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ABSTRACT

Electricity sector regulators are practicing benchmarking of electricity distribution
companies to regulate allowed revenue to each company. Mainly this is done by using the
relative efficiency scores produced by frontier benchmarking techniques. Some of these
techniques, for example Corrected Ordinary Least Squares method and Stochastic Frontier
Analysis have econometric approach to estimate efficiency scores, while method like Data
Envelopment Analysis uses Linear Programming to compute efficiency scores. Using the
relative efficiency scores, the efficiency factor (X-factor) which is a component of the
revenue control formula is calculated. The approach used by the regulators to derive X-factor

by the relative efficiency scores is varying among regulators.

In electricity distribution industry in Sri Lanka the allowed revenue for a particular
distribution licensee is calculated according to the allowed revenue control formula as
specified in the tariff methodology of Public Utilities Commission of Sri Lanka. This control
formula contains the X-factor as well, but it has been kept zero, since there were no relative

benchmarking studies carried out by the utility regulator to decide on X-factor.

0 ahroducéd—d 1dbifable berichmédrkingcimethodelegy! this!/dissértation focuses on

—

amarkingtechniques used.in‘intetnational régulatory regime and analyses the
6 Sri Dankan'context,! Wherelonly five Distribution Licensees are operating at
present. The main challenge was to produce robust efficiency scores using frontier
techniques for lower sample size (i.e. five) where in contrast many countries have large

number of distribution companies or licensees (i.e. large sample size).

Importantly this discussion gives directing signals to the utility regulator on possibility to

control allowed revenue of Distribution Licensees according to their efficiencies.

Key words: Data Envelopment Analysis, Corrected Ordinary Least Squares, Distribution
Licensees.
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1 INTRODUCTION

1.1 Background

In electricity regulatory regime, relative benchmarking of electricity distribution
licensees (or electricity distribution companies) carried out by regulators.
Benchmarking studies results relative efficiency scores of distribution licensees, for
example operating within a country. In case of Sri Lanka there are five DLs, namely

CEB Region 1, CEB Region 2, CEB Region 3, CEB Region 4 and LECO.

The Distribution Allowed Revenue is the revenue that a Distribution Licensee (DL)
is allowed to collect from the distribution users due to the use of the distribution

system, excluding allowed Charges (connection, reconnection, meter testing, etc) that

are separately regulated!’®!.
For each DL, the Distribution Allowed Revenue shall be calculated based on a
forecasted cash flow for DL for the tariff period, considering following factors [13]

including ghReient operational expenditure:

o Ihitial- egulatory Asset Base (the value of the assets belonging to the
Lié-éﬁ:ézée to provide the distribution service).

e Rolling forward of the initial regulatory asset base, considering the forecasted
capital expenditure for the period

e Depreciation of existing non-depreciated assets

e Return on capital

e Efficient operational expenditure

e Taxes

The OPEX component of the base allowed revenue will be adjusted at a rate defined
by an Efficiency Factor (OPEXX) per year. OPEXX (%) will be fixed by the PUCSL
before the start of the tariff period [l In successive Tariff Periods, the Commission
may revise the methodology for computing the efficient OPEX to be included in the

distribution Allowed Revenue 3!,



1.2 Identification of the Problem

In electricity distribution industry in Sri Lanka the allowed revenue for a particular
distribution licensee is calculated according to the allowed revenue control formula
as specified in the tariff methodology of Public Utilities Commission of Sri Lanka.

The control formulae provide the allowed revenue (AR) for year Y as follows.

AR, = AR, xgz;}s{g #(1+ SLCPI) +(1-a)x
#[bx(1+ Deust) + e x(1+ Dkw)+ d]-Diff,
[Please refer Appendix for more information on allowed revenue control formula]

There is a factor defined as X-factor (efficiency factor), which is in the control

formulae as indicated above.

A relative OPEX efficiency score obtained from a benchmarking study is an input to
formulate @& — fagtor ( PUCSI, can ndgcider on X-fagtor using, the result of a

benchmdl i:study.

At presen’tfPUCSL take X-factor as zero due to the fact that there is no
benchmarking study has been done on DLs to obtain relative OPEX efficiency
scores. Without these relative efficiency scores (percentage values like 100% for one

DL , 60% for another and etc.) X-factor cannot be obtained.

Therefore the electricity sector regulator - PUCSL requires a suitable methodology to

benchmark Distribution licensees in Sri Lanka.

1.3 Motivation

The outcome of this project is to develop a suitable methodology to benchmark
distribution licensees in Sri Lanka which facilitate PUCSL to regulate allowed
revenue for each DL according to the relative OPEX efficiencies of each DL. This

would eventually benefit the electricity consumers and the economy of the country.




1.4  Objective of the Study

The objective of this study is to analyse and identify relative efficiencies with respect
to efficient operational expenditure of electricity distribution licensees of Sri Lanka.
Reader should note that there were no previous benchmarking has been carried out

on distribution licensees in Sri Lanka.

Therefore this study would helpful in following aspects of electricity regulations.

e The regulator can set differentiated price caps based on the companies’

efficiency performance estimated from a benchmarking analysis. ['

e Regulator can decide which companies deserve closer examination, so that

scarce investigative resources are allocated efficiently ['?

e Regulator can decide on X-factor ['* using the results of benchmarking. The

X-factor (efficiency factor) is in the control formulae on distribution allowed

revenue.

1.9 _ odolpdy

To complei&dhe projeet ity tihelylthe siorkiflow was arranged in following manner,

An extensive literature survey was carried out to identify how regulators in
worldwide practice the benchmarking of DLs in regulatory business. Benchmarking

techniques were studied and Data requirement was identified during the literature

review. Then,

e Required data was collected from utilities and the regulator.

e Selected benchmarking techniques were applied on DLs and results were
obtained for different data combinations (inputs / Outputs).

e Results were evaluated and came up with suitable methodology for obtaining

relative OPEX efficiencies of DLs in Sri Lanka.

Following figure 1-1 illustrates the methodology followed in carrying out this study.



Literature Survey

Selected Suitable

Technigues Identified Data Required

Collected Available Data

Different Techniques

Different Data (input/output)
Compinations

Obtain Relative Efficiency
Scores
and

<

Formulate Most Appropriate
Methodology

Figure 1-1: Methodology followed



2 PROMINENT BENCHMARKING TECHNIQUES

2.1 Introduction

Regulators have adopted a variety of approaches to incentive regulation. The most
widely discussed and adopted schemes are based on price cap, revenue cap, and
targeted-incentive regulation models. In practice, most incentive schemes use a
combination of different models. A common feature of the incentive based regulation
models is the use of some form of benchmarking of utilities. Within this context

benchmarking can broadly be defined as comparison of some measure of actual

performance against a reference or benchmark performance.

In assessing the most appropriate benchmarking methodology, following principles

M have to be considered.

e Practical application: It shoyld be straightforward. to implement the

Njue inpractice, giventhe available data. Some of the more

sophtsticated techniques based on ggonometric methods may be inappropriate

when there is only a relatively small sample of firms.

¢ Robustness: The model selected must be robust to changes in assumptions
and methodologies. In particular, the ranking of firms, especially with respect
to the ‘best’ and ‘worst’ performers, and the results over time should
demonstrate reasonable stability; and the different approaches should have

comparable means, standard deviations and distributional properties.

e Transparency and verifiability: In order to ensure accountability and

confidence in the price control it is important that the benchmarking process

is both fully transparent and verifiable.

e Ability to capture business conditions adequately: The approach taken

should be able to capture the particular characteristics of the industry



concerned. For example, some allowance should be made for topology of the

network (e.g. via the inclusion of network length).

o Restrictions: The restrictions placed on the relationship between the chosen

performance measure and variables should be minimized.

o Consistency with economic theory: The approach taken should ideally
conform to

Economic theory.

e Regulatory burden: The burden placed on both the regulator and regulated
companies in terms of data collection and analysis should not be overly

burdensome.

Some prominent benchmarking methods are given in table 2-1.

Technique

~Data Envetopment Analysis

Cbtretted Ordiriary Least Squares

Festiometrit’ ¥ ¥Y -4V ML LAV Aeochastic Frontier Analysis

Tabie 2-1 : Prominent Benchmarking Métﬁods

Following Table 2-2 gives an overview of the frequency with different input and
output variables are used in 20 international studies I As shown in the table, the
most frequently used inputs are operating costs, number of employees, transformer
capacity, and network length, whilst the most widely used outputs are units of energy

delivered, number of customers, and the size of service area.

Variable Frequency
Units Sold 14
Network size, LV MV HV Line lengths 15

No of customers 12
Transformer capacity 12
Service Area 8
OPEX 7
Maximum demand >

Table 2-2 : Input Output Variables Used in International Studies



2.2 Partial Performance Indicators (PPIs)

It measures compare the ratio of a single output to a single input across firms and
over time (for example labor productivity). However, partial productivity measures
can be highly misleading as they are often significantly impacted by capital
substitution effects (where capital is substituted for labour, therefore improving

labour productivity)'”.

PPIs used in isolation cannot easily take into account differences in the market or
operating environment that impact upon a business. For example, a utility may have
a relatively high or low unit cost simply because it faces input prices or serves
customers that are different from those for utilities operating in other regions.
Because of this, they may present problems in providing a meaningful comparison of
businesses in different operating environments.®! Therefore less useful for the
regulator.

The use dfia matriX jofipartial \pesfoManee imeasureS to komparg performance of

§

utilities) 3 ed by suals ofioperatiandSuch a8 al doBpHOFite [9ealevariable), customer

type or dei Py, ndtWorkVdensitiil Capitalldensity, or a combination of these, often
leads to the identification of different best and worst performers in the different

dimensions.®

2.2.1 Advantages
e Easy to compute and understand

N I
o 4
R i

e Can be used to cross check DEA and COLS results for plausibility and

transparency

e Can be used to compare certain aspects of efficiency and productivity

performance.

e Analysis can help identify trends, determine baselines and establish target

performance.



2.2.2 Disadvantages
e Does not allow for evaluation of uncertainty associated with calculating

benchmark

e Although can control for some differences in operating environment, many it
cannot control for

e The restriction to some of the factors used in production means that the
approach can be misleading.

¢ Can give misleading information regarding the overall economic performance
of energy utilities producing multiple outputs and multiple inputs.

e Cannot give an overall measure of potential for cost improvement.

2.2.3 Example for PPIs

e MWh delivered/OPEX
e Customers served/OPEX

o Treg
J=

cuttingl dast permgtworkkNdinetet

o Faflitosts ped geworki kilometes

A weighted-average performance indicator to combine a set of core performance

measures also raises some potential problems because the choice of weights may be
arbitrary and the overall indicator may fail to account for differences in the operating
environment.

These problems suggest a need for a method to derive comprehensive performance
measures that can capture all the information on the inputs used and outputs
produced and that can adjust for differences in non-controllable factors that may

affect utility performance. ™

2.3 Data Envelopment Analysis (DEA)

Data Envelopment Analysis (DEA) is a non-parametric method that uses linear

programming to determine (rather than estimate) the efficiency frontier of the



sample. The approach works by solving individual linear programming problems for
each firm or observation, in which the firm’s inputs and outputs are assigned a set of
weights in order to maximize the ratio of weighted outputs to inputs (subject to the
constraint that all efficiency scores are less than one).Under this approach, an
efficient firm is one where no other firm— or linear combination of other firms - can
produce more of all the outputs using less of any input. This means that the
efficiency frontier is constructed from the ‘envelope’ of these linear combinations of

input and output combinations.!!

A key step in DEA is the choice of appropriate input and output variables. The
variables should, as far as possible, reflect the main aspects of resource-use in the
activity concerned. Misspecification of variables can lead to wrong results,
potentially with less efficient firms defining the frontier. DEA can also account for
factors that are beyond the control of the firms and can affect their performance, e.g.

environmental variables.

3 gly usdd Imodel requitiig fewsassurhpiions ahourithesfunctional form of
cost functiz}’;j_ and Y15 @asy (fo lapplylandkinterpret. Care needs to be taken in the
specification of the variables for use in the model, in particular for small samples of
firms, but provided this is done, it is a valuable benchmarking tool.

