connected per Hi-Voltage Corporation drawings and control schematic for the particular switch.

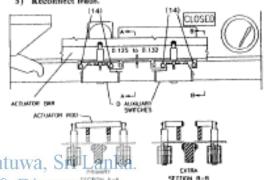
All servicing and testing is performed on separate mechanisms by removing the connecting bus and referring to the appropriate section of these instructions.

6. THE MOTOR OPERATOR

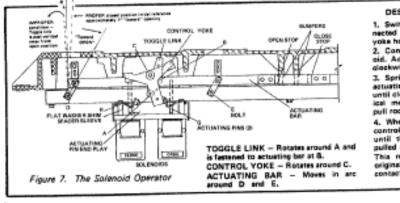
A series motor drives a cam which loads a spring assembly. When the springs are fully loaded, the cam releases a linkage closing the vacuum switch using one-half the energy in the spring assembly. A low energy solenoid releases the energy of the spring energy in the spring assembly through the same linkage to open the interrupter. Operation is sequentially described in Figures 8 through 11. The design inherently prevents closing the switch, unless sufficient energy to trip is stored in the spring assembly.

The VBM motor operator is designed to operate at 24VDC, 48VDC, 125VDC, or 120VAC depending upon application.

The switch may be operated manually using a switch hook. An operating crank is located on the switch housing. The crank ends are notched to receive the switch hook. To close The Fault Interrupter, place a switch hook in the notch above the words "Push to Close" and pump. After approximately 25 strokes, the switch will close. A unique rotary clutch allows steokes of any length to rotate the cam. A single swift push in the notch above the words "Push to Open" will trip the switch. Vacuum contact operating speed is independent of speed of manual activation.


The motor operator consists of a mechanical energy storage assembly and a control assembly. The control assembly is lo-cated in the base of the YBM switch. Connections to external circuitry are made through a control cable with environmental connectors.

1. ELECTRICAL


- a. Control Assembly (Figure 15); Remove ratire controls assembly (A) by removing the mounting solt (B) and discovering public productionatuwa, (C), and removing control assembly.
- b. Replace Storn terminals of auxiliary switch(es) (D). Removed the storn terminals of auxiliary switch(es) (D). Removed terminals of auxiliary switch(es) (D). Removed terminals of auxili casting where connector mounts. Apply a small amount

of silicone grease to gasket of new connector. Install new harness (G) and rewire.

- Auxiliary Switch(es) (D) (Figure 8);
- Replace by removing leads and two mounting screws,
- 1) Replace auxiliary switch assemblies and actuating rod. With mechanism in open position set clearance between auxiliary switch mounting bracket and actuating bar at .125" to .132". (Note location of the mounting bolts.
- With mechanism in closed position, use a C-clamp to hold the operating crank to its cover, so the crank cannot move from the closed position, attach dial indicator and set to zero. With a wrench on toggle link (3) move the mechanism toward the open position. The auxiliary switch contacts should change state at or after .040" vertical movement is indicated. Slowly return mechanism to closed position. The auxiliary switch confacts should change state before the mechanism has re-turned to within .040" of the fully closed position. Auxiliary switch should have a .020" min. overtravel. (Ref. Figure 6).
- 3) If adjustment is not correct, release bolts (14) and reposition brackets in appropriate direction. Retighten olts and recheck operation.
- Repeat until auxiliary switch operations occurs within the allowable range. Tighten bolts to 20 inch-pounds. 4) 5) Reconnect leads

Note: An obsolets such any switch (As noted by observing a metal ple extension through the extention bars to the auxiliary switched) can be replaced as described above. However, the aid metal pln ectual top mail, be cut as shown in figure 9, for removal.

DESCRIPTION OF OPERATION Switch is open. Spring assembly con-nected between toggle link and control yoke holds open stop against burtger.
 Control circuit energizes close solen-oid. Actuating pin rotates centrol yoke clockwise until toggle link is over center.

Spring assembly pulls toggle link and actuating arm in counterclockwise are until close stop and bumper engage. Vert-ical movement of actuating ber reises pull rods and closes vacuum contacts.

poin roos and closes vectors contacts. 4. When open sciencid is energized, the control yoke is rotated countercleckwise until the toggle lisk is over center and pulled clockwise by the spring assembly. This returns the actuating bar to the original position, opening the vacuum constants. CAULS.

6

REMOVE COTTER FIN AND WASHER FROM FIN, REMOVE SPRING FROM ACTUATOR BAR, (BOTH ENDS)

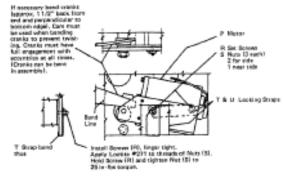


Figure 10

d. Metor Neg all motors are identical. When ordering replacement motors, the catalog number from the VBM namplete must be supplied. New control panel may be required for obsolete metors.

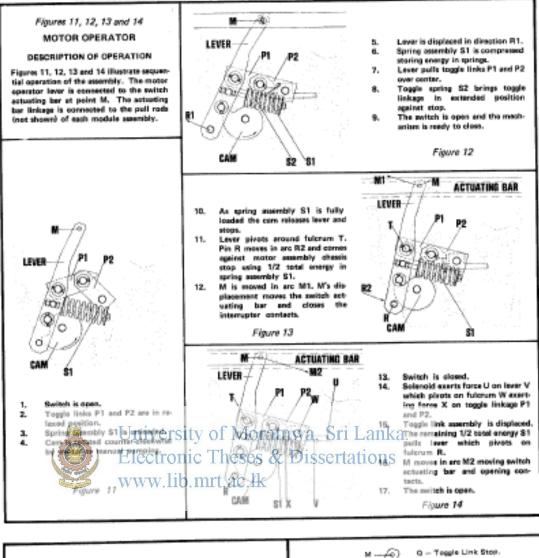
- Remove two set screas: (H0 0f present). Disconnect push-on connectors of motor leads from relay. Deform locking strap (II) and remove two bolts (J). 1) 20 20
- IND SHE REFERENCE (PD).
- The new Strain Locale 271 or breach. Division for assistance.

