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APPENDIX 1

METEODS OF ANALYSIS:

At.1 Transient Network Analyser

The calculation of transients in power systems have
traditionally been cérried out using transient network analysis (THA)
on suitable models. ETransmissibn Tines are represented by a finite -
number of lumped element ladder networks to simulate the distributed
parameters of the line. Additional passive elements are gsed to
iepresent the networkjdevices such as transformers, loads, source
impedance, lightning érrestors so that a complete analogue of the
system is obtained, The main advantage of the TNA are its flexibility
and the ability to prbduce instantaneous results for a variety of
system studies;- n the transient analysers, to reduce the size of

capacitors and inductors used in the system, time'scaling factors are

quite often used.

1

Transformers may be included in the system as scaled models

|
of convenient size. Geometrlc1o

12

y equivalent circuit and ~ electro~

masnetic ' © models have all been used in the past, but they suffer
|

from the inherent problem that all relevant parameters cannot be

simultaneously scaled.

In a recent.study13, use is made of a near ideal transformer
with completely linea? characteristic, with non-linearities such as
due to the magnetising characteristic being electronically similated

in the analogue system, so that any type of core material may be

represented.




Since the transmission line is represented by a finite
number of sections, an upper limit is placed on the frequency response
determined by the natural frequency of an individual section. Thus
spurious oscillations éccur which have a frequency corresponding to
the product of the ﬁumﬁer of sectionsoand the line fundamental
frequency. However, this spurious oscillations may be suppressed by

| .
using a compensated section of line as shown below (Figure A1.1)29.

: : R
o 00— AA——T—O VW
LT o— T ——o0
=—=C . C o= R - T TR

Section~UncompenéatedlMédel Line  Section-Compensated Model Line

The ear t tt represented by an earth-

branch inductance and reésistance. Figure A1.2 shows a single section
. )

of a three-phaée model compensated line with earth return path.
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2°c-c, T L-L, R:-R, T2¢c-<,
‘ —na——-f 3 '
1. | fmo ‘ AAL

Figure A1.2 Three-phase Compensated Model Line



More sophisticated representation ﬁsing additional inductances
and resistances can be used to correctly represent the frequency
characteristic for earth return path14. Figure below shows the
sophisticated earth-branch representation. However, for normal

calculations this is ﬂot really necessary.

La Ta | Ly T
Rb
VV\ : —
L. T. Re
O —— YWY

| .
(ra,rC and ry are resistances inherent in the inductors L ,L. and Ld)
Figure A1.3 Sophisticated Earth-Branch Representation
A repetition rate is chosen so that a steady oscilloscope

display is obtained while allowing sufficient time for the decay of
transients from px = s. Mercury-wetted relays

are used to 'simulate Cixcuit breal on. The point-~on-wave
operation of each Swich can be controlled independently13. The controls
of the switches can also be inter-linked so as to simulate resistor
insertion by each pole' of a three-pole circuit breaker. The point— o
on-wave of operation c;n then be scanned automatically through the

powexr frequency cycle.

Alternativel&, a more sophisticated technique is .for the
analyser to be controlied by a small digital computer and the system
can be programmed to perform Monte-Carlo testing to determine an over-
voltage probability diStribution.u Using the facilities of the hybrid
system a number of studies can be performed which‘would otherwise be
impractical becauée of the large nuﬁber of random switching operations

required.



A-4.

A1.2 Lattice Diagram Method

The general solution to the transmission line equations may
be expressed as the sum of forward and reverse travelling wave functions

as ' i

f % ‘ < //§§;
Vs F(t-3) o+ FUt+3T) i
forward reverse !

' wave wave

where Ff and Fr are érbitrary functions of space x and time t chosen

|
to suit initial conditions.

This travel%ing wave equation has been used in a graphical
solution by Bewley25., The method known as the Lattice diagram technique
treats all lines as being basically lossless. This method has been

28and ofhers for use on the digital computer,

extended by Bickford
the lattice diagré_ itself"being replaced 'by a 'Branch Timetable'. Tn
the method, all ci ) { I nted by transmission lines
with distributed ﬁara%eters. A 5asic time interval is chosen for each
transient calculaﬁion‘and has a value less than the travel of the
shortest line to be r%presented. A1l lines are then expressed as
integral multiples ofIthe basic time interval as corresponding to their
time of travel. Iumped values ofcinductances and capacitances
representing transformers, generators, series and shunt compensation,
stray capacitances etc., are replaced by 'transmission line stubs' by

defining the surge impedance Z of the 'stub' in terms of its inductance

or capacitance, and an arbitrarily chosen small time constant T.

7 - j{? T -J/T%

where L and C are the inductance and capacitance of the 'stub' line.



An inductor is represented by a stub line with surge impedance given
by 2 = L/tL and travel time"fk, while a capacitance is represented
by a stub line with s&rge impedance Z = T./C and travel time T_.

It is generally satisfactory to choose thié travel time as equal to or
half the basic time intexrval deﬁending on connection of lumped element.
In general it is found necessary to ensure that the surge impedance

of inductive and capa?itive stubs are respectively egreater than ten
times and less than one tenth the combined equivaleﬁt surge impedance
of all other circuits[connected to tﬁe same busbar,

i The Waveforﬁs of voltagze and currents applied to the system
are synthesised by thé use of step functions which travel along the
line. Their behaviou? at the junctions and terminations is determined
by reflection and tra?smission coefficients. |

Consider the junction .T between two impedances Z1 and Z, as

shown in figure A1.4belovw, and let ' unit voltage arrive along 2

1 to the
Junction J ] T
- J —
z < Z
I 2
{ KR
Figure A1.4

If KR and KT are the Feflection and transmission coefficients, then

it can be shown that these are given by the expressions
i
2, - 2 2z

2 1 2
Xp Z, + Zh ! Kp Z, + 2, kg

Figure A1.5 shows the 'application of the technique to transmission
lines in series, witg a load resistor R at one end and fed by an
infinite source at tﬁe otﬁer eﬁd.

For the th#ee-phase calculations, the above coefficients
are replaced by the éeflection and transmission mat;ices, and the

mitual effects are tﬁus included. Kowever, the frequency dependence

of line parameters cénnot be taken into account and the parameters are

{
'
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generally calculated at a predominant frequency, if this is known,

or on a frequency based on the travel time of the lihe under consideration.
It is possible to partially account for the frequency dependence of the
liﬁe parameters and of the losses, by transforming all voltage steps
entering a line into the natural modes of propagation, where they‘ﬁay

be Suitably attenuated{and distorted before being transformed back into
phase quantities when Ehey arrive at an.end of the liné. (This‘attenuation
and distortion is gene¥a11y done by pre-détermining the response of

the line to a unit step using Fourier analysis). ﬁolt—amperé non-
;inearities at the terﬁinals may be accomodated in the calculations.
‘However, three-phase transformers where iﬂterphase mutual coupling

exists are not easily taken into account, as representation of lumped

parameter elements by ‘transmission line stubs proves rather cumbersome.

