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Appendix A

Camera Models and Projective Camera Anatomy

A.1 CCD Cameras

The pinhole camera model just derived assumes that the image coordinates
are Euclidean coordinates having equal scales in both axial directions. In the
case of Charge coupled device (CCD) cameras, there is the additional possibility
of having non-square pixels. If image coordinates are measured in pixels, then
this has the extra effect of introducing unequal scale factors in each direction. In
particular if the number of pixels per unit distance in image coordinates are mx

and my in the x and y directions, then the transformation from world coordinates
to pixel coordinates is obtained by multiplying 3.4 on the left by an extra factor
diag(mx,my, 1). Thus, the general form of the calibration matrix of a CCD
camera is

K =

αx x0

αy y0

1

 (A.1)

where αx = fmx and αy = fmy represent the focal length of the camera in terms
of pixel dimensions in the x and y direction respectively. Similarly, x̃0 = (x0, y0)

is the principal point in terms of pixel dimensions, with coordinates x0 = mxpx

and y0 = mypy. A CCD camera thus has 10 degrees of freedom.

A.2 Finite Projective Camera

For added generality, we can consider a calibration matrix of the form

K =

αx s x0

αy y0

1

 (A.2)
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Finite Projective Camera Camera Models and Projective Camera Anatomy

The added parameter s is referred to as the skew parameter. The skew parameter
will be zero for most normal cameras. A camera

P = KR[I | − ~̃C] (A.3)

for which the calibration matrix K is of the form A.2 will be called a finite
projective camera. A finite projective camera has 11 degrees of freedom. This
is the same number of degrees of freedom as a 3 × 4 matrix, defined up to an
arbitrary scale.

Note that the left hand 3 × 3 sub-matrix of P, equal to KR, is non-singular.
Conversely, any 3× 4 matrix P for which the left hand 3× 3 sub-matrix is non-
singular is the camera matrix of some finite projective camera, because P can be
decomposed as P = KR[I |− ~̃C]. Indeed, letting M be the left 3× 3 sub-matrix of
P, one decomposes M as a product M = KR where K is upper-triangular of the
form A.2 and R is a rotation matrix. This decomposition is essentially the RQ

matrix decomposition, described in Appendix C. The matrix P can therefore be
written P = M[I |M−1p4] = KR[I | − ~̃C] where p4 is the last column of P. In
short

• The set of camera matrices of finite projective cameras is identical with the
set of homogeneous 3× 4 matrices for which the left hand 3× 3 sub-matrix
is non-singular.

The Table A.1 provides a summary of the properties of projective camera P.
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Table A.1: Summary of the properties of projective camera P. The matrix is represented by the block form
P = [M | ~p4].

Camera center: The camera center is the 1-dimensional right null-space ~C of P,
i.e. P~C = 0.

Finite camera:(M is not singular) ~C =

(
−M−1 ~p4

1

)
Camera at infinity:(M is singular) ~C =

(
~d
0

)
where ~d is the null 3-vector of M,

i.e. M~d = 0.

Column points: For i = 1, . . . , 3, the column vectors ~pi are vanishing points in
the image corresponding to the X, Y and Z axes respectively. Column ~p4 is the
image of the coordinate origin.

Principal plane: The principal plane of the camera is P3, the last row of P.

Axis planes: The planes P1 and P2 (the first and second rows of P) represent
planes in space through the camera center, corresponding to points that map to the
image lines x = 0 and y = 0 respectively.

Principal point: The image point x0 = M ~m3 is the principal point of the camera,
where ~m3T is the third row of M.

Principal ray: The principal ray (axis) of the camera is the ray passing through
the camera center ~C with direction vector ~m3T . The principal axis vector
~v = det(M) ~m3 is directed towards the front of the camera.

A general projective camera P maps world points ~X to image points ~x according
to ~x = P ~X. Building on this mapping we will now dissect the camera model to
reveal how geometric entities, such as the camera center, are encoded. Some of the
properties that we consider will apply only to finite projective cameras and their
specializations, whilst others will apply to general cameras. The distinction will
be evident from the context. The derived properties of the camera are summarized
in Table A.1.