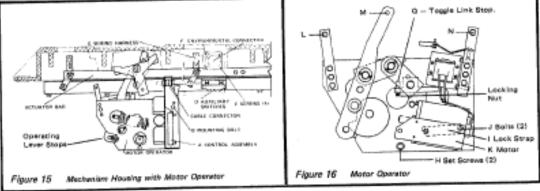
www.lib.mrt.ac.lk

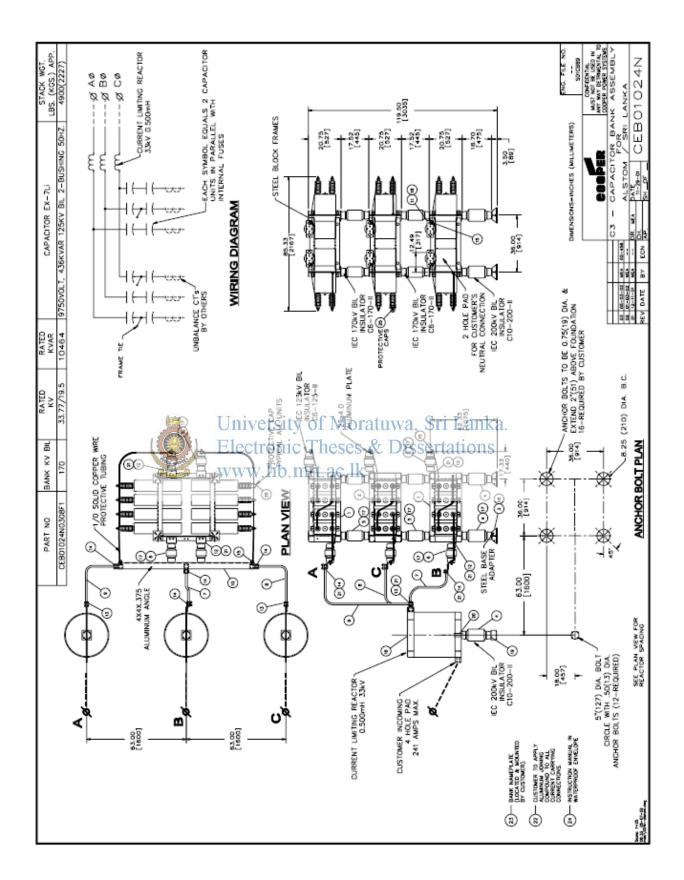
Electronic Theses & Dissertations

- g. Adjust main operating lever assembly stops of motor operator assembly (Figure 15). With VBM fault inter-rupter in the closed position, the pin "R" (Figure 13) should turn fronty. There should be no contact between the pin "R" and the stops. A separation of 0.015" ² 0.005" between the pin "R" and the bolt heads should be achieved by adjusting the bolts. The separation should be equal on both sides so that symmetrical forces are imparted to the motor operator assembly as the VBM fault interrupter is opened.
- h. Adjust toggle link assembly stop (Figure 1.3) as follows:
 1) Close VBM fault interrupter.
 2) Verify proper "closed position initial reference" is achieved, see Section 3, paragraph C.
 - 3) Screw in toggle link assembly stop O until VBM fault
 - interrupter trips.
 - Back the screw % turn.
 Close the VBM fault interrupter. Unit should not trip. If it does, back screw out an additional one free.
 - fourth turn. 6) The screw Q should not be backed out more than one turn from the reference point at which the VBM fault interrupter trips, as described in step (2) above.
 - 7) After proper operation has been achieved, apply "C" grade Locktite to fix screw setting and tighten
 - locking nut. 8) Verify that operation of all vacuum modules are synchronized per Section 3.

RECLOSING OPERATOR ٧.


VBM Fault Interrupters furnithed with the Reclosing Operator are typically applied for breaker applications where both high speed reclosing and minimum interrupting time are the most significant requirements. The Reclosing Operator does not require periodic lubrication or adjustment. Contact the Customer Service Section at the Hi-Voltage Equipment


2. MECHANICAL


If a malfunction of the motor operator linkage occurs, re-place the entire operator assembly (Figure 16). Two spring compressor devices are needed to hold and relieve pressure from the two main spring assemblies (S1 in Figure 4). Figure 16 shows where motor operator assembly is attached at points (L), (M) and (N).

- a. Detach Control Assembly as explained in Section 1.s.
- b. Remove two cotter pins (not shown) holding pin (M). Remove pin (M).
- e. Remove Sel-Lock pins in holds (L) and (N) by driving them with an appropriate rod.
- d. Install new motor operator in reverse order. Re-use Sel-Lock pins.
- e. Adjust the motor operator as required.
- f. Varify position of the "close" and "open" stops of the VBM per Section 3, with special attention to the "closed position initial reference".

 τ

Appendix 6 : Installation of capacitor bank at Thulhiriya GSS

Appendix 7 : Technical Specification of Novar 300 Controller

2. TECHNICAL SPECIFICATION

2.1 RATINGS, OPERATING RANGES & FEATURES

2.1 RATINGS, OPERATING	G RANGES & FEATURES
Voltage Rating (Vn)	110 V, 120 V, 415 V, 480 V. Others available in range 63.5 V to 500 V max.
Current Rating (In)	1 A or 5 A. Others available in the range 0.5 A to 5 A max.
Input Connections	IA, VBC, or IB, VCA or IC, VAB IR, VYB, or IY, VBR or IB, VRY, IR, VST, or IS, VTR or IT, VRS.
Line Current Transformers	Class 1, 5 VA
Operating Ranges Voltage Current Frequency Humidity	85 110 % Vn 0120 % In 50/60 Hz 093 % +2 % -3 % Relative (non-condensing)
Temperature Range	Storage: -40 80° C Operating: -10 55° C
Overload Ratings Electron	c/k 0.031.00 ity of Nioratuwa, Sreadingka. is Theseso&edissertations 2 x larcentingously 20 x In for 3 seconds
Isolation	The controllers will withstand: 2 kV rms, 50/60 Hz for 1 minute between: - all terminals to case - current terminals to all others - voltage terminals to all others - output contact pairs (Volt Free versions)
Impulse Voltage Test	The controller will withstand: 5 kV 1.2/50 us, 0.5J, to BS923 and IEC 255-22-1 between: - all terminals and case - current input terminals - voltage input terminals - output contacts (open) - any pair of independent circuits
Output and Alarm contact	Make 1250 VA_500 V a.c. resistive

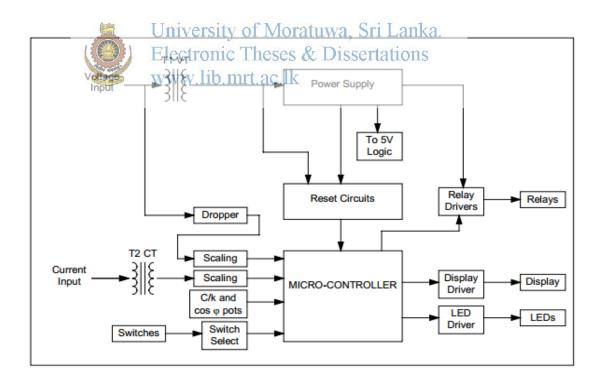
Output and Alarm contact make 1250 VA, 500 V a.c. resistive Carry 5 A a.c. Break 5 A a.c. Type: one normally open

2.1 RATINGS, OPERATING RANGES & FEATURES (cont.)

No-volt release		All output contacts are disabled within 15 ms. After the supply voltage is restored, normal operation is resumed, and the outputs are energised in sequence after the appropriate safety lockout time has elapsed.
Burdens		Current circuit: 0.2 VA at In Voltage circuit: 9 VA (6 stages energised) 15 VA (12 stages energised)
Net weight		All models: 1.5 kg
Terminals		Barrier type: M3.5 Plug-in wire size: 12.5 mm ² (1814 AWG)
Switching style		Rotational or linear (see Figure 3). Selected at time of order. Rotational switching evens the contactor wear (for the largest step size only) and generally reduces the system response time. It is implemented for all sequences on NOVAR 300, if requested.
Intelligent switchin	g	If twice the minimum capacitor size (or more) is required, then the NOVAR will switch in a double step. This applies for all sequences. For sequence 00 (1:1:1), the second capacitor will be connected after an additional delay of two seconds.
Limit selection	Univers Electron www.lil	Up to 12 plus alarm output. The maximum possible for any configuration is determined by the number of relays fitted and The selected Seguence (fothe selected value is too high, the unit will automatically override it to the highest allowable value.

