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APPENDIX 1 

METHODS OP ANALYSIS 

A1.1 Transient Network Analyser 

The calculation of transients in power systems have 
i 

traditionally been carried out using transient network analysis (TNA) 

on suitable models. ^Transmission lines are represented by a finite • 

number of lumped element ladder networks to simulate the distributed 

parameters of the line. Additional passive elements are used to 

represent the network devices such as transformers, loads, source 

impedance, lightning krrestors so that a complete analogue of the 

system is obtained. The main advantage of the TNA are its flexibility 

and the ability to produce instantaneous results for a variety of 

system studies. In the transient analysers, to reduce the size of 
i 

capacitors and inductors used in the system, time scaling factors are 

quite often used. 
i 

Transformers may be included in the system as scaled models 
of convenient size. Geometric^ , equivalent circuit and ' electro-

12 
magnetic models have all been used in the past, but they suffer 

! 

from the inherent problem that all relevant parameters cannot be 

simultaneously scaled. 

In a recent study^, use is made of a near ideal transformer 

with completely linear characteristic, with non-linearities such as 

due to the magnetising characteristic being electronically simulated 

in the analogue system, so that any type of core material may be 

represented. 

i 
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Since the transmission line is represented by a finite 

number of sections, an upper limit is placed on the frequency response 

determined by the natural frequency of an individual section. Thus 

spurious oscillations occur which have a frequency corresponding to 

the product of the number of sections and the line fundamental 

frequency. However, this spurious oscillations may be suppressed by 
1 ' i 29 using a compensated section of line as shown below (Figure A1.1) y. 

R 

L r -^oTP—v/yv 

Section-Uhcompensated,Model Line Section-Compensated Model Line 
Figure A1.1 

The earth return path is usually represented by an earth-

branch inductance and resistance. FigureA1.2 shows a single section 

of a three-phase model compensated line with earth return path. 
R 
AAA-

L r 
Trap—vW 

R 
AAA L r 

'"(JOT*—yA/v 
R 

—AAA 
_L r 

\AA/ 

3 

Figure A1.2 Three-phase Compensated Model Line 
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More sophisticated representation using additional inductances 

and resistances can be used to correctly represent the frequency 

characteristic for earth return path 14 Figure below shows the 

sophisticated earth-branch representation. However, for normal 

V W 

- w v 

(r ,r and r, are resistances inherent in the inductors L ,L and L,) v a c d ' - a c d' 
Figure A1.3 Sophisticated Earth-Branch Representation 

A repetition rate is chosen so that a steady oscilloscope 

display is obtained while allowing sufficient time for the decay of 

transients from previous switching operations. Mercury-wetted relays 

are used to'simulate Circuit breaker operation. The point-on-wave 

operation of each switch can be controlled independently^. The controls 

of the switches can also be inter-linked so as to simulate resistor 

insertion by each pole1 of a three-pole circuit breaker. The point- « 

on-wave of operation can then be scanned automatically through the 

power frequency cycle. 

analyser to be controlled by a small digital computer and the system 

can be programmed to perform Monte-Carlo testing to determine an over

voltage probability distribution. Using the facilities of the hybrid 

system a number of studies can be performed which would otherwise be 

impractical because of the large number of random switching operations 

required. 

Alternatively, a more sophisticated technique.is for the 
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A1.2 Lattice Diagram Method 

The general solution to the transmission line equations may 

be expressed as the sum of forward and reverse travelling wave functions 

as 1 

V - *f
!(t - f) + F r(t + i ) 
forward reverse 

i wave wave 

where and F r are arbitrary functions of space x and time t chosen 
i to suit initial conditions. 
i 

This travelling wave equation has been used in a graphical 

solution by Bewley2^. f The method known as the Lattice diagram technique 

treats all lines as being basically lossless. This method has been 
28 

extended by Bickford and others for use on the digital computer, 
the lattice diagram itself being replaced by a 'Branch Timetable'. Tn 

i 

the method, all circuit elements are represented by transmission lines 

with distributed parameters. A basic time interval is chosen for each 

transient calculation and has a value less than the travel of the 

shortest line to be represented. All lines are then expressed as 

integral multiples of |the basic time interval as corresponding to their 

time of travel. Lumped values of,inductances and capacitances 

representing transformers, generators, series and shunt compensation, 

stray capacitances etc., are replaced by 'transmission line stubs' by 

defining the surge impedance Z of the 'stub' in terms of its inductance 

or capacitance, and an arbitrarily chosen small time constant ~C . 
z - > / f ~ , X - / L ~ C 

where L and C are the 1 inductance and capacitance of the 'stub' line. 



An inductor is represented by a stub line with surge impedance given 

by Z = L / T l and travel time T L , while a capacitance is represented 

by a stub line with surge impedance Z = f C / C and travel time T c. 

It is generally satisfactory to choose this travel time as equal to or 

half the basic time interval depending on connection of lumped element. 

In general it is found̂  necessary to ensure that the surge impedance 

of inductive and capacitive stubs are respectively greater than ten 

times and less than one tenth the combined equivalent surge impedance 

of all other circuits connected to the same busbar. 

The waveforms of voltage and currents applied to the system 

are synthesised by the use of step functions which travel along the 

line. Their behaviour at the junctions and terminations is determined 
i 

by reflection and transmission coefficients. 

Consider the junction .T between two impedances Z 1 and Z0 as 

shown in figure A1.4below, and let unit voltage arrive along Z^ to the 

junction J | Kj 

2 | ^ R 

Figure A1.4 
If and K̂ , are the reflection and transmission coefficients, then 

it can be shown that these are given by the expressions 
Z 2 " Z1 2 Z 2 

*R = Z 2 + Z^ ' *T = Z 2 + Z 1
 = 1 + *R 

Figure A1.5 shows the Japplication of the technique to transmission 

lines in series, with a load resistor R at one end and fed by an 
i 

infinite source at the other end. 
i 

For the three-phase calculations, the above coefficients 

are replaced by the reflection and transmission matrices, and the 

mutual effects are thus included. However, the frequency dependence 

of line' parameters cannot be taken into account and the parameters are 
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K R30> C - KTBC 

RAB K TAB R 

RAB 
Z 2 - Z1 
z 2 + z r 

(i) Circuit Diagram 

' R ~ Z 2 
, ^ C = R + Z 2 ' 

z r z2 
^OB Z.,+ Z 2 

TBC*KTA3 

Z 1 = 300 ohm 
Z 0 = 600 ohm 

= 3 kohm 

(iii) Build-up of Voltaee 

Figure A1.5 Application of Lattice Diagram Technique 
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generally calculated at a predominant frequency, if this is known, 

or on a frequency based on the travel time of the line under consideration. 

It is possible to partially account for the frequency dependence of the 

line parameters and of' the losses, by transforming all voltage steps 

entering a line into the natural modes of propagation, where they may 

be suitably attenuated; and distorted before being transformed back into 

phase quantities when they arrive at an end of the line. (This attenuation 

and distortion is generally done by pre-determining the response of 

the line to a unit step using Fourier analysis). Volt-ampere non-

linearities at the terminals may be accomodated in the calculations. 

Hov/ever, three-phase transformers where interphase mutual coupling 

exists are not easily taken into account, as representation of lumped 

parameter elements by transmission line stubs proves rather cumbersome. 

A1.3 Schnyder-Bergeron Method 

In the Schnyder-Bergeron method the transmission line problem 

is primarily solved oh the volt-ampere co-ordinate axes using the 

travelling wave phenomena. The lines are represented by their surge 

impedances and travel 'times. Voltage sources and resistors are 

represented on the diagram by their volt-ampere characteristics. 