A general projective camera may be decomposed into blocks according to P =

[M | ~p4], where M is a 3× 3 matrix. It will be seen that if M is non-singular, then
this is a finite camera, otherwise it is not.
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A.3 Camera center

The matrix P has a 1-dimensional right null-space because its rank is 3, whereas
it has 4 columns. Suppose the null-space is generated by the 4-vector ~C, that
is P~C = 0. It will now be shown that ~C is the camera center, represented as a
homogeneous 4-vector.

Consider the line containing ~C and any other point ~A in 3-space. Points on
this line may be represented by the join

~X(λ) = λ ~A+ (1− λ)~C.

C

p3

p2

p1

Z

Y

X

O

Figure A.1: The three image points defined by the columns pi, i = 1, ..., 3, of the projection matrix are the
vanishing points of the directions of the world axes.

Under the mapping ~x = P ~X points on this line are projected to

~x = P ~X(λ) = λP ~A+ (1− λ)P~C = λP ~A

since P~C = 0.

That is all points on the line are mapped to the same image point P ~A, which
means that the line must be a ray through the camera center. It follows that ~C
is the homogeneous representation of the camera center, since for all choices of ~A
the line ~X(λ) is a ray through the camera center.

This result is not unexpected since the image point (0, 0, 0)T = P~C is not
defined, and the camera center is the unique point in space for which the image
is undefined. In the case of finite cameras the result may be established directly,
since ~C = ( ~̃CT , 1)T is clearly the null-vector of P = KR[I | ~̃C]. The result is true
even in the case where the first 3 × 3 sub-matrix M of P is singular. In this
singular case, though, the null-vector has the form ~C = (~dT , 0)T where M~d = 0.
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The camera center is then a point at infinity. Camera models of this class are
discussed in Section 3.3.

A.4 Column vectors

The columns of the projective camera are 3-vectors which have a geometric mean-
ing as particular image points. With the notation that the columns of P are ~pi,
i = 1, ..., 4, then ~p1, ~p2, ~p3 are the vanishing points of the world coordinate X, Y
and Z axes respectively. This follows because these points are the images of the
axes’ directions. For example the x− axis has direction ~D = (1, 0, 0, 0)T , which
is imaged at ~p1 = P~D. See Figure A.1. The column ~p4 is the image of the world
origin.

A.5 Row vectors

The rows of the projective camera A.4 are 4-vectors which may be interpreted
geometrically as particular world planes. These planes are examined next. We
introduce the notation that the rows of P are ~PiT so that

P =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 =

~P
1T

~P2T

~P3T

 (A.4)

A.6 The principal plane

The principal plane is the plane through the camera center parallel to the image
plane. It consists of the set of points ~X which are imaged on the line at infinity of
the image. Explicitly, P ~X = (x, y, 0)T . Thus a point lies on the principal plane of
the camera if and only if ~P3T ~X = 0. In other words, ~P3 is the vector representing
the principal plane of the camera. If ~C is the camera center, then P~C = 0, and
so in particular ~P3T ~C = 0. That is ~C lies on the principal plane of the camera.

A.7 Axis planes

Consider the set of points ~X on the plane P1. This set satisfies ~P1T ~X = 0, and
so is imaged at P ~X = (0, y, w)T which are points on the image y−axis. Again
it follows from P~C = 0 that ~P1T ~C = 0 and so ~C lies also on the plane P1.
Consequently the plane P1 is defined by the camera center and the line x = 0 in
the image. Similarly the plane P2 is defined by the camera center and the line
y = 0.
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Unlike the principal plane P3, the axis planes P1 and P2 are dependent on the
image x− and y−axes, i.e. on the choice of the image coordinate system. Thus
they are less tightly coupled to the natural camera geometry than the principal
plane. In particular the line of intersection of the planes P1 and P2 is a line
joining the camera center and image origin, i.e. the back-projection of the image
origin. This line will not coincide in general with the camera principal axis. The
planes arising from Pi are illustrated in Figure A.2.

