COMPUTATIONAL FLUID DYNAMICS MODELING OF THERMO-CHEMICAL PROCESSES IN AN UPDRAFT BIOMASS GASIFIER

Niranjan Fernando

Thesis submitted in partial fulfillment of the requirements for the Degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa

Sri Lanka

November 2015

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesisdoes not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

University of Moratuwa, Sri Lanka. The above cardidate has carried out research for the Mastersns thesis under my supervision www.lib.mrt.ac.lk

Signature of the supervisor:

Date

ABSTRACT

Biomass is recently gaining popularity in industry as a promising source of renewable energy. Gasification of biomass is a major thermal conversion method to improve the efficiency of raw biomass fuel. It is a process by which biomass is partially oxidized to produce a combustible gas named Syngas; a mixture of carbon monoxide, hydrogen and methane. Although the gasification technology is used throughout the history and there are a large number of gasification plants worldwide, their smooth operation remains questionable. This is due to a lack of understanding of proper design criteria. In order to gain insights to optimal design parameters, mathematical models and computer simulations based performance analysis can be used. Recently Computational Fluid Dynamics (CFD) analysis has been applied by many researchers as a tool for optimizing packed bed processes including gasification process. In this research study, a two dimensional CFD model has been developed for an updraft biomass gasifier. The model uses air as the gasifying medium and a fixed batch of biomass. The model is capable of tracking the movement of interface between solid packed bed and gas free board due to bed shrinkage. The two phase model is developed using the Euler-Euler approach. The model consists of several sub models, including reaction models, turbulence model for packed bed gas phase and free board, a radiation model for solid phase, a bed shrinkage model, and interphase heat transfer models. The final mathematical model is converted into a numerical model using open source CFD tool OpenFOAM. Required code was developed by using C++ language in OpenFOAM package, including all the relevant differential equations and procedures in the CFD model. To validate the CFD model, simulation results for gas temperature and gas compositions are compared against experimental gas temperatures and compositions measured from an operational laboratory gasifier. The validated model is used to perform air flow rate optimization. A series of CFD simulations were performed for air flow rates ranging from 3 m^3 /hr to 10 m^3 /hr for a computational geometry corresponding to the experimental gasifier and cumulative CO was calculated. It is found that cumulative CO production maximized at 7 m³/hr airflow rate. The maximum cumulative CO volume was 6.4 m³.

Keywords: Biomass, Gasification, Mathematical Model, Computational Fluid Dynamics

DEDICATION

This thesis is dedicated to my beloved mother and to the loving memory of my father

ACKNOWLEDGEMENT

I would like to take this opportunity to thank those who have offered me immense support during my research work. First of all, I offer my sincere thanks to my supervisor, Dr. MahinsasaNarayana, Senior lecturer, Department of Chemical and Process Engineering, University of Moratuwa, for his immense guidance and support throughout my research work. I would like to thank Dr. P. G. Rathnasiri, Head, Department of Chemical and Process Engineering, University of Moratuwa for his kind coorparation. I am grateful to Dr. ChathuraRanasinghewho was a member of my progress review committee for his valuable suggestions and advice given to me during my progress reviews. I also thank Dr. ManishaGunasekera, Coordinator of post graduate studies, Senior Lecturer, Department of Chemical and Process Engineering for her corporation. I am grateful to Dr. SanathJayasena, for his valuable support in setting up the high performance computing facility.

I offer my thanks to Mr. Muhammad Amin, for sharing the experimental data from his work and Ms. ThamaliRajika, for her support and advice during my research work. University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

I am grateful to MrChinthakaNarahgoda, System Analyst, Department of Chemical and Process Engineering, University of Moratuwa and the staff of Process Control Laboratory of Chemical Engineering Department for their valuable support.

Finally, I am grateful to my mother and brother for their valuable support and encouragement.

Niranjan Fernando

TABLE OF CONTENTS

Decl	aratio	on of th	e candidate and supervisor	i		
Abstract						
Dedication						
Ackı	Acknowledgement					
Table of contents						
List of Figures						
List of Tables						
Nomenclature						
List of Appendices						
1.	Introduction					
	1.1	Use c	of biomass as a renewable energy source	1		
	1.2	Biom	ass gasification	2		
	1.3	Gasif	^{ier types} University of Moratuwa, Sri Lanka	3		
	(B) Fixed bed sasilier heses & Dissertations					
			1.3 At AV Apploaft gasifiels	4		
			1.3.1.2 Downdraft gasifiers	5		
			1.3.1.3 Cross flow gasifiers			
		1.3.2	Parameters affecting the quality of the produced gas	6		
	1.4 Computational fluid dynamics modeling as a tool to optimize gasifiers					
	1.5 Objectives of research					
	1.6 A summary of the presented research					
2.	Rev	iew of	packed bed models	11		
	2.1	Model	ing approaches	11		
	2.2 Governing transport equations					
		2.2.1	Momentum conservation equation	13		
		2.2.2	Temperature equation	16		
		2.2.3	Species conservation equations	19		
	2.3 Reaction rate models					