The solution of the transmission line equation may be expressed 

in the travelling wave form as2*'*27 

v I F f(x - at) + F r(x + at) (a) 
forward reverse 
wave wave 

and i \ F/x - at) - Fr(x + at) 0 0 
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where 

a = , velocity of wave propagation 

t = instant of time 

x = instantaneous position of wave 

Z = surge impedance of line 

i 

Prom equations (a) and. (b), 
v + Z i = 2 Pf(x - at) 

v - Z i = 2 F (x +. at) r x ' 

If, in these.equations the factors (x-at) and (x+at) respectively 

are made constant, then the left hand side of the equations, v+Zi and 

v-Zi also become constant. The method of solution is based on this 

observation. The forward and reverse travelling waves are represented 

by line segments with positive and negative slopes respectively, and 

magnitudes of the transmitted voltage and current increments are 
i 

obtained from.intersections on the characteristics.. The increments 

are summed and plotted against the corresponding times to give the 

required waveforms. !FigureA1.6 overleaf shows the application of the 

technique to a transmission line supplied by a voltage source with a 
i 

finite internal impedance, loaded at the far end by a non linear load R. 

The figure also shows how the voltage and the current waveforms are 

simultaneously obtaihed from the volt-ampere diagram. 

As in the lattice diagram method, lumped values of inductances 

and capacitances are<represented by transmission line 'stubs', based 
i 

on a chosen 'basic time interval'. 
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source r 
X 

r 
-vVv— Transmission Line B 

T 
t 
Z 
r 

^ (i) Circuit Diagram 

time at which time closes 
travel time of line 
surge impedance of line 
internal impedance of line 

V A 

non-linear 
" resistor 

• . 

B 

T-t~T 
1 1 r— 1 1-

T+2t T*4t 
—^ 
time 

T-t 
T 

-> I 
B 

T+2t\ 

T + 4t 

(ii) Build-up of Voltage 
and Current Waves 

v time 

i Figure A1.6 Application of the Bergeron Technique 
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This method too has been recently extended for use on the 

digital computer. The initial conditions define the voltates existing 

at all named busbars. Surge propagation is initiated by connecting 

the source system to the circuit to be energised. The program 

computes the voltage and current at each discreet point for each 

basic time interval. Multi-conductor representation is achieved using 

modal propagation techniques, the modal components being transformed 

into phase quantities at named busbars. Transmission parameters are 

chosen at a single frequency usually based on line length. Attenuation 

factors are included approximately by introducing series resistance 

into the modal domain. 
i 

An advantage of the method is that system non-linearities 

may be handled relatively easily without being involved in many 

mathematical equations. Another advantage of the method is that both 

voltage and current are always considered so that the current does not 

require a separate calculation. However, in handling lumped elements 

which are reactive in nature, a certain amount of approximation is 
i 

necessary, so that if mutual coupling between phases in a transformer 

are to be considered, the problem tends to become excessively complex. 

A1.4 Direct Integration Technique (State Space Formulation) 

The method is based on the solution of a system of first 

order differential equations. In this method the transmission line 

length is divided into a suitable number of equal intervals or is 

represented by a ladded form of network. If the ladder approximation 

to the transmission line is used, the circuit (including representation 



of terminal equipment) may be expressed in the form of a first order 

differential equation. Or, if the more accurate transmission line 

representation is used, finite difference formulae are used to obtain 

an ordinary differential equation approximation to the partial 

differential equations of the line. Whichever method is used, the 

ordinary differential equations can be reduced to the form^1'^2 

x ' = A x + B v 

where 
x = vector of xmknown voltages and currents 

X = time derivative of vector x 

A, B = matrices built from transmission line parameters 

v = vector of input forcing functions. 

When dealing with transmission line parameters, the A and B 

matrices are re-evaluated at each stage of calculation. 

When the system of ordinary differential equations is linear 
i 

with constant coefficients, a closed form of solution is possible. 

fhe method then provides not only the overall transient response, but 
i 

also the seperate contributions of the various equivalent-circuit mode 

The closed solution is based on the eigen values and modal matrix of 

matrix A. The transform of unknown voltages and currents is then 

obtained as a direct function of the transform of the forcing function 

the modal matrix, the eigenvalues and the initial conditions. Inverse 

transformation then gives the unknown variables. 

When non-linear parameters are present the method just 

described cannot be applied as the forcing functions need updating. 

In this case, the matrix ordinary differential equation is solved 
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using a numerical integration technique such as the fourth order 

Runge-Kutta method. In the method the response of the line (voltages 

and currents) are computed at all the discretized points along the 

line and terminal equipment. The method can be easily adopted to 

solve non-linear boundary value problems. 

However, the differential equations for the ladder 

approximation to a transmission line are computationally inattractive 

due to the high value of the spectral radius (high frequencies of 

oscillation) of the resulting equations. 

A1.5 Modified Fourier Transform 

The major problem with the previous methods described in 

this Appendix has been'one of adequate simulation of the transmission 

line distorsion and attenuation because of the deficiency in 

representing the frequency dependant parameters of the line and 

earth. Another of the 'problems was the complete representation of 

the coupling of flux in' a transformer. 

In the Fourier transform method, the transient problem is 

analysed by transforming the applied wave into its frequency 

components. The transform F(w) of a forcing function f(t) is given 

•P(w) - j f(t). e" 0*" dt 
o 

If E(w) is the transform of the transfer function of a network, then 

the transform of the response, R(w), i3 given by 
R(w)' = H(w) . P ( W ) 

1 
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and the response, r(t), in the time domain is given by 

r(t) - i-]R(w).e ; j W t dw 
o 

However, with a practical network, it is generally not possible to 

obtain the inverse transform analytically, and the numerical form 

of the integral is used for purposes of computation. Thus 

r(t) = ^ I R(w) . e j W t . Aw 

where 
Alt) = chosen frequency step length for numerical integration 

ft = maximum value of the angular frequency considered. 
Limiting the maximum frequency to a finite value gives rise to an 

oscillation known as Gibb's phenomenon, while the finite frequency 
i 

step length gives rise to a limit on the maximum attainable rise time 

of the waveform. The Gibb's oscillation is generally reduced^ by 

using a suitable sigma factor (o ) 
a ta Sin (w/fl )rt 

The sigma factor has an effect of reducing the rise time slightly, in 

addition to reducing the Gibb' s oscillation. 

Fourier analysis has the advantage that differential 

equations are simplified into ordinary equations. Also, the application 

of the method to the calculation of switching transients is attractive 

because, as shown by Carson-^, the mutual coupling, distorsion and 

attenuation of travelling waves on transmission lines are frequency 

dependant. These phenomena can be very conveniently catered for 

during the calculation of the frequency response, since at each stage 
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the relevant value of line impedance can be used. 

In Fourier analysis, the transform function may have poles 

along the real frequency axis, and would cause instability when 

obtaining the inverse transform. Thus, in the modified Fourier 

transform, a shift factor a is introduced so as to shift the line of 

integration away from the real frequency axis. This shift has the 

effect of decaying the forcing function by a factor e~ a*, obtaining 

the response in the usual way and then pre-multiplying the response 
ct "k 

thus obtained by e to obtain the actual waveform. In this case 

the parameters are calculated at a complex frequency given by^^ 
' W " Wreal " J C X 

where w
r e a ^ i s the real component of the frequency. When transforming 

back to the time domain, the inverse transform process is generally 

quite cumbersome especially when dealing with a large number of 

frequency steps. Fortunately, there is a certain repetitiveness in 

this inversion process, which when properly utilised, tremendoxisly 

reduces the amount of computation required. However, a slight amount 

of additional storage is required for the organised process of inversion. 

This method, known as the Fast Fourier technique has been used in 

certain sections of-the present work to cut down the computation cost. 