There is a problem involving degrees of freedom, which is compounded in DEA
because of its orientation to relative efficiency. In the “envelopment model,” the
number of degrees of freedom will increase with the number of units (DLs) and

decrease with the number of inputs and outputs @21,

2.3.1 Inputoutput variables
Inputs :

e  O&M expenditure
e Line length
e Transformer capacity

e Customer density



Line loss
Average hours outages per customer

Labor hours

Outputs:

Energy delivered
Total customers
Peak demand
Revenue received
Network length
Service area

Feeding power of de-centered generation

Other factors :

232

Té’;ﬁ’;"&'ature
H Luﬁld ity
Salinity
Topology

Advantages of DEA
Multi-dimensional method

Inefficient firms are compared to actual firms (or linear combinations of
these) rather than to some statistical measure

Does not require the specification of a cost or production function.

It does not require functional relationships between input and output factors
DEA can be implemented on a small dataset, where regression analysis tends
to require larger minimum sample size in order to stand up to statistical

testing.

10



2.3.3 Disadvantages
e The results could be influenced by random errors, measurement errors or

extreme events

e Less information about statistical significance of the results!!

e In case of small samples and high number of input or/and output variables —
danger of over- specification of model and “made-up” results for efficiency
scores 2. As more variables are included in the model, the number of firms
on the efficient frontier increases.

e The efficiency scores tend to be sensitive to the choice of input and output

variables and, in some circumstances, inappropriate choices may lead to

relatively inefficient firms defining the frontier.!!!

2.3.4 DEA Linear Programming Model
The DEA takes the following model [10]

ey 2 BLEL T,

@;i"_’y‘i"‘ o= Ting
max iaEy ;

N i i 18 5
X X ;
Losd 1._. ffx»‘ 115 ar

f, = amount of output produced by max }\;‘«. v

. i L K g
E Ve ¥y LU et
of 4 — 1 Y x, = amount of input § utilized by - 5:“ =1
& N - 2 & e

% ; DAL i

S oRX
Ad F0 : s s s [

i=l Bo= weizht given to cutput &, Z"" . Z“ X <0 Vi

5 X . ) i L LK - ) }' P
vioit; 20 Yk, u, = weight given to input /. =] it
v, 20 Vi,

2.4 Corrected Ordinary Least Squares (COLS)

The most commonly used deterministic approach is corrected ordinary least squares
(COLS), the standard regression technique, with the efficiency measures computed
from the residuals. With this approach, the frontier is estimated (rather than
calculated) using statistical techniques. A functional form for the production / cost
function is specified (see below), and this is estimated using ordinary least squares
(OLS) techniques. The calculated line of best fit is then shifted to the efficient

frontier by adding the absolute value of the largest negative estimated error to that of

11



the other errors (for a cost function). This is therefore a ‘corrected” form of OLS is

used, COLS, rather than the standard form. o

Given a vector of outputs Y = (y1,y2,¥3...), a vector of input prices w=(w;,Wp,Ws...) ,
and a vector of environmental variables z= (z1,25,23...) , a benchmark cost function
reflects the annualized costs of an efficient business at a given point in time as a

function of Y,W.Z, 181,

The following five steps are required for the ‘benchmark cost function’ approach:
(1) The selection of variables which reflect:

e Outputs produced by the businesses;

e Input prices paid by those businesses; and

e Environmental conditions that affect the production costs.
Collectively, these variables capture all factors that systematically affect the costs of

the businesses and that are beyond management control.

oh of tHEGPEBTost AR (thel ThnoHERAITEHRS);

(3) The selection of an estimation method that sets out a way to estimate the
specified cost function that best fits the available data;

(4) The compilation of data in relation to costs, outputs, prices, and environmental
variables for a set of comparable businesses; and

(5) The estimation process and the interpretation of the residual (the difference
between the estimated and actual costs) for each business as a measure of the

inefficiency of that business.

A variety of function forms have been used in the empirical studies, ranging from the
simple Cobb-Douglas function to the more complex ‘flexible’ functional forms such
as the translog function. The Cobb-Douglas function assumes a (first-order) log-
linear functional form; that is, the logarithm of the benchmark cost is assumed to be

linear in the logarithm of the output quantity and input price variables specified. For

12



example, with two output variables and two input prices, a log-linear cost function!®!

is:

The figure 2-2 illustrates a COLS model with a single cost input C and one output Y.
The efficient cost equation (COLS line) is estimated using Ordinary Least Squares
(OLS) regression and then shifted by AC to on which the most efficient firm C lies.
The efficiency score for an inefficient firm B is calculated as EF/BF. ")

Cost A
OLS line

COLS line

F input

Figure 2-1 : COLS Procedure

2.4.1 Variables used

Dependent variables:
e Total cost

e OPEX.

Input Variables:
e Price of capital
e Price of labor
e Price of input power

e O&M cost.

13



2.4.2

2.4.4

Output Variables:
e Electricity delivered (kWh)
e Customers served

e Network length.

Other variables:
e Load factor
e Size of service area
e Average temperature

e Average precipitation

Key Assumptions

The COLS method requires specification of a cost or production function and
therefore involves assumptions about technological properties of the firms’

production process.

sSumed that al} deviations fram the frontier are due to inefficiency.

There are therefore no measurement errors.

Advantages

Easy to implement

Allows statistical inference about which parameters to include in the frontier
estimation.

Requires no assumptions about the distribution of the inefficiency scores.

Disadvantages

The estimated parameters may not make engineering sense

The method makes no allowance for stochastic errors and relies heavily on

the position of the single most efficient firm in the sample

14



e Similar to DEA, COLS assumes that all deviations from the frontier are due

to inefficiency.

e [t is not possible to identify firms to which inefficient firms are being
compared in the same sense as DEA. All firms are being compared to a
frontier defined by one frontier firm. However there may be no ‘nearby’

frontier firms.
e Requires large data volume in order to create robust regression relationship

e Sensitive to data quality (the company setting frontier could be an outlier)

2.5 Stochastic Frontier Analysis (SFA)

Stochastic frontier analysis (SFA) is similar to COLS described above, in that it
requires thgfispecificafion ofsa|produdtion rfungiion based[onrihput variables. The
differencé?é\s:aiat it doesabdt@ssumel thatatlertors are dueltolinefficiency, so errors in
parameters @re incofporatad lilfo thd tnadel®!.

The underlying functional form is typically Cobb-Douglas or Translog!". A model of
the form described under COLS is estimated with two error functions. The first of
these will be assumed to have a one-sided distribution. The second error term have a

symmetric distribution with mean zero. The Cobb- Douglas stochastic frontier model

takes the form of [37];

Ing, =B, + B Inx, +v, —y,

Where q; is an output X; is an input and v;, u; are error terms. Perhaps due to the
complexities of implementing SFA in practice and the lack of transparency
associated with the results, regulators have tended not to rely on SFA in setting X
factors. SFA is theoretically the most appealing technique but the hardest to apply.

Regulators have therefore traditionally been reluctant to use SFA techniques in
setting X factors!l. This is because in small samples the technique is either difficult

to implement or gives rise to high efficiency scores.

15



251

2.5.2

Advantages
SFA reduces reliance on measurements of a single efficient firm.
Can incorporate tailored business conditions

The mean of the efficiency term can be explained by the inclusion of
environmental variables in the analysis. Such inclusion handles
environmental variables in a statistically robust way.

Disadvantages

Requires a functional form to be specified

A statistical distribution also needs to be specified for the inefficiency factor

Can_be difficult to implement.in practice due to, the length of the algorithms
reqiied

Suffers from a lack ‘of transparency in the derivation of results, again due to

the complexity of algorithms required.

Even if there are no errors in efficiency measurements, some inefficiency

may be wrongly regarded as noise.

Complex functional forms and stochastic errors appear to bias estimates of

inefficiency downwards. Some inefficiency would be classified as noise.
Estimation of the parameters with SFA is more complex than with COLS.

In practice the technique may not be implementable and give rise to all firms

being100% efficient.

16



3 INTERNATIONAL PRACTICES

Models to obtain relative efficiency scores, practiced by some of the leading
regulators who are using benchmarking to control allowed revenue for DLs are
discussed below. Further some of the methods used to derive X factor by using
relevant relative efficiency scores are also described to highlight the importance of

obtaining relative efficiency scores.

3.1 Austria

E-control is the energy regulator for Austria. Three different approaches are applied,
two data envelopment analyses (DEAs) with different output variables and a
modified ordinary least squares estimation. This has been preferred over the
stochastic frontier analysis (SFA) due to the small sample- 20 electricity distributors.
The Austrian efficiency benchmarking is based on around 20 DSOs. Table 3-1

displays the variables have been used in the benchmarking models '°!.

oEA 0 I DES (::J NROLS

At

TC?«TEQ TOFEX [ TOTEX

Fase Faps Fare
P Pyv Pw
F.T ]H'i' ;T
[}nﬁ
L

P- load, I- line length, T- total

Table 3-1 : Variables and Techniques Used by Austrian Regulator

The overall efficiency score of an individual DSO, ES, is the weighted sum of all
three approaches.
ES=04-DEA(N+02 -DEAIN+04-MOLS

The price cap formulae is,
C,=Coy-[1-X)-(1+ANPL)|- 1+ k- AM,)

17



With as the total costs in period t, the efficiency factor X, as the change in the
network operator’s price index to account for inflation, k the quantity-cost factor, and
the change in the amount of electricity distributed to end-users. The efficiency factor
X incorporates the frontier shift due to technological change, Xgen (% p.a.), as well
as the individual efficiency scores ES (%) determined via benchmarking. The yearly

cost adjustment factor X (% p.a.) is calculated as,

X=1-(-X,)YES.

3.2 Finland

Regulation is done by Energy Market Authority (EMA), and 88 distribution network
operators involved in the distribution business.

EMA uses both DEA as well as SFA for the efficiency benchmarking of distribution
network operators '®. The input and output factors of the current DEA model are:
Input fac fa;«‘y the 'ovidtal=¢odtsytd ) the \chistotndrsy avhichl arer’ddmposed of the sum

total of con -iabla eperational Costs, deprecigtions and-outage-costs.

Output factors: the total'length 'of the'€lectricity network, number of users of the

network operator and the vaiue of energy distributed to consumption. Formula for

DEA model used by EMA is,

ul x Energy +u2 x Networklenghth + u3 x Customers
vix (OPEX + SLD + DCO)

DEA{—Score} =

with
OPEX: controllable operational costs
SLD: straight-line depreciations
DCO: disadvantage to the customer caused by electricity supply outages

ul-3, v: internal weight factors

The enterprise specific efficiency-figures are therefore calculated as the average of

the figures calculated with DEA and SFA with the following formula®):

DEAi 4+ SFAi

EFent,i =
2

EFent,i = Enterprise-specific efficiency figure for network operator i

18



DEAI = Efficiency figure calculated for network operator i with the DEA model
SFAi = Efficiency figure calculated for network operator i with the SFA model

“As both methods used in the efficiency measurement are input-oriented, the result
of the above formula indicates how much the network operator should reduce costs
that are used as input so that the network operator would achieve a cost level
complying with efficient operations. Therefore, the efficiency target of network

operator i (ETi) can be presented with the following formula” I,

ETi=1—Efent,i

3.3 Germany

Efficiency benchmarking is done using DEA and SFA with following variables *!.

Number of connection points across all three considered voltage levels (high,

medium, l%y:jz?
o Qirgnityr cables thigh)

o Cir'ci‘;it of lines (high)

e Circuit of cables (medium)

e Circuit of lines (medium)

e Total network length (low)

e Area supplied (low voltage level)

e Annual peak load (high/medium)

e Annual peak load (medium/low)

e Number of transformer stations across all three considered voltage levels.

e Installed capacity of distributed generation across all three considered levels.
To determine the actual efficiency score (ES), a best off approach is applied with a

minimum of 60%.
ES=na{DELT DEAIT SFAT SFA 0.6

19
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3.4 Norway

The regulatory tasks are ensured by the Norwegian Water Resources and Energy
Directorate (NVE). The NVE uses DEA scores to set firm specific efficiency
requirements and revenue caps for regional electricity transmission and distribution
utilities [°l.

