SCALABLE IN-MEMORY DATA MANAGEMENT MODEL
FOR ENTERPRISE APPLICATIONS

Anupama Piyumali Pathirage

(138223D)

Department of Computer Science and Engineering

University of Moratuwa
Sri Lanka

March 2015

SCALABLE IN-MEMORY DATA MANAGEMENT MODEL
FOR ENTERPRISE APPLICATIONS

Anupama Piyumali Pathirage

(138223D)

Thesis subm din f Science in
Computer Science.

Department of Computer Science and Engineering

University of Moratuwa
Sri Lanka

March 2015

Scalable In-Memory Data Management Model for Enterprise Applications

DECLARATION

| declare that this is my own work and this dissertation does not incorporate without
acknowledgement any material previously submitted for degree or Diploma in any other
University or institute of higher learning and to the best of my knowledge and belief it does not
contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, | hereby grant to University of Moratuwa the non-exclusive right to reproduce and
distribute my dissertation, in whole or in part in print, electronic or other medium. | retain the

right to use this content in whole or part in future works (such as articles or books).

Signature:oooeiiiiiiiiiiii Date:....cooiiiiii

Name: Anupama Piyumali Pathirage

é;m

| certify that the dec}gration aboVe”'by*the' candidate 1S trie’ 10" the best of my knowledge

and that this report i'é;éCCeptable for evaluation for the Post Graduate Project.

Signature: ..o, Date:....cooiiiiiii

Name: Dr. Amal Shehan Perera

Scalable In-Memory Data Management Model for Enterprise Applications

ABSTRACT

Project Title: Scalable In-Memory Data Management Model for Enterprise Applications
Authors: Pathirage A.P
Supervisor/s: Dr.Shehan Perera (Supervisor)

Dr.Malaka Walpola (Coordinator)

With the rapid advances in technology and data volume, having efficient and scalable data
management system is essential for most of the enterprise applications. So In-Memory data
management systems are becoming the highly used data management solution in most of the
time critical enterprise solutions. Although In Memory Data Management Systems are widely
used, still they are having problems such as scalability issues, concurrency problems etc. This
project is an effort that aims to propose a scalable enterprise solution for in memory data

management, identifying the bottlenecks in the current In-Memory Data management systems.

Although there are @?afous nenchmarks @re avaitable for Disk-fResident Databases, lack of a
fair metric for com'pé'ring thevparformance «@f. different in-memory database systems has
become a probleimn when selecting the appropriate data management sysiem for enterprise
applications. Currently there are various in-memory databases are available and when using
them with the enterprise applications, developers have to put lot of effort as there is no standard

APl/Interfaces available for them.

This research project addresses these two problems by providing an unbiased performance
benchmark for various in-memory databases and developing a data connector framework to
access different data sources such as in-memory databases, disk resident databases, flat file

data bases and in-memory data caches.

This report provides details about the problem background, existing system implementations

and current research areas in this domain and how I’m going to achieve the objective.

Keywords: In-Memory Database, In-Memory Data Grid, Disk Resident Database, Data
Access Layer, Database Benchmarking

Scalable In-Memory Data Management Model for Enterprise Applications

ACKNOWLEDGEMENT

I would like to thank Dr. Shehan Perera, my supervisor, for his invaluable support, assistance
and advices given throughout this project. His expertise and continuous guidance enabled me
to complete my work successfully and his help in moderating the content was invaluable. |
would also like to thank Dr. Malaka Walpola, the project co-ordinator, for his continuous
support and feedback on the structure of the project which motivates me to do my best.

Further 1 would like to thank all my colleagues for their help on finding relevant research
materials, sharing knowledge and experience and for their encouragement. My sincere
appreciation goes to my husband and parents for the continuous support and motivation given
to me to make this thesis a success.

Finally I would like to thank all my colleagues at DirectFN, who helped me to enhance my

knowledge and for the support given to me to manage my MSc research work.

-
Sy 1

Scalable In-Memory Data Management Model for Enterprise Applications

TABLE OF CONTENT

D A AT ON e |
A DS T ACT e I
ACKNOWIEAGEMENT ... e i
Table Of CONEENt. . e v
TablE Of FIgUI S ot e Vi
Table Of TabDleS . .o VIl
List Of ADDIevationS ... VIl
L INEFOTUCTION et 2
1.1 Problem BaCKgroUNnd ..o 2
1.2 In-Memory Data Management SYStEMSciuiiiiiiiii e 4
1.2.1 In-Memory Databases (IMDB)cccociiiiiiiiiiie et 5
122 In-Memory Data Grid (IMDG)cccoeiiiiiiiiisie et 6

1.3 Limitations of EXiSting SOIUTIONS ..o 8
1.4 MOTIVETTON Lo 8
1.5 Objectiveggd, ... inuversity of Moratuwa, .St Lanka.......................... 9
2. Literature Rey d .. 10
2.1 Disk Resitent Databases vE MBS -1 10
2.2 In-Memory Database ArCNITECIUIE ..u.iuiuie e e e eaeaas 11
2.2.1 Impact of Memory Residency on IMDB functionalitycocooeiiiinin. 14
2.3 Application of Main Memory Databasesccccoviiiiiiiiiiii e, 18
2.3.1 IMDB for Embedded SYSIEMS ..o 18
2.3.2 IMDB for Enterprise ApPPHCALIONS.........cccviiririirieieieiee e 19

2.4 Performance Benchmarks for In-Memory Database...............coooiiiiiiiinnnnn, 21
2.4.1 WISCONSIN BENCNMAIKciviiiiiiiiiisiissi e 21
2.4.2 TimesTen Performance Throughput Benchmark (TPTBM)c.cccovveviiviiciecieieenan 23
2.43 Telecom Application Transaction Processing Benchmark(TATP)ccccovvvireniienns 24
2.4.4 Transaction Processing Performance Council -C Benchmark(TPCC).........cccccccvveenenens 26

2.5 Cloud based In-Memory Databases.........ccooviiiiiiii 27
3. Benchmarking Methodology ..o 29
3.1 Analysis of Comparison and Evaluation Scenariosocoeeviiiiiiiinnnnnnn. 29
311 Overview Of Selected IIMDB.........c.coiiiiiiieeeee s 30
3.1.2 Overview Of Selected DRDBccooiiiiiicccece s 34
3.1.3 Overview of In-Memory Data CaChesccccooiiiiiiiiii s 35

Scalable In-Memory Data Management Model for Enterprise Applications

3.1.4 Overview Of Flat File Database...........ccccooiririeriieieieese s 36
3.1.5 Feature Comparison of Selected Database...........cccccvevveiiiiieiiiieie e 37
3.2 Analysis of Benchmark Criteriacocoviiiiiiii e 37
3.21 BenChmark DESIGNcveiiiiie ettt ettt naeene 39
3.2.1.1 System CONFIQUIALIONcc.eoveieieieiieiieieetestet ettt 39
32,12 TESE DALeetieeeeiieieee e s 39
3.2.1.3 Benchmark Workload and Experimental Design.........c.cccevererereneenieieneneneneneens 40
322 BenChmark EXECULIONc.cuiriiiiiiieisiei st 41
3.2.3 Benchmark ANAIYSISocviiiiiiie sttt 42
3.3 RESUIES ot 42
3.3.1 Results for INSErt OPErationccccveveiiiie it ene 42
3.3.2 Results TOr SElECt OPErAtiON.ccuiiiiriiiirieiierieie et 45
3.3.3 Results for Update OPeration.........ccveviiiiiieieiieie ettt st sre e 48
3.3.4 Results Tor Delete OPerationccuiiiieiirereieieiee s 50
Framework Implementation ..ot 53
4.1 Problem Background ... 53
4.2 Design of the FrameworKoyt ee e e e 54
4.3 Implemenfe‘t}?n B S S S U 56
43.1 Implemgf@tion of Elat FilabasediDB. jg ..o, 56
432 Implemrreﬁtétion OF IN-Memory Cache........cocv it 58
4.3.3 Implementation of the Framework for Data.............ccccviiirinineneeee e 61
4.4 Performance Analysis of Frameworkcoooiiiiiiiiiiii e 65
Conclusion And FUTUIe WOTK ... 67
5.1 CONCIUSTON .ot 67
5.2 FUTUIE WOTK o 69
R BN LS .ttt 70