However, when sequential switching operations are considered, unlike 

in the normal inversion process, the complete inversion would have to 

be repeated for each of the times at which switching occurs, so that 

the technique loses some of its advantage. 

In the general method of analysis, modal components are used 

in the calculation of two-port admittance parameters for the transmission 
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lines. Matrix equations are easily formed using the usual nodal 

analysis. The problem is solved in the frequency plane and then 

transformed into the time domain, to give the desired voltage and 

current waveforms. A complete representation of the transformer 

including interphase mutual coupling and frequency dependant losses 

is easily achieved in the analysis. 

i 
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APPENDIX 2 

ANALYSIS OF SWITCHING SURGES BY FOURIER TRANSFORM 

A2.1 Introduction 

In the present work, the analysis of the transient problem 

is carried out in the frequency domain using the Modified courier 

Transform (Appendix A1.5). In this, the numerical process used for 

the inverse transform requires an upper limit to be placed on the 

frequency spectrum of the waveform and a finite step length to be 
i 

chosen for the numerical integration. Thus, inorder to obtain the 

overvoltages caused by the switching operations, it is necessary to 

investigate the range of frequencies to be considered, and the parameters 

involved. 

The following • sections describe the various factors that 

need to be considered, and the problems that may be encountered. 

A2.2 Sigma Factor ^ 
i 

i , 
Figures A2.jl and JA.2.2 show typical forms of switching surges 

i 

which are analysed using the Fourier transform. The figures also show 

that a large amount of Gibb's oscillation occurs when the inversion 

integral is evaluated numerically, due to the upper limit on the 

frequency. However, as shown in figure A2.3» the use .of a 'sigma factor' 

(to be defined later) reduces the Gibb's oscillation to negligible 

proportions. It is also seen that there is a slight loss in the initial 

rate of rise. 

As the mathematical analysis of these waveforms is quite 

complex, investigations are based on the unit step function. This wave 
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has a t ransform 1 / jw . When an upper l i m i t / l i s p l aced on the f requency 

spectrum, the i n v e r s e t ransform f f t ( t ) i s g i v e n by 

f . ( t ) - | Re - 4 - . e J w t dw 
o 

where w i s the angular f requency 
n 

i . e . f . ( t ) n — \ — ; Sin wt . dw i t ' it j w o 
I f a change o f v a r i a b l e' x = wt i s made i n the above equa t ion , i t takes 

the form ^ f c 

which func t ion con ta ins the s ine i n t e g r a l S i ( x ) . Thus 

F i g u r e A2.4 shows a p l o t o f ^ S i ( i l t ) aga ins t f i t . Th i s p l o t g i v e s 

the v a r i a t i o n o f the i n v e r s i o n i n t e g r a l w i t h t ime t f o r a g i v e n maximum 

f r e q u e n c y H . On the 'o the rhand , i t a l s o shows the e f f e c t o f i n c r e a s i n g 

the maximum f requency n f o r a g i v e n t ime t . I t i s seen tha t the e r r o r 

i nc reases s u b s t a n t i a l l y a t v e r y low v a l u e s o f the product f l . t . 

F i g u r e A2.4 a l s o shows how the standard sigma f a c t o r d*,, 
S X u 

g i v e n by 1 

1 o" » S i n ( w / q ) l t 
s td = (w / i l ) 7 l 

improves the l o n g term response a t the expense o f the i n i t i a l r a t e o f 

r i s e . When the standard sigma f a c t o r i s used, the response f ^ - ( t ) i s 

the l o c a l average o f f A ( t ) o v e r each p e r i o d o f the maximum frequency C L . 

Since the maximum e r r o r occurs a t minimum t i m e , i f the t ime s tep & t i s 

chosen cor respond ing to . f t . k t ~ 4» not much e r r o r would occur i n the 

response . However, when the response i s taken o v e r a l a r g e p e r i o d ( g l o b a l 

r e s p o n s e ) , a s l i g h t e r r o r i n the i n i t i a l r i s e t ime may not be o f much 

s i g n i f i c a n c e and a l ower va lue o f , M may be chosen to reduce computation, 



sine integral 

X * r*t » " with S-F. 
0 „ ,, with modified s.F. 

Figure A2.4 Plot of the sine integral 
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As is seen from figure A2.4» the sigma factor causes a much 

lower rate of rise below ft t equal to 4» Thus, a modified sigma factor 

°mod e i v e n * v 

. Sin aw cr == 
mod a w 

where a = for 0 ̂  ft t 4 

â cl « . n/ft; for fit ^ 4 

may be used to improve the initial rate of rise (figure A2.4)» while 

keeping the long term response the same as for the standard sigma factor. 

The inversion integrals with the standard and modified 
1 

sigma factors, may also be expressed in terms of the Sine integral as 

o 

for the standard, sigma factor, which factor can also be shown equal to 
1 

^(t) .-. I f(4 + s i f o t + n ) + (i - H ) s i ( f t t - n ) ] 

and for the modified sigma factor can be shown to be equal to 

V ( * > - I [ - 2 S i ^ t - ; S i ( | n n Q t ) )
 +

 ( * + | ) . s i ( n f ) n t + ( 4 - | ) s i ( i - * ) n t j 

! for 0<$ ft t :$ 4 

and f ,(t) - f^(t) for ftt>4 

However, the modified sigma factor has been calculated on the basis of 

the frequency spectrum of the step wave. These do not necessarily 

apply for the switching surges, especially as there would be more than 

one discontinuity when sequential switching occurs. Since the modified 
i sigma factor improves1 the rise time at the initial discontinuity only, 
i 
1 

and since since multiplicity of switching is involved in the present 

problem, the standard sigma factor has been used in the computation. * 
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1 i s 
A2.3 Shift Factor" 

In the numerical form of the inversion integral, problems 

arise due to the factithat generally poles of the integrand lie close 

to the path of integration. This causes the integrand to peak at 

intervals along the path of integration and necessitates using a very 

small step length' in ihe numerical integration. In the modified Fourier 

integral, the shift factor is used to move the path of integration away 
o 

from the poles and hence smooth the integral and so enable the use of a 

greater step lenglth (viz. in the time domain this corresponds to an 

exponential decay of the waveform so that a finite period may be considered). 

Figure A2.5 shows the effect of the shift factor on the frequency 

spectrum of the.cosine waveform. It shows that the shift factor a =2m 
i o 

sufficiently smoothens the integral (w is the fundamental frequency of 

analysis). Figure A2.6 shows the decaying (1- Cosine) waveform for 

different exponential Idecay functions. When the decay is sufficiently 

large, the integral no longer peaks and the shift factor is no longer 

necessary. In theory,] the value of the shift factor does not affect the 
• i 

result, but in practieje due to the limits placed on the numerical 

integration, an optimum value of the shift factor may be chosen. While 

the shift factor is chosen sufficiently large to make the integration 
i 

smooth and reduce integration errors, it must not be too large, as then 

the applied time decay would be faster than the decay of the truncation 

error term^, and when| multiplied by exp(ctt) as is required for the 
i 

process, would result in an amplified truncation error. 
A2.4 Choice of Parameters 

i 
I 

Consider the Fourier inversion integral, given by 
9 

f(t) - | j .P(w). e j w t dw 
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v(t) = 0 - c o s w e 

s 
- 100* 

20* 

no shift factor 

4 * w s t 

-kt 

k = 0 

k = 78 = 12.5 w 0 

k = 110 = 17.5 w 0 

k -. 175 = 28 w Q 

k = 350 = 56 w 
o 

100 
frequency 

FigureA2.6 Frequency spectrum of decaying (1 - cosine) wavei orm 
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If the substitution a(w,t) « ^ F(w) . e J W * is made, this "becomes 
Q 

f(t) - j a(w,t) dw 

When integration is carried out numerically, a finite step length has 

to be chosen (say^=,2 W q ) . The function may then be written in the 

form 
fit) - I a,.. 2w where a. = a(iw ,t) 

i î , £i o i v o ' 

L ( w , t ) 

2.01, 4U)„ 6U)0 i^ 0. 