Cost norm is calculated based on the relative efficiency scores found by DEA.
Norway is the only country where the regulator has systematically examined the

effects of environmental factors on the performance of the quality of service and

reflected these in the efficiency benchmarking models.

Output variables of the Norwegian DEA model

Vaniable Unit of megsurement

Erergy delivered M

Customers {except cutages! | No. of customears

Cottage cusiomers No. of customers

High voltage knes Kilometres

sk stations No. of statons

iSO NEE G (R E A

Hrough dir (kidaietres)

now Averags precplalion @s show immi » Hu-lines

through air (kilometres)

Cosstiwind Ihaverage wind speed (mfs/ gverage distance 1o coast imetersy]
¥ Hylinegs through air {kilometres)

Table 3-2 : Variables of Norwegian DEA Model

3.5 UK

Ofgem, the gas and electricity regulator has used COLS method in distribution price
control reviews 2005/06 and 2009/10 "I, UK consists of 14 distribution network
operators. The table 3-3 summarizes the benchmarking methods used by selection of

European countries.
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Country Benchmarking Variables
Method Input Output
Finland DEA OPEX Energy Delivered
No. of Customers
Network Length
Interruption Period
Netherlands | DEA OPEX Delivered Energy
CAPEX No. of Customers
Peak Demand
Network Length
No. of Transformers
Norway DEA Working Hours | Delivered Energy
Network Loss No. of Customers
Capital Stock Network Length
Goods
Services
Sweden DEA OPEX Delivered Energy
CAPEX No. of Customers
Grid Losses Network Length
Maximum Power
Climate Factor
No. of Substations per installed
capacity
UK COLS OPEX Delivered Energy

No. of Customers
Network Length

21
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4 SELECTION OF VARIABLES

4.1 Factors to consider in Selecting Variables
There are number of variables that can be considered when implementing any
benchmarking technique as described in section 2. In regulators point of view,
following factors has to be considered when selecting variables.

»  Quality of the data

= Availability

* Ease of collection.

= Relevance to the business — i.e. electricity distribution business

= International Practices/ Reviews

= Use of statistical indicators (such as correlation)

= Non redundant — to minimize overlapping

» High discriminating power - To limit the analysis to lower number of

parameters, since there are only five DLs operating in Sri Lanka.

. Keﬂecting thd/schle of dperation!

Al Gfist drivers=wariables haviiag major' mfhience’'on'thecost of operation.
Therefore the reguiator must take care to keep the number of variabies to minimum
while those variables are strong cost drivers (i.e. OPEX). Relevant data should be

accurate and importantly be practical to collect from the DLs timely.

4.2 Selected Variables

In search of quality, feasible data several reports were analyzed. These include
published reports by PUCSLP-13%324] and Licensees!?>-26-27-28.29-30,31,32,33,34,35]

Following set of variables found to be in par with factors considered in section 4.1.
Further, following variables are used in prominent benchmarking methods by

international regulators as described in sections 2.3.1 and 2.4.1.

e Energy Sold (GWh)

o Total number of consumers - This is the number of consumer accounts or the

number of consumer connection points

22



* No. of new connections provided

* No. of employees

+ Total distribution lines length (km) — This includes MV and LV network
length

* No. of substations

«  Authorized operation area (km?®) —This is a constant for each licensee.

+ Operational Expenditure (LKR Million)

Note that, in international benchmarking practices, the use of supply/service quality
as a variable is rare. Most of the countries reviewed separately run a quality-of-
service reward/penalty regime [8 ,pp145]. In Sri Lanka, the supply/service quality is
to be determined according to the drafted Electricity Distribution performance

regulations, where penalties have been introduced for underperformance 1*°!.

4.3 Justification of Selected Variables

43.1 C ().s'é«;éi'

Cost is clearly depending on scale of the operation. Accurate data on following scale

iyers

variables can be timely obtained from DLs,
* Energy distributed — Production of the distribution business
*  Number of Consumer Accounts

* Network Length (MV and LV line lengths) — A main cost driver, regarding

distance as a main cost driver
*  Number of Distribution substations

Since data on above mentioned variables can be timely obtained, regulator can timely

perform benchmarking exercise to figure out allowed revenue for each year.
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4.3.2 Dispersion of Consumers

Distribution line length per consumer can be taken as indication of how extent the
consumer concentration is. It is also an indication of the extent of rural electrification
efforts taken by the DLs. For each DL this value is different. For example, DLS is
having a lower value indicating higher concentration of consumers, whereas DL4 is

having a larger value as indicated in table 4-1.

Further , the number of consumers per area (km?) is a another indication of the

consumer concentration. The reciprocal, km?® per consumer indicates the dispersion.

Distribution
Line length Area per
DL Consumer
per Consumer 2
(i) (m?)
DL1 30.8 21,425
DL2 234 10,614
DL3 28.8 13,085
Di4 31¢3 7:940
)] 5) 38 72V,

Table 4-% : Dispersion of Consumers in each DL

4.3.3 Correlation

In Sri Lanka there are only five distribution licensees. If too many explanatory
variables are applied to a sample of only few observations (i.e. the number of
Distribution Licensees), then the results would be left with 100% efficient DLs.
Therefore it is necessary to combine several parameters into one single parameter in
order to preserve sufficient degrees of freedom. It is important to not to consider

highly correlated variables simultaneously, in a benchmarking method.

To assess the correlation of two variables, the linear correlation coefficient can be
used. This provides a measure of strength and the direction of a linear relationship
between two variables. If variables X and Y have a strong positive linear correlation,

then correlation coefficient is close to +1. The correlation coefficient can be written as,
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E(XY) - E(X)E(Y)
VE(X?) — (E(X)2 E(Y?) - (E(Y))?

(4.3}

where E(X) is the expectation of X.

Therefore correlation coefficients were calculated using past data from year 2006 to

2011 for each DL. The results are given in table 4-2.

T B e

g g n B g ()
2 5. 355 & E =5
. . T £5 £EE © = = 25
Correlation Coefficients a S 9 =3 g 2 - =8
> o+ B . € = o w e
@ o« °E £ 2 T 5
[T} o Z 3 o o > @0

5z = =
Energy Delivered 1.0000 0.9683 0.8755 0.9552 0.7498 0.8245
Number of Consumer Accounts 1.0000 0.8769 0.8635 0.6750 0.7069
No. of new connections 1.0000 0.8635 0.7313 0.6198
No. of employees 1.0000 0.6750 0.6758
Network Length 1.0000 0.7069
LV distribution substations 1.0000

Table 4-2 : Correlation Coefficients

For example, Correlation Coefficient of energy delivered and No of consumer

accounts (0.9683, whieh -1 Ythie ! highest! correlation 'coeffictent, while energy

deliveré', go. of émployees s havimg-the‘second htghést., Fot-further verification

figures ASTERd 4-2 Were plotted.
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Figure 4-1 : Energy Delivered vs. Number of Consumers
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Figure 4-2 : Energy Delivered vs. Number of Employees

The Energy delivered and Number of employees indicated higher correlation ( see
figure 4-2). It can be concluded that from the selected set of variables, energy
delivered and the number of consumers are having the acceptable correlation where
when implementing benchmarking techniques like DEA or COLS it is sufficient to

account for one variable from energy delivered and number of consumers. Since

4.3.4 Input, Output and Environmental Variables

To assess the efficiency on the basis of OPEX as required by revenue control
formula, Operational Expenditure (OPEX) taken as the main input variable. Energy

delivered can be taken as the main output produced.

Number of new connection provided taken as an output, while number of employees
were taken as input variable. Number of employees includes management and
operational staff. Demand for new connections depends on the conditions of the
authorized area of operation of DLs. This is not under the direct control of the
management of the DL. To provide the demanded connection the DL has to input its
resources. Table 4-5 depicts the variation between DLs 31 This reflects the variation

in demand for new connections that is varying according to the area of operation.
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DLs need to meet this demand. Therefore DLs need to input their resources

accordingly.

As given in the table 4-3, DLI is giving 40 new connections per day (on average)
whereas DLS is only providing 6 new connections per day (on average). Obviously
DLI needs to input more resources than DL5 to cope with the demand for new
connections. The demand for connection is out of the control of the DL’s
management. In some areas, lot of infrastructure developments, resettlements and
rural developments are going on due to ending of the war with terrorists. This has
caused high demand for new connections. Therefore, when evaluating the overall
performance, the number of new service connections provided by respective DLs has

to be considered.

Licensee Average No. of New Connections
provided per day
(for year 2012)
DL1 7 40
DIL2 31
D13 33
br4 14
DL5 6

Table 4-3: Average No. of New Connections Provided by each DL

Network length and substations can be considered as input or output either. One can
argue that poles and wires are capital inputs to the service *|.Viewing the network
length as an output runs the risk that a network that increases its length of lines is
rewarded even if there is no impact on real world delivering of services to the
customers . In international regulatory practice network length has been
considered as both input and output. Hence both scenarios were taken into

consideration.
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S SELECTION OF BENCHMARKING TECHNIQUES AND

MODELS

Chapter 2 described prominent benchmarking techniques which are practicing by

international regulators. Advantages and disadvantages each techniques were also

elaborated.

5.1 Comparison of Benchmarking Methods

The evaluation of prominent benchmarking techniques done in Chapter 2 revealed

that each technique have pros and cons relative to each other. Summarization of

characteristics of these techniques is given in table 5-1.

For example, it can be seen that DEA is easy to implement on smaller samples
compared to SFA which is very difficult to implement with smaller samples.
Characteristic Method
PPI DEA COILS SFA
Easiness to cq:;m:pute and understand (verifiakility and Very Begy iy Difficult
transparenc@;ﬁ G Easy
£ ) 0g :

Accommod réfe‘rences iy operating €nvironmerits ~ No “Yes - Yes Yes
Describe overall economic performance of DLs No Yes Yes Yes
Extension to multiple outputs / inputs - No Easy Difficult Difficult
Inefficient firms are compares with actual firms or linear No Yes No No
combinations of those rather than to statistical measure
Reql{lrement to specify cost function (Strong assumption No No Yo Ve
required)
Requirement of functional relationship with inputs and No No Yes Yes
outputs
Ability to implement in smaller sample Eas Eas Difficult Ve

Ity to mplemen i Y y Difficult
Results can influenced by random errors Yes Yes No
Information about statistical significance of the results No No Yes Yes
Data volume requirement Low Low High High

Table 5-1: Characteristics of Benchmarking Methods
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5.2 Feasible Methods and Models

Results from application of benchmarking method will directly impact the allowed
revenue of each DL. If the method itself is complicated and harder to understand then
there would be a doubt in the minds of DLs about the efficiency results. From the
table 5-1, it can be seen that DEA, COLS, and PPI fulfill the following desirable

characteristics.

e Easiness to compute
e FEasiness to understand
e Transparency.

e Ability to implement in smaller sample.

However, PPI has to be avoided since it is not a multi-dimensional (cannot extend to
multiple inputs and outputs) method where several inputs and outputs are not being

taken into consideration at once. SFA is inherently difficult to understand.

If a benchmarking method requires higher number of.data poipts then it will be
harder to ug“p'?mcm with.a smallersample like five, as in the case where only five
DLs in Sri L;nka DEA.can bg-casiky implgmented with five DLs, but care has to be
taken to veri_fy the results with other methods. A rule of thumb (from international
practices)is that for m number of inputs and » number of outputs, there has to be » x
m number of DLs!""?2 Otherwise all the DLs would get closer to 100% efficiency

and discrimination could be difficult.

In other words, with small sample and high number of input / output variables there

is a danger of receiving made-up results for efficiency scores I When more
variables are included in the model, the number of DLs on the efficient frontier

increases. The selected input / output variables are listed under section 4.2.

