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ABSTRACT  

 Reactive distillation is the combination of unit operations reactor and distillation column into one 

unit. Reactive distillation offers higher conversions, reacting away azeotropes , heat integration, product 

selectivity and significant capital saving. Reactive distillation is industrially applied for many reactions. 

Equilibrium and non-equilibrium models are commonly used for modeling of reactive distillation. The 

equations used for modeling are called MESH equations. M-material E-equilibrium S-summation H-

enthalpy. The model equations were developed for a reactive distillation unit consisting of a batch reactor 

and one stage distillation unit. The model was applied in an ethanol and acetic acid esterification reaction 

considering homogeneous and heterogeneous reaction kinetics. Nineteen modelling equations were 

developed with 22 variables and three variables being specified. The differential equations were 

converted into algebraic equations by applying forward Euler method. Bubble point program is used to 

find equilibrium vapour composition and temperature. The initial composition of the reactor and the 

condenser as 45% acetic acid 45% ethanol,1% water. The holdups are assumed as 5000moles and 

100moles respectively. Simulations for solving of algebraic equations and bubble point temperature 

calculation were developed in matlab environment. Simulation results were observed for different 0.825 

to 0.99L0/V1 ratios. Dynamics of reactor and condenser compositions and ethyl acetate purity in the 

accumulated distillate were simulated for different L0/V1 ratios. Maximum ethyl acetate percentage in the 

accumulated distillate increases with increase in L0/V1 ratio. The dynamics of reactor temperature and 

conversion of acetic acid show high conversions of acetic acid in higher reflux ratios. Further the reactor 

heat load and batch time also increase with increase in L0over V1 ratio. Average production rate reduces 

with increasing L0/V1 ratio. The simulation was also done for heterogeneous reaction kinetics using 

Langmiur-Hinshelwood kinetic model. The variation of condenser composition, ethyl acetate percentage 

in the accumulated distillate, dynamics of reactor temperature and conversion of acetic acid were studied 

with time. Modelled results show that increase in theL0/V1 ratio increase the reactor batch time, although 

no variation in the average production rate is observed.         

Key words: Reactive distillation, modelling, Simulation, Esterification , ethyl acetate 
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