Safety lockout

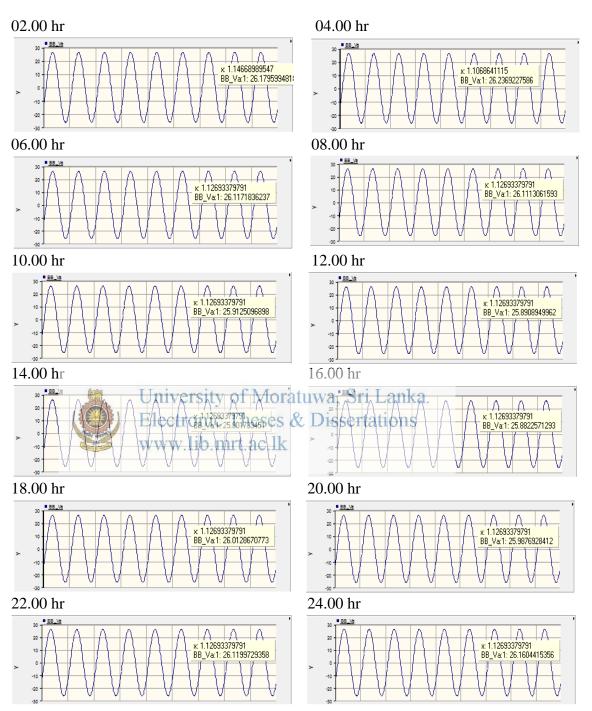
The time required to safely discharge a capacitor can be set to any of 8 different values. The NOVAR will not allow any capacitor to be re-energised until this time has elapsed.

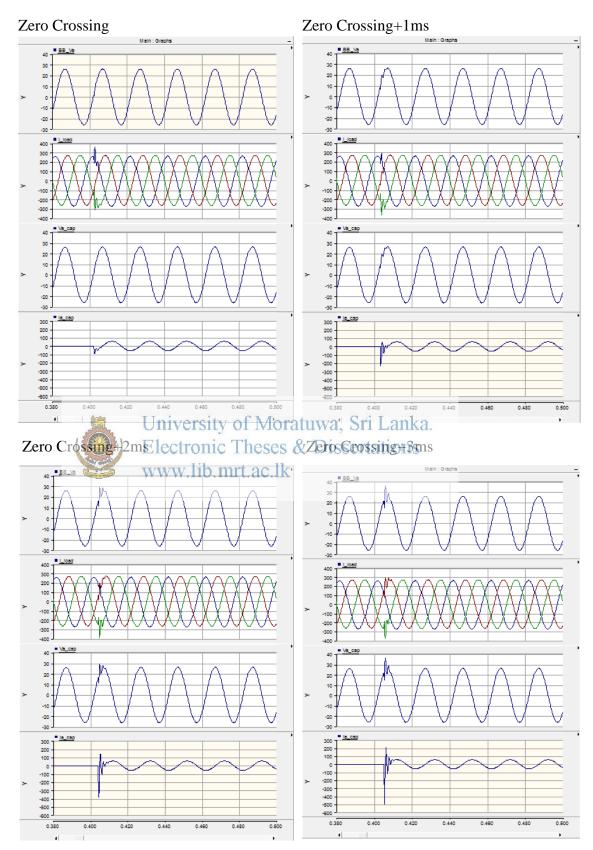

Providing that the safety lockout time has passed, the capacitor can be called after one fifth of the programmed time. It is not possible to override this lockout time.

2.1 RATINGS, OPERATING RANGES & FEATURES (cont.)

Exit from manual	The AUTO/MAN button allows the user to switch between automatic and manual operating mode as required.							
	To safeguard against leaving a system indefinitely in manual mode, an automatic exit has been included. This will return the operating mode from manual to automatic five minutes plus the selected safety lockout time after the last manual mode operation. Relevant manual mode operations are pressing the lower button and operation of an output relay.							
	Models without the automatic exit from manual are available.							
Alarm output	Signals failure to meet target cos φ See also Self Test							

Self Test At reset and every ten minutes in operation, the NOVAR executes an internal hardware check for correct functioning. During this process, the model number will be displayed.

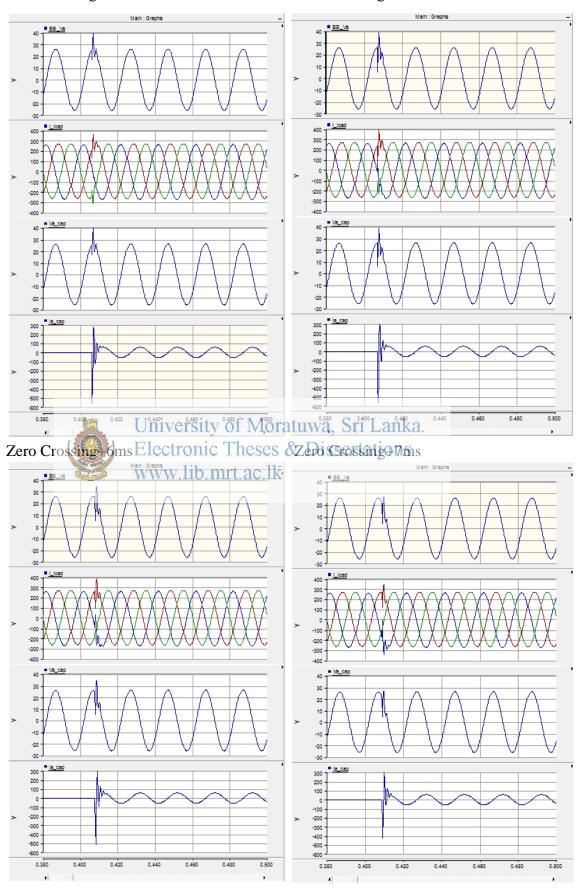

If the unit fails this self test, the IND and CAP LEDs are toggled and the alarm relay (if fitted) is also "flashed " in time with this.