A1.3 Schn&der~Berg‘r0‘ Method

|

In the Schn%der-Bergeron method the transmission line problem

is primarily solved on the volt-ampere co-ordinate axes using the
travelling wave phenoniena. The lines are represented by their surge

impedances and travel 'times. Voltage sources and resistors are

represented on the diagram by their volt-ampere characteristics.

I ° .
The solutioé of the transmission line equation may be expressed

in the travelling Wav? form a826'27

vi = Fox - at) + F(x + at) (2)
t forward reverse
wave wave
and i = %- F(x - at) - Fr(x + at) (b)



where
a = ,veloc%ty of wave propagation

t = instant of time
x = instaﬁtaneous position of wave
Z = Surgefimpedance of line
» i
Trom equations (2) and (b),

1
I

v 4+ 2 1i
v - Zi

If, in thése-equations the factors (x-at) and (x+at) respectively

]

2 Fe(x - at)

2 F(x + at)

" are made constant, thﬁn the left hand side of the equations, v+Zi and
v-%i also become constant. The method of solution is based on this
observation. The forward and reverse travelling waves are represented
by line seéments sth positiwve.and negati slopes respectively, énd
magnitudés of the transmitted’vo current increments are
obtained from:interséctions on the characterigstics.. The increments
are summed and plottqd against the corresponding times to give the
required waveforms. ‘FigureAl.6 overleaf shows the application of the
technique to a transmission line supplied by a voltage source with a

finite internal impedance, loaded at the far end by a non linear load R.

The figure also showé how the voltage and the current waveforms are
simultaneously odbtained from the volt-ampere diagram.
As in the lattice diagram method, lumped values of inductances

and capacitances are represented by transmission line ‘'stubs', based
| .

on a chosen 'basic time interval',
i
|
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This method too has been recently extended for use on the
digital computer. The initial conditions define the voltates existing
at all named busbars.; Surge propagation is gnitiated by connectiné
‘the source systeﬁ to fhe circuit to be energised. The program  :
computes the voltage Qnd current at.each discreét point for each
basic time inteival. Multi-conductor representation is achieved using
modal propagation technigues, the modal components being transformed
into phase quantities at named busbars. Transmission parameters are
chosen at a single frequency usually based on line length. Atténuation

. R ! . » N Y . .
factors are included approximately by introducing series resistance

" into the modal domain,

An gdvantage of the method is that system non-linearities
may be hand;ed relatively easily without being involved in many |
mathematical equz; sions. Another advantage of the method is that both
voltage and‘curreu- are always considered so that the current does not
require a separate calculation. Howéve;, in handling lumped elements
" which are reactive iq nature, a certain amount of approximation is
necessary, so that if mutual coupling between phases in a transformer

are to be considered, the problem tends to become excessively complex.

A1,4 Direct Integration Technique (State Space Formulation)

The method is based on the solution of a system of first
order differential equations. In this method the transmission line
u
length is divided into a suitable number of equal intervals or is

represented by a ladded form of network. If the ladder approximation

to the transmission line is used, the circuit (including representation



of terminal equipment) may be expressed in the form of a first order
differential equation. Or, if the more accurate transmission line
representation is used, finite difference formulae are used to obtain
an ordinary differentigl equation approximation to the partial
differential equations of the line. Whichever method is used, the

ordinary differential equations can be reduced to the formm’42
!

X'= Ax + Bv
where :
x = vector of unknown voltages and currents
X = time dérivative of vector x
A, B = matricés built from transmission line parameters
v = vector of input forcing functions.

When dealineg with transmission line parameters, the A and B

matrices are re-eval alculation.

When the system of ordi ential equations is linear
with éonstant coefficie;ts, a closed form of solution is possible.
The method then provideé not only the overall transient response, but
also the seperate contributions of the various equivaleﬁt—circuit modes.
The closed solution is based on the eigen values and modal matrix of
matrix A. The transform of unknown voltages and currents is then
obtained as a direct function of the transform of the forcing function,

the modal matrix, the eigenvalues and the initial conditions. Inverse

transformation then.gives the unknown variables,

When non-linear parameters are present the method just
described cannot be‘applied as the forcing functions need updating.

In this case, the matrix ordinary differential equation is solved




using a numerical infegration technique such as the fourth order
Runge—Kﬁtta method. in the method the response of the line (voltages
and currents) are combuted at all the discretized points along the
line anq terminal equipment. The method can be easily adopted to

solve non-linear boundary value problems.

However, thé differential equations for the ladder
approximation to a trénsmisgion line are computationally inattractive
due to the high valuelof the spectral radius (high frequencies of

oscillation) of the resulting equations.

.o | &9
A1.5 lodified Fou:ier Transform

The major problem with the previous methods described in
\

this Appendix has been one of adequate simulation of the transmission

line distorsion a tenuation use of the deficiency in
representing the fireguency depen ters of the line and

earth. Another of the 'problems was the complete representation of

the coupling of flux in a transformer.

In the Fquriei transform method, the transient problem is
analysed by transforminé the epplied wave into its frequency

components, The transférm F(w) of a forcing function f£(t) is given
by34 -
Flw) = }} £(t). e 97 g4

o]
If H(w) is the transform of the transfer function of a network, then

the transform of the resbonse, R(w), is given by

- R(W)E = H(w) .P(w)



and the response, r(t), in the time domain is given by
‘ . ‘
r(t) = 7% 5 R(w) . e9 ¥ e
: o

However, with a practical network, it is generally not possible to
obtain the inverse transform analytically, and the numerical form

of the integral is used for purposes of computation. Thus

0 :
r(t) = i%gR(w).eJWt.Aw

where
Aw

Q

chosen frequency step length for numerical integration

li

maximum value of the angular frequency considered.

Limiting the maximum frequency to a finite value gives rise to an

oscillation known as Gibb's phenomenon, while the finite frequency
\ ,
step length gives rise to a limit on the maximum attainable rise time

of the waveform. The Gibb's oscillation is generally reduced34'by
‘using a suitable sigma factor (0)
. a I e
. (w/Q m

The sigme factor has an effect of reducing the rise time slightly, in

addition to reducing the Gibbd's oscillation.

Fourier analysis has the advantage that differential
equations are simplified into ordinary equations. .Also, the application
of the method to the caiculation of switching transients is attractive
because, as shown by Cafsonso, the mutual coupling, distorsion and
attenuation of traveliing waves on transmission lines are frequency

dependant. These phenoména can be very conveniently catered for

during the calculation of the frequency response, since at each stage

oo
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the relevant value of line impedance can be used.