Feasibility of COLS has to be decided by practically implementing the COLS
method with Cobb-Douglas cost function (refer section 2.4 on cost function) with
same set of variables, and also COLS implementation can be used to verify the

results from DEA. Implementation is given in the section 6.1.
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To verify the results (efficiency scores) at least two different benchmarking methods
must be used. Selected methods should have different characteristics so that the
regulator can convince the DLs about the efficiency scores. In this case DEA and
COLS are feasible to implement considering the characteristics summarized in the

table 5.1.

5.3 Availability of data

This is another constraint when selecting a benchmarking technique. Four DLs out of
five DLs, the TL and the bulk generation are still operating under one management.
Therefore those four DLs are not having separate annual reports where audited data
can be extracted. Therefore it is difficult to find reliable past data of OPEX. Hence
panel data could not be used where majority does not having reliable OPEX data.
This restricted the usage of econometric methods like SFA to benchmark only five
DLs. Once PUCSL begins the regulatory accounting on DLs, reliable Opex and

Capex data can be easily obtained for strong benchmarking studies.
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6 IMPLEMENTATION OF BENCHMARKING TECHNIQUES

6.1 DEA

6.1.1 Mathematical DEA Model

With reference to the facts discussed in section 2.3 , the usual measure of efficiency
is,

output

efficiency =
mput

With multiple inputs and outputs, a common measure for efficiency is,

weighted sum of outnuts

Efficiency = - -
weighted sum of inputs
Efficiency of the DL, P

ul XY14+u2XxXY2+ e ne et
vIVIAXICH WX DL Lol

Efficiency.of (P, =

Where,
Uj - weight given to Output 1
vl — weight given to Input 1
Y1 — Amount of Output 1 from P

X1 — Amount of Input 1 from P

Now each DL allowed to adopt a set of weights which shows it in the most favorable
light in comparison to the other DLs. Under these circumstances, efficiency of a
target unit P can be obtained as a solution to the following problem:

Maximize the efficiency of DL P,

Subject to the efficiency of all other DLs being < =1.

The variables of the above problem are the weights and the solution produces the
weights most favorable to unit jO and also produces a measure of efficiency.
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XYy,

Maximize Ef ficiency of P,

LviXi,
Yy, Xi, — amount of output, input i from DL P
_ XYy, _
Subjected to, <1 for all other DL j
L viXi,
u;,v; =20

The solution to above maximization problem is the maximum efficiency that is
attained by DL P, with respect to all other DLs considered. For example if you are
maximizing the efficiency of DL1 (with respect to DL2, DL3, DL4 and DL5), then
those corresponding weights must not exceed other DLs , i.e. DL2, DL3, DL4, DL5
efficiencies beyond 100%.

For example, consider following input / output configuration.
Output 1 : Energy Delivered to customers by DL ( say ENERGY)
Output 2 : Network route length maintained by DL (say LENGTH)
Inpl{l‘;l : Operational Expenditure-by-BL-(say QREX)

[Note : sub§6}ipts denotéd the respective DL. That is, LENGTHp;; means network

route length'"fnaintained by DL1]
Maximize efficiency of DL1

i.e. Maximize :

v1 x ENERGYpy; + v2 X LENGTHpy
ul x OPEXDLI

Subjected to:

v1 X ENERGYpy; + v2 X LENGTHpy
ul x OPEXDL1

vl X ENERGYpy, + vZ2 X LENGTHpy,, <
ul X OPEXp, N

v1 X ENERGYps + v2 X LENGTHp1; _
ul X OPEXDL3 -
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v1 X ENERGYpy, + v2 X LENGTHpLs _
ul X OPEXDIA -

v1 x ENERGYpc + v2 X LENGTHpyc
ul X OPEXDLS

ul,vl,v2 >0

It can be seen that above constraints are formulated such that weights v1, v2 and ul

given to outputs and input must not lead to efficiencies of greater than 1 for any DL.

Above non linear model can be converted into a linear model as illustrated in section

2.3.4. That is,

Maximize :

v1 X ENERGYp,; + v2 X LENGTHp,, (6.2)

Subjected to :

ul SBPEX, L BIYEISILY. Oratua,

V1 SEMER GYoyyth PR THENGFHM 1 — ul X OPEXpy; <0
v1 X ENERGYp,, + v2 X LENGTHp,, — ul X OPEXp,, < 0
v1 X ENERGYp3 + v2 X LENGTHp,3 — ul X OPEXp3 < 0 } (6.4)

v1 X ENERGYp, + v2 X LENGTHp,, — ul X OPEXpL, <0

v1 x ENERGYpc + v2 X LENGTHp,s — ul X OPEXp,s < 0

ul,vl,v2 =20 (6.5)

By solving above linear programming problem, the weights ul,v1,v2 can be
obtained. Then using the equation (6.1) the corresponding maximum efficiency of

DL1 with respect to DL2, DL3, DL4 and DLS5 can be calculated.
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For the same input / output variables (i.e. ENERGY, LENGTH and OPEX) the
corresponding weights for maximum efficiency of DL2 relative to DL1, DL3, DL4

and DL4 can be obtained by solving following linear programming problem.
Maximize :

vl X ENERGYp;, + v2 X LENGTHp,,
Subjected to :

ul X OPEXp;, =1

v1 X ENERGYpy; + v2 X LENGTHp,; — ul X OPEXp,; <0

v1 X ENERGYp,, + v2 X LENGTHp,, — ul X OPEXp,, <0

vl X ENERGYp;3 + v2 X LENGTHpy 3 — ul X OPEXp;3 <0

v1 X ENERGYy, . + v2 X LENGTHy, . — ul X OPEXp;, <0

2% FENGTH S W R bPEXI ISk o

Therefore by solving linear programming problems (five separate linear
programming problems) corresponding to maximizing efficiency of each DL, the

relative efficiency of each DL for given input / output variables can be calculated.

6.1.2 Input and Output Variables

Factors to be considered when selecting the input and output variables and
justifications for selected variables were discussed in Chapter 4. Accordingly

following variables were selected when implementing DEA.

(1) Energy Sales — Amount of energy (GWh) distributed to the consumers by DL
during the year concerned. This was taken as the main output variable, since

the energy sales is the main production of the electricity distribution business.
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(2) New Connection given — That is the number of new service connections
provided by the DI during the year concerned. This is an output of the

distribution business.

(3) No. of Employees — Total number of employees employed by the DL. This is

taken as an input to the distribution business.

(4) OPEX — The operational expenditure is taken as the main input to the

distribution business.

(5) Total Network Length — This is the total route length of the electrical
distribution lines. In one hand this can be taken as an output, because this
amount of line length has to be maintained by the DL. On the other hand this
can be taken as input, because this is a capital input to the distribution

business.

eSubstations — In one view this is taken as an,output; as it consumes

s#eSources by DL, to maintain. In another view this can be taken as an

input as it is a capital input to the distribution business.

(7) Area per Consumer — As described in section 4.3.2 this variable is an
indication of the extent of dispersion of the consumers. Generally if the
dispersion is greater, then the input resource requirement would be greater

per consumer. Hence this is taken as an output to the DEA model.

(8) Network Line Length per Consumer — This is the electricity distribution route
length per consumer. As described in section 4.3.2, lower value for this
indicates higher concentration of consumers. Further, this is an indication of
the extent of rural electrification. To implement this factor in DEA model, it

is taken as an output to the DEA model.
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Note that, if ‘Total Network Length’ is to be taken as an input, then ‘No. of
Substations’ has to be taken as input also. On the other hand if Network Length is

to be taken as an output, then ‘No. of Substations’ has to be taken as output also.

6.1.3 Implementation of Different Models

For each models given in tables 6-1, 6-3, 6-5, 6-7, 6-9 and 6-11, the efficiency scores
were obtained. Note that every possible input output configurations (models) were
taken into consideration when obtaining results. For example, as given in table 6-11
for ‘3- variable models’ there is 8 models. As described in section 6.1.2 Energy Sales
and OPEX present in each model since those are the main output and input variables
respectively. If a variable to a model is taken as output then it is indicated as ‘O’

while inputs represented as ‘I’.

Implementation in MS Excel is illustrated below. Here we have considered the 3-

en. Figure 6r2 represents the implementation of constraints in the

4 A B c D B s . H
14 PEX {LKR
Distribution Energy Delivered Netwo-rk b Z i Weighted Weighted o Weighted Output -

Licensee (GWh} as an Qutput Rl asion Mo/ &san Output input Hixleey Weighted tnput
1 = = Output input 5 e 2
P Dil 2,797 38,967 3664.6 41764.35 3664.60 11.40] 38099.73
3 Di2 2,844 34,856 48015 376599.69 4801.50 7.85 32898.13
4 Di3 1,846 32,196 2624.2 34041.93 262420 12.97 31417.73
3 Di4 1,269 26,497 2135.9 2776645 2135.90 13.00 25630.55
& Di5 1,184 4,340 15315 5524.07 153150 3.61 3992.57
7
g Vi V2 Ul

Weights
3 1.00000 1.0000C 1.00000

Figure 6-1 : Implementation of DEA 3-Variables model in MS Excel (Initial values)
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Solver Parameters

Set Target Cell: sEs2 (e

Ei -!T H P M iy ' 0 i
qual To : © Max Min (ivalueof: 0 | E i _J

By Changing Cells:

$B53:$D59 s { . Guess WI
Subject to the Constraints: { Options §
$859:5DS9 >=0 1 | Add
SFS3 =1 f -
SHE2IEHES <= Change 3 i
Reset AJI_—E
et i lete [
Help

Figure 6-2 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL1

In figure 6-2 the target cell E2 represents the weighted output of DLI that is to be

maximized, that is, the condition described in equation (6.2) in section 6.1.1.
vl X ENERGYDLI + v2 X LENGTHDLl

This is donaﬁqby changing thes cellsABONCH andh D9 thatyisi thespofrgsponding weights
T \SVered Ngtwoikl Cengil 268 OPHEX1396€! #Hatin $he excel sheet the

cells B9.C‘f’a’ﬁd Dovaré rounded iplto fiveldecimal places.

The constraint B9:D9 >= 0 represents the weights described in equation (6.5) in

section 6.1.1, that is.
vl,v2,ul =20

The constraint F3 = 1 represents the condition described in equation (6.3) in section

6.1.1, that is,

ul X OPEXDLI =1

The constraint H2:H6 <=0 represents the conditions described in equations (6.4) in
section 6.1.1, that is,

v1 X ENERGYp,, + v2 X LENGTHp,; — ul X OPEXp;; <0
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IA
(==

vl X ENERGYDLZ + v2 X LENGTHDLZ — ul X OPEXDLZ

IA
(<)

v1 X ENERGYp3 + v2 X LENGTHp 5 — ul X OPEXp,5
v1 X ENERGYp, + v2 X LENGTHp,, — ul X OPEXpL, <0

vl X ENERGYDLs + v2 X LENGTHDLS — ul x OPEXDLS <0

A B C o E £ £ H
Distribution Enjzrgy O beied Network QPE}[IL&Q Weighted | Weighted : Weighted Qutput -

3 {G¥Wh} as an Length {km} |Mitiion] as an Efficiency s "

1 Licensee St aas Ot nr Dutput nput Weighted input

DLl 2,757 38,967 1.00 1.00 1.0 D00

3 DL2 2,844 34,856 1.01 131 8.77 -0.30

4 DL3 1,846 32,196 2624.2 .66 0.72 0.93 -8.05

5 DL4 1,269 26,457 2135.9 0.46 {£.58 0.79 -0.13

5 DLS 1,184 4,340 15315 0.42 .42 1.00 .00

7

& V1 V2 Ui

3 Weight £.00035 0.00000 0.00027

Figure 6-3 : Results for Maximizing the Efficiency of DL1

In the same manner figures 6-4 and 6-5 represent the corresponding constraints of

the maximﬁi"'-tion problem-rélevant'to” DL2and" results ‘afteér' solving the problem

Souver Farameiers

%
i

:g,
4

Set Target Cell: SE

Equal Ta: @ Max i Min 0 vElueof
By Changing Cells:

| 5B59:5Ds5

Subject to the Constraints:

18052:3058 =0 e
BFe3=1
SHE2:8HSE <=0

Figure 6-4 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL2
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A B C D E o G H
Distribution Energy D‘eiévered Metwork DPE}( {LKR Weighted | Weighted o * Weighted
5 [GWh)asan | Length (km) |Miliion) as Efficiency Output -

1 HcERseR QOutput as an Output| an input Quipet ks Weighted input
2 DLL 2,797 38,967 3664.6 0.76 0.76 1.00 0.00
3 ni2 2,844 34,856 48015 8.77 1.60 0.77 -0.23
4 DL3 1,846 32,186 2624.2 .51 0.55 0.93 -0.04
5 DL4 1,269 26,457 2135.8 0.35 0.44 0.79 -0.08
6 DLs 1,184 4,340 15315 0.32 0.32 1.00 0.00
7
& V1 W2 Ul
g Weight 0.00027 0.00000 0.00021

Figure 6-5 : Results for Maximizing the Efficiency of DL2
In figure 6-5, it can be observed that the maximum efficiency that DL2 has attained
is 77%, but all other DLs have attained efficiency of more than DL2 even with the

maximum supportive weights to the DL2 itself.