Figure A2.7 

Figure A2.7 shows a numerical integration where the value of the function 

is assumed to remain constant for the whole of the previous interval at 
i 

its value. However, a more satisfactory solution would be to assume the 
i 

value constant at its value for half the previous period and half the 

following period. This is shown in figure A2.8 . 

a(w,t) 

frequency 

Figure A2.8 
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This e v i d e n t l y g i v e s a b e t t e r i n t e g r a t i o n than the fo rmer . T h i s l a t t e r 

form can be i n t e r p r e t e d t o mean that the f requency spectrum i s c a l c u l a t e d 

f o r odd harmonics o f the bas i c f requency f Q . Since the s tep l e n g t h has 

been l i m i t e d t o 2 f Q , r e p e t i t i o n would occur (as i n the F o u r i e r s e r i e s ) 

a f t e r t h i s p e r i o d , and the maximum va lue o f the o b s e r v a t i o n time tha t 

could be cons ide red i s governed by t h i s f r equency . However, due to the 

d i s c o n t i n u i t y a t the end o f t h i s t ime , G i b b ' s o s c i l l a t i o n would occur 

( c . f . f i g u r e A . 2 . 1 ) . Thus the e f f e c t i v e t ime o f o b s e r v a t i o n T Q i s r e l a t e d 

to the f requency s t e p ' l e n g t h as 

T o ^ 2 F 

I n p r a c t i c a l problemsJ the G i b b ' s o s c i l l a t i o n a t the end o f the waveform 
i 

does not pene t r a t e beyond h a l f the p e r i o d o f o b s e r v a t i o n , so tha t a 

cho i ce T ^ -r— would be s u f f i c i e n t 0 Thus the bas i c f requency f o 4f ° ^ o 
may be chosen so as to s a t i s f y 

> f ^ 
2T Q o 4 T C 

A l s o , from the a n a l y s i s o f s e c t i o n A2.2 and from f i g u r e A2.3 

i t i s apparent tha t a i c h o i c e o f SI . A t o f about 4 would g i v e adequate 
I 

d e f i n i t i o n o f waveform. I f the maximum frequency tha t has to be 

cons ide red i s l i m i t e d by system c o n s i d e r a t i o n s , o r i f the types o f 

waveforms l i k e l y to be ob ta ined are known and t h e i r f requency spectrums 
j 

are a l s o known (such as w i t h e x p o n e n t i a l s shown in f i g u r e A 2 . 9 ) , then 

the va lue o f the t ime s tep r e q u i r e d may be co r r e spond ing ly chosen. 

Th i s cho ice cou ld be v e r i f i e d by a ' t r i a l and e r r o r ' method o f h a l v i n g 
i 

the s t ep l e n g t h f o r t i m e , and o b s e r v i n g whether t h e r e i s any s i g n i f i c a n t 

change i n the r e sponse . 

A va lue o f cL •» 2 w has been chosen f o r the s h i f t f a c t o r , 
o 

as i t has been seen to be s a t i s f a c t o r y . 



shift factor = 47i f 0 

frequency 
Figure A 2.9 Frequency spectrum of exponential waveform (linear scales) 
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A2.5 A Particular Problem 

A particular problem may arise in the method of analysis xised 

when a relatively long line is fed through a transformer, which causes ' 

the resonant frequency of the system to approach the supply frequency. 

In this case, it has been found during the present work that the inversion 

integral would peak heavily at the resonant frequency. It was attempted 
i 

to resolve this problem by using a suitable shift factor to smooth the 

integrand. i 

I w frequency 0 s 

i Figure A2.10 

However, this was found to be unsatisfactory as a very large shift factor 

would be required to smooth the waveform. Since truncation errors are 

present, post-multiplying by the exponential function, as is required 
i 

in the inversion integral,would result in amplified errors. Figure A2.10 (a) 

shows the typical form of the frequency spectrum mentioned above. In 

the integration, if too' large a step length is chosen, either the peak 
i 

may be completely bypassed (figure A2.10 (b)), or the integral may take 

a much higher value (figure A2.10 (c)). This problem may be avoided 

by choosing a sufficiently small step length. However, this would result 
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in a very large number of terms to be taken, if the high frequency 

components are not to be truncated completely. Computationally this 

would be extremely uneconomic. Under these circumstances, once the 

' frequency at which peaking occurs is known, the following method may 

be used. The integral of the inverse transform is performed with 

variable frequency step length (figure A2.11). 

frequency 
spectrum 

steps A w 1 ^ ^ P S steps Aw 

1 !>• frequency (w) 
'SI 

Figure A2.11 

with variable step lengths Aw 1, Aw 2, and Aw^ chosen, the inverse 

transform may be written as 

f(t) - | j F(w). e J w t . dw 
o 

- I f l F(w).eJ w t.Aw. + *I F(w).eJ w t.Aw 9 + I F(w) . e J w t . A,v J 
L o 1 w, 2 u)x 3 J 

A very small step length'is chosen for the region w 1 to w 2, while for 

the rest, a moderate step length may be chosen. 

http://a2.11
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APPENDIX 3 

LEAKAGE' INDUCTANCE AND MUTUAL COUPLING 

A3.1 I n t r o d u c t i o n 

Although the term ' l e a k a g e inductance ' has been used w i d e l y 

TO 

i n t ransformer l i t e r a t u r e , as Ganz i n d i c a t e s , the re i s s t i l l a 

disagreement t o i t s meaning. As such f o r the purposes o f the present 

work, the term ' l e a k a g e inductance ' i s de f i ned as i n d i c a t e d b e l o w . 

F o r a s i n g l e phase o f the t rans former , i t i s p o s s i b l e to 

d e r i v e both an exact T - e q u i v a l e n t c i r c u i t and an exac t T t - e q u i v a l e n t 

c i r c u i t t ak ing i n t o c o n s i d e r a t i o n the i n d u c t i v e c o u p l i n g . 

1 » • 

winding 1 , I 1 ^ c L , wind ing 2 

1 F i g u r e A3»1 

F o r the t ransformer shown i n f i g u r e A3«1, l e t 
i 

L . j , Lr, - s e l f inductance o f wind ings 1 and 2 r e s p e c t i v e l y 

M - mutual inductance between windings 1 and 2 

n - turns r a t i o o f windings (nominal v o l t a g e r a t i o ) 

I . j , I g - cur ren ts i n the wind ings 1 and 2 r e s p e c t i v e l y 

V . j , Vg - v o l t a g e s ac ross the windings 1 and 2 r e s p e c t i v e l y . 