In Fourier analysis, the transform function may have poles
along the real frequency axis, and would cauée instability when
obtaining the inverse transform. Thus; in the modifigd Fourier
transform, a shift factor a is intfoduced so as to shift.the line of
integration away from the real frequency axis. This shift has the
effect of decaying the forcing function by a factor e’<1t, obtaining
the response in the usual way and then pre-multiplying the reéponse
thus obtained by e at to obtain the actual waveform. 1In this case
the parameters are calgulated af a complex frequency given by35

C W

Vreal = J@

where Woeal is the real component of the frequency. wﬁen.transforming
back to the time domaiﬁ, the inverse transform process is generally
quife cumbersome pecially whe ling th a large number of
frequency steps. Tortunately, tl ertain repetitiveness in

this inversion process, which when properly utilised, tremendously
reduces the amount of computation required. Hoﬁever, a‘slight amount

of additional storage is required for the organised process of inversion.
This method, known as the Fast Fourier technigue has been used in
certain sections oftthevpresent work to cut down the computation cost.
However, when sequential switching operations are considered, unlike

in the normal inversion process, the complete inversion would have to

be repeated for each of the times at which switching occurs, so that

the technique loses somé of its advantage.

In the general method of analysis, modal components are used

in the calculation of two-port admittance parameters for the transmission

2



lines., Matrix equations are easily formed using the usual nodal
analysis. The problem is solved in the frequency plane and then
transformed into the time domain, to give the desired voltage and
current waveforms. A complete representation of the transformer
inclﬁding iﬁterphase matual coupling and frequency dependant losses

is easily achieved in the analysis.



APPENDIX 2

ANALYSIS OF SWITCHING SURGESABY FOURIER TRANSFORM

'

A2.1 Introduction

In the present work, the analysis of the transient problem
is carried out in the frequency domain using the Modified #ourier
Transform (Appendix A1,5). In this, the.numerical process used for
the inverse transform requires an upper limit to be placed on the
frequency spectrum of &he waveform and a finite step length to be

chosen for the nuﬁericgl integration. Thus, inorder to obtain the

| .
overvoltages caused by the switching operations, it is necessary to

investigate the range of frequencies to be considered, and the parameters

involved.
The following - sections describe the various factors that
need to be considersd, and the pr may be encountered.
35

A2.2 Sigma Factor

|

Figures A2.h and 2.2 show typical forms of s&itching surges
which are analysed usihg the Fourier transform. The figures also show
that a large amount oflGibb's oscillation occurs when the inversion
integral is evaluated numerically, due to the uppef limit on the
frequency. However, as shown in figure A2.3, the use.of a 'sigma factor!
(to be defiﬁed later) reduces the Gibb's oszillation to negligible

proportions. It is also seen that there is a slight loss in the initial

rate of rise.

As the mathematical analysis of these waveforms is quite

cdmplex, investigations are based on the unit step function. This wave
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has a transform 1/jw . When an upper limit £l is placed on the frequency

spectrum, the inverse transform f, (t) is given by
. S '
. 2 1 jwt
£,(t) = ZRe 5 e eI’ 4w
o]
where w is the eingullar frequency
n

. 2
le.€C, Ql(t) = 3 é

4l

¢« Sin wt ., dw

If a change of variable x = wt is made in the above equation, it takes

the form [k
2 Sin x
f(t)n—S-————.dx
w9

which function cdntains the sine integral Si(x). Thus

fo(t), = 1’2?. si(QLt)
Pigure A2.4 shows a piot of % Si(ﬂt) against Lt. This plot gives
the variation of the inversion integral wi th time t for a given maximum
frequency .. On the otherhand, it also »ws the effect of increasing

the maximum frequency L for a given time t. It is seen that the error

increases suhstantially at very low values of the product fu.t.

Figure A2.4 also shows how the standard sigma factor Tt

given by !

e - Sin(wgn.)n

std w/L)TL

improves the long ter#n response at the expense of the initial rate of
rise, When the sta.ndérd sigma factor is used, the response fcf(t) is
the local average of f, (t) over each period of the maximum frequency SL.
Since the maximum erréﬁ‘ occurs at minimum time, if the time step At is
chosen corresponding to SL.At =~ 4, not much error would occur in the
response, However, w?en the response is taken over a large period (global

response), a slight error in the initial rise-time may not be of much

significance and a loviver value of S At may be chosen to reduce computation.
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As is seen from figure A2.4, the sigma factor causes a much

lower rate of rise below 1t equal to 4. Thus, a modified sigma factor

(o 28 given by

mod .
- Sin aw
mod aw
T
where a = tz for 0L Qt < 4
and = /o for Qt = 4

may be used to improve the initial rate of rise (figure A2.4), while
keeping the long term response the same as for the standard sigma factor.
The invers‘iion integrals with the standard and modified

|
sigma factors, may also be expressed in terms of the Sine integral as

: - Q
2 s Sin wt
fo(t) = 5 8i.(Qt) = oSo_‘.—T—-.dw

. )
for the standard sigma factor, which factor can also be shown equal to

i'. E ) T

2 . : o
I (t) .= SH (5 +i57) ¢ 3 - -é—?%) SJ.(Qt-n:)]

and for the modified 'sigma factor can be shown to be equal to

.. Sin(dn Nt ¥ . .
£a(t) = FZ: [-2sin0 t.:s—l%ﬁ%l + (% + T—%)_Sl(ﬂ%)ﬂt +&-2) 51(1‘%)9‘3]
f for 0< Qt < 4

and fr,(t) = f_(t) : for Qt>4

However, the modified sigma factor has been calculated on the basis of
the frequency spectrum of the step wave, These do not necessarily

apply for the switching -surges, especially .as there would be more than
one discontinuity when ;equential switching occurs. Since the modified

|
sigma factor improves the rise time at the initial discontinuity only,
|

|
and since since multiplicity of switching is involved in the present

problem, the standard sigma factor has been used in the computation;
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. )15
A2.3 Shift Factor”

In the numerical form of the inversion integral, problems
arise due to_the fact that generally poles of the integrand lie close
to the path of integrétion. This causes the integ%and to peak at
intervals along the path of integration and necessitates using a very
small step length:in ﬁhe numerical integration. In the modified Fourier
integral, the shift factor is used to move the path of integration away
from the poles and henee smooth thg integral and so enable the use of a
greater step 1eng%h (%iz. in fhe time domain this corresponds to an
exponential decay of - the waveform so that a finite period may be considered).
FPigure A2.5 shows theieffect of the shift factor on the freguency
spectrum of the,césiné waveform. It shows that the shift faetorcxézcué
sufficiently smoothen% the integral (v, is the fundamental frequency of
analysis). Figure 4@, 6 Shows “the decayirig’ (1- Cosine) weveform for

different exponent the decay is sufficiently

large, the integral nojlonger peaks and the shift factor is no longer
necessary. 1In theory,}the value of the shift factor does not affect the
result, but in prectie; due to the limits placed on the numerical
integration, an optimum value of the shift factor may be chosen. While
the shift factor is chésen sufficiently large to make the integration
smooth and reducevinteération errors, it must not be too large, as then

the applied time decay would be faster than the decay of the truncation
5 ‘

error term3 » and when:multiplied by exp(at) as is required for the

|
process, would result in an amplified truncation error.