P2

y x P3
y x

principal plane

Figure A.2: Two of the three planes defined by the rows of the projection matrix.

The camera center ~C lies on all three planes, and since these planes are distinct
(as the P matrix has rank 3) it must lie on their intersection. Algebraically, the
condition for the center to lie on all three planes is P~C = 0 which is the original
equation for the camera center given above.

A.8 The principal point

The principal axis is the line passing through the camera center ~C, with di-
rection perpendicular to the principal plane P3. The axis intersects the image
plane at the principal point. We may determine this point as follows. In general,
the normal to a plane π = (π1, π2, π3, π4)T is the vector (π1, π2, π3)T . This may
alternatively be represented by a point (π1, π2, π3, 0)T on the plane at infinity. In
the case of the principal plane P3 of the camera, this point is (p31, p32, p33, 0)T ,
which we denote P̂3. Projecting that point using the camera matrix P gives the
principal point of the camera PP̂3. Note that only the left hand 3 × 3 part of
P = [M | ~p4] is involved in this formula. In fact the principal point is computed
as x0 = M~m3 where ~m3T is the third row of M.

A.9 The principal axis vector

Although any point ~X not on the principal plane may be mapped to an image
point according to ~x = P ~X, in reality only half the points in space, those that lie
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The principal axis vector Camera Models and Projective Camera Anatomy

in front of the camera, may be seen in an image. Let P be written as P = [M |~p4].
It has just been seen that the vector ~m3 points in the direction of the principal
axis. We would like to define this vector in such a way that it points in the
direction towards the front of the camera (the positive direction). Note however
that P is only defined up to sign. This leaves an ambiguity as to whether ~m3 or
− ~m3 points in the positive direction. We now proceed to resolve this ambiguity.

We start by considering coordinates with respect to the camera coordinate
frame. According to 3.5, the equation for projection of a 3-D point to a point
in the image is given by ~x = Pcam

~Xcam = K[I | 0] ~Xcam, where ~Xcam is the 3-
D point expressed in camera coordinates. In this case observe that the vector
~v = det(M)~m3 = (0, 0, 1)T points towards the front of the camera in the direction
of the principal axis, irrespective of the scaling of Pcam. For example, if Pcam →
kPcam then ~v → k4~v which has the same direction.

If the 3-D point is expressed in world coordinates then P = kK[R | − R ~̃C] =

[M | ~p4], where M = kKR. Since det(R) > 0 the vector ~v = det(M)~m3 is again
unaffected by scaling. In summary,

• ~v = det(M) ~m3 is a vector in the direction of the principal axis, directed
towards the front of the camera.
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Appendix B

Affine Cameras

Consider what happens as we apply a cinematographic technique of tracking
back while zooming in, in such a way as to keep objects of interest the same size.
This is illustrated in Figure B.1.

Increasing focal length

Increasing distance from camera

Figure B.1: As the focal length increases and the distance between the camera and object also increases, the
image remains the same size but perspective effects diminish. These images are taken from multiple view
geometry [41].

We are going to model this process by taking the limit as both the focal length
and principal axis distance of the camera from the object increase. In analyzing
this technique, we start with a finite projective camera A.3. The camera matrix
may be written as

P0 = KR[I | − ~̃C] = K


r1T −r1T ~̃C

r2T −r2T ~̃C

r3T −r3T ~̃C

 (B.1)
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Affine Cameras

where riT is the i-th row of the rotation matrix. This camera is located at position
~̃C and has orientation denoted by matrix R and internal parameters matrix K of
the form given in A.2. From Appendix D, the principal ray of the camera is in
the direction of the vector r3, and the value d0 = −r3T ~̃C is the distance of the
world origin from the camera center in the direction of the principal ray.