Then i t i s p o s s i b l e to r e l a t e the v o l t a g e s and the cur ren t s by the 

d i f f e r e n t i a l equat ions 

!»=, P I-, + M p I 2 = V 1 

M, p I 1 + L 2 p I _ - V 2 

where p i s the d i f f e r e n t i a l o p e r a t o r d /d t . 
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I n the t rans former , the pr imary winding and the secondary 

winding may o r may not be wound on the same l e g . A l s o where they are 

wound on the same l e g , they may be wound i n s p i r a l , c r o s s - o v e r , h e l i c a l 

o r continuous d i s c form. Depending on the c o n f i g u r a t i o n o f the w i n d i n g s , 

the r e l a t i o n between the s e l f - i n d u c t a n c e o f the w i n d i n g s , the mutual 

inductance between the windings and the l eakage inductance d i f f e r , 

however , under a l l these c o n d i t i o n s the s e l f inductance o f the windings 

f o r most p r a c t i c a l purposes , may be assumed to be r e l a t e d t o each o the r 

i n the p r o p o r t i o n o f the square o f the tu rns . However, the mutual 

c o u p l i n g has t o take i n t o account the e f f e c t i v e l eakage between the 
' i 

phase wind ings , which i s dependant on the type o f c o n s t r u c t i o n , by the 
i 

use o f a c o u p l i n g f a c t o r , which f a c t o r i s v e r y near u n i t y f o r modern 

power t r ans fo rmers . 1 

A3.2 Exact T - e q u i v a l e n t c i r c u i t 

I f k i s the c o e f f i c i e n t o f coup l i ng o f the primary f l u x 

w i t h the secondary, a l l inductances may b e . d e f i n e d i n terms o f the 

pr imary s e l f inductance L.. as 
i 1 

I L_ - n 2

 L l 

M = k n 

Hence, the d i f f e r e n t i a l 1 equa t ions may be r e w r i t t e n as 

L 1 p I + k n L 1 p I 2 - V 1 

g i v i n g , w i t h s e l e c t e d grouping o f terms 

V 1 - (1-k) L 1 ? I 1 + k L 1 ? ( I 1 + n l 2 ) (A3.1) 

s i m i l a r l y V 2 " = (1-k) L 2 p I 2 + k L 2 p ( l 2 + I^/n) (A3 .2 ) 

which may be r ep re sen t ed by the exac t T - e q u i v a l e n t c i r c u i t i n f i g u r e A3*2 
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0 - k ) 
v 1 > . ^ j ^ W ^ -

(1-k) L ? / n 

!kL. 

F i g u r e A 3 .2 

The s e r i e s elements o f the e q u i v a l e n t c i r c u i t o f f i g u r e A3.2 may be 

de f ined as the leakage inductance o f the primary and secondary s i d e s , 

and the shunt element may be taken t o r ep resen t the mutual c o u p l i n g . 

A 3»3 Exact TV - e q u i v a l e n t c i r c u i t 

I t i s a l s o p o s s i b l e to w r i t e the d i f f e r e n t i a l equat ions as 

L 1 M -1 
' 1 1 r 2 

n 

- k n 
1 

=3 

M \ 
*; P 

, V2 
• V -kn 

>* 

1 
4 

* n 2 ( l - k 2 ) 

from which mat r ix equa t ion 

I •1 

and n l . 

I ' f n 2 U - k ) V . + k n 2 ( V - V ? / n ) 
( 1 - k 2 ) L 2 p ^ > 

1 U f - k n 2 ( V 1 - V ? / n ) + n 2 ( l - k ) V /n 1 

( 1 - k 2 ) L ? P L ; 

These equa t ions may aga in be w r i t t e n as 

1 

and - n I , 

/ « , Vr + 2 ( V 1 -
( l + k ) L l P ( l - k 2 ) L 1 ?

 1 i 

k ! V 2 
( l - k 2 ) L ^ p " V 2 / n ) ~ n ( U k ) L 2 p 

which may be expressed by the exac t j r - e q u i v a l e n t c i r c u i t shown i n 

f i g u r e A3.3 ° 

i 



A-34 

~ir~ Li 

n l 2 

< -

(1+jc) L n. 
Lp 

F i g u r e A3.3 

Here a g a i n , the s e r i e s 'element may be d e f i n e d as the l eakage induc tance , 

and the shunt branches as the magne t i s ing inductance o f the w ind ings . 

A 3«4 Comparison o f Represen ta t ion 
i 
i 

When c l o s e c o u p l i n g i s a c h i e v e d , k ^ 1 , so tha t the t o t a l 
i 

l eakage inductance a c c o r d i n g t o the T - c i r c u i t i s 

( 1 - k ) L 1 + | ( 1 - k ) L 2 / n 2 = 2 ( l - k ) L 1 

and a c c o r d i n g to the TT-J c i r c u i t i s 
2 

1=± L 1 -', ( l - k ) ( l + k ) - 2 ( l - k ) L 1 

Ic 

a l s o f o r the shunt branches, the two methods g i v e the mutual inductance 

i 
r e f e r r e d t o the pr imary as 

2 - h - k L 1 ' L 1 

Thus f o r c l o s e coupl ing^ both c i r c u i t s could have t h e i r s e r i e s e lements 

de f ined as ' l e a k a g e i n d u c t a n c e ' . However, when the c o e f f i c i e n t o f 
i 

coup l ing dec rea se s , f i g u r e A3.4 shows tha t they depar t from each o t h e r . 
i 

The f i g u r e a l s o compares the ' l e a k a g e induc tance ' as ob ta ined from the 

s e r i e s branches o f these two c i r c u i t s w i th the 1 s h o r t - c i r c u i t l eakage 

inductance ' de f ined by s h o r t - c i r c u i t i n g the secondary w ind ing . I n t h i s 

case the r eac tance o f the c i r c u i t i s d e f i n e d as the l eakage r e a c t a n c e , 

and from equat ions A3.1 and A3.2 i t i s ob ta ined as be ing equal t o (1-k )L^ 
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Figure A3.4 Plot of leakage inductance against coupling coefficient 
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I f the coup l i ng i s v e r y t i g h t (k « 1 ) between the two 

wind ings , t he re w i l l be no l eakage f l u x , which i s v e r i f i e d by a l l t h ree 

methods o f d e f i n i t i o n . However, when c o u p l i n g i s v e r y weak (k ~ 0) 

t he re i s no mutual f l u x so that the whole o f the inductance would 

be l e a k a g e , the leakage b e i n g de f ined as tha t due to the f l u x l i n k i n g 

' 2 one winding but not the o t h e r . The d e f i n i t i o n (1-k ) L 1 co r responding 

t o the s h o r t - c i r c u i t case agrees w i t h t h i s deduct ion and the T - c i r c u i t 

d e f i n i t i o n would g i v e t w i c e the r e s u l t . I n t h i s in s t ance the 7 t - c i r c u i t 

d e f i n i t i o n o f l eakage inductance would g i v e a c o m p l e t e l y f a l s e r e s u l t . 

Since f o r a t ransformer the coup l ing i s almost u n i t y on the same l e g 

and q u i t e c l o s e when separa te l imbs are i n v o l v e d , the d e f i n i t i o n o f 

l eakage inductance from the T - c i r c u i t may be accep t ed . However, the 

p resen t work cons ide r s 'the ' s h o r t - c i r c u i t l eakage inductance ' t o be 

the most a p p r o p r i a t e . 

A 3 .5 Frequency dependaince o f inductance 

E x p e r i m e n t s ^ - ^ have shown tha t both s e l f - i n d u c t a n c e and 

mutual inductance v a r y w i t h f requency , w h i l e the leakage inductance 

remains v i r t u a l l y cons tan t . I t can be shown, u s i n g a s e m i - l o g a r i t h m i c 

p l o t , tha t the v a r i a t i o n o f inductance w i t h f requency f o l l o w s an 

exponen t i a l law o f the form 

ir la ~ 3 - f 

' M = M e o 

where M - d . c . v a l u e o f mutual inductance o 

M - mutual inductance a t f requency f 
i 

f - f requency i n Her tz 

a - constant parameter dependant on m a t e r i a l o f c o r e . 

F o r p r a c t i c a l purposes , the va lue o f inductance a t supply may be taken 

as M . 
o 
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Both the mutual inductance and the self-inductance follow the 

same form of frequency:dependance (figureA3.5)• However, if the mutual 

inductance and the self inductance are allowed to vary independantly, this 

would result in a frequency dependant leakage inductance. As such the 

variation of the self inductance is obtained from the variation of the 

mutual inductance and the constant leakage inductance. 