Figures 6-6 and 6-7 represent the corresponding constraints of the maximization

problem relevant to DL3 and results after solving the problem respectively.

Equal To: 4 ax o Min
By Changing Cells:

SES9:$DET

Subject to the Constraints:

1SBE9:5DEY ==10
g4 =1
SHs2:8Hs6 <=0

Figure 6-6 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL3

g
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A B c D : E £ QG H
Energy Delivered| Network OPEX (LKR Weighted

th:;izi;}n [Gi:‘h} asan Length (km) Mé%iécfx] as V’;&Ehid Wf§ght8d Efficiency Dutgput-
1 ’ Quiput as an Qutput| aninput P nput Weighted input
2 DLT 2,797 38,967 3664.6 1,27 1.40 0.91 -0.13
3 DL2 2,844 34,856 4801.5 117 1.83 0.64
4 013 1,846 32,196 24,2 1.o0 100 1.00
o Di4 1,269 26,497 2135.9 0.80 0.81 0.98
6 DLS 1,184 4,340 15315 0.23 .58 0.39
7
8 Wi V2 Ul
9 Weight 000010 0.06003 04.00038

Figure 6-7 : Results for Maximizing the Efficiency of DL3
In figure 6-7 it can be observed that efficiency score of DL3 attained 100%. Figures
6-8 and 6-9 represent the corresponding constraints of the maximization problem

relevant to DL4 and results after solving the problem respectively.

¥

Solver Parameters

o
T
)
o
(%]
ly!

. &
=5
B
1=
s
a
[
o
b
=
-

Subject to the Const

CEHLEE) ’ ol it
gFss =1 ! ;

SHE2:8HS6 <=0 | | change |

Figure 6-8 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL4
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A B 8 3] E E G H
el . Energy Delivered Metwork OPEX {LKR . ! Weighted

D;s_tr;buticn {GWwh) as an Length (km} | Million) as Welghted | Weghoed Efficiency Output -
1 Htenaes Output as an Output| an input Qutprt i Weighted input
2 DLl 2,797 38,967 3664.6 1.51 1.72 0.88 -0.20
3 DL2 2,844 34,856 4801.5 1.37 2.25 0.61 -0.88
4 DL3 1,846 32,196 2624.2 1.23 1.23 1.00 0.00
5 Dig 1,269 26,497 231353 1.00 1.00 1.00 .00
6 DLS 1,184 4,340 1531.5 0.21 0.72 0.29 -0.51
7
8 W1 V2 Ui
3 Weight 0.00004 0.00004 0.00047

Figure 6-9 : Results for Maximizing the Efficiency of DL4
Figures 6-10 and 6-11 represent the corresponding constraints of the maximization

problem relevant to DL5 and results after solving the problem respectively.

.
Solver Parameters

Set Target Cell:

Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5
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A B C (3] E E G H
Bichributicn Energy I?ei%vered Neth:frk : OPE)! {LKR Weighted | Weighted o Weighted
eericis {GWh) as an Length {km} |Miliion) as Ou:put input Efficiency ’ vOutput -

1 Output as an Cutput| an input Weighted input
2 DLL 2,757 38,967 3664.6 2.36 2.39 .95 -0.G3
3 D2 2,844 34,856 4801.5 2.40 3.14 0.77 -0.73
4 DL3 1,846 32,136 2624.2 156 71 0.31 -C.15
5 L 1,268 26,497 2135.8 1.07 139 0.77 -0.32
g BLs 1,184 4,348 1 3 1.60 1.60 1.00 ¢.66
7
2 Vi V2 Ul
9 ‘Weight 0.00084 0.C0000 0.00065

Figure 6-11 : Results for Maximizing the Efficiency of DL5

By solving the five maximization problems with respect to DL1, DL2, DL3, DL4 and

DL5 the resulting efficiency scores corresponding to the 3-variable model (i.e.

model-4 in table 6-11) has obtained. Here Maximum efficiency of each DL is taken

as the result. Results are as follows,

SN SN

DL1 with 100% efficiency
DL2 with 77% efficiency
_Sawith 10096 efficiehdy
ol@With 100%efficiendy
ith 100%.-efficiency.

The same result is given in the model-4 under the table 6-11.

6.1.3.1

Models with Eight Variables

Here all eight variables discussed in section 6.2.1 were taken into consideration.

Hence this has considered total influence from all 8 variables. Note that there are two

combinations since ‘Total Network Length’ and ‘No. of Substations’ can also be

considered as inputs to the DEA model.

New

Network Line

Total

Energy - Area per No. of No of
Model Sales Conrfectlons Conaumer Lengthper Network Substations: Employees OPEX DL1 DL2 DL3 D4 DLS
given C Length
1 (o] (o] (o] [0} (0] (o] I I 100 79.3 100 100 100
2 0 ) o 0 | 1 1 100 100 100 100 100

Table 6-1 : DEA Efficiency Scores of 8 Input/output Variables Models
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DEA Efficiencies of 8-Variables Models

Maximum
Minimum
Average

DL1 DL2 DL3 DL4
100.0 100.0 100.0 100.0
100.0 793 100.0 100.0
100.0 89.7 100.0 100.0

DL5

100.0
100.0
100.0

Table 6-2: Maximum, Minimum and Average Efficiency Scores of 8 Variables Models

From the results depicted in table 6-1, it can be seen that with respect to the Model 1, DL2

indicates an efficiency score of 79.3% while all other DLs are 100% efficient. With respect
to the Model 2 all DLs attained 100% efficiency. In average the efficiency of DL2 is 89.7%

as given in table 6-2.

6.1.3.2 Models with Seven Variables

New Network Line Total
Energy - Area per No. of No of
Model Connections Lengthper Network - DL1 DL2 DL3 DL4 DLS
Sales : Consumer Substations Employees
given Consumer Length
1 o (o] (o] o (o] (o] I 100 100 100 100 100
2 o o o (o] (o] I 1 100 77.8 100 100 100
3 (o] (o] (o] (0] (o} I I 100 793 100 100 100
4 o. 0 o] (o} (o} 1 1 100 79.3 100 100 100
5 ofg o o o a ¥ 1111400, 793 100 100 100
6 q@“\?& : o 0 o o I I 100 79.3 100 100 100
7 OV O o o 1 } ill100 864 100 100 100
8 O =52 O 0 o) I I 1 100 975 100 100 100
9 (o "0 o] o t I | 100 100 100 100 100
10 (o] o (o} 1 1 1 1 100 100 100 100 100
11 (o] (o] (o] I | | | 100 100 100 100 100
12 o] (o] (o] 1 | 1 1 100 100 100 78.4 100
Table 6-3 : DEA Efficiency Scores of 7 Input/output Variables Models
Efficiencies for 7 Variable Models - DEA
100 B WP W
90
o or—i—fg-—ig-fi} O
= 70
2 ¢DL1
v 60
E 50 DL
()]
5 %0 ADL3
E 30
20 oDL4
10 XDL5
0
1 2 3 4 5 6 7 8 9 10 11 12

Figure 6-12 : Efficiencies for 7-Variables Models
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Efficiencies for 7 Variable Models - DEA

100 B W W W W W
90
v 80 0 £ B & & )
g 7 @DL1
v 60
g 5o opL2
2 40
é 30 4ADL3
w20 <oDL4
10
0 X DL5
1 2 3 4 5 6 7 8 9 10 11 12
Model
Figure 6-13 : Efficiencies for 7-Variables Models
DEA Efficiencies of 7-Variables Models
DL1 DL2 DL3 DL4 DL5
Maximum 100.0 100.0 100.0 100.0 100.0
Minimum 100.0 77.8 100.0 78.4 100.0
verage nizgpsity eb.Moratoova. Sregaanka100.0
]
6.4 : Maximuh, Minimum-and Averdge Efficiency Scores'of 7 Vartables Models
From table 6.3 and figure 6-12 it can be seen that in five instances out of 12 models, the

efficiency score of DL2 is less than 80%. DL4 has got efficiency score of less than 100% at

one instant only. DL1, DL3 and DL5 attained 100% in every model.
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6.1.3.3 Models with Six Variables

Energy New. Area per LUSTISONE e No. of No of
Model Connections Length per  Network . DL1 DL2 DL3 DL4 DLS
Sales . Consumer Substations Employees
given C Length
1 0 o o o 1 1 100 793 100 100 100
2 (o] (o] (0] (o] I I 100 79.3 100 100 100
3 0o (o) o o 1 | 100 79.3 100 100 100
4 o (o] (o] (o] 1 | 100 77.8 100 100 100
5 (¢] (o] (o] (o] (o] i 100 774 100 100 100
6 (0] (0] (o] (0] | | 100 79.3 100 100 100
7 (o] o o o I | 100 79.3 100 100 100
8 o o (0] (o] | 1 100 77.8 100 100 100
9 o} o o] (o] 0] | 100 774 100 100 100
10 (o] (o] (o] (0] | 1 100 78 100 100 100
11 (0] o o o I 1 100 77.8 100 100 100
12 (o] (o] (o] o (o] 1 100 774 100 100 100
13 (e] o o} o I | 100 77.8 100 100 100
14 (0] (o] (0] (o} 0 1 100 773 100 100 100
15 o (6] o o] o 1 100 774 100 100 100
16 (o] (o] o o I | 100 83 100 100 100
17 (0] o o | I 1 100 864 100 77.7 100
18 [0} [0} (0] | I 1 100 86.4 100 100 100
19 o] (6] o | 1 | 100 834 100 100 100
20 o (o] (o] (o] I | 100 97.5 100 100 100
21 o o o 1 I 1 100 975 100 784 100
22 (o] (o} (o] I | | 100 975 100 100 100
23 0o (6} 0} 1 i | 100 975 100 100 100
24 (o] (o] I | I I 100 100 100 100 100
25 (6} 6] 1 I I 1 100 100 921 784 100
% 0 o (W ) i I 100 100 100 100
27 0 BN 12 1! 1 e 100 100 784 100
28 d 9 t 9 4 100 100 100 100
29 o' 0 i = e 100 100 784 100
Table 6-5 : DEA Efficiency Scores of 6 Input/output Variables Models
Efficiencies for 6 Variable Models - DEA
10026 2K 2 26 6 6 06 06 0 203K DK DR D 0 2 K 3 86 -2 D DRI TR
90
OO mBEonoooUo o © OTOT0O
g 70 DL1
& 60 *
g s0 £oL2
]
5 10 ADL3
£ 30
20 <DL4
10 XK DLS5
0
SREotnerSedNNYMEER oI NEIRRER

Figure 6-14 : Efficiencies for 6-Variables Models
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DEA Efficiencies of 6-Variables Models

DL1 DL2 DL3 DL4 DL5
Maximum 100.0 100.0 100.0 100.0 100.0
Minimum 100.0 773 92.1 7.7 100.0
Average 100.0 86.3 99.7 96.3 100.0

Table 6-6 : Maximum, Minimum and Average Efficiency Scores of 6 Variables Models

From table 6-5 it can be seen that in 15 models out of 29, the efficiency of DL2 is less than
80%, where all other DLs have attained 100% in those 15 models. The average efficiency of

DL2 is 86.3%.