Now, we consider what happens if the camera center is moved backwards along
the principal ray at unit speed for a time t, so that the center of the camera is
moved to ~̃C − tr3. Replacing ~̃C in Equation B.1 by ~̃C − tr3 gives the camera
matrix at time t:

Pt = K


r1T −r1T ( ~̃C − tr3)

r2T −r2T ( ~̃C − tr3)

r3T −r3T ( ~̃C − tr3)

 = K

r
1T −r1T ~̃C

r2T −r2T ~̃C

r3T dt

 (B.2)

where the terms riT r3 are zero for i = 1, 2 because R is a rotation matrix. The
scalar dt = −r3T ~̃C + t is the depth of the world origin with respect to the camera
center in the direction of the principal ray r3 of the camera. Thus

• The effect of tracking along the principal ray is to replace the (3,4) entry
of the matrix by the depth dt of the camera center from the world origin.

Next, we consider zooming such that the camera focal length is increased by a
factor k. This magnifies the image by a factor k. It is shown in Appendix D that
the effect of zooming by a factor k is to multiply the calibration matrix K on the
right by diag(k, k, 1). Now, we combine the effects of tracking and zooming. We
suppose that the magnification factor is k = dt/d0 so that the image size remains
fixed. The resulting camera matrix at time t, derived from B.2, is

Pt = K

dt/d0

dt/d0

1


r

1T −r1T ~̃C

r2T −r2T ~̃C

r3T dt

 =
dt
d0

K

 r1T −r1T ~̃C

r2T −r2T ~̃C

r3Td0/dt d0


and one can ignore the factor dt/d0. When t = 0, the camera matrix Pt corre-
sponds with Equation B.1. Now, in the limit as dt tends to infinity, this matrix
becomes
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P∞ = lim
t→∞

Pt = K

r
1T −r1T ~̃C

r2T −r2T ~̃C

0T d0

 (B.3)

which is just the original camera matrix B.1 with the first three entries of the
last row set to zero. According to the affine camera definition P∞ is an instance
of an affine camera.

B.0.1 Error in employing an affine camera

It may be noted that the image of any point on the plane through the world ori-
gin perpendicular to the principal axis direction r3 is unchanged by this combined
zooming and motion. Indeed, such a point may be written as

~X =

(
αr1 + βr2

1

)
.

One then verifies that P0
~X = Pt

~X = P∞ ~X for all t, since r3T (αr1 +βr2) = 0. For
points not on this plane the images under P0 and P∞ï£¡differ, and we will now
investigate the extent of this error. Consider a point ~X which is at a perpendicular
distance ∆ from this plane. The 3D point can be represented as

~X =

(
αr1 + βr2 + ∆r3

1

)
.

and is imaged by the cameras P0 and P∞ at

~xproj = P0
~X = K

 x̃

ỹ

d0 + ∆

 ~xaffine = P∞ ~X = K

 x̃

ỹ

d0


where x̃ = αr1T − ~̃C, ỹ = βr2T − ~̃C. Now, writing the calibration matrix as

K =

[
K2×2 x̃0

0̃T 1

]
,

where K2×2 is an upper-triangular 2× 2 matrix, gives

~xproj =

(
K2×2x̃ + (d0 + ∆)x̃0

d0 + ∆

)
~xaffine =

(
K2×2x̃ + d0x̃0

d0

)
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The image point for P0 is obtained by de-homogenizing, by dividing by the
third element, as ~xproj = x̃0 + K2×2x̃/(d0 + ∆), and for P∞ the inhomogeneous
image point is ~xaffine = x̃0 + K2×2x̃/d0. The relationship between the two points
is therefore

~xaffine − x̃0 =
d0 + ∆

d0

~xproj − x̃0

which shows that

• The effect of the affine approximation P∞ to the true camera matrix P0 is
to move the image of a point X radially towards or away from the principal
point x̃0 by a factor equal to (d0 + ∆)/d0 = 1 + ∆/d0.