Scalable In-Memory Data Management Model for Enterprise Applications

TABLE OF FIGURES

Figure 1 : Moore's Law fOr DISK SPEEU........ccveiuiiieiiee ettt 3
Figure 2 : In Memory Data Management SYSTEIMcooviriiiriniiieee e 5
Figure 3 1 IIMDG AFCHITECTUIE ... 7
Figure 4 : Disk Resident Databases VS. IMDS..........c.cooiiiiiiiiiiiieeee e 11
FIgure 5 : IIMDB ATCNITECTUE.........oiiiiieiiiiiei e 13
Figure 6 : Usage OF IIMDBc.oooiiiiiiiiieee e 18
Figure 7 : Enterprise Performance In Memory CyCle..........cccoveiviiiiieie e 20
Figure 8 : Times Ten Benchmark Throughput update (100% Updates).........cccccevvriverivenenne. 24
Figure 9 : TATP benchmark on transaction processing timeccccccevveveiieeieeiesieeseeseeenns 25
Figure 10 : SQLIte ArCRITECIUIEc.veieieieeee ettt 30
Figure 11 : MemSQL AICRITECTURooviiiiiiiiieieee e 33
Figure 12 : EIEmMENtS OF OFaCIEocviiiiiiiieieieee e 34
Figure 13 : Database System Benchmark Methodology...........cccceveiiiieninininisieeeee 38
Figure 14: Example INSErt StAtemMENT.........cooiiiiiiieiiee e 42
Figure 15 : Insert Operation -Run Time COMPAriSON..........ccecveieivierieieee e 43
Figure 16 : Insert Operation - Transactions per Second Comparison...........ccccevvevvesveesirernenne 43
Figure 17 : Insert Operation - Concurrent Connections VS TPScccccveveieece e 44
Figure 18 : Example Select Statement 45
Figure 19 : Select Opgration - Run Time COMARBIISON..c.ogrussresessibarceeseeseessessessesseesses 46
Figure 20 : Select Q@ek@tion — Transactions Per Second COMPAriSONcccueernerreeseeeene 46
Figure 21: Select Op_ergtion - Concurrent ConMmeCtioNS VS TP S . e 47
Figure 22 : Select WAtIoins & TPS COMPatisot e, 47
Figure 23 : Example Update Salemenl ittt 48
Figure 24 : Update Operation - Run Time COMPAriSONcccccveveiieiieeieseeseesieseesreesne e 48
Figure 25 : Update Operation - Transactions Per Second Comparison...........c.ccceeeeevevvvenenne. 49
Figure 26 : Update Operation - Concurrent Connections Vs TPS..........cccooevieve e sec e 49
Figure 27 : Example Delete OPerationccccveiiiiiiicie et 50
Figure 28: Delete Operation -Run Time COMPATiSON.........cccuririririerieie e siesieeeeee e 50
Figure 29 : Delete Operation - Transactions Per Second COmpariSonccooevvrvreeieerienne. 51
Figure 30 : Delete Operation - Concurrent Connections VS TPS..........ccoooviiiiinininicieiee, 51
Figure 31 : Proposed Architecture for Database APl ... 55
Figure 32: Database organization in Flat File DBccccoeiiiiiiie e 56
Figure 33 : Query Execution Method of Flat File DBc.ccoveviiiiiieieeeceeceee e 57
Figure 34 : Flat File DB - Table Data...........cccocieiiiiiiecce e 58
Figure 35 : Example usage of IN-Memory Cache..........cccooiieiiiiiiiiic e 59
Figure 36: Class Diagram of In-Memory Cache..........ccoocoiiiiiiiiiiiiic e 60
Figure 37 : Class diagram of Data Connection Frameworkccccooeverenenienencsineenienen 62
Figure 38 : ExecuteQuery Method for SQLItE DB.........cccccoiiiiiiiiicce e 64
Figure 39 : Example usage Of FrameWOrkK ..o 64
Figure 40 : Insert Operation Performance of Framework - With Oracle............ccccoeeveennne. 65
Figure 41 : Select Operation Performance of Framework - With SQLitecccccceeveenne, 66
Figure 42 : Select Operation Performance of Frameworkccccoceivieviiiiiic e, 66

Vi

file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046751
file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046755
file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046760
file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046764

Scalable In-Memory Data Management Model for Enterprise Applications

TABLE OF TABLES

Table 1 : CSQL Wisconsin Benchmark ReSUIScccoeviiiiiiiiiiiecccce e 23
Table 2 : Feature Comparison of Selected Databases............ccoveveiieiieieiie i 37
Table 3 : Benchmark System Configurationscccccvoveiieiicieiiese e 39
Table 4 : Database Table Data........c.ccceuiiiriieiiiie et neeas 40
Table 5 : PerformanCe IMETIICScuiiieieiie ettt sre e neenneas 41
Table 6 : Benchmark Tool Implementation Details............c.ccooviiiiiiiiiineee, 41

vii

Scalable In-Memory Data Management Model for Enterprise Applications

LIST OF ABBREVATIONS

Abbreviation Description

ACID Atomicity, Consistency, Isolation, Durability
ANSI American National Standards Institute
API Application Programming Interface
CDC Change Data Capture

CPU Central Processing Unit

CRUD Create, Read, Update, and Delete
Csv Comma Separated Values

DAL Data Access Layer

DBA Database Administrator

DML Data Manipulation Language

DRDB Disk Resident Datahase

IMDB e Invieinbny Datapiasé

IMDG éi% In-Memory Data Grid

IMDS) In-Memory Data Management System
IPC Inter Process Communication

JIT Just In Time

JDBC Java Database Connectivity

ODBC Open Database Connectivity

MMDB Main Memory Database

MVCC Multi Version Concurrency Control
RAM Random Access Memory

RDBMS Relational Database Management System
RTOS Real Time Operating System

SQL Structured Query Language

STL Standard Template Library

TPS Transactions per Second

viii

Scalable In-Memory Data Management Model for Enterprise Applications

1. INTRODUCTION

This chapter is intended to provide the introduction to the project with the details of the problem
background and the importance of doing this project. This chapter mainly addresses the
drawbacks of traditional disk based databases, necessity of having an In Memory Data
Management System, including its definition, overview and limitations. This chapter will
further discuss about motivation factors which have affected for doing this research project and

the objectives of this research project.
1.1 Problem Background

With the development of information technology systems and many other scientific disciplines,
large data sets are very common nowadays. In domains such as weather/climate forecasting,
financial and stock trading, telecommunication, airline schedulers etc., large volume of data is
generated every day and these data needs to be accessed and analysed by sophisticated
techniques, so that enterprises can serve their customers quickly and effectively.

Magnetic disks are the primdryrmeans of stofing onfine informatiomofimost software systems
for the past few dga%es. Duriag!that Cperiodsmagnetic! disk ltechnology has undergone a
dramatic improveméﬁi n terms of'thetr-capacity-ahd storage mechanism such as file systems,
database systems etc. But the performance of disk based systems do not improve with the same
pace and most of the large scale enterprises are finding it problematic to scale disk based

systems to match the current business requirements.

According to most of the measures, computing power doubles every couple of years. Back in
the mid-1960’s, Gordon Moore, in his research paper “Cramming More Components into
Integrated Circuits” introduced the idea of 'Moore's Law' which postulated that CPU power
will get four times faster every three years [1]. While Moore’s law is correct for processor
speed and cost, later people have over-generalized this principle as it applies to disks and RAM
as well. But performance of many of the other components in the overall computer
infrastructure has not kept pace with the improvements in processing speeds. Performance
improvements in storage systems have noticeably lagged behind. The rotational speed of the
disk does not improve with the same pace and it is million times longer than raw RAM seek
time. Moore's Law is true for RAM and disk costs as prices are continually falling for them,
but the speed growth of disk does not follow the Moore's Law as shown in Figure 1 [2].

Scalable In-Memory Data Management Model for Enterprise Applications

So the combination of large dataset size, geographic distribution of users and resources and
computationally intensive analysis result in complex performance demands which are not

satisfied by any of the existing disk based data management infrastructures.

Faster
Hardware
Speed
Real disk speed Improvement
Slower
1870 1980 19490 2000
Time

Figure 1 : Moore's Law for Disk Speed

With the rapid imp@’ment in.hardware technologiesraver. the. past.few decades, multicore
architectures and thé@\kailability of largeramount lof main memory at low costs have made a
new era in data management techniques. Researchers have come up with the idea of in-memory
data management and computing where primary locus of online data has shifted from disk to
random access memory, with disk relegated to a backup/archival role. By moving data into
memory and distributing it across multiple servers, this approach aims for easier access to data,
improved scalability and better data analysis.

With the rapid growth in data volume and the requirement to access these data in real time, In-
Memory Data Management Systems have become more popular. Following are some of the

factors which have mainly contributed to the growth of In- Memory Data Management systems

[3].

e Large volume of Data.
According to the recent research and surveys the amount of data created and replicated
is increasing exponentially and 90% of today’s data were created in the last 2-3 years.

With this data explosion, enterprises are having the problem of how to manage, analyse

Scalable In-Memory Data Management Model for Enterprise Applications

and protect these vast quantities of data. With the increase of data volume, time taken

for access and analysis also has increased.

e Requirement for accessing big data in real time
As organizations have exponentially increased the volume, velocity and variability of
type of data they collect, process and manage, traditional database designs are not
adequate. This explosion of data presents many challenges related to scalability, timely

access for critical decisions and increased cost due to increased complexity.

e Requirement for faster analysis.
The reason that organizations are collecting and storing more data than ever before is
that their businesses depend on it and faster analysis and response are essential to

survive in competitive business environment.

e Distributed data.
In some of the enterprise applications, data are geographically distributed. To have
easier access to these data, improved scalability and better data analysis, data needs to

move in and may nee dist ss multipl rs.

i
e Application performance andiseale
Application éfei,zp nent efforts must eonsic are in use to best
determine their uitimaie performance. For exampie, data storage systems and data
access may not be able to keep up with the increasingly higher volume of transactions
in an organization’s mission-critical applications and this will lead to an adverse effect

on the application’s performance.
1.2 In-Memory Data Management Systems

To address the above mentioned problems, In-memory data management systems (IMDS)
concept was introduced in the late twentieth century. An in-memory database system is a
database management system that stores data entirely in the main memory. This contrasts to
traditional disk based database systems, which are designed for data storage on persistent
media. Because working with data in memory is much faster than writing to and reading from
a file system, IMDSs can perform applications’ data management functions in an order of
magnitude. Since their design is typically simpler than that of on-disk databases, IMDSs can
also impose significantly lower memory and CPU requirements. So In memory data

management systems can achieve significant improvements in performance, processing time

Scalable In-Memory Data Management Model for Enterprise Applications

and throughput rates over conventional database systems by eliminating the need for 1/O to
perform database applications. Since the price of random access memory is dropping and a
large number of real-time applications are emerging, MMDB has become a hot research topic

in database management.