Inductance A 

frequency 
figure A3-5 

Since, for switching surges which are considered in the present 

study, the frequencies of interest do not extend to very high frequencies, 

the coupling of flux between windings remains comparatively high, and 

the variation of the self-inductance mav be obtained as 

L = M + t 

where all inductance values are referred to the same winding. 

In general, due to the symmetrical form of the inductance 

matrix for the transformer, it is possible to account for the frequency 

dependant self-inductance amd mutual inductance elements directly in the . 

inverse inductance matrix, thus making the computation process simpler. 

Although only a particular form of variation of self-inductance 

has been mentioned,due to lack of sufficient data on this variation, any 

other form of variation, if known, may be substituted without any 
difficulty into the computer program. 
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A 3.6 Interphase Mutual Coupling 
i • 

So far only the mutual coupling between windings on the same 

phase has been considered. When the mutual inductive coupling between 

windings on adjacent phases (separate limbs) are considered, separate 

considerations are necessary. The mutual coupling is no longer related 

to the self inductance through the leakage inductance but is calculated 

on the reluctance of the magnetic and air paths. 

Consider for example a three-limb core (figure A3.6a), with 

windings on limbs 1 and 2 (considered having equal turns for simplicity 

of presentation). The limbs are sectioned as illustrated in figure A3.6b 
i 

for the purpose of calculating the reluctances. 

U w t b 2 U m b 3 

Figure A3.6a Figure A3.6b 

Let 
01 

021 

S.j , s 2 , S j 

l v I 2 

k1 

Flux linkage produced by current in winding 1 

Flux linkage with limb 2 due to current in winding 1 

Flux linkage with limb 3 due to current in winding 1 

Reluctances of the 3 limbs (sectioned as illustrated) 
i 

Currents in windings 1 and 2 respectively 
i 
i 

Interphase inductive coupling factor of flux from limb 1 
to other cores (order of 0.8 to 1.0) 

Equating flux linkage, when winding on limb 1 is energised, we have 

021 + **31 = k 1 0 1 

Also, assuming the flux distribution in the other cores as inversely 
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proportional to the reluctances, we have 

hi . !i 
substitution and grouping terms gives 

021( 1 + |S ) - k, 0, 

k 1 #1 
2 1 1 + s 2 / s 3 

Thus the mutual inductance is given by 
0 21 1 ^ 1 1 

M21 - — - k n + s 2 / s 5 - T ; - V ! + s 2 / s 3 . * L 1 

which expression takes into account the assymetry of the core, due to 

the difference in the reluctance paths of the inner and outer legs. 
Similarly, if the winding on limb 2 is energised, it may be shown that 

M 0 =» k 0 . . L 0 

' 1 + s . , / s 5 * 

It is thus seen that the mutual coupling between the windings is not 

symmetric. It is also worth noting that the self inductances of the 

centre limb and of the outer limbs are different due to the assymmetry 

of the core. 
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, . APPENDIX 4 

A4.1 Series Impedance Matrix Per Unit Length 

The calculation of the series impedance matrix for the 

transmission line is quite complex^ due to the frequency dependence 

of the conducting paths.. The various components of this matrix, 
i 7/ calculated as described by Galloway et al , are detailed below. 
i 

z z + z + z 
c g e 

i 
(i) The self impedance of the conductors, Z . is a diagonal 

c 
matrix and is evaluated differently for low frequency (below 500 Hz) 

and high frequency ranges, due to the variation of current in the 

Conductor. ' 
i 

Por low range oi frequencies, the conductor self impedance' 
is given to a good approximation by .-\ ; 

/.• ' V 

Z = R d c + log (r/r ) 

where 
r = overall conductor radius 
rg m= mean geometric radius corresponding to stranding 

R ĉ=> resistance per unit length, to direct current = /̂ /nff r g 

I 
P c = resistivity of conductor metal 

r => radius of individual strand 
s i 

n = total number of conducting strands (steel strands neglected). 

TRANSMISSION LINE PARAMETERS 

The following; sections describe the. calculation of the 

Series impedance matrix Z and the Shunt admittance matrix Y , per 

unit length of an overhead transmission line. 
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For the higher range of frequencies, due to skin effect, 

the current is confined to the surface of outer layers of the conductor, 

and the corresponding formula for the self impedance is quite accurately 

given by 
' Z c o K/° m/rgTT (n Q + 2 ) 

where 1 

K = stranding factor to account for non-uniform field 
distribution on the circumference (K — 2.25 experimentally) 

1 x 

* = ( 0 w ^ p M r / / ° ) 2 

n = number of strands in outer layer o i J 

= relative permeability of conductor material. 

(ii) The impedance due to the electromagnetic coupling between 

conductors, Z ,is given by 

z* - ̂ ioee(])/d) 
where ; 

D.. = distance between conductor i and the image of conductor j , 

d.. => distance between two conductors i and j , i ̂  j , or 

= radius, of conductor, when i = j . 

(iii) The impedance1 due to the electromagnetic coupling of the 

conductors with the earjth, Z g, is calculated according to Carson's 

formula 50 hy the expression 
l 

The infinite series defined overleaf are terminated after a sufficient 

convergence has been reached. 
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where 

P .and Q = matrices calculated from series which are functions 
of two parameters r.. and 6.., 

such that 1 x 

r. . = (w u / / O p D. . 

and 0 = angle subtended at the i conductor by the images 
of the i^*1 and j**1 conductors. 

Note: Por different ranges of frequency, the matrices P and Q are 

obtained by different series7'. 

A4.2 Shunt Admittance fcatrix Per Unit Length 
1 

1 

The shunt admittance due to the capacitive coupling between 

the conductors and their images in a perfect earth is a function :of 
1 71 

the physical geometry of the conductors relative to the earth plane , 

and are given by 
Y = j w 2tf£/log (T)/d) 

where 
'th 

Y_^ = (i,j)( element of the shunt admittance matrix Y, 

C = permittivity of conductor 

). . 

1. . 
10 

" t i l 

j = distance between the i conductor and the image of j, 

d. . = distance between the i**1 and conductors, i ̂  j, or radius of conductor, for i = j. 

1 
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A4.3 Bundle Conductors ' 

When the bundle conductor is considered, as is usual for 

the high voltage lines, the corresponding radius for the calculation 

of the 'self terms, in the matrices of the above sections, will be 

the equivalent radius,of the bundle given by the geometric mean 

radius^. Also, the self-impedance calculation carried out for the 

single conductor, has its value divided by the number of conductors 

in the bundle to obtain the equivalent self impedance of .the phase. 
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APPENDIX 5 

CABLE PARAMETERS 

Unlike in the transmission line, the calculation of the 

parameters for the cable is more complicated due to the presence 

of the additional media such as' the conductor dielectric, sheath 
i 

and sheath dielectric. 

A5.1 Series Impedance Matrix Per Unit Length 
i 

For the cable, the exact expressions for the series impedance 

involve the Bessel functions and functions of the Bessel functions 
i 

However, simplified solutions are available which are applicable over 

a wide range of frequencies. The different components of the series 
i 

impedance matrix are described below. 
i 

(i) The internal' impedance, Z c, of the conductor is quite accurately 

given by the expression 
i 

i 

31 

' 1 
where 

/°1 = resistivity of inner conductor, 

m 
r.j = radius of inner conductor 

In particular, for very high frequency (w p.//°^» 1), the above formula 

reduces to the familiar skin effect formula ZQ = /°^ m/2 3tr^, and at 

very low frequency (or,for d.c.) at which w u//0^ < < 1, the above 

gives the expression for the d.c. resistance Z c = /°^/jtr^ . 
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(ii) The magnetic flux in the conductor dielectric gives rise 

to the conductor-sheath mutual impedance, Z , which is given "by the 
S C 

expression 

sc 2 ± 0 ° e ^ T 2 ' T 1 ' 

where r 2 = inner radius of sheath. 