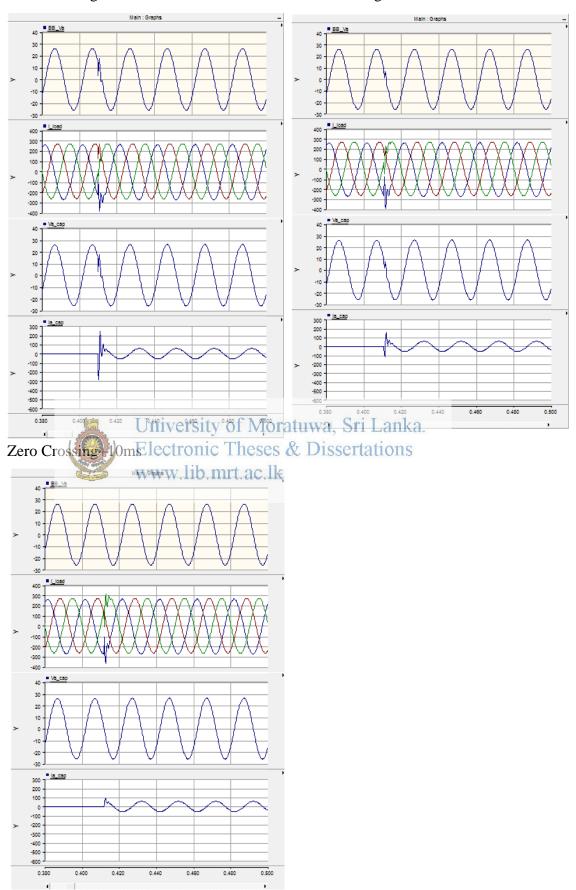
NOVAR 300 Block diagram

Appendix 8 : Waveforms obtained for model validation

Simulated 33 kV bus voltage waveform for two our intervals on 18th October 2013



Appendix 9 : Simulated waveforms for capacitor bank one closing


Zero Crossing+4ms

Zero Crossing+5ms

Zero Crossing+8ms

Zero Crossing+9ms

Appendix 10: Simulated waveforms for capacitor bank two closing

Zero Crossing

40 -

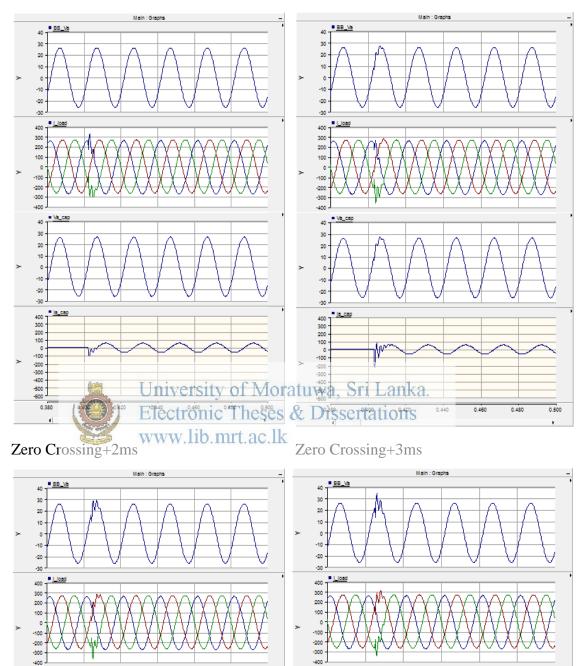
30

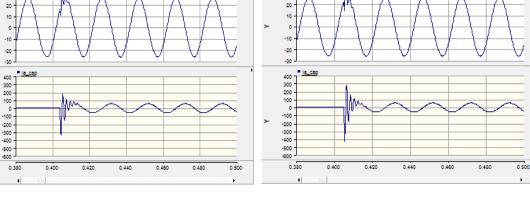
20 -

10 -

0

-10

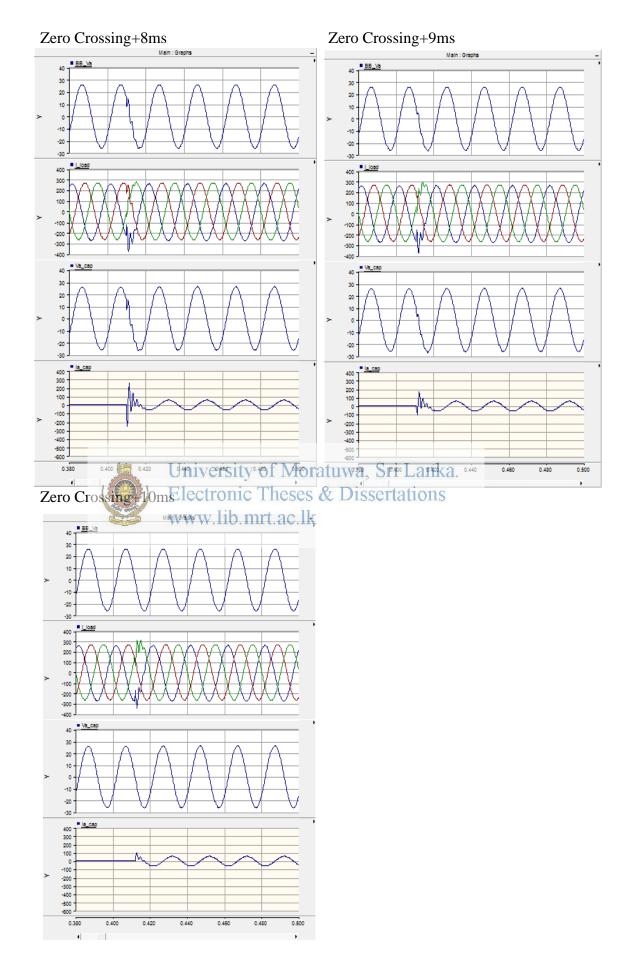

-20 -30

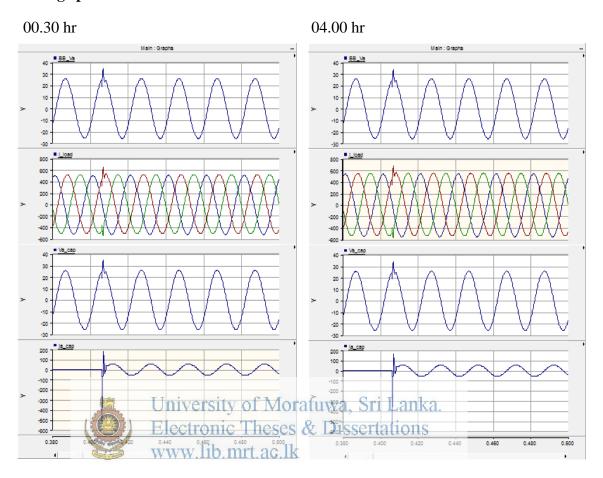

0 -100 -200 -300 -400 -500 ·

0.380

4

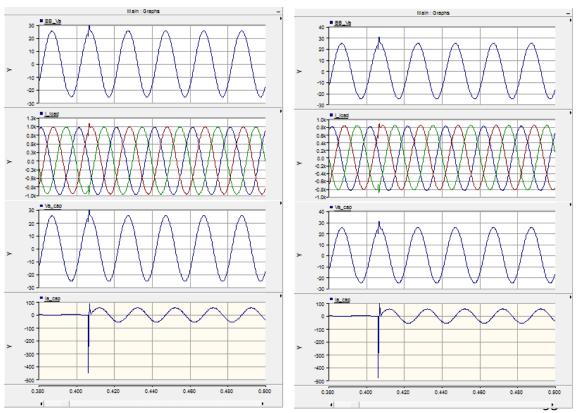