As semiconductor memory becomes cheaper and chip density increases, it becomes feasible to
store larger databases in memory. Since computers’ main memory has different properties than
the magnetic disks, design and the performance of Memory resident data management systems
are different from disk resident data management systems. Memory resident database systems
store their data in main physical memory and provide very high speed access [4]. How the in-

memory data management systems are used in applications are shown in Figure 2.

@ = - —~\ GHB
b o

Clients

ApplicationTiier lo-memary.data Database
management system

v?_\'

Figure 2 : In Memory Data Management System

The existing In-memory data management systems can be broadly categorized in to two areas.

¢ In-Memory Databases (IMDB) — Also known as Main Memory Database System
(MMDB) or Memory Resident Database. IMDBs store their data in the main physical

memory and provide very high speed access.

¢ In-Memory Data Grid (IMDG) — IMDGs are off the shelf software products and its
data model is distributed across many servers in a single location or multiple locations.
All data is stored in the RAM of the server.

1.2.1 In-Memory Databases (IMDB)

In-memory databases (IMDB) can be used with different types of applications and they are
most commonly used in applications that demand very fast data access, storage and
manipulation, and in systems that don’t typically have a disk but required to manage

appreciable quantities of data.

Scalable In-Memory Data Management Model for Enterprise Applications

In memory database systems can be used with both embedded and non-embedded systems.
IMDSs running on real-time operating systems (RTOSs) provide the responsiveness needed in
applications which require different functionalities such as IP network routing, telecom
switching, and industrial control. Since most embedded systems are highly resource-
constrained, the small memory and CPU footprint of In-memory databases make them ideal

for these systems.

Non-embedded enterprise applications which require exceptional performance are also an
important growth area for in-memory database systems. For example, algorithmic trading and
other applications for financial markets use IMDSs to provide instant manipulation of data in
order to identify and leverage market opportunities. Some multi-user Web applications such as
e-commerce and social networking sites use in-memory databases to cache portions of their
back end disk based database systems. These large enterprise applications sometimes require
very large in-memory data stores. So scalability is an important aspect for in-memory database

systems and still it is under research although various solutions are already present.

An in-memory 0 : 1S a client/server
database systen ?&.L \t/server database systems are “inherently multi-user and can be
accessed by mul 'sie{iger' 5. .The embedded | atal generally single
user, but it can also be database can be

created in shared memory, with the database system providing a mechanism to control
concurrent access. Also, embedded databases can provide a set of interfaces that allow
processes to execute on network nodes remote from the database node and to read from and
write to the database. Also database replication can be used to copy the in-memory database to
the nodes where processes are located, so that network traffic and latency can be eliminated

[5].
1.2.2 In-Memory Data Grid (IMDG)

An In-Memory Data Grid (IMDG) is a distributed non-relational data or object store. It can be
distributed to span more than one server. IMDGs usually support linear scaling to support high
loads, data partitioning, redundancy, and automatic data recovery in case of failures. Most
IMDGs also support multimode topologies that span WANs. The IMDG is similar to MMDB
in that it stores data in the main memory, but it has a totally different architecture. The features

of IMDG can be summarized as follows [6].

Scalable In-Memory Data Management Model for Enterprise Applications

e Data is distributed and stored in multiple servers.
e Each server operates in the active mode.
e A data model is usually object-oriented (serialized) and non-relational.

e According to the necessity, you often need to add or reduce servers.

IMDG overcomes the limit of capacity by ensuring horizontal scalability using a distributed
architecture, and resolves the issue of reliability through a replication system. As shown in
figure 3, an application server has a client library provided by IMDG and it accesses IMDG by
using this library. Many IMDG products provide the feature of synchronizing data to RDBMS.
However establishing a separate permanent storage system such as RDBMS is not essentially

required.

Figure 3 : IMDG Architecture

In general, IMDB enables objects to be stored through serialization. Some products provide the
feature of storing objects that implement serializable interface, while some IMDGs provide an

independent serialization method. The features of IMDG can be summarized as follows.

e Enhanced performance because data can be written to and read from memory much
faster than it is possible with a hard disk.

e The data grid can be easily scaled and upgrades can be easily implemented.

e A keyl/value data structure rather than a relational structure provides flexibility for
application developers.

e The technical advantages provide business benefits in the form of faster decision

making, greater productivity and improved customer service.

Scalable In-Memory Data Management Model for Enterprise Applications

1.3 Limitations of Existing Solutions

Although existing In-Memory Data Management Systems provide a better performance and
scalability over traditional database systems, they have some limitations and still researches

are being carried on over these limitations.

e Lack of standard interface/standards and lack of monitoring and visualizing data nodes
has become a problem. Although a wide range of In-Memory Data Management
solutions are available, there are no unified interfaces or libraries for them to easily use
with enterprise applications. Different solutions are implemented with different APIs

and using them with applications makes them hard to interoperate.

e Much of database system research and development is centred on innovation in system
architectures, algorithms, and paradigms that deliver significant performance
advantages. Lack of a fair metric for comparing the performance of different systems
has become a problem when selecting the appropriate data management system for

enterprise applications.

e Although In=emory Datd ianagémentcsysteriissacwidély discussed topic over the
past few decades, theystill have'nottakeén the full advantages of cloud and virtualization

technologies | 7].

e None of the IMDGs today offer "Change Data Capture (CDC)" capabilities. That is if
the backend enterprise repository is updated from the other sources. These events
should propagate to the IMDG. But users have to use 3rd party products or combination

of triggers and messaging to accomplish this [8].

e Lack of Global Data grid - Current enterprises demanding truly global applications
where users in different parts of the world are using the same app and updating the same
data set all in real-time. Because IMDGs are distributed by design, it makes them an

excellent starting point for building a global data grid.

1.4 Motivation

As detailed above, there are several advantages of using In-Memory Databases in Enterprise
applications instead of using traditional databases or In-Memory Data structures. But in today’s

world, still most of the enterprise applications are based on either traditional disk oriented

Scalable In-Memory Data Management Model for Enterprise Applications

databases or In-memory data structures. Although In-Memory data management systems have
been studied and developed over the past few decades, lack of performance evaluation or
comparison of them is one of the problems that enterprises face today. When selecting data
management methodologies such performance comparison details on In-memory databases,
traditional databases and in-memory data structures are highly valuable. If such performance
evaluation details are available it will be helpful for the researchers for their future studies and

also for the enterprises who are willing to use them for their applications.

Although a wide variety of In-memory databases are available, there is no standard API or
interface which can be easily integrated with the existing applications. So using them with

enterprise applications makes the task of integration more difficult.

Scalability of the database is another major problem that enterprise applications are facing
today. Cloud based solutions take the advantage of cloud resources to achieve that target. But
still In-memory databases have not taken the full advantage of the cloud based technologies.
So to get the maximum utilization and performance within enterprise applications, scalability
of the data mang _ \ eds to be carried

on in this area. ge-s,&

&
ekl

1.5 Objectiv

The main objective of this research project is to propose a scalable and interoperable model for
in-memory data management system based enterprise applications. During this research, In-
Memory Databases will be studied and detailed objectives of this research can be listed as

follows.

e Develop a benchmark suit along with suitable workloads which can be used to
evaluate the performance of In-memory databases in comparison to In-memory data
structures and traditional disk based databases.

e Develop a standard API for In-memory databases which can be used with enterprise

applications so that applications can manage data with a seamless interface.

Scalable In-Memory Data Management Model for Enterprise Applications

2. LITERATURE REVIEW

This chapter is intended to provide the details of the in-memory databases along with their
architectural design details. This chapter mainly addresses the architectural and design
differences of disk resident and in memory databases, in-memory database architecture and
applications of in-memory databases. This chapter will further discuss about the existing
benchmarks for database evaluation along with their relevance to in-memory database and the

use of cloud based technologies with the in-memory databases.

2.1 Disk Resident Databases vs. IMDS

Since computers main memory has different properties than the magnetic disks, design and the
performance of Memory resident data management systems are different from disk resident
data management systems. These differences can be summarized as follows [9].

e The access time for main memory is orders of magnitude less than disk storage.

e The main memory is normally volatile and disk storage is non-volatile.

e Disks are block oriented st levi] mai is not block oriented. So disks
have high \%L perliaceess Lthat 'does’ not ‘'epend ‘ont-thHe'amc - of data that is
retrieved ¢ “in%“‘_ﬁ‘ie CESS

o Sequential access al access is not

important on main memories. So the layout of data on disk is much more critical than
layout of data in main memory.
e Since main memory is directly accessible by the processor, it is more vulnerable to

software errors than disk resident systems.

As shown in Figure 4 [10], in a conventional RDBMS, client applications communicate with
a database server process over some type of IPC connection, which adds substantial
performance overhead to all SQL operations. But an application can link in-memory
databases directly into its address space to eliminate the IPC overhead and streamline query
processing. In disk resident databases most of the work is done under the assumption that
data is primarily disk resident. So Optimization algorithms, buffer pool management, and
indexed retrieval techniques are designed based on this fundamental assumption. On the other
hand IMDB is designed with the knowledge that data resides in main memory and can
therefore take more direct routes to data, reducing code path length and simplifying both

algorithm and structure.