This is illustrated in Figure B.2.

d0f
C

X

∆

weak perspective

perspective

Figure B.2: The action of the weak perspective camera is equivalent to orthographic projection onto a plane (at
Z = d0), followed by perspective projection from the plane. The difference between the perspective and weak
perspective image point depends both on the distance ∆ of the point X from the plane, and the distance of the
point from the principal ray.

B.0.2 Affine imaging conditions

From the expressions for ~xproj and ~xaffine we can deduce that

~xaffine − ~xproj =
∆

d0

(~xproj − x̃0) (B.4)

which shows that the distance between the true perspective image position and
the position obtained using the affine camera approximation P∞ will be small
provided:

• The depth relief (∆) is small compared to the average depth (d0), and

• The distance of the point from the principal ray is small.
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Affine Cameras

A general camera matrix of the affine form (PA), and with no restrictions on
its elements, may be decomposed as (Appendix E)

PA =

αx s

αy

1


r

1T t1

r2T t2

1

 (B.5)

It has eight degrees of freedom, and may be thought of as the parallel pro-
jection version of the finite projective camera A.3. In full generality an affine
camera has the form

PA =

m11 m12 m13 t1

m21 m22 m23 t2

0 0 0 1

 (B.6)

It has eight degrees of freedom corresponding to the eight non-zero and non-
unit matrix elements. We denote the top left 2×3 sub-matrix by M2×3. The sole
restriction on the affine camera is that M2×3 has rank 2. This arises from the
requirement that the rank of P is 3.
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RQ decomposition

A 3-dimensional Givens rotation is a rotation about one of the three coordinate
axes. The three Givens rotations are

Qx =

1

c −s
s c

 Qy =

 c s

1

−s c

 Qz =

c −ss c

1


where c = cos (θ) and s = sin (θ) for some angle θ and blank entries represent
zeros.

Multiplying a 3 × 3 matrix A on the right by (for instance) Qz has the effect
of leaving the last column of A unchanged, and replacing the first two columns
by linear combinations of the original two columns. The angle θ may be chosen
so that any given entry in the first two columns becomes zero.

For instance, to set the entry A21 to zero, we need to solve the equation ca21 +

sa22 = 0. The solution to this is c = −a22/(a
2
22 + a2

21)1/2 and s = a21/(a
2
22 +

a2
21)(1/2). It is required that c2 + s2 = 1 since c = cos θ and s = sin θ, and the

values of c and s given here satisfy that requirement.

The strategy of the RQ algorithm is to clear out the lower half of the matrix one
entry at a time by multiplication by Givens rotations. Consider the decomposition
of a 3× 3 matrix A as A = RQ where R is upper-triangular and Q is a rotation
matrix. This may take place in three steps. Each step consists of multiplication
on the right by a Givens rotation to set a chosen entry of the matrix A to zero.
The sequence of multiplications must be chosen in such a way as not to disturb
the entries that have already been set to zero.
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An implementation of the RQ decomposition algorithm is given in Table C.1.

Table C.1: Algorithm: RQ decomposition of a 3× 3 matrix.

Objective

Carry out the RQ decomposition of a 3× 3 matrix A using Givens rotations.

Algorithm

(i) Multiply by Qx so as to set A32 to zero.
(ii) Multiply by Qy so as to set A31 to zero. This multiplication does not
change the second column of A, hence A32 remains zero.
(iii) Multiply by Qz so as to set A21 to zero. The first two columns are replaced
by linear combinations of themselves. Thus, A31 and A32 remain zero.

Other sequences of Givens rotations may be chosen to give the same result.
As a result of these operations, we find that AQxQyQz = R where R is upper-
triangular. Consequently, A = Qz

TQy
TQx

T , and so A = RQ where Q = Qz
TQy

TQx
T

is a rotation. In addition, the angles θx, θy and θz associated with the three Givens
rotations provide a parametrization of the rotation by three Euler angles, other-
wise known as roll, pitch and yaw angles.