A2.4 Choice of Parameters
|

Consider the Fourier inversion. integral, given by

).F(w). "' aw

©

£(t) =

=TS
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If the substitution a(w,t) = T%I“(W) . e9" ¥ 55 made, this becomes

, Q
£(t) = Sa(w,t) dw
(o]

When integration is carried out numerically, a finite step length has

to be chosen (sayopw=,2 wo). The function may then be written in the

form
. N .
f t = = R 2 ' = i
: (t) iE 2i* V5 where ay a(le,t)
a.(w,t'),\
! .

' | ' !
| Oa I !

Ciusll Vo

!

,: ] { R
O N Vool ! |
o R R
Iy L | | ! |
T . T I
S y ! j ! >
2y Aty Sl WA, w= 214

Figure A2.7 shows a numerical integration where the value of the function

is assumed to remain constant for the whole of the previous interval at
|

its value. However, # more satisfactory solution would be to assume the
|
value constant at its value for half the previous period and half the
- l .
following period. This is shown in figure A2.8 .

A ' -

a(w,t)

il

- - — e = - - — e —

> frequency
‘21\0.),, w

Figure A2.8



This evidently gives a better integration than the former. This latter
form can be interpretéd to mean that the frequency spectrum is calculated
for odd harmonics of %he basic frequency fo. Since the step length has
been limited to 2f , repetition would occur (as in the Fourier series)
after this period, and the maximum value of the observation time that
could be considered ié governed by this frequency. However, due to the
discontinuity at the end of this time, Gibb's oscillation would occur
(c.f. figure A.2,1). Thus the effective time of observation T, is related
to the frequency Stepélength as

1
T S —
o 2fo

In practical problems) the Gibb's oscillation at the end of the waveform

' |
does not penetrate beyond half the period of observation, so that a

choice To-é Z%— would he sufficient, Thus the basic frequency fo
o
may be chosen so as to satisfy
1 s 1
— = 22—
\2To o 4To

Also, from'the anal&sis of section A2.2 and from figure A2.3
it is apparent that aichoiée of t.At of about 4 would give adequate
definition of wavefornﬂ° If the maximum frequency that has to be
considered is limited by system considerations, or if the types of
w;veforms likely to bé obtained are known and their frequency spectrums
‘are also known (such ;s with exponentials shown in figure A2.9), then
the value of the time step required may be correspondingly chosen.

This choice could be ierified by a 'trial and error' method of halving
the step length for time, énd observing whether there is any significant
change in the respohse.

A value of Jd = 2 v, has been chosen for the shift factor,

as 1t has been seen t? be satisfactory.



amplitude

relative

shift factor=4nf,

vit) = e

-at .

Figure A2.9

501,

Frequency

1001,

spectrum of

exponential

1501,

waveform (linear

2007,

scales)

250f,
frequency

T
n
@



A2.,5 A Particular Problem

A particular problem may arise in the method of analysis used
when a relati&ely long line is fed through a transformer, which causes
the resonant frequenc? of the system to approach the éupply freqﬁency.
- In this case, it has been found during the present work that the inversion
integral would peak héavily at the resonant frequency. It wés attempted

to resolve this problem by using a suitable shift factor to smooth the

integrand. |

(.

Frequency
spectrum

LN

I

‘ w . frequency
0 -8 .

Figure A2.10

However, this was found to be unsatisfactory as a very large shift factor

would be reqguired to smooth the waveform. Since truncation errors are
present, post—multiplyibg by the exponential function, as is required

in the inversion iptegr%l,would result in amplified errors. Figure A2.10 (a)
shows the typical form of the frequency spectrum mentioned above., In

the integration, if tooilarge a step length is chosen, either the peak

may be completely bypas%ed (figure A2.10 (b)), or the integral may take

a much higher value (figure A2.10 (c)). This problem may be avoided

by choosing a sufficien%ly small step length., However, this would result
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in a very large number of terms to be taken, if tﬁe high frequency
components are not to be truncated completely. Comi)utationally this
would be extremely uneconomic., Under these circumstahces, once the

' frequency at which péaking occurs is known, the following method may
be used. Tﬁe integral of the inverse transform is performed with

variable frequency step length (figure a2.11).

N
frequency l‘
spectrum
|
) I '
| I
T
} | . I
| | )
: 1 i “ I:F!|l!:'l | | 1 | |
|\ eeirons T it ey ' ! 1 > frequency (w)
0 - & ~——Q
: sSLeps
stéps Aw1 sz steps Aw5

|
L4

' Figure A2.11

.with variable step lengths Aw1, Aw2,'and Aw3 chosen, the inverse

transform may be written as

Q - ..
j F(w). eJWto dw
W, Yo w . Q .
[Z F(w)l.e')wib° Aw, + Zl F(w).e‘j"v‘t-'ko2 + X F(w).e‘JWt. Av
1] ‘ w‘ wa— 3

f(t) =

?

i Ao

A very small step length:is chosen for the region 4 to LY while for

the rest, a moderate step length may be chosen,

[
1
|
!

1
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APPENDIX 3

LEAKAGE: INDUCTANCE AND MUTUAL COUPLING

A%.1 Introductiqn

Although the term 'leakage inductance' has been used widely
in transformer litera?ure, as Ganzvd indicates, there is still a
disagreement to its mganing. As such for the purposes of the present
work, the term 'leakaée inductance' is defined as indicated below.

For a single phase of the transformer, it is possible to
derive both an exact f-equivalent circuit and an exact T -equivalent

circuit taking into consideration the inductive coupling.

I I
Vi ot N —" > V2
|
L
winding 1 b L1 L, winding 2
| v
e b ——— A CRILIETS D

e

rigure Aj.i

¥or the transformer'shéwn in figure A3%.1, let
|

L, L, - self inductance of windings 1 and 2 respectively
l
M - rmutual 'inductance between windings 1 and 2
n -~ turns ratio of windings (nominal voltage ratio)

I1, 12 ~ currents in the windings 1 and 2 respectively

V1, V2 ~ voltages across the windings 1 and 2 respectively.

Then it is possible to relate the voltages and the currents by the

differential equations

L1 pI, +Mp 12 =V

1
| Mp I1 + L2 P I2 = V2

where p is the differential operator d/dt .
|
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In the trahsformer, the primary winding and the secondary
winding may or may not be wound on the same leg. Also where they are
wound on tﬁe same 1eg; they may be'wound in spiral, cross-over, helical
or continuqus disﬁ form. Depending on the configuration of the windings,
the relation between the self-inductance of the windings, the mutual
inductance between theé windings and the leakage inductance differ;
However, under all thése conditions the self inductance of the windings
for most practical purposes, maynbe assumed to be related to each other
in the proportion of ﬁhe square of the turns. However, the mutual
coupling has to tqke i%to account the effective leakage between the

!

phase windings, wﬁich is dependant on the type of construction, by the
|
use of a coupling factor, which factor is very near unity for modern

power transformers.