Zero Crossing+1ms

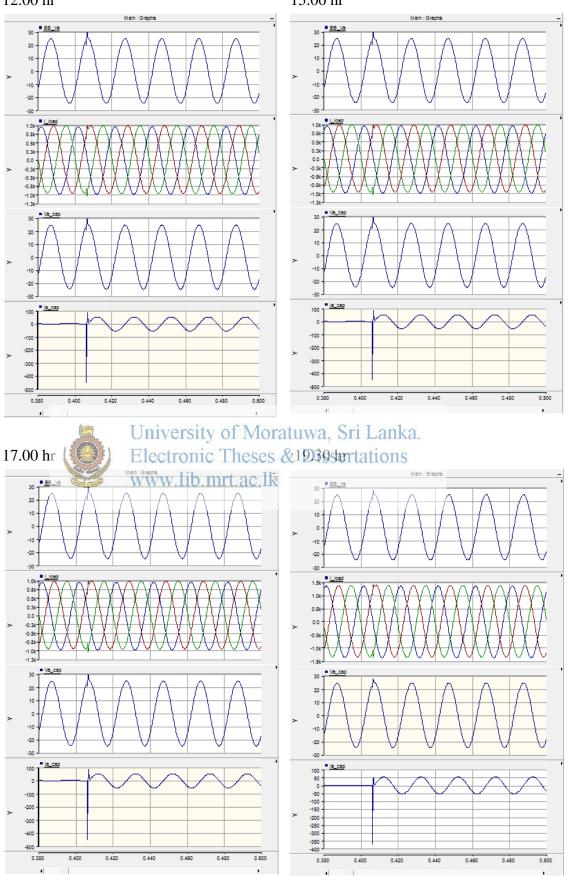

40


30

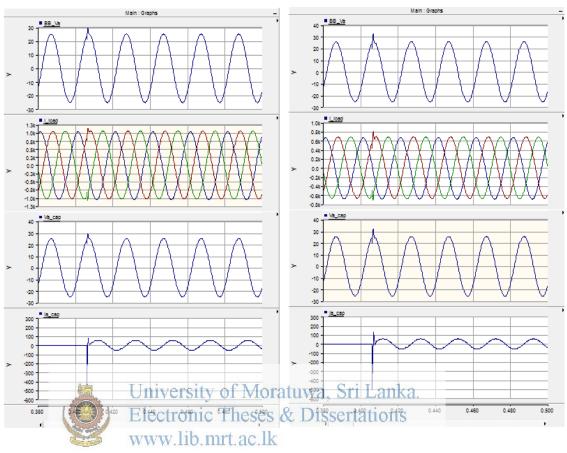
Zero Crossing+4ms

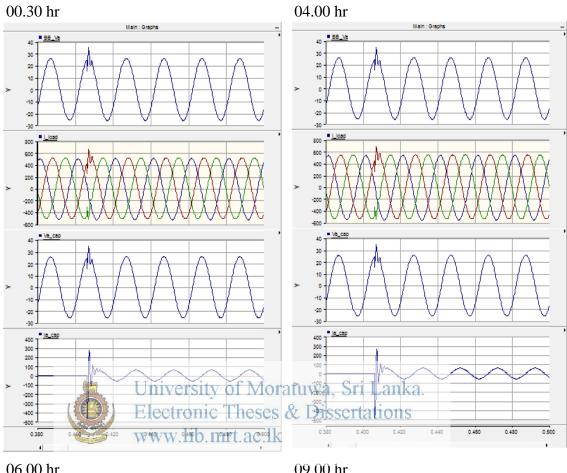
Zero Crossing+5ms



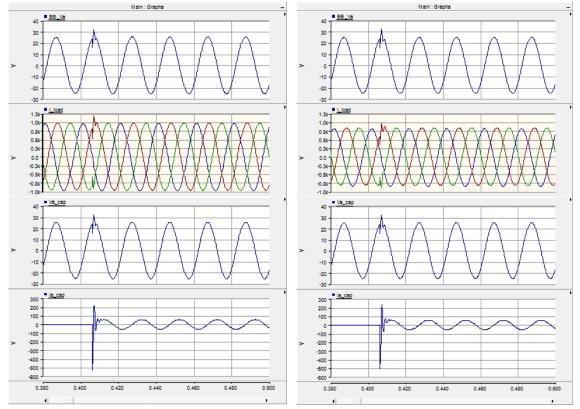


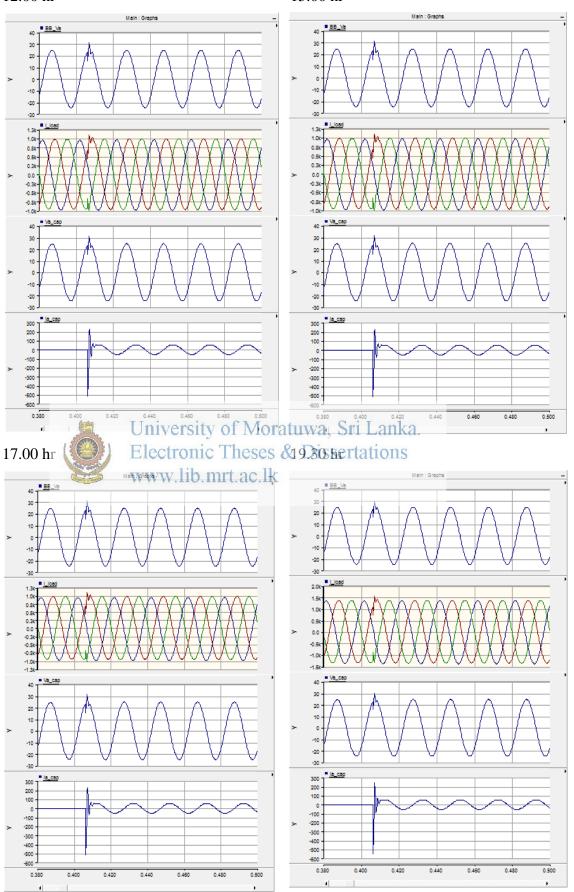
Appendix 11: Switching of capacitor bank one for randomly selected loads at voltage peak

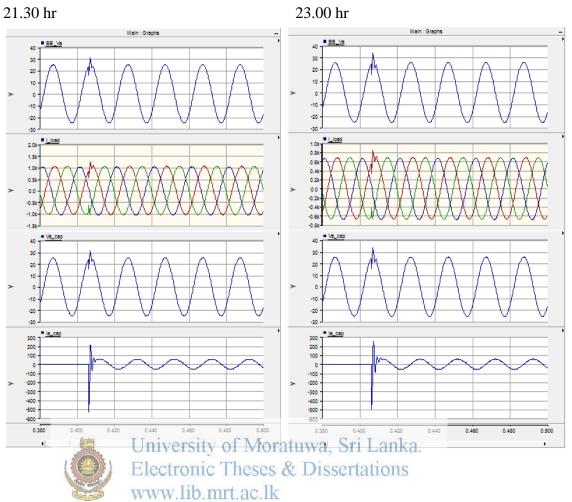




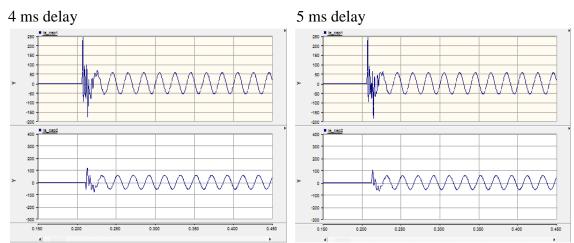
12.00 hr

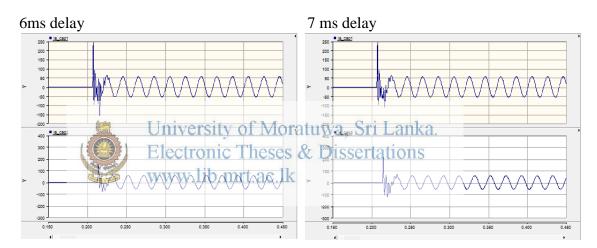

21.30 hr

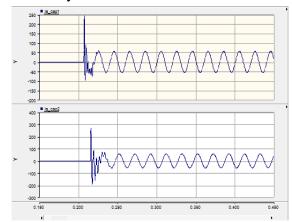


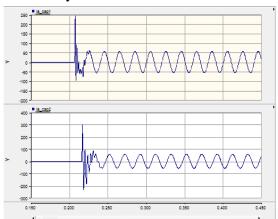

Appendix 12: Switching of capacitor bank two for randomly selected loads at voltage peak

