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Abstract

When establishing correspondence between objects across non-overlapping cameras,
the existing methods combine separate likelihoods of appearance and kinematic features
in a Bayesian framework, constructing a joint likelihood to compute the probability of
re-detection. So far, no method has assumed dependence between appearance and kine-
matic features. In this work we introduce a novel methodology to condition the location
of an object on its appearance and time, without assuming independence between ap-
pearance and kinematic features, in contrast to existing work. We characterize the
linear movement of objects in the unobserved region with an additive Gaussian noise
model. Assuming that the cameras are affine, we transform the noise model onto the
image plane of subsequent cameras. This noise model acts as a prior to improving
re-detection. We have tested our hypothesis with toy car experiments and real-world
camera setups. The prior constrains the search space in a subsequent camera, greatly
improving the computational efficiency. Our method also has the potential to distin-

guish between similar-type objects, and recover correct labels when they move across
cameras.

Index terms— Multi-camera tracking, non-overlapping cameras, priors for object
re-detection, affine transformation of noise model.
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