(iii) The inner, surface sheath impedance, Z ., is approximately 
S i 

given by 

where 

Z . 
s i 

p2 m jo 
^ Coth(m(r3-r_).) - 2Jt r_(r ? + g_) 

i 
m » ( j w / i / O g ) " 5 

i 

/>2 = resistivity of sheath 

r, = outer radius of sheath 
2 i 

i 
(iv) Due to the current flow in the sheath, a voltage is induced 

in the sheath-earth path giving rise to the mutual imp.ed.ance between 
i 

inner and outer sheath surfaces. This impedance, Z m, is given by the 

expression i 
/°2 m 

2 = J — , Cosech(m(r, - r 0)) 
m ! ( r 2 + T y 3 2 

(v) The outer,surface sheath impedance, Z , is given by the 
I SO 

approximate expression 

/>2 m
 , , NN S*2 Z so 2 f r " Coth(m(r3-r2)) + ^ — ^ — _ } 

(vi) The flux in, the sheath dielectric causes a mutual impedance 

between the sheath and earth, Z , and is given by the formula 
- o se 

i 

http://imp.ed.ance


k - U 

where R = overall radius of cable, and radius of earth return path. 

(vii) The earth return path has an impedance, Z g, which may be 

represented by the following expression 

where 

Vjt° ( 6 '4905 - loge P + K q - j(i - K q)) 

f = frequency (Hz) 

p = q.d 

d = distance between cables 

K = 0.0013.245(b + c) 
b. =» depth of inducing cable (b is negative) 

c = depth of induced cable (c is negative) 

If the earth is taken as reference, the"series impedance per 

unit length of each cable is given by the matrix (with rows and columns 

indicated by c and s referring to the core and sheath quantities 

respectively) > 

where 
J11 

J12 

11 

12 

12 

J22 

Z + Z + Z . + Z + Z + Z - 2 Z c sc si so se e m 

Z + Z + Z - Z 
so i se e m 

J22 Z . +\ Z + Z so se e 
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Due to the magnetic flux, there is a substantial mutual impedance 

between adjacent cables, which is highly dependent on frequency. 

These may be calculated in a way similar1 to that described in the 

foregoing sections. By combining the impedance matrices for the 

individual cables with the mutual impedance matrices, the complete 

impedance matrix per unit length may be obtained. 

A5.2 Shunt Admittance!Matrix Per Unit Length--

Evaluation of the shunt admittance matrix is. quite straight 

forward. The three conducting paths (core, sheath and earth) form 

equipotential surfaces'. If the dielectric loss is neglected, then 
i 

the conductor-sheath shunt admittance, Y , arid the sheath-earth shunt 
' cs' 

admittance, Y , are readily given by the expressions 31 se 
' j w 2K€ 

Y 1 
cs ~ log g(r 2/r 1) 

j w 2 ^ 2 

se " log (R/r,) 

where 
C = permittivity of conductor dielectric, 

= permittivity of sheath .dielectric. 

i 

If the earth1 is taken as reference, the shunt admittance 
i 

matrix per unit length of each cable is given by 

c 
Y -

s 

Y - Y cs cs 

Y Y +Y cs cs se 



A-46 

As the earth return path may be considered as an electrostatic 

screen, there is no mutual admittance between adjacent cables. Thus 

for the three phase cable, the block matrix derived above is compounded 

to form a diagonal matrix. 

A5»3 Earth-Continuity Cable 
i 

The earth continuity conductor, if present, consists of an 

inner conductor, conductor dielectric and sheath. The impedancce 

of this conductor consists of the internal conductor impedance, the 

impedance due to,the jmagnetic flux, and that due to the earth return 

path. 

The series Jimpedance and the shunt admittance components 

have forms similar to those described in the foregoing sections and 
1 

are calculated as such. 
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APPENDIX 6 

ELIMINATION 0? EARTH CONDUCTORS AlID SHEATHS IN 

TRANSMISSION LINES AND CABLES FROM MATRIX 

In general, the series impedance and shunt admittance 

matrices calculated for transmission lines and cables (Appendices 

4 & 5 ) will include elements corresponding to earth conductors, 

sheaths etc0, in addition to those corresponding to the phase 

conductors. In the case of earth conductors,as well as sheaths 

in cross-bonded cables, regular earthing is effected at points along 
i 

i their lengths. These conductors would thus have potentials near 
zero, especially,at the transmission towers or points of earthing. 

i 

It is possible to have standing voltage waveforms along their 

lengths, but since switching surges are of interest, these are 

thought to be extremely small. An accurate method of reduction 

of the matrices so as to contain modified terms corresponding only ' 

to the phase conductors would be to divide the line or cable into 

sections corresponding to tower spans or bonding sections and 

substitute the terminal conditions at these points. In the case of 

cross-bonded cables, non-linear cable covering protection units 

would need to be represented at these points. However, this is 

considered to beicomputationally extravagant. Another possibility 

is to consider" zero voltage or suitable earthing resistance only 

at the two ends 6 f the line and apply these boundary conditions 

to the two port admittance matrix equations, derived including the 

additional elements for the earth conductors. 
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suffixes s, r refer to the sending and receiving ends respectively 
suffixes p, e refer to the phase conductors and earth conductors 

However this is not much more accurate than assuming zero 

voltage throughout the length of the conductor. Thus the reduction 

of the impedance and admittance matrices to eliminate these earth 
i conductors is based on this latter assumption. 

. 1 

In the case of admittance matrices, this assumption is 
i 

easily accomodated by removing the rows and columns corresponding to 

earth conductors and/or sheaths, giving a reduced equivalent admittance 
i 

matrix. However, in the case of the impedance matrix, the elimination 

of the earth-wire and/or sheaths from the matrix equations .without 

disturbing their shielding properties is done by first inverting the 

impedance matrix and then proceeding as an admittance matrix. Finally, 
i 

the reduced matrix isjre-inverted to provide the corrected impedance 

matrix v/hich allows for the effects of sheaths and/or earth wires. In 

fact, it will be shown that this double inversion process can be '' 
i 

dispensed with, and in its place the original matrix may be modified 

suitably to give the same desired resuite 

For example, consider-' an (m + n) conductor system, where 
n conductors have zero voltage along their length. The impedance 

i 
matrix may be written'as 
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Z , -

where 
Z^ = self-impedance matrix of the non-zero voltage conductors 

order of matrix (m x m). 
ZB' ZC = ^ ^ i - 0 6 5 °f mutual impedance between the zero-voltage 

and the non-zero voltage conductors. Order (mxn) & (nxm). 

Z D = self;impedance matrix of the zero-voltage conductors 
order of matrix (n x n). 

i 
We are infact interested in only the (m x m) submatrix of 

i 

the inverse of the above impedance matrix, as this then inverted gives 

the desired result. Well known matrix theory could, "be used to show 
t 

that the first ( m x m ) submatrix of the inverse is given by 

—1 —1 
(ZA ~ ZB*ZI) mZC* 

and, thus the required reduced impedance matrix is given by 
i 

—1 
( z A - z_.z_ , z c ) 

This result suggests that instead of computing two inversion processes, 

a single inversion of a much smaller matrix Z^ and two matrix 

multiplications is alljthat is now required. 
i 

The result derived above has been used extensively in the 

computer programs of the present study, where zero voltages (and sometimes 

even zero currents, with corresponding admittance matrices) are involved. 