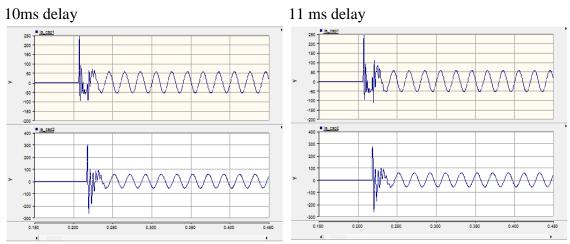
06.00 hr



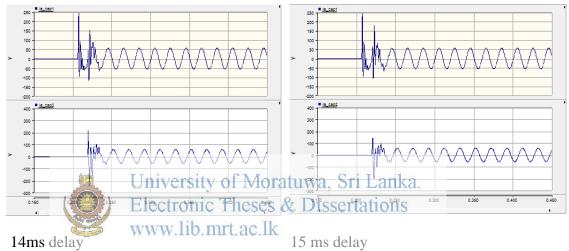

12.00 hr

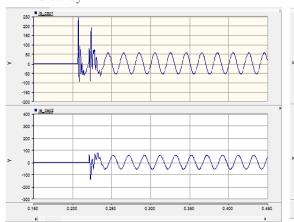


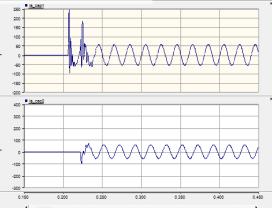

Appendix 13: Fast switching of capacitor banks sequence of bank one to two with 1 ms delay time increasing

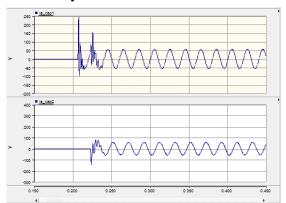


8ms delay

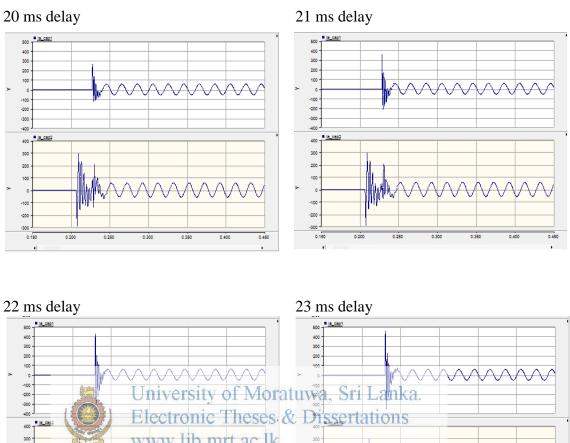


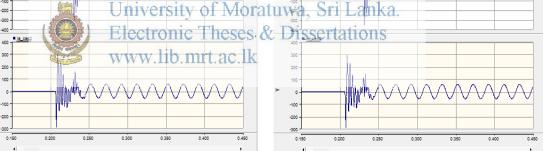


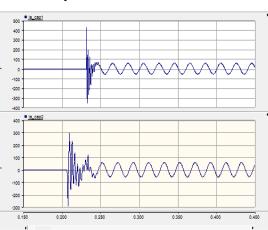


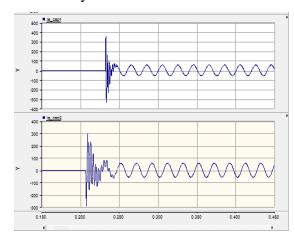


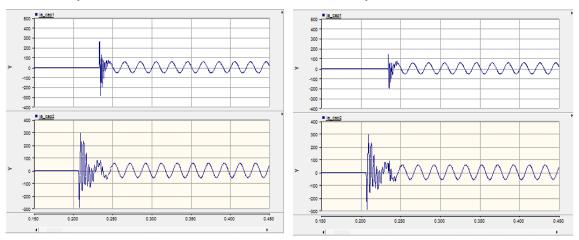
13 ms delay

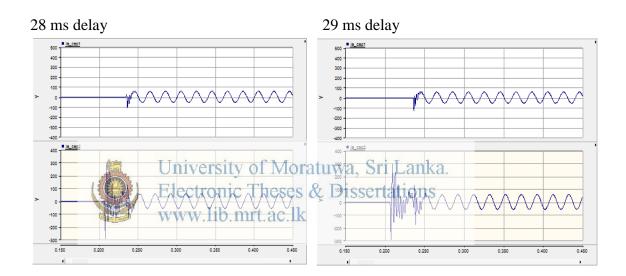




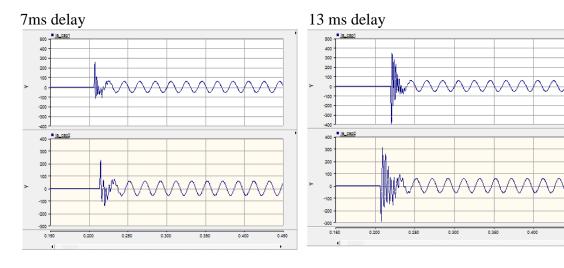


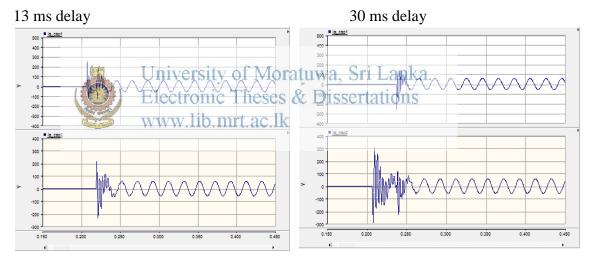

Appendix 14: Fast switching of capacitor banks sequence of bank two to one with 1 ms delay time increasing