It should be clear from this description of the decomposition algorithm how
similar QR, QL and LQ factorizations may be carried out. Furthermore, the
algorithm is easily generalized to higher dimensions.
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The importance of the camera center

An object in 3-space and camera center define a set of rays, and an image is
obtained by intersecting these rays with a plane. Often this set is referred to as
a cone of rays, even though it is not a classical cone. Suppose the cone of rays is
intersected by two planes, as shown in Figure D.1, then the two images, I and I ′,
are clearly related by a perspective map. This means that images obtained with
the same camera center may be mapped to one another by a plane projective
transformation, in other words they are projectively equivalent and so have the
same projective properties. A camera can thus be thought of as a projective
imaging device measuring projective properties of the cone of rays with vertex
the camera center.

The result that the two images I and I ′ are related by a homography will now
be derived algebraically to obtain a formula for this homography. Consider two
cameras

P = KR[I | − C̃], P′ = K′R′[I | − C̃]

with the same center. Note that since the cameras have a common center there
is a simple relation between them, namely P′ = (K′R′)(KR)−1P. It then follows
that the images of a 3-space point ~X by the two cameras are related as

~x′ = P′ ~X = (K′R′)(KR)−1P ~X = (K′R′)(KR)−1P~x.

That is, the corresponding image points are related by a planar homography (a
3× 3 matrix) as ~x′ = H~x, where H = (K′R′)(KR)−1.
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C

x′

x

X

Figure D.1: The cone of rays with vertex the camera center. An image is obtained by intersecting this cone
with a plane. A ray between a 3-space point X and the camera center C pierces the planes in the image points
x and x′. All such image points are related by a planar homography, ~x′ = H~x.
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Decomposition of P∞

The camera matrix obtained by Equation B.3 may be written as

P∞ =

[
K2×2 x̃0

0̂T 1

][
R̂ t̂

0T d0

]
where R̂ consists of the two first rows of a rotation matrix, t̂ is the vector
(−r1T ~̃C,−r2T ~̃C)T , and 0̂ the vector (0, 0)T . The 2 × 2 matrix K2×2 is upper-
triangular. One quickly verifies that

P∞ =

[
K2×2 x̃0

0̂T 1

][
R̂ t̂

0T d0

]
=

[
d−1

0 K2×2 x̃0

0̂T 1

][
R̂ t̂

0T d0

]
so we may replace K2×2 by d−1

0 K2×2 and assume that d0 = 1. Multiplying out
this product gives

P∞ =

[
K2×2R̂ K2×2t̂ + x̃0

0̂T 1

]
=

[
K2×2 0̂T

0̂T 1

][
R̂ t̂ +K−1

2×2x̃0

0T 1

]

=

[
K2×2 K2×2t̂ + x̃0

0̂T 1

][
R̂ 0̂T

0̂T 1

]
.

Thus, making appropriate substitutions for t̂ or x̃0, we can write the affine camera
matrix in one of the two forms

P∞ =

[
K2×2 0̂

0̂T 1

][
R̂ 0̂

0̂T 1

]
=

[
K2×2 x̃0

0̂T 1

][
R̂ 0̂

0̂T 1

]
. (E.1)

Consequently, the camera P∞ can be interpreted in terms of these decompo-
sitions in one of two ways, either with x̃0 = 0 or with t̂ = 0̂. Using the second
decomposition of Equation E.1, the image of the world origin is P∞(0, 0, 0, 1)T =

(x̃0, 1)T . Consequently, the value of x̃0 is dependent on the particular choice of
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world coordinates, and hence is not an intrinsic property of the camera itself. This
means that the camera matrix P∞ does not have a principal point. Therefore, it
is preferable to use the first decomposition of P∞ in E.1, and write

P∞ =

[
K2×2 0̂

0̂T 1

][
R̂ 0̂

0̂T 1

]
where the two matrices represent the internal camera parameters and external

camera parameters of P∞.
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