A3.2 Exact T-equ:

If ¥ is ¢t coefficie .ing of the primary flux
with the secondary, all inductances may be defined in terms of the

primary self inductance L1 as
|

M = k n L1

Hence, the differential' equations may be rewritten as

L1 P Iﬂ +kn L1 P 12 = V1
giving, with selected grouping of terms

vV, = (1—k‘|) Lip I, +k L1p (I1 + n12) (A3.1)
similarly V, = (1-k) Lyp I, + k Lyp (I, + I,/n) (13.2)

which may be representei by the exact T-equivalent circuit in figure A3.2 .

"




‘Figure A3.2

The series elements of the equivalent circuit of figure A3%.2 may be
defined as the leakage inductance of the primary and secondary sides,

and the shunt element may be taken to represent the mutual coupling.
|

A 3.3 FExact " - eguivaient circuit

It is also possible to write the differential equations as
‘ I

L, M 1_13 [&1] : [ n? -kn 1 v
= | Lniersify of MiorsuwsSTrL |

% STV
M LV, - 1 | O |y

1

'

from which matrix equation

' 1 2 2
I, = — st [n (1-k) V. + kn"(V, =V /n)]
1 (1_k2) L,p 1 1 2
1 2 2
and nI, = ———e—— |-k n“(V, ~V,/n)+ n“(1-k) V /n]'
2 (1_k2) Lo [ 1 2/ 2

|
These equations may again be written as

I, = 'V1 | + - (v, - V,/n)
1 (14k)L,p (1_k2)L1p 12
' v
k : 2
and -nI, = ——mr—— (V, -V, /n) - —-—F—
2 (=A)Lp 2 n(1+k) Lyp

which may be expressed by the exact jt - equivalent circuit shown in

figure A3.3 .
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Figure A3.3

Here again, the series blement may be defined as the leakage inductance,

and the shunt branches as the magnetising inductance of the windings.

A 3.4 Comparison of Representation
: . :

When close coupling is achieved, k=1, so that the total
I

leakage inductance according to the T~circuit is

(1-k) L, +E(1-k) L2/n2 = 2(1-k) L,

and according to thewr - circuit is

1-X"
Y - N TN o 4 TN -k) L
X “1 T L= 1

also for the shunt branehes, the two methods give the mutual inductance

|
referred to the primary as

(1:k)

|
o~ o
) .% kL, = L

17 1 1
Thus for close coupling; both circuits could have their series elements

defined as 'leakage inductance'. However, when the coefficient of
|

coupling decreases, figure A3.4 shows that they depart from each other.
|

The figure also compares the 'leakage inductance' as obtained from the
|

series branches of theseé two circuits with the ‘short-circuit leakage

inductance' defined by short-circuiting the secondary winding. In this

'

case the reactance of the circuit is defined as the leakage reactance,

and from equations A3%.1 'and A3%.2 it is obtained es being equal to (1—k2)L1.
|
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Figure A3.4 Plot of leakage inductance against coupling coefficient
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If the coupling is very tight (k = 1) between the two
windings, there will be no leakage flux, which is verified by all three
methods of definition. However, when coupling is very weak (k = 0)
there is no mutual fluf so that the whole of the inductance would
be leakage, the leakage being defined as that due to the flux linking
one winding but not thé other. The definition (1—k2) L1 corresponding
to the short-circuit case agrees with this deduction and the T-circuit
definition would give twice the result. In this instance the W-circuit
definition of leakage £nductance would give a completely false result.
Since'for a transforﬁeq the coupling is almost unity on the same leg
and quite close when s;parate limbs are involved, the definition of
leakage inductance froq the T-circuit may be accepted. However, the
present wbrk considers!the 'short-circuit leakage inductance' to be

|

the most appropriate.

A3.,5 TPrequency de : f ind

Experiments47-49 ha&e shown that both self—inductance and
matual inductance vary %ith freguency, while the leakage inductance
remains virtually constant. It can be shown, using a semi-logarithmic
plot, that the variation of inductance with frequency follows an

exponential law of the form

é M = Mo e"af
where NIO = d.c. value of mutual inductance
M - mutual inductance at frequency f
f - frequ;ncy in Hertz

a - constant parameter dependant on material of core.

1
)
)

For practical purposes, the value of inductance at supply may be taken

as M,
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Both the mutual inductance and the self-inductance follow the
same form of frequpncyfdependance (figurea3.5). However, if the mutual
inductance and the self inductance are allowed to vary independantly, this
would result in a freq;enny dependant leakage inductance. As such the
variation of the self inductance is obtained from the variation of the

mutual inductance and the constant leakage inductance.

Inductance AR

rd
\ frequency
‘ figure A3.5
Since, for switching surges which are considered in the present
study, the frequencies of interes tend to very high frequencies,

the coupling of flux between windings remains comparativelv high, and

the variation of the self-inductance mav be obtained as

L = M + €

where all inductance values are referred to the same Qinding.

In géne:al, due to the symmetrical form of the inductance
matrix for the traﬁsformer, it is possible to acrount for the frequency
dependant self—indﬁctance amd mtual inductance elements directly in the
inverse inductance;matrix, thus making the computation process simpler.

Although only a particular form of variation of self-inductance
has been mentioned,due to lack of sufficient data on this variation, any

other form of variation, if known, may be substituted without any

difficulty into the computer program.
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A 3.6 Interphase Mutual Coupling

So far only the!mﬁtual coupling between windingé on the same
phase has been considered. When the mutual inductive coupling between
windings on adjacent phases (separate limbs) are considered, separate
considerations are neéessary. The mutual coupling is no longer related
to the self inductance through the leakage inductance but is calculated
on‘the reluctance of the magnetic and air paths.