For this technique to be used, all the impedances corresponding to zero 
i 

voltages (or admittances corresponding to zero currents) must be placed at 

the extreme rows and columns of the original matrix. 
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APPENDIX 7 

MULTICONDUCTOR WAVE EQUATIONS 

The theory of modal analysis proposed by Wedepohl^ provides 

a completely generalised method of solving the travelling wave 

phenomena on multiconductor lines. In this method, the problem is 

reduced to the simple case of independent differential equations by a 

linear transformationi 

i 

The voltages and currents at any point x alone a homogeneous 

multiconductor transmission line are inter-related by 
i 

cFx" = - Z I (A7.1) 
I 
I 

= - Y V (A7.2J 

where j 

V, I = column vectors of n elements of voltage- and current 

Z, Y = system series impedance and shunt admittance matrices 

n = number of conductors in multiconductor system. 
i 
i 

Differentiating the equations A7«1 and A 7*2 with respect to x 

and subsequent eliminations yield the second order differential equations 
| = Z Y . V = P . V (A7.3) 

dx 1 

^ | - Y Z . I = P ^ V (A7.4) 
dx 2 

where P » Z Y, and it can be shown that P* = Y Z. 
i 

The differential eq\iations A7.3 and A7«4 have solutions of the 
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form given below 
x. i 

V = exp(- P* x). V_ + exp( P^ x). V r 

I = Y o [exp(-P^x). V_ - exp(P^x). V r J 

(A7.5) 

(A7.6) 

where -1 i -i-Y = Z P 2 = Y P g 

o 

V\ ,Vr = constants which can be physically interpreted as the 
incident and reflected waves at the terminals. 

The relationship between the sending and receiving ends of a two-port 

network can be derived from equations A7.5 and A7.6to give the well 

known admittance equation 

•R - B 

- B 

A V. R 
(A7.7) 

.where 
A = 

B = 

1 = 

I S ' XR = 

V VR -

Y q Coth (P"2~ 1) 

Y Cosech (P^ 1) o ' 
length of line considered 

sending end and receiving end currents 

sending end and receiving end voltages 

Since P is non-diagonal, each of these equations represent 

n simultaneous differential equations and a direct solution of them is 

not self evident. This difficulty is overcome by making use of linear 

transform techniques.! 

If Q is the modal matrix of matrix P, and k is the eigen 
i 

value matrix, then 

Q k Q" -1 
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The propagation matrix Y is given by the expression 

and the characteristic admittance matrix Y by 
o J 

_X 
Y = Y P 2 

o 
-1 -1 

= Y Q Y Q 

On this basis, using properties of eigenvalues and eigenvectors, the 

two-port network parameters are given by the equation 

A = Y q Coth(P^l) = Y Q Y . CothYl.Q 

B = Y q Cosech(P^l) = Y Q "jf"1 • CosechYl. Q~1 

The matrix functions Coth Y 1 and CosechYl are easily formed as 

they are diagonal matrices of elements Coth*tf\l and Cosech Tf\l 

respectively. Matrix multiplication then gives the two-port parameters.. 

For both transmission lines as well as for cables, with assumptions 

of symmetry and zero voltage on earth conductors and sheaths the 

eigen-values and eigenvectors may be obtained in a straight forward 

manner, due to the properties the the symmetrical matrices. The*, 

series impedance and shunt admittance matrices are obtained as detailed 

in the former Appendices for the transmission line and cable. 
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APPENDIX 8 

REDUCTION OF A THREE-PHASE TWO-PORT NETWORK WITH KNOWN TERMINAL MATRIX 

TO OBTAIN EQUIVALENT ADMITTANCE MATRIX SEEN FROM INPUT END 

In the method of analysis used in the present problem, it 

is quite often necessary to obtain the equivalent admittance matrix 

seen from the input end. The following section describes how this 

reduction is done. 

•1 u 
| General 

two - port 
i 
i network \ 

Terminal 

Equipment 

end A I end B 

i Figure A 8.1 

Figure A8.1j shows a general two-port network with admittance 

matrix (Y) and terminated by an admittance of (,Y_) . For the two-port 
(6x6) ' ! (3x5) 

network it is possible to write 

5 

v1 
V 2 
V 3 
V 4 

v 5 

• 

(A8.1) 

i 
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and for the terminal equipment it may be written that 

combining equations A8.1 and A8.2 gives 

" 1 " 
lA 

S 
h 

A8.1 and 
f ^ 

h 
| 

h 
S I 

0 

0 
I 
0 

1V6J 

(A8.2) 

AB 

BA Y +Y I B T 

v 1 ' 
V 2 

V 4 
V 5 

. V 

(A8.3) 

where ^Y^J,'^^j , [^gAj • A N C* [ YBB] A R E ^ E ^ x 3 ) submatrices of the 
two-port network admittance matrix [Y j . 

In compact|notation, denoting input quantities by suffix A 
i 

and output quantities with suffix B, we may write 

| 

6 

where [Y__] - [Y__ ) : + 

From equationA8.4, V-g may be 
i 
0 

or - -

AB ~A 

v,, ~B 
(A8.4) 

_B 

( YBA) IL + ( YBB) J B 
[ YBB] " 1 [ YBA] I A 

Thus 1^ may be expressed in terms of as 
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( V U A - ( Y A J ] ( * B B ] _ 1 KA J ZA 

[( YAA) - (YABJ(YBB]"1 [ YBA]) IA 

In compact notation, this may be rewritten as 

h " ( Y A ) IA (AS.5) 

where the equivalent admittance matrix seen from the input terminals 

is given by 

( Y A ] " (YAA ] ~ t Y A B ] [ YBB + Y T 1 " 1 M (*> • 6) 
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APPENDIX 9 

PIECEWISE FOURIER TRANSFORM OF FUNCTIONS AT REGULAR TIME INTERVALS 

When sequential switching operations are investigated, the 

analysis for the closure of the second and third poles require the 

transform of certain voltages existing in the system prior to closure. 

These voltages are known at discrete time intervals, so that the 

transform needs to be obtained numerically. The following section^ 

describes how this is obtained for the waveform shown in figure A9.. 1. 

The transform of the piecewise function is obtained as the 

sum of the transforms of the (M - N) strips of width T . Consider a 

typical strip as shown in figure A9.2. If ffc 1 and are the values 

of the function at ' k-1 T Q and k T Q respectively, then the Fourier 

transform of the function bounded by k-1 T , f. .,, f, and k T can 
o' K-1 K o 

be found by decomposing the strip into a series of step and ramp 

functions whose transforms are readily obtained. A possible reduction 

for this chosen strip is also shown in figure A9.2, with two step and 

two ramp functions. The magnitudes of the steps are f̂ . ̂  and -f^ ; 

and the slopes of the ramp functions are A f jc/TQ and " A f ^ / T ^ 

The transform due to all the steps may be found by adding 

up the individual contributions. This is given by 

f
8

( w ) , " [fN e x p ( - J w N T
c ) - f M e xP(~J w M v] 

Similarly, the Fourier transform of all the ramp functions 

can be found, and 1 is given by 
1 M 

fr(w) - - 2 Y. (f
k~ f k - 1 ) - [ e x p ( ~ J w ( k ~ l ) T o V e x p ( " J w k 

W * To k =N 
The complete transform of the piecewise function f(t) is now given by 

f(w) - fs(w) + fr(w) 
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Figure AQ.1 Waveform whose transform is required 

k-1 A f k = f k " fk-1 

k-1T k T o o 

k-1T 

k-1'T 
kT 

kT o 

Lk-1 

- f, 

Typical Strip 

Positive Step 1 

Positive Ramp 1 

Negative Step 2 

Negative Ramp 2 

Figure A9.2 Synthesis of a typical stripv^-Skvevebrm""* 