10

Scalable In-Memory Data Management Model for Enterprise Applications

Disk Based RDBEMS In Memory Data Management System

Applications Applications

sQL
A Copy record to Determine memary
Table# Pagei application buffer address of record

Locate pointer to page in buffer pool
using hashing and iinear search

il Hash
- Function
O @ = _ ‘
CI:' / vt stove ds
Linked List | | g preioaded
into Buffers I || fromdisk
1 info memary
<1:I /| = -
[

Data Store

(%) ~Figure 4 Disk Resident Databases vs.INDS
MBE is diamatically,feduced since the assumption of disk-residency is not

present and the advantages are as follows [10].

e The number of machine instructions drops dramatically.
e Buffer pool management is not required.

e Extra data copies are not required

e Index pages shrink, and their structure is simplified.

e The Database design gets simpler and compact.

2.2 In-Memory Database Architecture

Since IMDB is not a new concept, the architecture of it has evolved during the past few decades.
Memory residency of data has become a key factor on the IMDB architecture and this actually
leads to much simpler design as compared to disk databases. There are six areas of difference
which has made the architecture of the IMDBs are different from Disk resident databases [11].

1. Query optimisation - In disk DBs, the I/O cost factor dominates the optimisation.

However, in IMDBs there is no such clear factor, which makes query optimisation very

11

Scalable In-Memory Data Management Model for Enterprise Applications

tricky. This is generally solved by taking constants and falling back on rule-based
optimisation.

2. Indexing - More memory-friendly data structures and algorithms are used for indexing.
While most disk DBs use B-Tree as a primary indexing data structure/algorithm,
IMDBs tend to use T-Tree as a primary indexing data structure/algorithm.

3. Internal data representation - Compactness of representation dominates concerns for
IMDBs. With all data being in memory, IMDBs tend to use direct memory pointers
heavily. This is very typical of the IMDB memory page, index data or relation
representations.

4. Durability and recovery - Contrary to popular belief, IMDBs are durable. They use
algorithms similar to disk DBs for persistence. However, the buffer management, which
is the biggest performance bottleneck for disk DBs, is eliminated. During database
loading, IMDBs tend to take a bit more time as they have to load the complete data into
memory. Hence, recovery is a bit slower.

5. Access methodology - Generally, disk DBs offer client server over sockets as a primary
access method. However, with no disk 1/O, if IMDBs only offer sockets for access, this
will becomegnlaottleneck Hence; most IMDBs tend to offer shared-memory access as
a primary method In_a few cases, JDBC/QODBC interfaces are also supported.

6. Concurrency Control Due to inherent speed in processing, IMDBs can take coarser
locks and also do less to persist them. However, disk DBs take finer locks and take

elaborate measures to persist them.

A typical architecture for in-memory database is shown in Figure 5 [10]. The routines that
implement the IMDB functionality are embodied in a set of shared libraries that developers
link with their applications and execute as a part of the application's process. This shared library
approach is in contrast to a more conventional RDBMS, which is implemented as a collection
of executable programs to which applications connect, typically over a client/server network.
Applications can also use a client/server connection to access an IMDB Cache, though in most

cases the best performance will be realized with a directly linked application.

12

Scalable In-Memory Data Management Model for Enterprise Applications

&
'E Client/server applications
=] =
= User interfaces App adon
5 for direct-linked - .
® applications Client Driver
o 3 Metwork / Message Bus
—il i
i Handles 1 o)
clientiserver y Replication
requests agents
r
Direct-linked applications : Administrative
ini W
& Application] programs
p business logic ==
% ;) In-Memory Database
% shared libraries Database Cachel r processes
z . L. Checkpoint
files
Log
files
Cache
agent
[
b -
il o
l Metwork / Message Bus
L
Oracle
tabase

SRR Figure 5 : IMDB Architecture

The IMDB Cache resides entirely in main memory at runtime. It is maintained in shared
memory segments in the operating system and contains all user data, indexes, system
catalogues, log buffers, lock tables and temp space. Multiple applications can share one
database, and a single application can access multiple databases on the same system. Utility
programs are explicitly invoked by users, scripts, or applications to perform services such as

interactive SQL, bulk copy, backup and restore, database migration and system monitoring.

Checkpoint files contain an image of the database on disk. Some IMDB uses dual checkpoint
files for additional safety, in case the system fails while a checkpoint operation is in progress.
Changes to databases are captured in transaction logs that are written to disk periodically. If a
database needs to be recovered, IMDB merges the database checkpoint on disk with the
completed transactions that are still in the transaction log files. Normal disk file systems are

used for checkpoints and transaction log files.

13

Scalable In-Memory Data Management Model for Enterprise Applications

IMDB usually assigns a separate process to each database to perform operations including the

following tasks.

e Loading the database into memory from a checkpoint file on disk

e Recovering the database if it needs to be recovered after loading it into memory
e Performing periodic checkpoints in the background against the active database
e Detecting and handling deadlocks

e Performing data aging

e Writing log records to files

IMDB replication allows to achieve near-continuous availability or workload distribution by
sending updates between two or more servers. A master server is configured to send updates
and a subscriber server is configured to receive them. A server can be both a master and a
subscriber in a bidirectional replication scheme. Time-based conflict detection and resolution
are used to establish precedence in case the same data is updated in multiple locations at the

same time.

2.3 Impact of lyi;?mory Restdency-on FMB B functionality
k.

In in-memory databa{g:systems dataresides permanently in main physical memory and in disk
based databases data{ Fééides indisk. In Disk based databases data may be cached in to memory
for access and in IMDB the memory resident data may have a backup copy on the disk. So in
both cases, a given object can have copies on both in memory and on disk. The key difference
is that in IMDB the primary copy resides permanently in memory and this has important
implications on how it is structured and accessed. These differences can affect the IMDB

functionality as discussed in following section [9].

1. Concurrency Control

Since the access to the main memory is much faster than access to the disk, transactions
complete more quickly in IMDBs. So in lock based concurrency control systems locks will
be held on only for short period and the lock contention may not be as important as it is in
DRDBs. Usually small locking granules are used to reduce the locking contention. But in
IMDBs the contention is already low because data is memory resident and very large
locking granules such as relation level granules are most appropriate for IMDBSs. In
extreme, the lock granule could be chosen to be the entire database [12]. This results in

serial execution of transactions and it is highly desirable since the cost of concurrency

14

Scalable In-Memory Data Management Model for Enterprise Applications

control such as setting and releasing locks, coping with deadlocks are almost completely
eliminated. Also the number of CPU cache flushes are greatly reduced.

However serial transactions are not practical when long transactions are present and there
should be some way to run short transactions concurrently with the long transactions.
Further multiprocessor systems may require some form of concurrency control even if all

transactions are short.

2. Commit Processing

Having a backup copy and keeping a log of transaction activities are essential to protect
against media failures. Since memory is usually volatile, this log must reside in stable
storage and before a transaction can commit, its activity records must be written to the log.
Logging can impact response time, since each transaction must wait for at least one
stable write before committing. Logging can also affect throughput if the log becomes a
bottleneck. Although these problems also exist when data is disk resident, they are
more severe in main memory systems because the logging represents the only disk
operation each transaction will require.

Several methodog{(_agies can be used to solve this problem. A small amount of stable main
memory can bersed to hold a portion of jthe log and a transaction is committed by
writing its log iun;"oxrmation into the stable memory, a relatively fast operation [13]. A
special process or processor is then responsible for copying data from the stable
memory to the log disks. Although stable memory will not alleviate a log bottleneck,
it can eliminate the response time problem, since transactions need never wait for disk
operations.

Group commits technique can also be used to solve the log bottleneck. Under group
commit, a transaction’s log record need not be sent to the log disk as soon as it commits
and the records of several transactions are allowed to accumulate in memory. When enough
have accumulated all are flushed to the log disk in a single disk operation and it reduces the
total number of operations performed by the log disks [14].

3. Access Methods
A wide variety of index structures have been proposed and evaluated for main memory
databases including various forms of hashing and of trees. Trees such as the T-Tree

have been designed explicitly for memory-resident databases and they need not have the

15

Scalable In-Memory Data Management Model for Enterprise Applications

short, bushy structure of a B-Tree, since traversing deeper trees is much faster in main
memory than on adisk [15].

Since random access is fast in main memory, pointers can be followed quickly. Therefore,
index structures can store pointers to the indexed data, rather than the data itself.
This eliminates the problem of storing variable length fields in an index and saves

space as long as the pointers are smaller than the data they point to.

4. Data Representation

Main memory databases can also take advantage of efficient pointer following for data
representation. Relational tuples can be represented as a set of pointers to data values. The
use of pointers is space efficient when large values appear multiple times in the database,
since the actual value needs to only be stored once. Pointers also simplify the handling
of variable length fields since variable length data can be represented using pointers

into a heap.

5. Query Processing

Since sequentialévags:cess IS not “significantly Tfaster than random access in a memory
resident databasezaquery processing technigues that take advantage of faster sequential
access lose thatrr _advantage. An example is sort-merge join processing, which first
creates sequential access by sorting the joined relations. Although the sorted relations
could be represented easily in a main memory database using pointer lists, there is really
no need for this since much of the motivation for sorting is already lost.