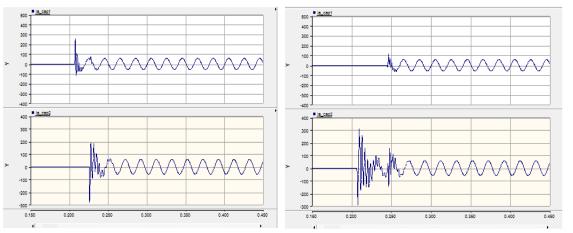


26 ms delay

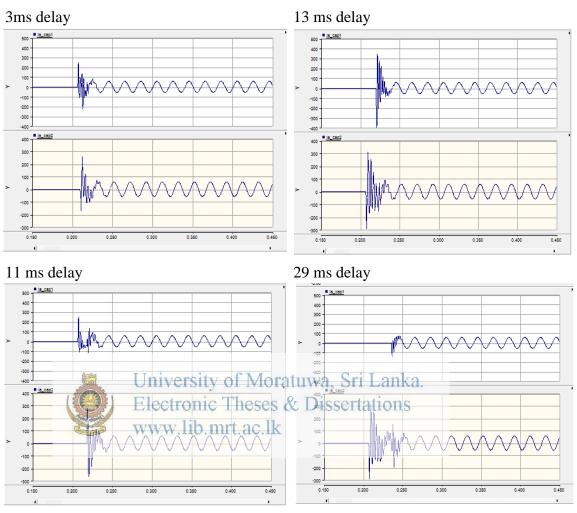



Appendix 15: Fast switching for selected loading

Fast switching for several 33 kV loading (00.30 hr)


Switching sequence bank one to two

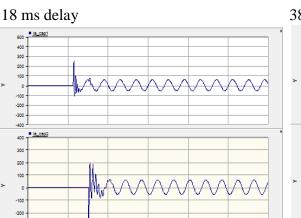
Switching sequence two to one



Fast switching for several 33 kV loading (04.00 hr)

Switching sequence bank one to two

Switching sequence two to one

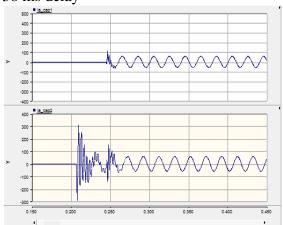


0.150

T,

0.200

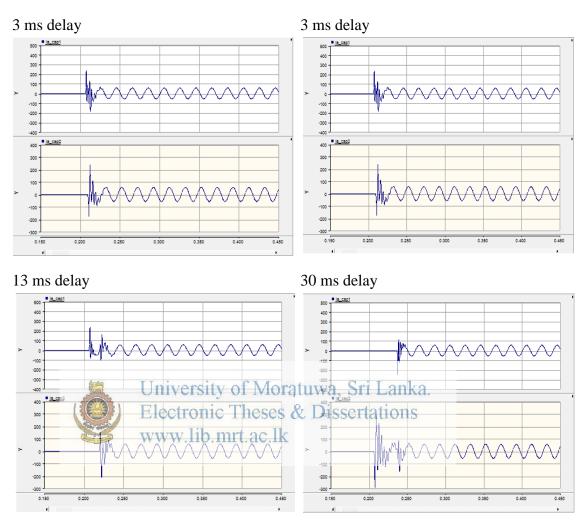
0.250

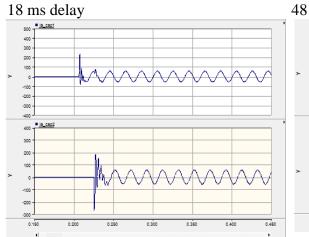


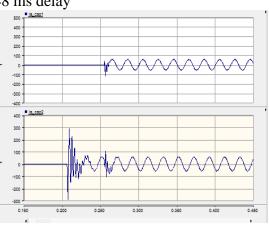
0.300

0.350

0.400

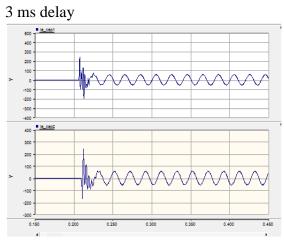

0.450

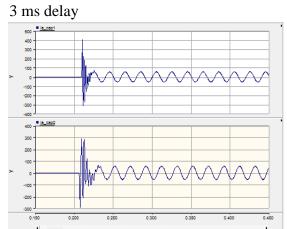



Fast switching for several 33 kV loading (06.00 hr)

Switching sequence bank one to two

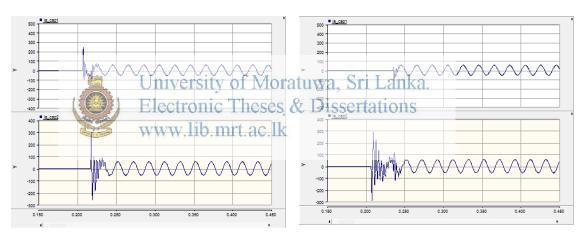
Switching sequence two to one

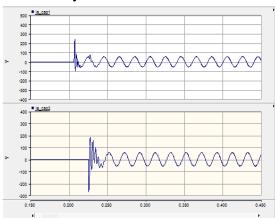




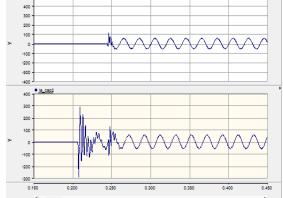
Fast switching for several 33 kV loading (09.00 hr)

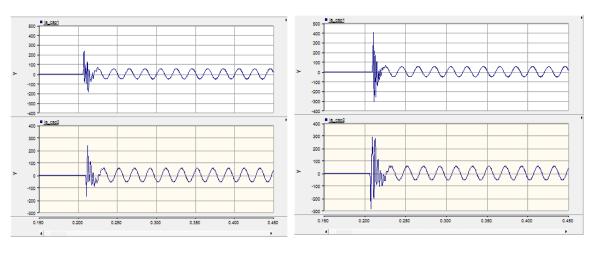
Switching sequence bank one to two


Switching sequence two to one



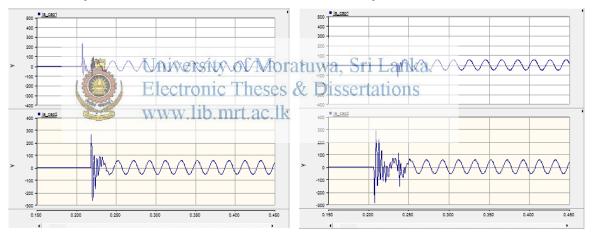
10 ms delay

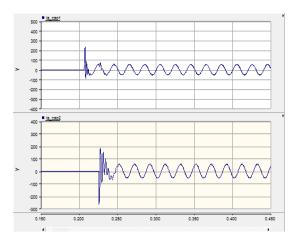

28 ms delay

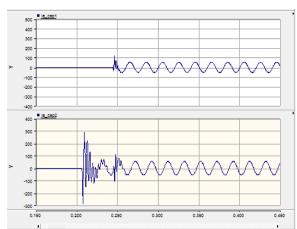

Fast switching for several 33 kV loading (12.00 hr)

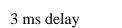
Switching sequence bank one to two

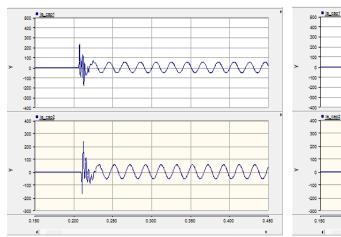
Switching sequence two to one


3 ms delay



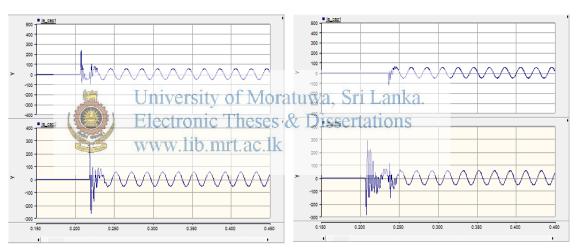

11 ms delay




Fast switching for several 33 kV loading (15.00 hr)

Switching sequence bank one to two

Switching sequence two to one



M

M.