Consider for example a three-limb core (figure A3.6a), with
windings on limbs 1 and 2i(considered having equal turns for simplicity
of presentation). Thé 1i@bs are sectioned as illustrated in figuré A3,6b

!
for the purpose of calcul%ting the reluctances.

|
7 28 :‘T;,' > ) : ;
, } :
—— - B E g !
Limb ) Limb Limb3 i |
Figure A3.6a Figure A3.6b
Let ‘ v
¢1 - Flux linkage produced by current in winding 1
¢21 - Flux linkage with limb 2 due to current in winding 1
!
¢31 - Flux linkége with 1limb 3 due to current in winding 1
|
S1,82,S3 - Reluctanc?s of the 3 limbs (sectioned as illustrated)

i
11, 12 - Currents in windings 1 and 2 respectively

k1 - Interphase inductive coupling factor of flux from llmb 1

to other cores (order of 0.8 to 1.0)

Equating flux linkage, when winding on 1limb 1 is energised, we have
Po1 + 831 = k4 &

Also, assuming the flux d;stribution in the other cores as inversely



- i

proportional to the reluctances, we have

U
N

. . a
31 Sy

R

substitutinn and grouping terms gives

52
In( 1+ 50 = X,

N

.. d.. = ._JELJEL__
21 1 + s2/s3

Thus the mutual inductance is given by
M = g?.l = k A E’J. = k —_ L
21 1 171 + 32783 I1 1°1 &+ 32/33. 1
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which expression takes into account the assymetry of the core, due to

the difference in the reluctance paths of the inner and outer legs.

Similarly, if the windi on limb 2 is energised, it may be shown that

4

M
12 2
1+ 8,/85

It is thus seen that the mutual coupling between the windings is not

symmetric, I?¥ is also worth noting that the self inductances of the

centre 1limb and of the outer limbs are different due to the assymmetry

of the core.
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. APPENDIX 4

TRANSMISSION LINE PARAMETERS

The following sections describe the calculation of the-
Series impedance matrix 7 and the Shunt admittance matrix Y ; per

unit length of an overhead transmission line.

A4.1 Series Impedance Fatrix Per Unit Length

The calculation of the series impedance matrix for the

36

transmission line is quite complex due to the frequency dependence

of the conducting paths,. The various components of this matrix,
|

‘ 71
calculated as described by Galloway et al , are detailed below.
° |

i
o |
2 = Zc + Zg.+ Ze

|
(i) The self gmpedance of tHé conductors, Zgs is a diasgonal
matrix and is evaluc 'y for low frequency (below 500 Hz)

and high frequency rangeé, due to the variation of current in the
Conductor.

|
FPor low range qf frequencies,.the conductor self impedance

is aiven to a good approximation by NG

RPN
\ ) > (\%fﬂ
= J¥ Mo OS
Zc = R‘dc + loge (_r/rgm) S
where ’
r = overall conductor radius
rgm= mean geomeétric radiuvs corresponding to stranding
l
Ry = Tesistance per unit length, to direct current = /oc/nﬂ'r;2

!
Pe = resistivity of conductor metal

r = xradius oflindividual gtrand

n = total number of conducting strands (steel strands neslected).
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Tor the higher range of frequencies, due to skin effect,
the current is confinéd to the surface of outer layers of the conductor,

and the correspondinzlformula for the self impedance is quite accurately

given by .
l =
. Z KP m/ rm (n +2)
where '
K = straﬁdine factor to account for non-uniform field
distribution on the circumference (K = 2,25 experimentally)
Lo &
m = (Gvpn/r)
no = numbe; of strands in outer layer
M, = relative permeability of conductor material,
|

(ii) The impedancg due to the electromagnetic coupling between

conductors, ZF,is‘

=) !

7 - . d)
H 21N =
where !
Dij = distarnce between conductor i and the image of conductor j,
|
dij = distance between two conductors i and j , i £ j , or

= radiué of conductor, when i = j.

(iii) The impedance due to the electromagnetic coupling of the
conductors with the earth, Ze’ is calculated according to Carson's

formula 29 by the expression

LN
T (7 +30)

The infinite series defined overleaf are terminated after a sufficient

convergence has been regched.
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where
P and Q = matrices calculated from series which are functions
of two parameters rij and eij, '
such thét . 1
riy = (WR/P)E Dy

and e. . = angle subtended at the ith conductor by the images

ij .
of the ith and jth conductors.

Note: For different ranses of frequency, the matrices P and Q are

obtained by different'series7‘;

A4.2 Shunt Admittance Matrix Per Unit Length

The shunt admittance due to the capacitive coupling between

|
the conductors and the%r images in a perfect earth is a function of

!
o~ oAy SR

|
the physical geor 2lative to the earth plane7 s

and are given by

Y = jw2fle /log (D/d)
where
Yij = (i,j):th element of the shunt admittance matrix Y,
€ = permittivity of conductor
Dy = distahce between the i'" conductor and the image of j,
N . th .th PR
dij = distance between the i~ and j = conductors, i # j, or

= radius of conductor, for i = j.
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A4.3 Bundle Conductors 3

Vhen the bundle conductor is éonsidered, as is usual for
the high voltage lines, the corresponding radius for the calculation
of the 'self' terms, in the matrices of the above sections, will be
the equiva;ent fadius;of the bupdle given by the geometric mean

radiusBéJ Also, the self-impedance calculation carried out for the

1

single conductor, has its value divided by the number of conductors

in the bundle to obtain the equivalent self impedance of the phase.
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' CABLE PARANETERS

Unlike in the transmission line, the calculatién of the
parameters for the cable is more complicated due to the presence
of the additional media such as the conductor dielectric, sheath

| N

and sheath distectric.

AS5.1 Series Impedance Matrix Per Unit ILength

|

For the cable, the exact expressions for the series impedance
|
‘ 3
involve the Bessel fuqctions and functions of the Bessel functions ' .

|
However, simplified s?lutions are available which are applicable over

a wide range of frequencies, The different components of the series
| .

impedance matrix are described

(i) The internal ! 1e conductor is quite accurately
{

given by the expressio‘jn31
|

PR 0.356 /4
2, = 7T - Coth(0.777 m r,) + e
1
where .
P4 = resistivity of inner conductor,
no= Gwp/e?
r, = radius of inner conductor v

In particular, for very high frequency (w‘u/01>i> 1), the above formula
reduces to the familia# skin effect formula Z, = /°11n/211r1, and at
very low frequency (or for d.c.) at which W’p/p1 << 1, the above

gives the expression for the d.c. resistance 2, = /01/Ttr$ .
{
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(ii) The magnetic flux in the conductor dielectric gives rise

to the conductor-sheath mutual impedanée, zsc’ which is given by the

expression ‘
A AL,
Zge T loge(rz/r1)
where r, = inner radius of sheath.

(iii) The inner,isﬁrface sheath impedance, Z_;, is approximately

given by
Py o /2
Z_. = Coth(m(r,-r,)) -
si I|2111'2 372 2ﬂr2G3-+r§
where i
‘ L
m = (3 W/Iu*//oz)—z
)
Py = resistivity of sheath
Ty = '

|
(iv) Due to the current f{low in the sheath, a voltage is induced

in the sheath-earth péth giving rise to the mutual impedance between

. |
inner and outer sheath surfaces. This impedance, Zm’ is given by the
(

expression w

A S
Zm = W Cosech(m(rB - 1'2))

(v) The outer,s?rface sheath impedance, 2 , is given by the

approximate expressioﬁ
A" 2
2o = 2)Lr3 Coth(m(ra-rz)) + 21trg(r3 + T,)

.(vi) mhe flux in, the sheath dielectric causes a mutual impedance

between the sheath and earth, Zo? and is given by the formula



http://imp.ed.ance
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'

- d¥Am
Ze = T 1oge(n/g3)
where R = overall radius of cable, and radius of earth return path.