Because data is in memory, it is possible to construct appropriate, compact data structures
that can speed up queries. When relational tuples are implemented as a set of pointers
to the data values some relational operations can be performed very efficiently. Query
processors for memory resident data must focus on processing costs, whereas most

conventional systems attempt to minimize disk access [16].

6. Recovery

To protect against the loss of volatile data, backups of memory resident databases must be
maintained on disk. The recovery procedure has several components such as the procedure
used during normal database operation to keep the backup up-to-date, and the procedure
used to recover from a failure. Commit processing and check pointing can be used for

this purpose and check pointing brings the disk resident copy of the database more up-

16

Scalable In-Memory Data Management Model for Enterprise Applications

to-date, thereby eliminating the need for the least recent log entries. In an in-memory
database system, check pointing and failure recovery are the only reasons to access the
disk-resident copy of the database and check pointing should interfere as little as
possible with transaction processing [17].

7. Performance

Other than the commit processing, the performance of an in-memory database manager
depends primarily on processing time, and not on the disks. Even recovery management,
which involves the disks, affects performance primarily through the processor, since
disk operations are normally performed outside the critical paths of the transactions
[18].

But in IMDB, backups will be more frequent and will involve writes to devices an
order of magnitude slower than memory. Thus the performance of backup or check

pointing algorithms is much more critical and need to handle more carefully.

8. Application Programming Interface and Protection

In conventional,ééﬂ'ssk based databases’_ applications. éxchange data with the database
management sysgeawvia private buffers. In an IMDB, access to objects can be more efficient
since applicatior;s_rﬁay be given the actual memory position of the object, which is used
instead of a more general object id. After the first read, the system returns the memory
address of the tuple, and it is used for subsequent accesses. However, there are some
potential problems such as once transactions can access the database directly, they can
read or modify unauthorized parts and the system has no way of knowing what has been
modified, so it cannot log the changes [19].

9. Data Clustering and Migration

In a DRDB, data objects such as tuples, fields that are accessed together are frequently
stored together, or clustered. But in an IMDB there is no need to cluster objects. This
introduces a problem that does not arise in conventional systems. That is when an object is
to migrate to disk, how and where it should be stored. There are a variety of solutions for
this, ranging from ones where the users specify how objects are to be clustered if they
migrate, to ones where the system determines the access patterns and clusters automatically
[20].

17

Scalable In-Memory Data Management Model for Enterprise Applications

2.4 Application of Main Memory Databases

In-memory databases are most commonly used in applications that demand very fast data
access, storage and manipulation, and in systems that don’t typically have a disk but must
manage appreciable quantities of data. Applications that use IMDBs can be categorized in to
two main categories as embedded systems and enterprise applications. According to a survey
done by Elliot King in 2011 the usage of IMDBs in applications is shown in Figure 6 [21].

Business Analytics 42%
Web-based transactions 38%
Reporting 35%
Finance {trading, market data, etc.] 32%
Billing and Provisioning 25%
Embedded/Mabile applications 18%

Figure 6 : Usage of IMDB

2.4.1 IMDB for|Efnbedded Systems

An important use fdrﬁh—memory database systems is in real-time embedded systems. IMDSs
running on real-time operating systems (RTOSs) provide the responsiveness needed in
applications including IP network routing, telecom switching, and industrial control. IMDSs
manage music databases in MP3 players and handle programming data in set-top boxes. In-
memory databases’ typically small memory and CPU footprint make them ideal because most
embedded systems are highly resource-constrained. The main issues for IMDBs in embedded

systems can be summarized as follows [22].

e Minimization of the memory footprint: The memory demand for an embedded
system are most often, mainly for economic reasons, kept as low as possible. A typical
footprint for an embedded database is within the range of some kilobytes to a couple of
megabytes.

e Reduction of resource allocations: In an embedded system, the database management
system and the application are most often run on the same processor, putting a great
demand on the database process to allocate minimum CPU bandwidth to leave as much

capacity as possible to the application.

18

Scalable In-Memory Data Management Model for Enterprise Applications

e Support for multiple operating systems: In an enterprise database system, the DBMS
is typically run on a dedicated server using a normal operating system. The clients, that
could be desktop computers, other servers, or even embedded systems, connect to the
server using a network connection. Because a database most often run on the same piece
of hardware as the application in an embedded system, and that embedded systems
often use specialized operating systems, the database system must support these
operating systems.

e High availability: In contrast to a traditional database system, most embedded database
systems do not have a system administrator present during run-time. Therefore, an

embedded database must be able to run on its own [23].

2.4.2 1MDB for Enterprise Applications

The enterprise applications are going through a transformation in regulatory requirements,
technology, and operational resource needs. The era of highly customized, proprietary
hardware and software is no longer desirable because it breeds high infrastructure costs and
extends the time fro;‘rf%concept to'dnception andoimplementation..Forimany years, financial
platforms were often?bgsed ofreme-grown'software’; usmg-closed ‘proprietary frameworks and
data management séfat’ions. While the ‘resulting home-grown infrastructures achieved some
measure of success, they often did not scale well and lacked the flexibility to cost-effectively

accommodate new services and technological innovation.

Non-embedded applications requiring exceptional performance are an important growth area
for in-memory database systems. For example, algorithmic trading and other applications for
financial markets use IMDSs to provide instant manipulation of data, in order to identify and
leverage market opportunities. Some multi-user Web applications — such as e-commerce and
social networking sites — use in-memory databases to cache portions of their back-end on-disk
database systems. These enterprise-scale applications sometimes require very large in-memory
data stores, and this need is met by 64-bit IMDS editions [24].

Whether running on enterprise servers, embedded in appliances, in the cloud, or processing
constantly-changing complex data, financial applications need a platform characterized by low
latency, high availability, and a scalable infrastructure that allows for rapid growth. IMDBs
provide the necessary agility for companies developing and deploying financial applications

that meet or exceed today’s stringent requirements. Also they provides developers a superior

19

Scalable In-Memory Data Management Model for Enterprise Applications

alternative to building or deploying other data management solutions and helps developers

deliver greater innovation with shorter time to market.

Figune; 7 ~EnterprisePerfarmance;lihMemary Eycie

()Y .
Currently, most ofr ’flata within 'a’companyr is-stift- distributed thotghout a wide range of

applications and storedm several disjoint sifos."Creating a unified view on this data is a time-
consuming procedure. Additionally, analytical reports typically do not run directly on
operational data, but on aggregated data from a data warehouse. Operational data is transferred
into this data warehouse in batch jobs, which makes flexible, ad-hoc reporting on up-to-date
data almost impossible. As a consequence, enterprises have to make decisions based on
insufficient information, which is not what the term real-time suggests. Since the hardware
architectures have evolved dramatically in the last decade this is changing now. Multi-core
processors and the availability of large amounts of main memory at low cost are creating new
breakthroughs in the software industry. It has become possible to store data sets of whole
companies entirely in main memory, which offers performance that is orders of magnitudes
faster than traditional disk-based systems. Hard disks will become obsolete. The only
remaining mechanical device in a world of silicon will soon only be necessary for backing up
data. With in-memory computing and insert-only databases using row- and column-oriented
storage, transactional and analytical processing can be unified. High performance in-memory
computing will change how enterprises work and finally offer the promise of real-time
computing. As shown in Figure 7, the combination of the technologies finally enables an

20

Scalable In-Memory Data Management Model for Enterprise Applications

iterative link between the instant analysis of data, the prediction of business trends, and the

execution of business decisions without delays [25].

2.5 Performance Benchmarks for In-Memory Database

With the recent, but widespread, acceptance of the Main-memory databases, there has been a
lot of different companies and people interested in the potential and advantages of main-
memory databases. There is currently dozens of different databases that use main-memory
techniques. The performance of databases does not rely solely on the actual speed of the
database. A big part of how effective a database is comes from how you use it. Different
databases are good at different things and different types of databases focus on optimizing
different utilities. In several studies, the performance of either traditional disk resident database

and a selected in-memory database or several in-memory databases are compared.

Another way to understand performance trade-offs between different in-memory databases is
to review independent benchmarks that are produced which compare each database under

different workloads. While such tests can never take the place of proof of concepts done using

the exact use cases and structure that a neyvapplication is fargeting, can be useful to
understand the ¢ ‘181&5‘?@’[& gths-and weaknesses of aeatabase wndervad sorkloads. In the
following sectic vanigbis benchmarkdwhich ar lb formance of in-
memory databases are discussed.

2.5.1 Wisconsin Benchmark

The Wisconsin Benchmark was introduced in 1983 and it was the first real benchmark for
relational databases. At that time no standard database benchmark existed and there were only
a few application-specific benchmarks. The benchmark was designed with two objectives in
mind. First, the queries in the benchmark should test the performance of the major components
of a relational database system. Second, the semantics and statistics of the underlying relations

should be well understood so that it is easy to add new queries and to their behaviour.

The database is designed so that one can quickly understand the structure of the relations and
the distribution of each attribute value. Consequently, the results of the benchmark queries are
easy to understand and additional queries are simple to design. The attributes of each relation
are designed to simplify the task of controlling selectivity factors in selections and joins,
varying the number of duplicate tuples created by a projection, and controlling the number of

partitions in aggregate function queries. It is also straightforward to build an index (primary or

21

Scalable In-Memory Data Management Model for Enterprise Applications

secondary) on some of the attributes, and to reorganize a relation so that it is clustered with

respect to an index.