0.250

0.300

0.350

0.400

0.200

500

400

300

200

100

0

-100

-200 -300

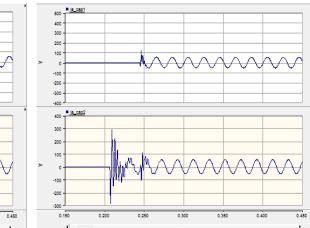
-400

300

200

100

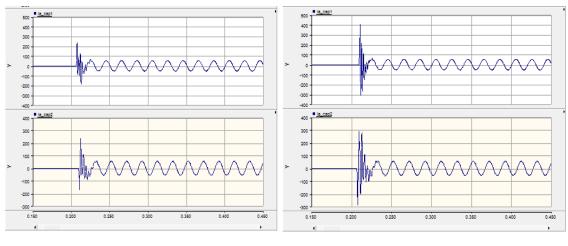
0


-100

-200

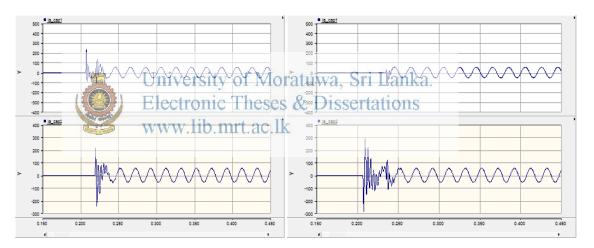
0.150

400 -


Fast switching for several 33 kV loading (17.00 hr)

Switching sequence bank one to two

Switching sequence two to one


3 ms delay

3 ms delay

12 ms delay

AAA

0.300

0.250

0.200

500 -400 -300 -

200

100

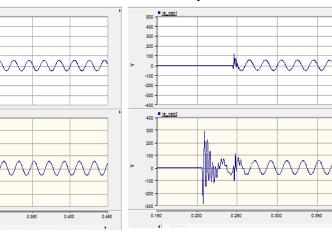
(

-100 -200 -300

-40

400 - Ia_cap2

200 100

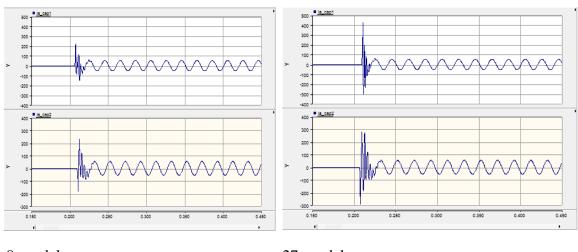

-100

-200

0.150

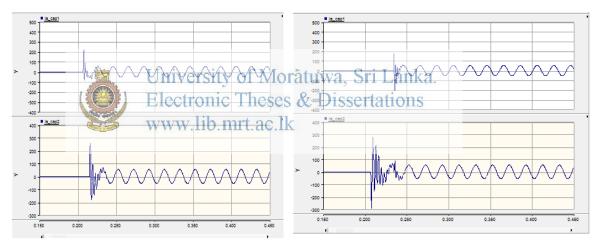
1

38 ms delay

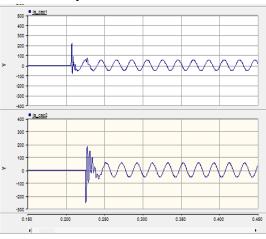

0.400

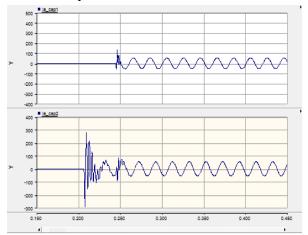
Fast switching for several 33 kV loading (19.30 hr)

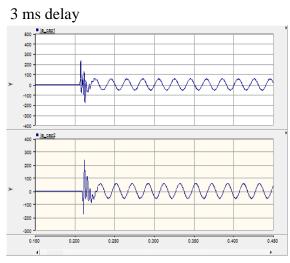
Switching sequence bank one to two


Switching sequence two to one

3 ms delay

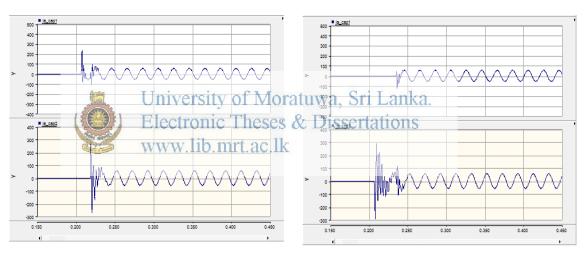


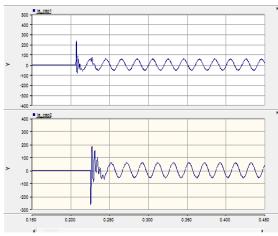


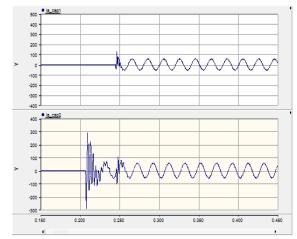

38 ms delay

Fast switching for several 33 kV loading (21.30 hr)

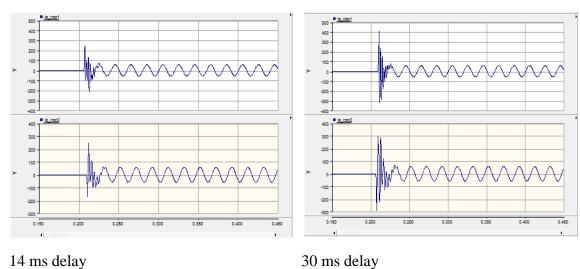
Switching sequence bank one to two

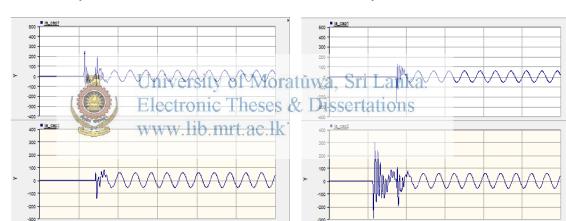

Switching sequence two to one


3 ms delay 500 1 400 300 200 100 . -100 -200 -300 -400 400 - La_cap2 300 200 100 -200 300 0.150 0.200 0.250 0.300 0.350 0.400 0.450



38 ms delay


Fast switching for several 33 kV loading (23.00 hr)


Switching sequence bank one to two

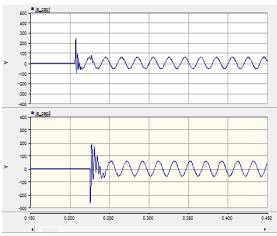
Switching sequence two to one

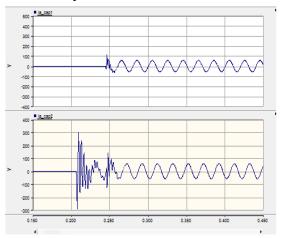
3 ms delay

3 ms delay

0.450

0.200


0.250


0 300

0.350

0.40

0.150