6.1.3.4 Models with Five Variables

Energy New. Area per Networkiline Total No. of No of
Model Connections Length per  Network - OPEX DL1 DL2 DL3 DL4 DL5S
Sales . Consumer Substations Employees
given Consumer Length

1 (o] o o o 1 100 77.3 100 100 100
2 (o] (o] (o} (o] I 100 77.4 100 100 100
3 o (o] (o] o I 100 774 100 100 100
4 (o] (o] (o] (o] | 100 77.4 100 100 100
5 (0] (o] o o] 1 100 77.4 100 100 100
6 (o] o (o] (o} | 100 77.4 100 100 100
7 o o (6] 0 1 100 77.3 100 90.2 100
8 0 o} (o) I | 100 793 100 100 100
9 0 0 1 J 100 793 100 85.2 100
10 (o] Q | i 100~¢127.8 100 77.7 100
11 o4 (0 Q | L: 100 778 100 100 100
12 Q° O O f I 160° 79.3 100 100 A 100
13 O, el o I I 100 77.8 100 100 100
14 o (o) (o) 1 I 100 79.3 100 90.2 100
15 0] (6] (o] o I 100 773 100 100 100
16 (o} o o | I 100 77.8 100 100 100
17 o] o (0} 1 1 100 77.8 100 100 100
18 (o] o (o] (o} | 100 77.0 100 100 100
19 (o] o o o i 100 77.4 100 100 100
20 (o] 0 (o] I I 100 77.8 100 100 100
21 0 o o I I 100 77.0 100 100 100
22 (o] (o] (o] I I 100 83.0 100 100 100
23 o o o 1 I 100 83.0 100 77.7 100
24 o [0} 1 I | 100 834 100 100 100
25 o o 1 | 1 100 864 100 77.7 100
26 (o] 0 | | 1 100 834 921 77.7 100
27 o o (0] 1 1 100 975 100 784 100
28 (o] (o] I I I 100 97.5 100 784 100
29 0} 0 1 I I 100 975 100 100 100
30 o (o] I | | 100 97.5 92.1 784 100
31 o o o 1 i 100 97.5 100 100 100
32 o (o] o | I 100 97.5 100 100 100
33 (0] o 1 1 1 100 100 100 100 100
34 o (o] I I I 100 100 100 784 100
35 (0) 1 i 1 I 100 100 919 784 100
36 0 o 1 | 1 100 100 92.4 78.4 100

Table 6-7: DEA Efficiency Scores of 5 Input/output Variables Models
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Efficiencies for 5 Variables Models - DEA
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Figure 6-15 : Efficiencies for 5 - Variables Models
DEA Efficiencies of 5-Variables Models
DL1 DL2 DL3 DL4 DL5
Maximum 100.0 100.0 100.0 100.0 100.0
Minimum 100.0 77.0 91.9 77.7 100.0
Ayeege  Uniaoarsity edalVioradaimva, Sus.o.ankaoo.o
8 : Maximum, Minimum and Average Efficiency Scores of 5 Variables Models
According to table 6-7, the efficiency of DL2 is less than 80% in 21 models out of 36 models,

with respect to the models with five variables where DL1, DL3 and DL5 have attained 100%
efficiency score in those 21 models. In 10 models out of all 36 models, the DL4 has ended
up with efficiency scores less than 80% where DL1, DL3 and DL5 have attained 100%. Table
6-8 depicts the average efficiency scores of 5 variables models where DL2 ended up with

84.4% average efficiency.
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6.1.3.5 Models with Four Variables

Energy New‘ Areaper Networkiine Total No. of No of
Model Sl Conrfectlons T Length per  Network Substations Employees OPEX DL1 DL2 DL3 DL4 DL5
given Length
1 (o] o (o] I 100 773 981 77.7 100
2 0 (o} (o} | 100 77.3 100 100 100
3 (o} (0] [0} 1 100 774 100 100 100
4 (o] (o] (0] | 100 77.3 98.1 85.2 100
5 (o] (0] 1 I 100 778 100 77.7 100
6 o} 0 o} | 100 77 100 100 100
7 o} (o} [0} I 100 774 100 100 100
8 (0] (o} 0 | 100 77 100 90.2 100
9 (¢] o] | I 100 778 921 77.7 100
10 (o} (0] (o] I 100 77.4 100 100 100
11 (o] (0] [0} I 100 76.8 100 100 100
12 0 [0} I I 100 77.8 100 100 100
13 (o] o o I 100 774 100 100 100
14 (o] (o] | | 100 77.8 100 100 100
15 (o] o | I 100 793 =91 773 100
16 (o} (o} I | 100 83 100 77.7 100
17 (o} (o] I I 100 975 100 78.4 100
18 (o] (o} | | 100 77 921 77.7 100
19 o] o I I 100 975 921 784 100
20 (0] (0] | I 100 76.8 100 100 100
21 (o] 0 1 I 100 975 100 100 100
22 o | I | 100 100 91.9 784 100
23 (o] I | I 100 84 91 769 100
24 (o] | I | 100 97.5 91.9 784 100
Table[6{9,DEAEfficiehcy Sedres of 4 inputfoutput Variables iodels
|
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Figure 6-16 : Efficiencies for 4 — Variables Models
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DEA Efficiencies of 4-Variables Models

Maximum
Minimum

Average

DL1 DL2 DL3 DL4
100.0 100.0 100.0 100.0
100.0 76.8 91.0 76.9
100.0 82.2 97.4 88.8

DL5

100.0
100.0
100.0

Table 6-10 : Maximum, Minimum and Average Efficiency Scores of 4 Variables Models

6.1.3.6 Models with Three Variables

Ehoe New Aaape: Network Line Total No.of No of
Model BY Connections P Length per  Network i OPEX DL1 DL2 DL3 DL4 DLS
Sales Consumer Substations Employees
Consumer Length
1 (0] (0] I 100 773 100 77.7 100
2 (o} 1 100 77 921 777 100
3 (o] (o] I 100 76.8 100 100 100
4 (o] (o] | 100 774 100 100 100
5 (0} (o] I 98.8 76.6 91 773 100
6 (o] | 1 98.8 766 91 769 100
7 (o] | I 100 775 915 769 100
8 o | I 100 77.8 91 769 100
Table 6-11 : DEA Efficiency Scores of 3 Input/output Variables Models
Efficiendies for 3Variable Models - DEA
X x ? 3§ X g 3 . 3
)
X 80 0 o 0 0
v 70 ¢ DL1
S 60
2 50 OpL2
1%}
c 40
[ ADL3
s 30 =
£ 2 oDL4
10
0 XDL5
1 3 4 5 6 74 8
Model

Figure 6-17 : Efficiencies for 3-Variables Models
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DEA Efficiencies of 3-Variables Models

DL1 DL2 DL3 DL4 DL5
Maximum 100.0 77.8 100.0 100.0 100.0
Minimum 98.8 76.6 91.0 76.9 100.0
Average 99.7 771 94.6 82.9 100.0

Table 6-12 : Maximum, Minimum and Average Efficiency Scores of 3 Variables Models

6.1.3.7 Conclusion on Results from DEA

According to table 6-13 and figure 6-17 it can be seen that the discrimination between each

DLU’s efficiency scores decreases with the number of variables considered.

DEAAwerage|Efficiensies 4F Different Moddls

! DL1 DL2 DL3 DL4 DL5

8-Variables 100.0 89.7 100.0 100.0 100.0
7-Variables 100.0 89.9 160.0 98.2 100.0
6-Variables 100.0 86.3 99.7 96.3 100.0
5-Variables 100.0 84.4 99.1 93.0 100.0
4-Variables 100.0 82.2 974 88.8 100.0
3-Variables 99.7 77:1 94.6 82.9 100.0

Table 6-13 : Average Efficiency Scores by Model
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Average Efficiencies - DEA
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Figure 6-18 : Average Efficiencies of DEA models

It is observed that DL2 is the lowest performer while DL5, DL1, DL3 and DL4 are
ranked highest to lower according to the average efﬁciency scores. Even when

considering \anables medels fas giveh/imseation 6.1 341 it ganlbs observed about

"1

10% gap I@%mcncy withrrespeet o ablaethe XD L34 chherefangifypossible to take the

8 Varlables;models as\ihig’ bidse. and itake these efficiency values to calculate the X
factor. Note that the implementation is done using data corresponding to year 2011.
The DL2 have high degree of freedom to improve its efficiency score since the

model contains 8 variables.

If all DLs get closer to 100%, when implementing the DEA method with 8-variables
models with current values for respective variables (i.e. According to the year of
implementation, thus values for the variables may get changed.), then the reduced
variables models (starting from 7-variables to 3 variables) can be considered. This
would allow higher discrimination between efficiency scores as it is observed in

figure 6-17.
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6.2 COLS

Implementation of COLS method has done according to the description given in
section 2.4. Therefore it is required to select suitable variables for ‘benchmark cost

function’. Variables should represent,

v" Output produced by the business
v" Input prices paid

v" Environmental conditions that effect the production cost

In Sri Lanka, OPEX of DLs mainly consists of expenses for human resource. It is
about 50 % to 60% of their respective OPEX. Therefore cost per employee must be

used as the main input price of the cost function.

Energy Sold (GWh) reflect the main output produced by the distribution business.

Therefore it is included in the cost function.

Five DLs have their designated area of operation. Accordingly the customer densities
they have @ibe deblt)withrdifferoto [ehohragthen:a Thertablgrfcidt illustrates the

differencés$a@nstonted dersitiesias dtlyesc20 1L

DL Customer Density
(Consumer Accounts per km®)
1 47
2 94
3 76
4
5

126
1375

Table 6-14 : Differences in Customer Densities

Therefore the analysis must account for these differences in their business which is
out of their (DLs) control. For this reason the customer density has to be included in
the cost function. This variable is to capture the heterogeneity dimension of the
distribution business "), F urther, the consumer density also can be accommodated in
the model by using the consumers per unit network length, i.e. number of consumers
per kilometer of line length. The table 6-15 indicates the extent of heterogeneity.

DLS5 has a higher number since its area of operation is highly populated.
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Consumers per Unit
Licensee Length of Network

(Cons./km)
DL1 32.48
DL2 42.71
DL3 34.66
DL4 3197
DL5 113.14

Table 6-15 : Consumers per Unit Length of Network

Note that to estimate the coefficients of the cost function we have only five data
points. Therefore only one variable from each category, i.e. output, input prices and

environmental conditions were used.

6.2.1 COLS using Foury¥priables
. TR

gt function is,

The selcct?'

In(OPEX) = a + bIn(Energy Output) + c In (Cost per employee) + d In(Cust. Density) ---
(6.2)

As described, the customer density can be Consumers per area or consumers per
network length. By performing linear regression analysis coefficients of the cost
function, i.e. a, b, ¢ and d were determined. The implementation was done by using
the Regression analysis provided in MS Excel. For example let’s consider the

following cost function given in equation 6.2.

In table 6-16 the actual values to be assigned to each variable are given. The relevant
logarithmic values are given in table 6-17. The regression analysis has carried out

using the logarithmic value.