The suite of benchmark queries was designed to measure the performance of all the basic

relational operations including:

e Selection with different selectivity factors.

e Projections with different percentages of duplicate attributes.
e Single and multiple joins.

e Simple aggregates and aggregate functions.

e Append, delete, modify.

In addition, for most queries, the benchmark contains two variations: one that can take
advantage of a primary, clustered index, and a second that can only use a secondary, non-
clustered index. Elapsed time is used as the performance metric [26].

Limitations:

e lItisa benchrﬁgk designed o ®valuate Diskbased-databases andino IMDB concept is
taken in to aéeffunt.
e Itisa single"déie'r benchmark and no tests'for concurrency control and recovery.

o |t tests features of the query optimizer only.

This benchmark is used to evaluate some main memory databases in past such example is as
follows. For the above said operations, time taken is measured in microsecond for leading
traditional database system and for CSQL Main Memory Database System. CSQL is an open
source main memory high-performance relational database management system developed at
sourceforge.net. It is designed to provide high performance for SQL queries and DML
statements. The benchmarking application and the database server runs in the same
machine/host and table fully cached in RAM during the test. The elapsed time is measured in
micro seconds and the results are shown in Table 1. From these results, CSQL is claimed that
it is approximately 30 times faster than leading database with standard JDBC interface for real

time database operations [27].

22

Scalable In-Memory Data Management Model for Enterprise Applications

Table 1 : CSQL Wisconsin Benchmark Results

Leading DRDB csaL Times Faster

Statement Type No Hash Tree No Hash | Tree No Hash Tree

Index | Index Index Index | Index | Index | Index Index | Index
Select Int 6097 | 331 325 247 11 11 24.68 30.09 | 29.55
Select Str 6495 | 979 356 286 16 15 22.71 61.19 | 23.73
Select -100 6861 | NA 826 508 NA 120 13.51 NA 6.88
Insert 218 265 213 20 13 11 10.9 20.38 | 19.36
Update 5572 | 217 188 473 14 12 11.78 15.5 15.67
Delete 5741 200 168 573 15 13 10.02 13.33 | 12.92
Join 10K * 1K 6459 | 320 292 35 11 11 184.54 | 29.09 | 26.55
Join 10K * 10K 14916 | 411 320 36 13 14 414.33 | 31.62 | 22.86

2.5.2 TimesTen Performance Throughput Benchmark (TPTBM)

Oracle TimesTen In-Memory database is a high performance event-processing software
component that enables applications to capture, store, use, and distribute information in real-
time, while preserving transactional integrity and continuous availability. TimesTen

Performance Throughput Benchmark (TPTBM) is shipped with TimesTen and measures the

total throughput of the. n: The workload-can test ondy,-update-Q delete and insert
operations or mi (.}fﬁgr:1 required |t isamudtizuser throughput bencl . By default, the
transaction mix cofisists of 89941 SELEGTT (reath) PDATE (write)
transactions. The ratio of SELECTs, UPDATEs and INSERTs can be specified and each

transaction consists of one or more SQL operations [10].
Limitations:

e TPTBM is a proprietary benchmark and shifts with oracle times ten only.

e TPTBM is vendor specific.

Figure 8 shows the performance impact of placing the TimesTen logs on file cache, compared
to traditional approaches that place the logs on cached disk-array storage. These tests were
conducted using the TimesTen TPTBM benchmark running on a 2-processor Sun E450 server
[28].

23

Scalable In-Memory Data Management Model for Enterprise Applications

T 4000
§ 3500 C M File Cache
P 3000
g B [JShared RAID
w 2500 (write-behind cache)
=
= 2000 A DDisk Array
E 1500 (write-through cache)
& 1000
=
° 500
g n I_ 1 r 1 1
=1
= 1 4 8 16
Processes

Figure 8 : Times Ten Benchmark Throughput update (100% Updates)

2.5.3 Telecom Application Transaction Processing Benchmark(TATP)

The Telecommunication Application Transaction Processing (TATP) Benchmark is an open
source workload designed specifically for high-throughput applications, well suited for in-

memory database performance analysis and system comparison.

I'_jimulates altypical Homegdocation Register (MER) database used by a
mobile carrier. The HLR is ah ‘apphication ' mobile“network operators use to store all relevant
information about vaiid subscribers, inciuding the mobiie phone number, the services to which
they have subscribed, access privileges, and the current location of the subscriber's handset.
Every call to and from a mobile phone involves look ups against the HLRs of both parties,
making it a perfect example of a demanding, high-throughput environment where the
workloads are pertinent to all applications requiring extreme speed: telecommunications,
financial services, gaming, event processing and alerting, reservation systems, and so on. The
benchmark generates a flooding load on a database server. This means that the load is generated
up to the maximum throughput point that the server can sustain. The load is composed of pre-

defined transactions run against a specified target database.

The benchmark uses four tables and a set of seven transactions that may be combined in
different mixes. The most typical mix is a combination of 80% or read transactions and 20%
of modification transactions [29].

24

Scalable In-Memory Data Management Model for Enterprise Applications

The TATP software collects two types of results from the benchmark, namely Mean Qualified
Throughput (MQTh) and transaction response time distributions. MQTh is the number of
successful transactions per time unit. In TATP, we use one second as a time unit, resulting in
MQTh tps. The response time is measured for each individual transaction and reported by
transaction type. This provides seven distributions measured with a millisecond resolution. The
maximum response time recorded is set to be 10,000 millisecond (10 seconds). Longer

response times are discarded.

The TATP benchmark transaction response time comparison between an in-memory database
and a hybrid database is shown in Figure 9 [30].

Limitations:

e It is an Application specific benchmark - simulates a typical Home Location Register

(HLR) database used by a mobile carrier.

TATP{Benchmark 90th percentile response time (32 clients)

f %& i | L B e —
UPDATE < 'I%MRF A HCCUOIC LIICSCS K LA bblldlluub 54
e BAbal lih rrrt a1l | 263
UPDATE LOCATION 1?'-555
« W
@
= INSERT CALL FORWARDING 372
260
|_
=
2 GETSUBSCRBER DATA ;;
u -
[1]
g GET NEW DESTINATION 1 il
= ——
'—
GET ACCESS DATA q m | ‘ 174
DELETE CALL FORWARDING H 'F’ 252

L=

50 100 150 200 250 300 350 400 450 500
Transaction Response Time (us)

W In-memory Database (MAXS5) & Hybrid Database

Figure 9 : TATP benchmark on transaction processing time

Scalable In-Memory Data Management Model for Enterprise Applications

2.5.4 Transaction Processing Performance Council -C Benchmark(TPCC)

The Transaction Processing performance Council introduced the TPC Benchmark C in August
1992. At the time the TPC had two other OLTP benchmarks, TPC-A and TPC-B. The TPC
continued to support and publish results on TPC-A, its first OLTP benchmark until December
1995. TPC-A simulates all the major functions of a simple OLTP system and was, until its
retirement by the TPC, accepted by the industry as the leading tool for comparing systems.

Since then, TPC-C has replaced it in that role and gained even greater recognition.

TPC-C was designed to carry over many of the characteristics of TPC-A. Therefore, TPC-C
includes all the components of a basic OLTP benchmark. For the benchmark to be applicable
to systems of varying computing powers, TPC-C implementations must scale both the number
of terminals and the size of the database proportionally to the computing power of the measured
system. To test whether the measured system is fully production-ready, including efficient
recovery capabilities, the database must provide what are defined as the ACID properties:

atomicity, consistency, isolation, and durability.

TPC-C involves a mix of five goncudent ansactions,of different types and complexity that
are executed either gfﬁline of lguaued for Oeferred &xecutienriFheomajor characteristics that
TPC-C added beyoridrTPC—A canvbel sumnarized'as follows [31].

e Multiple types of transactions of varying complexity
e On-line and deferred execution of transactions
e More complex database structure, resulting in
v’ Greater diversity in the data that are manipulated
v" Higher levels of contention for data access and update
e Input data that include basic real-life characteristics, such as:
v Non-uniform patterns of data access to simulate data hot spots
v’ Data access by primary as well as secondary keys
e More realistic requirements, such as:
v' Terminal input/output with full-screen formatting
v Required support for basic features of users' interface
v Required application transparency for all database partitioning

e Transaction rollbacks

26

Scalable In-Memory Data Management Model for Enterprise Applications

TPC-C performance is measured in new-order transactions per minute. The primary metrics
are the transaction rate (tpmC), the associated price per transaction ($/tpmC), and the

availability date of the priced configuration.
Limitations:

e |tis a benchmark designed to evaluate Disk based databases and no IMDB concept is

taken in to account.

2.6 Cloud based In-Memory Databases

Traditionally the server and their applications of a business are located in private or exclusive
computer centres. The availability of broadband internet connections makes it possible to
dispense of internal computer centres and to utilize dynamically the computer capacity of a

Computing Cloud of an external server.

Cloud Computing is of interest to business as no capital expenditure occurs and through the
use of scale effect running costs can be minimized. The cost to customers can also be reduced
by taking advantage of the elasticityy of the cloud conceptyEnterprisesipayionly for the required
computing performai $é Is Iéss or more computing ottput reguired, the’supplier can make this
automatically availabﬁe"through an interface. While in classical computer centres hardware has
to be dimensioned for a maximum load, using cloud computing enables to employ only the
actually required hardware resources which are expanded or minimized depending on the
required capacity. Cloud computing systems are not customer-based (on-premise) but are used
and scaled depending on demand (on-demand). The operating risk of the computer centre is
outsourced from the enterprise to the manager of the cloud. This goes together with the promise
that employees from everywhere at any time have access to their data within the cloud, although
this can lead to security problems.