(vii) The earth return path has an impedance, Ze’ wbich may be

represented by the following expression

1

2o = %’i‘l(604905-1og'p+1<q—j(%—Kq))
, e
vhere o
e = (£/,,)?
f = frequéncy (Hz)
P = q.d
d = distance between cables
K = 0.0013245(b + c)
b = depth of inducing cs ble (b is negative)
¢ = depth of ed cable (c is negative)

. If the earth is taken as reference, the-'series impedance per
uwnit length of each caple is given by the matrix (with rows and columns

indicated by ¢ and S referring to the core and sheath quantities

respectively) ~ o <
| c |24y 242
Z =
8 [2qp 295
where .
Z11 = Zc+Zsc+Zsi+Zso+Zse+Ze"2Zm
219 = 2y ﬁ‘zse + 2 = 2y
% = 2 .42  +32

22 80 se
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Due to the magnetic fiux, there is a substantial mutual impedance
between adjacent cablgs, which is highly dependent on frequency.
These may be caICulatéd in a way similar to that described in the
foregoing sections, By combining the impedance matrices‘for the
individual cables with the mutual impedance matrices, the complete

impedance matrix per unit length may be obtained.

A5.2 Shunt Admittanceikatrix Per Unit Length .-

Evaluation of the shunt admittance matrix is quite straight
forward. The three cénducting paths (core, sheath and earth) form
equipotential surfaces. If the dielectric loss is neglected, then

|

the conductor~sheath shunt admittance, ch, arnd the sheath~earth shunt

|
admittance, Yse’ are readily given by the expressions31

Jir WG -1,(__'
N Elecies - Fymertatzom,
I -
jw 27(62

Yse = Tog (8/7,)
se loge R r3

where
(

9 permittivity of conductor dielectric;
|

€

]

5 permittivity of sheath dielectric.

| . .
If the earth 'is taken as reference, the shunt admittance

| .
matrix per unit length of each cable is given by

c s

¢ ch - YCS
Y =

si-Y Y +Y




As the earth return path may be considered as an electrostatic
screen, there is no mutual admittance between adjacent cables. Thus
for the three phase cable, the block matrix derived above is compounded

to form a diagonal mqtrix.

A5.3 Earth-Continuity Cable
i

The earth éontinuity conductor, if present, consists of an
inner conductor, con@uctor dielectric and sheath. The impedancce
of this conductor consists of the internal conductor impedance, the
impedance due to,thelmagnetic flux, and that due to the earth return

path.

The series:impedance and the shunt admittance components
have forms similar to those described in the foregoing sections and

are calculated asisuch.
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APPINDIX 6

ELININATION OF EARTH CONDUCTORS ALD SHEATHS IN

TRANSMISSION LINES AND CABLES FROM UATRIX

In general, the series impedancevand shunt admit%ance
matrices calculéted for transmission lines and cables (Appendices
4 &5 ) will include elements correspondiné to éarth conductors,
sheaths etc., in addition to those corresponding to the phase
conductors. In the case of earth conductors,as well as sheaths
in cross-bonded qables, regular earthing is effected at points along
their length;. ﬁhese conductors would thus have potentials near
zero; especially;at the transmission towers or points of earthing.
It is possibie to have standing voltage waveforms along their
lengtﬁs, but since switching surges are of interest, these are
thought to be extremely sma urate method of reduction
of the matrices so as to contain modified terms corresponding only
to the phase conéuctors would be to divide the liﬁe or cable into
sections correspénding to tower spans or bonding sections and
substitute the terminal conditions at these points, In the case of
cross-bonded cabies, non~linear cable covering protection units
would need to be‘represented at these points. However, this is
considered to be;computationally extravagant. Another possibility
is to consider - zero voltage or suitable earthing resistance only
at the two ends éf the line and apply these boundary conditions
to the two port admittance matrix equations, derived including the

. 1 '
additional €lements for the earth conductors.
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1] '[A] _[B]”l’sp\
Ese - ’ Xse
zrp 1',C!‘P
J\Ere‘ i '\—[B] [A] J LYII'eJ

suffixes s, r refer to the sending and receiving ends respectively

suffixes p, e refer to the phase conductors and earth conductors

However'th#s is not much more accurate than assuming zero

voltage throughout the length of the condﬁctor. Thus the reduction
of the impedancé and admittance matrices to eliminate these eartﬁ
conductors is based o% this latter assumption. A

| In thé casé of admittance matrices, this assumption is

| .

easily accomodated by!removing the rows and columns'correspondiné to
earth conductors /¢ heat! ivi ‘educed equivalent admittance
matrix. However, in the case of 1l i nce matrix, the elimination
of the earth-wire ana/or sheaths from the matrix equations without
disturbing their shielding properties is done by first inverting the
impedance matrix and #hen proceeding as an admittance matrix. Finally,
the reduced matrix is:re—inverted to provide the corrected impedance
matrix which allows fér the effects of sheaths and/or earth wires. In
fact, it will be shown that this double iﬁversion process can be °

.
dispensed with, and in its place the original matrix may be modified

suitably to give the same desired result.

Por example, consider ' an (m + n) conductor system, where

n conductors have zero voltage along their length. The impedance
) i

matrix may be written'as
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Zp Zp
Z | =
Z¢ Zp
where
ZA = self-impedance matrix of the non-zero voltage conductors
order of matrix (m x m).
ZB’ZC = matrices of mutual impedance between the zero-voltage

and the non-zero voltage conductors. Order (mxn) & (nxm).

Z = self impedance matrix of the zero-voltage conductors

order of matrix (n x n).

' |
We-are infact interested in only the (m x m) submatrix of
‘ ‘ . A
the inverse of the above impedance matrix, as this then inverted gives
the desired result. ﬁell known matrix theoxry could. be used to show

that the first (mggm) submatrix of bl verse is given by

(2, = 252, .2

B C)

and, thus the required reduced impedance matrix is given by
; 1
(z, - 25.25 +24)

This result suggests that instead of computing two inversion processes,
a single inversion of a much smaller matrix Zn and two matrix

maltiplications is allithat is now required.

1 -

The result derived ébove has been used extensively in the
computer programs of tﬁe present stud&, where zero voltages (and sometimes
even zero currents, with corresponding admittance matrices) are involved.
For this technique to ée used, all the impedances corresponding to zero
voltages (or admittances corresponding to zero currents) must be placed at

the extreme rows and columns of the original matrix.
. I

|




APPENDIX 7

MULTICONDUCTOR WAVE EQGUATIONS

!