	2.4 Drying	22
	2.4.1 First order kinetic model	22
	2.4.2 Equilibrium model	22
	2.5 Pyrolysis	23
	2.6 Heterogeneous reactions:Combustion and Gasification	26
	2.7 Homogenous reactions	27
3.	Mathematical model for the packed bed	29
	3.1 Computational domain and model description	29
	3.2 Governing transport equations	30
	3.3 Drying model	31
	3.3.1 Assumptions used for calculating k_m	33
	3.3.2 Assumptions used for calculating x^*	34
	3.4 Pyrolysis model	35
	3.5 Interphase heat transfer	35
	3.6 Modeling of bed shrinkage	36
	3.7 Turbulence modeling	39
	3.8 Radiation model Theses & Dissertations	41
	3.9 Physical Properties ib. mrt. ac.lk	43
4.	Numerical solution for the packed bed model	46
	4.1 Introduction to OpenFOAM	46
	4.2 OpenFOAM solver	47
	4.3 Introduction to Finite Volume method	47
	4.3.1 Descritization of time	48
	4.3.2 Descritization of space	48
	4.3.3 Descritization of equations	49
	4.3.4 Spatial descritization	49
	4.4 Developed CFD solver using OpenFOAM	51
	4.4.1 Initial and Boundary conditions	53
	4.4.2 Computational mesh	55
5.	Experimental set up and model validation	56
	5.1 Model validation	56

5.2 Optimization of air flow rate to the Gasifer based on CFD model	63
5.3 Conclusion and future work	65
References	66
Appendix	71

LIST OF FIGURES

- Figure 1.1 Schematic diagram of fixed bed gasfiers.
- Figure 1.2 Main reaction zones of biomass packed bed in an Updraft Gasifier.
- Differential volume element located in flow domain and x momentum Figure 2.1 fluxes across its faces.
- Differential volume element located in flow domain and energy fluxes Figure 2.2 across its faces.
- Figure 2.3 Differential volume element located in flow domain and mass fluxes across its faces.
- Figure 2.4 Two step global pyrolysis scheme.
- Figure 2.5 Parallel pyrolysis scheme.
- Figure 2.6 Parallel pyrolysis scheme with tar decomposition.
- Figure 3.1 Computational domain of gasifier model
- Figure 3.2 Schematic diagram of mathematical model
- Figure 3.3 Energy transfer modes to wood particle
- Changes of governing equations as a result of bed shrinkage Figure 3.4
- Figure 3.5 Motion of unit step variable x in the direction of bed shrinkage

Electronic Theses & Dissertations Figure 3.6 Schematic of Radiation model

- Structure of an OpenFOAM case Figure 4.1
- Figure 4.2 A typical control volume in finite volume method
- Figure 4.3 Computational domain of the CFD solution
- Figure 4.4 File structure of developed OpenFOAM solver
- Figure 4.5 Solution Algorithm
- Figure 4.6 Computational mesh
- Figure 5.1 Schematic diagram of experimental laboratory scale gasification system
- Figure 5.2 Experimental laboratory scale gasification system
- Figure 5.3 Theoretical and experimental temperature profiles
- Figure 5.4 Theoretical and Experimental exit gas temperatures
- Figure 5.5 Theoretical and Experimental gas compositions after 60 minutes of ignition
- Figure 5.6 Development of reaction zones in the solution domain

- Figure 5.7 Variation of gas phase component volume fractions with time
- Figure 5.8 Bed reduction with time
- Figure 5.9 Temperature contours with in biomass bed after two hours from ignition.
- Figure 5.10 Gas phase velocity distribution.