Today most enterprises have consider using one of the many available cloud platforms to
improve on speed of delivery, cost saving, and reliability. One of the most attractive features
of today’s cloud offerings is that they enable IT to extend the capacity of their solutions beyond
the scope of on-premise servers. This can be in terms of high availability, disaster recovery,

or scaling to meet planned and unplanned spikes in usage.

A major challenge in moving applications from on-premise data centres to public clouds is the

reluctance to store sensitive data on the cloud, for various reasons such as perceived lack of

27

Scalable In-Memory Data Management Model for Enterprise Applications

control over the storage, security concerns or non-compliance issues when data is stored
beyond the enterprise's boundaries, or the need to store the data on-premise for other internal
applications to access. There might also be cases where the data resides within systems or
servers that simply have no equivalent component available on the cloud, such as a proprietary

data store like a file system, or mainframe database [24].

Still the in-memory databases with cloud based solutions are under the research and only few
database vendors stepped in to that. Oracle Exalogic Elastic Cloud (Exalogic) is an integrated
hardware and software system designed to provide a complete platform for a wide range of
application types and widely varied workloads using oracle in-memory database called
TimesTen. Oracle Exalogic is intended for large-scale, performance-sensitive, mission-critical
application deployments. It combines Oracle Fusion Middleware software and industry-
standard Sun hardware to enable a high degree of isolation between concurrently deployed
applications, which have varied security, reliability, and performance requirements. Real-time
OLTP applications can benefit greatly from the combined compute power of Exalogic and
TimesTen [28].

«~

5 ATV
\ wm&#‘ J

28

Scalable In-Memory Data Management Model for Enterprise Applications

3. BENCHMARKING METHODOLOGY

This chapter is intended to compare various different data management systems against the in
memory databases, with the intention of integrating in to the proposed data management

framework which is discussed in Section 4.2.

This chapter provides a comprehensive analysis among different IMDBs, DRDBSs, in memory
data structures and flat file based DBs, with the intention of identifying the best possible
candidate to be integrated in the final solution. The details of the evaluation scenarios
considered in this research project is given in Section 3.1. In Section 3.2, a detailed analysis
of benchmark procedure is given along with the performance metrics and workload parameters.
In Section 3.3, the results of the benchmark procedure is discussed under different selected

operation categories.
3.1 Analysis of Comparison and Evaluation Scenarios

During the initial phase, the evaluation scenarios which are considered under this research
project was clearly iplentified. Although various performance tests and benchmark results are
available in Iiteratur?v;%hey are considering either only few’solutions or they are fully vendor
specific which are iased towards a particular, vendor. So main objective of the research is to
provide unbiased e{/élﬁation results for in-memory databases, so that any enterprise level
application can choose the suitable solution based on that. For this evaluation, several open
source and proprietary in-memory and disk based databases were selected and following

evaluation scenarios are considered.

v IMDB vs DRDB - To evaluate the performance between selected in-memory
databases and disk resident databases.

v" IMDB vs In-memory data structures — To evaluate the performance between the
selected in-memory databases and selected in-memory data cache which is based on
structures such as maps, vectors, queues etc.

v" IMDB vs Flat File database systems — To evaluate the performance between the
selected in-memory databases and text file databases.

v' Different IMDBs — To have an unbiased comparison for the existing popular in-

memory DBs, different IMDBs are evaluated.

The details of selected data management systems for this evaluation is given in the next section.

29

Scalable In-Memory Data Management Model for Enterprise Applications

3.1.1 Overview of Selected IMDB

SQL.ite

SQLite is an in-process library which provides an embedded SQL database engine and
designed in 2000. It is a self-contained, serverless, zero-configuration, transactional SQL
database engine and it distributed as a free and open source database engine. The SQLite
database is normally stored in a single ordinary disk file and it can be configured to work as an
in-memory database where required. Unlike client—server database management systems, the
SQL.ite engine has no standalone processes with which the application program communicates.
Instead, the SQL.ite library is linked in and thus becomes an integral part of the application
program. The library can also be called dynamically. A block diagram of SQLite Architecture
components and how they interrelate is shown in the Figure 10.

Interface v Tokenizer

L : .
2|2 (SQL Command (/] =&
l'é”‘ i Processor © | Parser &
~r v.} | =TT |}1\1|11 ‘\ v, ¢4 B FTaIaTata 5 iﬁ
i, T =
e 1 (73]

e AL

Code
Generator I
¥
E-Tree I

E P Utilities .
3 g B
A 3
i
0S Intexface I Test Code I =

Figure 10 : SQLite Architecture

The application program uses SQLite's functionality through simple function calls, which
reduce latency in database access because function calls within a single process are more
efficient than inter-process communication. Some important features of SQLite is as follows
[33].

30

Scalable In-Memory Data Management Model for Enterprise Applications

e Transactions are fully ACID-compliant, allowing safe access from multiple processes
or threads.

e Supports most of the query language features found in the SQL92 (SQL?2) standard.

e Written in ANSI-C and provides simple and easy-to-use API.

e Available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows (Win32, WinCE,
WinRT).

e Interface API support available for C++, Java, PHP, Perl and Python

A SQLite database is normally stored in a single ordinary disk file. However, in certain
circumstances, the database might be stored in memory. The most common way to force an
SQLite database to exist purely in memory is to open the database using the special filename
":memory:". When this is done, no disk file is opened. Instead, a new database is created purely
in memory. The database ceases to exist as soon as the database connection is closed. Every
“:memory:” database is distinct from every other. So, opening two database connections each

with the filename ":memory:" will create two independent in-memory databases.

H2 Database

\¥

H2 is a relation daf}ibaf gement system wri inJ ’ nbedded in Java
applications or run in and standalone
ANSI-SQL89 compliant SQL engine on top of a B-tree based disk store. The following

connection modes are supported by H2 database:

e Embedded mode (local connections using JDBC)
e Server mode (remote connections using JDBC or ODBC over TCP/IP)

e Mixed mode (local and remote connections at the same time)

It is possible to create both in-memory tables, as well as disk-based tables. Tables can be
persistent or temporary. In H2 database the index types are implemented as a hash table and a
tree is for in-memory tables, and b-tree for disk-based tables. All data manipulation operations
are transactional. Table level locking and multi-version concurrency control are implemented.
The 2-phase commit protocol is supported in this database, but no standard API for distributed
transactions is implemented. Following connection scenarios are available for in-memory
mode [34].

31

Scalable In-Memory Data Management Model for Enterprise Applications

e Only one connection to an in-memory database: This means the database to be opened
is private. Opening two connections within the same virtual machine means opening
two different (private) databases.

e Multiple connections to the same in-memory database: The database URL must include
a name. Accessing the same database using this URL only works within the same virtual
machine and class loader environment.

e Access an in-memory database from another process or from another computer: Need
to start a TCP server in the same process as the in-memory database was created. The
other processes then need to access the database over TCP/IP or TLS, using a database
URL.

According to the literature, following reasons are given as the advantages of H2 over SQL.ite
Database [35].

e Full Unicode support including UPPER() and LOWER().

e Streaming API for BLOB and CLOB data.

e Full text ch.

e Multiple :&n@“égts(

e User defined fanctions and triggars:

o Database file encryption.

e Reading and writing CSV files (this feature can be used outside the database as well).
e Referential integrity and check constraints.

e Better data type and SQL support.

e In-memory databases, read-only databases, linked tables.

e Better compatibility with other databases which simplifies porting applications.
e Possibly better performance (so far for read operations).

e Server mode (accessing a database on a different machine over TCP/IP).

MemSQL

MemSQL is a distributed, in-memory database that is part of the NewSQL movement. It is an
ACID-compliant RDBMS that most notably converts SQL into C++ through code generation.
It is being developed by MemSQL Inc., which was founded in 2011.

It uses multi-version concurrency control (MVCC) and lock-free data structures to enable high

throughput for large concurrent workloads without sacrificing consistency. As a result, reads

32

Scalable In-Memory Data Management Model for Enterprise Applications

do not block writes, and vice versa, providing the fast access necessary to achieve real-time
analytics on a Big Data scale. MemSQL combines lock-free data structures and a just-in-time
(JIT) compiler for processing highly volatile workloads. More specifically, MemSQL
implements lock-free hash tables and lock-free skip lists in memory for fast random access to
data. Queries sent to the MemSQL server are converted into C++ and compiled through GCC.
MemSQL works best on workloads with highly concurrent read and write queries. Each query
is individually executed on exactly one core. Read queries are never blocked by other reads or

writes because of multi-version concurrency control.