N\ Es | i
NIRRT

el
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Energy Sales | Consumer Density-Area OPEX ot Pt
Employee
Unit GWh Cons/km’ LKR Mil. LKR'000
DL1 2,797 46.68 3,665 843
DL2 2,844 94.22 4,802 819
DL3 1,846 76.43 2,624 766
DL4 1,269 125.94 2,136 789
DL5 1,184 1375.47 1,532 418

Table 6-16 : Actual values of Input / Output Variables

. Ln(Ener Ln(Consumer Ln r
Licensee S(ales)gy De(nsity-Area) Ln(OPEX) Eri\i)?;;g:)
DL1 7.9364 3.8432 8.2065 6.7373
DL2 7.9529 4.5456 8.4767 6.7077
DL3 7.5207 4.3363 7.8725 6.6413
DL4 7.1463 4.8358 7.6666 6.6704
DL5 | 7.0765 7.2265 7.3340 6.0343

Table 6417: Logatithmic/Valies
Coefficien(sa b, c and'&'m'édtration (62) obthined by tepressidn analysis are given

in table 6-18;

~

Coefficients
a (Intercept) -13.09194597
b (Coefficient of Energy Sold) 1.009356796
¢ (Coefficient corresponds to Cost per Employee) 1.773929147
d (Coefficient corresponds to Customer Density) 0.357535018

Table 6-18 : Coefficients Estimated by Regression Analysis

The residuals given in table 6-19 are the corresponding difference between actual values of
In(OPEX) and predicted values of In(OPEX) for each DL.

Observation Predicted In(OPEX) Residuals
DL1 8.244317783 -0.037843
DL2 8.459445417 0.0172382
DL3 7.830716933 0.0418144
DL4 7.682969517 -0.016326
DL5 7.338886142 -0.004883

Table 6-19 : Predicted In(OPEX) and the Difference with Actual
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The maximum negative residual corresponds to DL1 having a value of -0.037843.
According to the description given in section 2.4, the efficient cost equation (COLS
line) is estimated using Ordinary Least Squares (OLS) regression and then shifted by
the relevant amount of residual to on which the most efficient firm (that is DLI in
this case) is positioned. Here the shifting is done in parallel to the OLS line (as
described in figure 2-1). Therefore coefficients of the COLS line are as follows. Note

that only the value of intercept is decreased by the value equal to -0.37483.

Coefficient Value
a (Intercept) -13.12978928
b (Coefficient of Energy Sold) 1.009356796
¢ (Coefficient corresponds to Cost per Employee) 1.773929147
d (Coefficient corresponds to Customer Density) 0.357535018

Table 6-20 : Coefficients of the Efficient In(OPEX) Line

Now corresponding efficient OPEX for each DL can be calculated using the

coefficients of the efficient OPEX line (i.e. COLS line). Results are given in table 6-21.

Efficient OPEX Actual OREX M, Efficiency
Dkt 3,665 3,66b 100.0
DL2 4,544 4,802 94.6
DL3 2,423 2,624 92.3
DL4 2,090 2,136 97.9
DL5 1,482 1,532 96.8

Table 6-21 : COLS Efficiencies

Efficiency scores with respect to all models given in table 6-22 and 6-24 can be
estimated in similar manner.

Mod Cost Function
el
No.

1 In(OPEX) = a + b.In(Energy Output) + c.In (Cost per employee)
+ d.In(Cust. per Area)

2 In(OPEX) = a + b.In(Energy Output) + c.ln (Cost per employee)
+ d.In(Cust.per Line length)

3  In(OPEX) = a + b.In(Energy Output) + c.In (Total work Length)
+ d.In(Cust.per Area)

4  In(OPEX) = a + b.In(Energy Output) + c.In (Total work Length)
+ d.In(Cust.per Line length)

5 In(OPEX) = a + b.In(Energy Output) + c.In (Total work Length)
+ d.In(Cost per Employee)

Table 6-22: Cost Function used with Four Variables

55



o o8, . E 5 8 o
. 3 B2 £7 £ < 5 % .
o E 2t 28 a5 23 Efficiency
= & 22 &¢ S E o E Score
= u o o O o e
w =1 o (=]
GWh km Cons/km Cons/sqkm  LKR'000 DL1 DL2 DL3 DL4 DL5
1 X X X 100.0 94.6 923 979 968
2 X X X 100.0 97.8 96.1 99.3 98.6
3 X X X 95.7 97.2 1000 956 971
4 X X X 89.0 85.0 100.0 83.6 89.6
5 X X X 100.0 711.8 859 876 883
Average 96.9 90.5 949 9238 941
Maximum  100.0 97.8 100.0 99.3 98.6
Minimum  89.0 718 859 836 883

Table 6-23 : COLS with Four Variables

The average results indicate more than 90% efficiencies for all DLs. Further,

efficiency

lower.

respective Testlts art'ihdicated it thbles 6-2% and 6-25 respectively.

6.2.2 COLS Using Three Variables

rs?sg@tes oftalliDY s I el iy atband ‘190 506v0.96.0%6L Heéhéeldiscrimination is

jessfore analysis ‘Cartred' oot~ for 2-variable ! models'-also. Models and

Model Cost Function
No.
1 In(OPEX) = a + b.In(Energy Output) + c.In (Cost of employee)
2 In(OPEX) = a + b.In(Energy Output) + c.In(Cust.per Line length)
3 In(OPEX) = a + b.In(Energy Output) + c.In(Cust.per Area)
4 In(OPEX) = a + b.In(Energy Output) + c.In (Total Network Length))

Table 6-24 : Cost Functions Used with Three Variables
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GWh km  Cons/km Cons/sgkm  LKR'000 DL1 DL2 DL3 DL4 DL5

1 X X 100.0 76.6 94.6 854 8838
2 X X 100.0 74.8 93.5 81.6 90.3
3 X X 100.0 74.7 934 797 919
4 X X 100.0 76.4 96.1 84.0 89.8
Average 100.0 75.6 944 827 90.2

Maximum  100.0 76.6 96.1 854 91.9

Minimum  100.0 74.7 934 79.7 8838

Table 6-25 : COLS with Three Variables

It can be seen that the average efficiency scores are dispersed than 4-variable
models’ average. Efficiency scores are stretched out in a band of 75.6% to 100%.
Hence discrimination is higher. Note that in each model in table 6-25, DL2 is the

lowest performer. Efficiency score of DL2 always ended up below 77%.

6.3 PPl

PPI assumesHinear rélationship’ between-input and output. As explained in section

2.2 it cannot measure the overall performance of the business. These partial
indications can be misleading; therefore care should be taken to identify misleading

information.

PPIs were calculated for each DL by taking the OPEX and number of employees as
inputs. Line lengths and number of substations were not taken into account, since
those can be considered input or output either. On the other hand OPEX and number
of employees can only be considered as inputs to the system while energy delivered
to consumers, number of consumers can only be taken as outputs from the system.

Table 6-26 depicts the results from PPIs.
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Partial Performance DL1 DL2 DL3 DL4 DL5
Indicator
Energy Sales/OPEX kWh/LKR 0.763 0.592 0.703 0594  0.773
No. of Consumers/OPEX Nos/LKR 345 310 425 397 321
Mil

Energy Sales/ Employee MWh 976 760 740 625 816
No. of Consumers / Employee Nos 442 398 447 417 338
Corresponding Relative Efficiencies
Energy Sales/OPEX % 98.8 76.6 91.0 76.9 100.0
No. of Consumers/OPEX % 81.2 72.9 100.0 93.3 75.4
Energy Sales/ Employee % 100.0 77.8 75.8 64.0 83.6
No. of Consumers / Employee % 98.7 88.9 100.0 93.2 75.6
Average % 94.7 79.1 91.7 81.8 83.6

Table 6-26 : Efficiency Scores from PPIs

Efficiencies obtained by PPIs are not used to directly conclude the relative efficiency

score of a particular DL but to qualitatively verify the results obtained from DEA and
COLS. It can be seen that DL1, DL3, DL5, DL4 and DL2 are having the efficiencies

from highest to lowest respectively.
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7 ANALYSIS OF RESULTS AND RECOMMENDATIONS

7.1 Interpretation of Relative Efficiency Scores.
In DEA 3- variable technique we have used 8 different input/output combinations (8

models) and relative efficiency scores calculated under each model.

- . .

é § C 3 g o § g o Relative Efficiency Score (%)
= = o L] - O )
| 2|28 §|cEl2cE|E®| 95|08 2| &
o B Lo 8aloalzcel oL |0=]|a
s | P|Z2cm|Pc|3Pc|Zad| 2|22l o|DL1|DL2|DL3 | DL4 |DL5

] c g0l golm~ = £

c o Ole J0|% = w

w &) 2 '2 L]
1 (o) (0] | 100 | 77.3 | 100 | 77.7 | 100
210 (6) | {100 | 77 | 921|777 100
3 (0] (o) | 100 | 76.8 | 100 | 100 | 100
4 (o) (0] 1 100 | 77.4 | 100 | 100 | 100
5 (o) (0] | 98.8 |76.6 | 91 | 77.3 | 100
6 (0] | | [ 988|766 | 91 | 76.9 | 100
710 | I | 100 | 77.5 | 91.5 | 76.9 | 100
8 (o) | 1 100 | 77.8 | 91 | 76.9 | 100

Table 7-1 : Relative efficiency scores of each models under the DEA 3- variable Method

Let us cOmSTder the model-# given.underjthe DEA 3-variable method given in table

7-1. In the model-4 ‘Energy Sales’ and ‘Total Network Length’ are taken as outputs
of the electricity distribution business while OPEX is taken as the input. In this
aspect we look at how efficiently (relatively) a DL has used its OPEX to provide

electrical energy to its consumers and also to maintain the total network length

owned by that DL.

In that case all DLs except DL2 have obtained relative efficiency score of 100%.
DL2 has obtained a score of 77.4%. This means only relative to each other, DL2 is
efficient only about 77.4%. This does not imply that all other DLs are 100% efficient
in are strictly efficient. It is possible that DLs with 100% score could be operated

more efficiently.

DEA compares each DL with all other DLs, and identifies those DLs that are

operating inefficiently compared with other DLs’ actual operating results. It achieved
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this by locating the best practice or relatively efficient DLs. This can be graphically

illustrated in following manner according to the ratios given in table 7-2.

Wnicaf DL1 DL2 DL3 DL4 DL5
Measure
Energy sales per OPEX GWh/LKR | 076 | 059 | 070 | 059 | 0.77
Million
Total network length per km/LKR 10.63 7.26 12.27 12.41 2.83
OPEX Milllion

Table 7-2 : Energy Sales per OPEX and Total Network Length per OPEX

The relevant ratios of ‘Energy sales per OPEX’ and ‘Total network length per
OPEX’ for each DL are given in the table 7-4. In figure 7-1, points A, B, C, D and E
represent DL5, DL1, DL3, L4 and DL2 respectively. These points have been plotted
according to the respective (Energy delivered per OPEX) and (Network length per
OPEX) ratios. The 100% efficient boundary is demarcated by the line connecting
ABCD. That is it is the line that efficient DLs (i.e. DL1, DL3, DL4, DL5) those are
using lesser inputs (OPEX) to produce outputs (Energy and Network Length) are

located. The target ‘efficient reference point’ for DL2 (i.e. point E) is given by the

Energy Delivered per OPEX (GWh/LKR
Million)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Network Length per OPEX (km/LKR Million)

Figure 7-1 : Graphical representation of DEA implementation
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In other words this efficient reference point is the point E*, against which the DL2
was found to be most directly inefficient. That is DL2 (point E) was found to have
inefficiencies in direct comparison to DL1 (point B) and DL5 (point A). The
efficiency of DL2 can be obtained by the ratio of OE/OE* which is equal to 77.4%.
The respective (Energy delivered per OPEX) and (Network length per OPEX) ratios
for E* are 0.76 and 9.376 as graphically indicated in the figure 7-1. DL2 (point E)
can approach the point E* to become 100% relatively efficient, by increasing the
respective output/input ratios. In this case, DL2 can reduce its OPEX by 22.6% while
keeping the actual outputs in same level, to be 100% relatively efficient. In that
manner, the relative efficiency scores are calculated for DEA 3-variable models as

given in the table 7-1.

Under the chapter 4, it has explained reasons for selecting these 8 variables (energy
sold, No. of new connections given, OPEX, No. of employees, No. of substations,
Network line length, Area per consumer and Network line length per consumer).

Since these input / output data can be timely obtained, regulator can timely perform

benchma, v'g. The ‘output “variable  “Enefgy” Sdles™is the maih output of the

Siness and the, OPEX 1S the_ main input of the business. Therefore in

distribution £

every model (in table 7-1) these main two variables have included.