The theory 6f modal analysis proposed by Wedepohl4§ p#évides
a completely generalised method of solving theitravelling wave
phenomena on multiconéuctor lines. 1In this method, the problem is
reduced to the simple case of independent differentiél equations by a

linear transformation.

|
The voltages and currents at any point x alone a homogeneous

milticonductor transmission line are inter-related by

ix = -zZ1 (A7.1)
i
41 _ _yvy - (A7.2)
where
V, I = ents of voltage. and current
Z, Y = system series impedance and shunt admittance matrices

n = number of conductors in multiconductor system.

|
Differentiating the equations A7.1 and A7.2 with respect to x

and subsequent eliminations yield the second order differential equations

==l= 2Y.V = P.V ' (A7.3)

= Yz.I = P.V ~ (A7.4)

where P = 2%, a%d it can be shown that Pt = Y Z.

The differential equations A7.3 and A7.4 have solutions of the
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form given below

1

VvV = exp(- P% x). V; + exp( P% x). v, (A7.5)
3 3
I = Y [exp(-P“x). V. - exp(P°x). V ] (A7.6)
o i T
where o ;A _a
Y = 3P = yp?
"o
Vi,Vr = constants which can be physically interpreted as the

incident and reflected waves at the terminals.

The relationship between the sending and receiving ends of a two-port
network can be deriveg from equationsA7.5 and A7.6to give the well

known admittance equation

S S
= ' (47.7)
IR - B A VR
where
A = YZCoth, (P?,1)
<x .
B = Y Cosech (P= 1)
| . )
1 = 1length of line considered
IS’ Iz = sending end and receiving end currents
VS, R = sending end and receiving end voltages

Since P is non-diagonal, each of these equations represent
n simultaneous diffeFential equations and a direct solution of them is
not self evident. This difficulty is overcome by making use of linear

transform techniques.!

If Q is the modal matrix of matrix P, and k is the eigen
|
value matrix, then

P = Qk Q‘1.
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The propagation matrix ¥ is given by the expression

and the characteristic admittance matrix Yo by

A
Y YP*

o

]

Y QY_1Q_1

On this basis, using properties of eigenvalues and eigenvectors, the

two-port network parameters are given by the equation

A

[}

J‘.‘ - —
Y, Coth(P*1) = Y Q¥ ™. Coth¥1.q

ﬁ ' Y Cosech(P%I) = Y Q'X_1. Cosech¥ 1. Q_'1

The matrix functions Coth ¥ 1 and Cosech¥ 1l are easily formed as

they are diagonal matrices of elements Coth‘fil and Cosech'fil
respectively. Matrix multiplication then gives the two-port parameters..
For both transmission lines as well as for cables, with assumptions

of symmetry and zero voltage on earth conductors and sheaths the
eigen-values and eigenvéctors may be obtained in a straight forward
manner, due to the properties the the symmetrical matrices. The.

series impedance and shunt admittance matrices are obtained as detailed

in the former Appendices for the transmission line and cable.
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APPENDIX 8
i

REDUCTLON OF A THREE-PHASE WWO-PORT NETWORK WiTH KNOWN TERMINAL MATRIX

TO OBTAIN EQUIVALENT ADMITTANCE MATRIX SEEN FROM INPUT END

In the method of analysis used in the present problem, it
is quite often necessary to obtain the equivalent admittance matrix

seen from the input end. The following section describes how this

reduction is done.

Iy Iy
v ’ | General v
1 ~ ' I 4 Terminal
. Ig,j . two - port .75
v . ! V_|Equipment
|
2 | network >
I Ig
v — [y} [ v [¥e)
3 ! 6
end A | " end B
:;.SL‘ L

Figure A8.11 shows a general two-port network with admittance

matrix [Y ] and terminated by an admittance of [Y’]. For the two~port
(6x6) | (3x3)

network it is possiblé to write

o ) 1)
I, v,
I? - Y '3 (18.1)
I, v,
Ig Vs
| %6 | l J Vs




and for the terminal equipment it may be

—

r

W - O - O

where [YAA]{[YAB],[Y‘

two-port network

s

o g

o
-

|

,

In compact

written that

4
V5 (48.2)
Ve
vy
[YAB ] AP
v
> (28.3)
Va
YBB+YTJ V5
) .V5J

and [YBB] are the (3x3) submatrices of the

put quantities by suffix A

and output quantities with suffix B, we may write
L (Yaa) [YAB ] Va o
! ’ AB.4
2 (fea) [T ) |V !
where [YBé] . [YBB]E‘* (2] I, = - [YT]., Vg

From equations8,4, V;

B ey be expressed in terms of V, as
| .
; - ,
g (Ypa) Va + (Yet) V5
or v - [y ']‘1 (Yga] ¥
~B BB “BA] _A
Thus IA may be expiessed in terms of X as




A-55

* | Ino= [YAA] Yo~ [YAB][YBé]-1 [YBA] Ia

8 [{YAA] - [YAB][YBI'B]_'_? [YBA]J M

In compaét notation, this may be rewritten as

s (uun (48.5)

where the equivalent admittance matrix seen from the input terminals

is given by

(Ya) = [Ya) - [¥s) (st YT1-1[YBA] (8.6)
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APPENDIX 9

PIECEWISE FGURLER TRANSFORM OF FUNCTIONS AT REGULAR TIME INTERVALS

When sequential switching operations are investigated, the
analysis for the closure of the second and third poles require the
transform of certa?n voltages existing in the system prior to closure.
These voltages are kgown at discrete time intervals, so that the

transform needs to be obtained numerically. The following section>’

describes how this is obtained for the waveform shown in figure 49.1.

The’kransﬁorm of the piecewise function is obtained as the
sum of the tranéfor@s of the (M - N) strips of width To. Consider a
typical strip as sh?wn in figdreA9.2. If fk_1 and fk are the values
of the function at EE:T T, aﬁd k To respectively, then the Fourier

L i81  Bohnded  hv'! L TFL]
transform of the functi IO 3" b; Po, fk—1’ fk and k To can

be found by decomr

g I eries of step and ramp
functions whose transforms are readily obtained. A possible reduction
for this chosen stéip is also shown in figure A9.2, with two step and

two ramp functions, The magnitudes of the steps are fk_1 and -fk H

and the slopes of fhe ramp functions are Afk/To and "Afk/To°

The transform due to all the stéps may be found by adding
up the individual contributions. This is given by

' 1 . .
fs(w) -~ T [fN exp(-jw N To) - fy exp(-jw M To)]

Similarly, the Fourier transform of all the ramp functions

can be found, and'is given by

, M |
£.(v) = '-—5‘1—T- S (53 fiq)- [ exmp(=gw(k-1)r-exp(~jwk T,)]
Lo LAKE 'S ,

The complete transform of the piecewise function f(t) is now given by

f(w) = fs(w) + fr(w)
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