LIST OF TABLES

- Table 1.1Chemical reactions in a Gasifier
- Table 2.1
 Kinetic rate expressions for homogenous reactions
- Table 4.1Discretization Schemes.
- Table 5.1Physical and chemical properties of fuel.
- Table 5.2Simulation Results for different air flow rates

NOMENCLATURE

Α	Specific surface area of packed bed (m ⁻¹)	$r_{i,homo}$	Rate of homogenous reaction i
4			$(\text{Kg m}^{-3} \text{ s}^{-1})$
A _c	Specific surface area of char (m)	$r_{m,i}$	(Kg m ⁻³ s ⁻¹) (Kg m ⁻³ s ⁻¹)
A_d	Specific surface area for gas diffusion (m ⁻¹)	$r_{k,i}$	Kinetic reaction rate (Kg m ⁻³ s ⁻¹)
A_{a}	Cross sectional area of gasifier (m ²)	$r_{t,i}$	Turbulent mixing limited reaction
3		-,-	rate (kg $m^{-3} s^{-1}$)
A_j	pre-exponential factor for heterogeneous reactions $(m s^{-1} T^{-1})$	Sh _j	Sherwood number for species j
A_r	Specific surface area available for radiation (m ⁻¹)	Sø	Source term for property Ø
а	Absorption coefficient of gas phase (m ⁻¹)	$S_{s,\emptyset}$	Source term for property \emptyset due to solid phase
a_p	Absorption coefficient of solid phase (m ⁻¹)	$S_{g,\emptyset}$	Source term for property \emptyset due to gas phase
C_{q}	Heat capacity of gas phase (J kg ⁻¹ K ⁻¹)	S _{ii}	Reynolds stress tensor (Pa)
$\tilde{C_s}$	Heat capacity of solid phase (J kg ⁻¹ K ⁻¹)	T_{a}	Gas phase temperature (K)
$D_{i,a}$	Diffusion coefficient of gas species i $(m^2 s^{-1})$	$T_{a,in}$	Inlet gas temperature (K)
d	Particle size of biomass (m)	$T_{\rm s}$	Solid phase temperature (K)
E_i	Activation energy of reaction i (J mol ⁻¹)	Ŭ _a	Gas phase velocity (m s ⁻¹)
f_i	Pre-exponential factor of reaction i (s ⁻¹)	$U_{a,in}$	Inlet gas velocity (m s ⁻¹)
G	Radiation intensity (W m^{-2})	U,	Shrinkage velocity $(m s^{-1})$
h	Heat transfer coefficient ($W m^{-2} K^{-1}$)	v_i	Stoichiometric coefficient of
		·	species i
k	Turbulent kinetic energy $(m^2 s^{-2})$	$Y_{i,g}$	Mole fraction of gas species i
k_g	Thermal conductivity of gas phase (Wm ⁻¹ K ⁻¹) W	a Kain I	Mole fraction of i in air
k _s	Thermal conductivity of solid phase (W m ⁻¹ K ⁻¹)	Yist	Mole fraction of solid species i
$k_{m,i}$	Wass transfer coefficient of species $f(ms^{-1})$	Isserial	Stefan constant ($W m^{-2} K^{-4}$)
Mi	Nietecular weighvol/species in kg.mol.1)k	σ_p	Scattering coefficient of solid
		Ł	particles (m ⁻¹)
m_i	Density of species i in a computational cell	ϵ	Emissivity of solid particles
	$({\rm kg \ m^{-3}})$		
Nu	Nusselt number	Ø	A general transport property
n	Refractive index of gas phase	\mathcal{E}_{g}	Gas phase fraction
Pr	Prandtl number	ε_s	Solid phase fraction
p	Pressure (Pa)	$ ho_g$	Density of gas phase (Kg m ⁻³)
p_{in}	Inlet pressure (Pa)	$ ho_s$	Density of solid phase (Kg m ⁻³)
Q_{rad}	Radiation heat source (W m ⁻³)	$ ho_j$	Cell density of species j (Kg m ⁻³)
Q_i	Initial heat source (W m ⁻³)	μ	Dynamic viscosity (Pa s)
Q_{sg}	Convective heat transfer rate (W m ⁻³)	$\sigma_{i,air}$	Average collision diameter (A)
q_r	Radiation heat flux (Wm ⁻²)	$\Omega_{i,air}$	Diffusion collision integral
Re	Reynolds number	ε	Turbulent dissipation rate (m ² s ⁻³)
$R_{g,pyro}$	2 1		
	Rate of release of pyrolytic volatiles (Kg m ⁻³ s ⁻¹)	ΔH_i	Enthalpy of reaction i (J kg ⁻¹)
r_i	Rate of release of pyrolytic volatiles (Kg m ⁻³ s ⁻¹) Rate of reaction i (Kg m ⁻³ s ⁻¹)	ΔH_i	Enthalpy of reaction i (J kg ⁻¹) Vector outer product

LIST OF APPENDICES

Appendix OpenFOAM Case Settings

71