In model-1, the ‘no. of new connections given’ is included, since it is another output
by the DL. As indicated in table 4-3 the number of new connections given per day is
varying among DLs. Hence in this model it assesses how efficiently a DL uses
OPEX to provide the energy demand while fulfilling the demand for new

connections to its system.

In model-2, the variable ‘Area per consumer’ is included and in model-3 , the
variable ‘Network line length per consumer’ is included. Importance of these two
variables is that it accounts the dispersion of consumers. Customer dispersion for
each DL is given in the table 4-1. Each DL has to use their input resources differently
according to how extent these dispersions are. Further this is an indication of the
rural electrification efforts. This effect (requirement of higher OPEX to maintain

geographically dispersed consumers) is captured in these two models by using those
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two variables as outputs. Efficiency score is an indication of how efficiently a DL
uses its OPEX to cater the energy demand relative to other DLs who are catering its

energy demand having different consumer dispersions.

In model-6 and model-7, the ‘No. of substations’ and ‘Total Network line length’ are
considered as inputs to the system. In this case these two inputs are considered as
capital inputs to the system. Therefore in model-6, the efficiency scores reflect how
efficiently a DL (relative to other DLs) caters the demanded energy using the OPEX
and the ‘Total network length’. Accordingly, in model-7 the efficiency scores
indicate how efficiently a DL supply its energy demand using the OPEX and the

substations its possess.

In model-8, the efficiency score of a DL indicates how efficiently that DL supply the
demanded energy by using the OPEX and ‘number of employees’ as inputs.

One setback of these 3-variable models is that we cannot assess the effect on
efficiency score from the all 8 variables we are considering, at once. Therefore
possible coém}glnatlons of 3'variables selected out from the 8 variables (as indicated in
table 6- ll)Fave considered capturing the_overall effect on efficiency. This allows
capturing overall relative efficiency of each DL. For example the DL4 is operating
with 100% relative efficiency under the model-4 but only 77% efficient under
model- 1. The average efficiency score of 3 variable models is taken as the final

efficiency score.

According to the average efficiency scores (see table 6-12) obtained by DEA 3-
variable models, DLS5 is the efficient performer with 100% relative efficiency. DL5
is 100% efficient means that it is relatively efficient only, and not strictly, efficient.
That is, no other unit is clearly operating more efficiently than this DLS5, but it is
possible that all DLs, including DL5, can be operated more efficiently. Therefore, the
efficient DL (DL5 in 3-variables models) represents the best existing (but not

necessarily the best possible) practice with respect to efficiency.
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7.2 Appropriateness of DEA 3-variable models

It can be pointed out that considering the small sample size (5 DLs) DEA is
theoretically more appealing than COLS technique, because COLS require to
estimate number of coefficients leading to unsatisfactory results purely because low

sample size.

As explained in section 5.2, if a benchmarking method requires higher number of
data points then it will be harder to implement with a smaller sample like five, as in
the case where only five DLs in Sri Lanka. DEA A rule of thumb (from international
practices)is that for m number of inputs and » number of outputs, there has to be n x
m number of DLs!"?2_ Otherwise all the DLs would get closer to 100% efficiency
and discrimination could be difficult (see figure 7-2 given below). In other words,
with small sample and high number of input / output variables there is a danger of

receiving made-up results for efficiency scores 2.

Average Efficiencies - DEA
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Figure 7-2 : Increase of Discrimination with reduction of Variables in DEA

When more variables are included in the model, the number of DLs on the efficient
frontier increases. To avoid lower discrimination of efficiency scores (Since we have
only 5 DLs) the 3-variable models are the most suitable in our context (verified by
the average efficiency scores given in table 6-13). If we had higher number of DLs
we could have gone for DEA models with more than 3 variables while having

acceptable discrimination.
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7.2.1 Robustness of the Results
The models selected must be robust to changes in techniques implemented. In

particular, the ranking of firms, especially with respect to the ‘best’ and ‘worst’
performers, and the results must show reasonable stability and the different
approaches should have comparable results. COLS and DEA are the main two
different techniques used to measure the overall efficiency. Therefore robustness of

the results obtained using those two techniques has to be analyzed.

As indicated in table 6-23, we selected COLS- 3 variable models over 4- variables
models; because 4-variables models results indicated average efficiency scores of all
DLs lie in a band of 90.5% to 96.9% (i.e. low discrimination). In COLS 3-variable
technique, indicated higher discrimination and the efficiency scores for all DLs lie in

a band of 75.6% to 100% as indicated in section 6.2.2.

Since we have incorporated more variables (from 8 variables to 3 variables) in DEA,

direct comparison with COLS results is not possible. The COLS method adopted

used 3 vagiébles includirigdDBBX, axl gived finl table®- 251 Resultsifiom COLS method
5% \_\f_

jes inchidiag OPEX ¢canlbe-comparedwith 8l Mafiables model in DEA.
This is beeawse both' Methotds uded 8 $ariables as input and output; hence the degree

of freedom is the same.

It can be seen that the results produced by DEA and COLS are robust for DL1, DL2,
DL3 and DL4 as the differences are very low. For DL5 there is a considerable
difference, but the efficiency score for DLS5 is beyond 90% for both techniques. It is
important to note that operation conditions of DL5 are extensively different than
remaining four DLs with respect to consumer density, authorized area of operation

and energy demand per consumer.

Average Efficiency Score

DL1 DL2 DL3 DL4 DL5
DEA (3-variables) 99.7 77.1 94.6 82.9 100.0
COLS (3-variables) 100.0 75.6 94.4 s 90.2
Difference -0.3 1.5 0.2 0.3 9.8

Table 7-3 : Average Efficiency Scores
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According to the results given in table 7-3 we can conclude that average efficiency

score given by DEA 3-variable models are robust and reliable.

7.3 Ranking of DLs According to Overall Efficiency

Since Sri Lanka is in the initial stage of electricity regulation (Electricity Act came
into force in 2009), it is more important to peruse underperforming DL to obtain at
least the next level of efficiencies performing by peer DLs. Further, according to the
efficiency scores the regulator can decide which companies deserve closer
examination, so that scarce investigative resources are allocated efficiently ", Table
7-2 depicts the ranking of each DL according to each technique used and also
verification by using PPIs. DL2 is lowest and DL4 is second lowest in each case.
Average efficiency results shown in table 7-1 indicate that DL2 and DL4 are having
efficiency scores of nearly 76% and 83% respectively, while all other DLs are having

scores greater than 90%.

-+ Ranking
Rank.  DEA COLS PPI
1 'Bts DL1 DL1
2 DL1 DL3 DL3
3 DL3 DLS DLS
4 DL4 DL4 DL4
5 DL2 DL2 DL2

Table 7-4: Ranking of DLs

As it is explained in section 6.1.3.7, the DL2 is the lowest performer while DLS,
DLI1, DL3 and DL4 are ranked highest to lower according to the average efficiency
scores. Even when considering 8 variables models in DEA as given in section
6.1.3.1, it can be observed about 10% gap of efficiency with respect to all other DLs.
Therefore it can be recommended that DL2 deserve closer supervision while DL4
also require close supervision of the electricity regulator (i.e. PUCSL) as they are

under performing relative to other three DLs.
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7.4 Influence on X- Factor

Regulator can officially obtain data for relevant variables and perform DEA analysis
as indicated in section 6 and use the average results from the DEA method which
using 3 variables models to obtain efficiency scores. Verify those DEA results with
efficiency sores obtained by COLS method using 3 variables method described in
section 6.2.2, and verify the rankings with PPIs as given in section 6.3. Then the
average efficiency scores given by DEA 3 variables models can be used to decide on

X- factor to persuade most underperforming DLs.

The regulator can decide on how to determine the X-factor (the translation of
efficiency scores into X-factors), and the method of determining the X-factor may

[40. 411 por example X-factor can be calculated as (1-

vary among the regulators
Efficiency Score). In such method and according to the average efficiency scores
obtained under DEA 3-variable models (refer table 7-1), the X-factor of DL2 is (1-
0.771) i.e., 0.229 as the average efficiency score of DL2 is 77.1% (refer table 6-12).

While DL#sDL3, DL DLS are having X« factors 0£0.003,, 0054, 0.171 and 0.00

[ @n amotherthand; Af Thigregulator waats-Bi tasatch up 20% of the
frontier (1@:5% effiggantyfirinbi.en BLA) dver next year then it would be required to
catch up, (1-0.771) x 0.2 = 0.0458 . Thus the X-factor would be 0.0458 per year M2 1t is
important to note that the relative efficiency scores resulted from this benchmarking
exercise give an indication to the regulator (PUCSL) on how these DLs are operating
relative to each other and what would be the required improvements in efficiency so

that regulator has a firm foundation to make a decision on X-factor.
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8 CONCLUSION

The relative efficiencies of five Distribution Licensees operating in Sri Lanka were
analyzed using prominent benchmarking techniques. International practices in
electricity distribution regulatory regime were considered when performing this
benchmarking study. Techniques like Data Envelopment Analysis (DEA), Corrected
Ordinary Least Squares method (COLS) and Partial Performance Indicators method
(PPI) were utilized with several input output models in order to assess the efficiency
in several angles. Care was taken to address the heterogeneity of the operating
conditions such as consumer density, authorized area of operation of each DL which

is out of the management control.

The efficiency scores obtained with respect to various possible models were
scrutinized and came up with a suitable methodology to obtain efficiency scores
considering the data availability and low number of distribution licensees. The

proposed mgthodologyr use DEA. withe3y input/ output variables and. get the average

efficiency] #6083 as the. fipal scorerilhat.is ® haye higher; discrimination in the

efficiency sgoves.

In parallel these efficiency scores veritied by the average results obtained by COLS
method (3 variables including OPEX). Further, the ranking of Distribution Licensees
are also verified with respect to DEA , COLS and PPIs. It was revealed that for each
method DL2 is the lowest ranked and DL4 is the next lowest ranked. DL1, DL3 and
DLS5 showed up more than 90% average efficiency for DEA and COLS.

Considering the fact that Sri Lanka is in its early stage in regulatory
implementations, it is recommended to persuade underperforming DL. These
efficiency scores would make a strong platform to the regulator when making the
decision on X-factor in order to control the allowed revenue of Distribution

Licensees.

The Electricity regulator can use the proposed methodology to start the evaluation of
the efficiencies in order to begin incorporating efficiencies of distribution licensees

in the electricity distribution revenue control formula. This would definitely
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encourage Distribution Licensees to minimize their inefficiencies in operations and
maintenance. Further, the possible reduction in allowed revenue eventually would

pass down to the consumers.
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10 APPENDIX

The Revenue Control Formula imposed by PUCSL explained under the section
3.1.2.8 of Tariff Methodology (December 2011).

where:
Diff,

AR,

AR, = AR, #(1-X)

FX,
y(1+51CPI)+(1—(:) fi
i F\.‘-—l

+ PPIU S

[W(l-i—Dcmt)-H (1+ DkWh)+ } Diff,

= |4REV, , (1= (AL,_, ~4CL, ,)) - 4R, )~ (1+4,.,)

Allowed base revenue in year " (LKR)
Allowed base revenue in year “v-7” (LKR}

share of local costs in total costs of TL to be approved by the Commission based
an the filing by TL.

accumulated change in Sri Lanka Consumer Price Index {%) of year -]
Average change in the LKR:USD exchange rate of year “v-17

Accumulated change in the Producer Price Index of USA (%) of year “y-17
Efficiency factor (%) is the translation of QPEXX in terms of total revenues

Interim adjustment factor to compensate differences between actual distribution
revenues and allowed distribution revenues {LKR) of the vear “v-2

Actual distribution revenue based on in ing {LKR} of the year “y-27

stting td{ f ,z"thﬁ- panui
AI! OW HJ revenue coefficient for energy increase
1-h-¢
Percentage of energy distributed in excess (negative if in deficit) of the level
forecast at the time of setting the tariff for the period
Aggregated allowed level of energy losses for year 427 {%)
Aggregated actual level of energy losses for year ” {%)

e
LIBRARY

74