MemSQL architecture is shown in Figure 11. It has a two-tiered, clustered architecture that

consists of two types of nodes:

e Aggregator nodes serve as mediators between the client and the cluster. They query
the relevant leaf nodes and aggregate results before sending them back to the client.
Aggregators store only metadata. An aggregator is responsible for breaking up the
query across the relevant leaf nodes and aggregating results back to the client.

e Leaf nodes, store and process data. MemSOL has a shared-nothing architecture, which

means that WO nades.share memory. disk,ror.CPU., A-leaf node is a MemSQL

database. I\/IegnSQL tsesyhash partitioning to distribute data uniformly across the

number of leaf nodes.

wearronnooes © [y (i (— »

“““““

LEAF NODES €3

Figure 11 : MemSQL Architectue

MemSQL has two types of tables: reference tables and distributed tables. Each node in the
cluster has an identical copy of all reference tables. Distributed tables are spread across all
nodes in the cluster, so each node has a piece of each distributed table. This enables joins to be

more efficient, with compute overhead offloaded to the leaf nodes [36].

33

Scalable In-Memory Data Management Model for Enterprise Applications

3.1.2 Overview of Selected DRDB
Oracle

Oracle Database is a disk resident object-relational database management system produced and
marketed by Oracle Corporation. It is a fourth generation relational database management
system and Oracle server provides efficient and effective solutions for the major database
features. Oracle revolutionized the field of enterprise database management systems with the
release of Oracle Database 10g and currently oracle can be considered as the market leader in
database solutions. Oracle Database is the first database designed for enterprise grid

computing, the most flexible and cost effective way to manage information and applications.

The Oracle RDBMS stores data logically in the form of tablespaces and physically in the form
of data files. Tablespaces can contain various types of memory segments, such as Data
Segments, Index Segments, etc. An Oracle database is a collection of data treated as a unit. The
database has logical structures and physical structures. Because the physical and logical
structures are separate, the physical storage of data can be managed without affecting the access

to logical storage structures.

Background
Processes

Physical
files

Figure 12 : Elements of Oracle

Optimising performance is ensuring that Oracle is reading from disk as little as possible, and

minimize the contention between users as far as possible. A normally active database will

34

Scalable In-Memory Data Management Model for Enterprise Applications

consist of an Instance running on a server, which manages requests from user processes to
access the data files which may, or may not, be on permanent media within the server. The
elements of the active database is shown in Figure 12. The background processes are all
internally managed by Oracle, although a DBA can alter some of the processes. It demonstrates
the various disk, memory, and process components of the Oracle instance. All of these features
working together allow Oracle to handle data management for applications ranging from small
"data marts" with fewer than five users to enterprise-wide client/server applications designed
for online transaction processing for 50,000+ users in a global environment.

The latest version of the database is Oracle 12c and Oracle Database 11g Enterprise Edition

Release has been used for this research [37].

3.1.3 Overview of In-Memory Data Caches

The need for caching behaviour sometimes arises during system development because a
complex calculation is needed to obtain the result, or because it must be obtained via a time
consuming 1/O operation. If the total number of such results dealt with over the lifetime of the
system does not consu cessive memory,. it may e ta stare thg imple key-value

containers such nﬁm

£ I 3 AtARA

In memory data caches can do part of what a dat ance on big sets
of data as long as complex queries are not required. But any database system goes far beyond
giving a set of interfaces to manage collections, lists, etc. This typically includes support for
ACID (atomic, consistent, isolated and durable) transactions, multi-user access, a high level
data definition language, one or more programming interfaces (including industry-standard

SQL), triggers/event notifications, and more.

A key-value container based caching system is a useful tool in any programmer’s performance
optimisation tool-kit. Although there are lot of such solutions for Java language, there is no
ready-to-use implementations provided in the standard library or the widely used boost libraries
for C++ Language. So C++ developers are likely resort to inefficient or incorrect
approximations to the logic. For this research an in-memory caching system is used, which is
designed to increase application performance by holding frequently-requested data in memory,
while reducing the need for database queries to get that data. The implementation is based on
the C++ standard library’s map data types. The implementation details of this caching system

is given in Section 4.3.2

35

Scalable In-Memory Data Management Model for Enterprise Applications

3.1.4 Overview of Flat File Database

A flat file database is a database which, when not being used, is stored on its host computer
system as an ordinary, non-indexed "flat" file. To access the structure of the data and
manipulate it, the file must be read in its entirety into the computer's memory. Upon completion
of the database operations, the file is again written out in its entirety to the host's file system.

A flat file database is the simplest form of database systems. There is no possibility to access
the multiple tables like a RDBMS. Because it uses the simple structure, a text file considered
as a table. Every line of the text file is rows of table and the columns are separated by delimiters
like comma, tab, and some special characters. The database does not have specific data type.
A flat file can be a plain text file or a binary file. There are usually no structural relationships
between the records. Some advantages and disadvantages of flat file databases are as follows.

Advantages

e Easy to understand.

e Easytoimplement.

e Less hardvvalfg;aand software-reglirements:

e Less Skills s_gtgre required tQ hand flat'database Systems.

e Best for small databases.

Desadvantages

e Less security easy to extract information.

e Data Inconsistency

e Redundancy

e Sharing of information is cumbersome task
e Slow for huge database

e Searching process is time consuming

During this research, to compare the performance of in-memory databases, flat file database is
also used as it is the simplest form of database systems. The flat file database system developed
for this research has been implemented using C++ language and the details of the design and

implementation is given in Section 4.3.1.

36

Scalable In-Memory Data Management Model for Enterprise Applications

3.1.5 Feature Comparison of Selected Database

The features and support for various programming models of these selected databases is

summarized in Table 2.

Table 2 : Feature Comparison of Selected Databases

SQLite H2 MemSQL Oracle
Eclipse Public
Licence Public domain | License Proprietary Proprietary
Relational
Database Distributed
model Relational Relational data structure | Relational
File System File System File System
Volatile Volatile Volatile File System
Data Storage memory memory memory ASM
Embeddable !
X‘[jln' BSD. |
Amigaz/QOs, X,Linux, BSD, Windows, OS
Symbion, iOS, | Unix, z/OS, 64-bit Linux- X,Linux,
OS Support | Android Android based OS Unix, z/OS
Programming | Java, Delphi,
Language Python Java C++ C++
SQL,
HTTP,Xquery,
Query Xpath, Java
Language SQL SQL SQL API, REST

3.2 Analysis of Benchmark Criteria

Benchmarking is one of several alternate methods of performance evaluation, which is a key
aspect in the selection of database systems. Database benchmarking is a process of performing
well defined tests on that particular database management system for the purpose of evaluating
its performance. Benchmarking requires that the systems be implemented so that experiments

37

Scalable In-Memory Data Management Model for Enterprise Applications

can be run under similar system environments. Although benchmarks are costly and time
consuming, it provides the most valid performance results. In data management system
benchmarking, a system configuration, a database, and a workload to be tested should be
clearly identified and defined [38].

During this research, a suite of benchmarks is created to compare the run-times of different
data management implementations under the same work load. Different benchmarks stress
different aspects of a system by making small adjustments to the workload, such as the
transaction type, record count and the table properties. Various benchmark suites discussed in
Section 2.4 are taken in to consideration when finalizing the benchmark criteria.

System Benchmark
Configurations Test Data Workload

Experimental

Befehmark -
S Desigh
&n
& 4 i

Benchmark System 1 System 2 System n

Execution
System 1 System 2 System n
Analysis Analysis Analysis

Benchmark

Analysis

Comparative Analysis
Of Systems

Figure 13 : Database System Benchmark Methodology

The benchmark methodology for database systems consists of three stages as Benchmark
Design, Benchmark Execution and Benchmark Analysis. The Figure 13 illustrates the

methodology as a flow chart and the remainder of this chapter will discuss each phase in detail.

38

Scalable In-Memory Data Management Model for Enterprise Applications

3.2.1 Benchmark Design

The benchmark design is the first step of benchmarking process and it is made up of four stages
which provide input to the final step of experimental design. The design of a benchmark
involved establishing the environment of the database system to be tested and developing the
actual tests to be performed. These four areas of the benchmark design phase: system
configuration, test data, benchmark workload and experimental parameters of this research

project are discussed in this section.
3.21.1 System Configuration

To evaluate the selected databases and data caches hardware and software configurations given
in Table 3 are used in the test servers. The system configuration consists of a wide variety of

parameters which relate to both hardware and software.

Table 3 : Benchmark System Configurations

Operating System Red Hat Enterprise Linux Server release 5.9 (Tikanga)
Memory Pnnn Cion ANOAL Dyrne
| CPU Speed g | 29(0GHZ 64 COFE8 1 ntiiien Spi [anka
Main Memoryeni, . | 64GE i =
Hard Disk \Bee/ | FygTUIIC THEE
3.2.1.2 Test

One of the major considerations in the benchmark experiment is that of what test data will be
used for the testing. Theoretically there are two methods for obtaining a test database. That is
either using an already existing application database or developing a synthetic database. For
this research, an already existing application database is used and it was implemented on each
of the candidate systems to be tested. The use of real data, has the advantage that it demonstrates
database system performance on realistic application environments. So this is clearly the best

method when the evaluation is done to select a system for a known database environment.

The TPC-C benchmark is used as a reference benchmark when designing the benchmark for
this research and the application database has taken from the financial market domain. The test
database contains data of stock symbols and their historical price data. The test database has
two tables named as Tickers and History. Tickers table has the master details of the stock
symbols of larger number of stock exchanges. The history table has trade price details of each
stock on daily basis. The primary key for the tickers table is Ticker_serial which is a unique
identifier for a stock symbol. The combination of the ticker_serial and the transaction_date is

39

Scalable In-Memory Data Management Model for Enterprise Applications

used as the primary key for the history table. During this benchmarking process, these tables
were created in each database under study and tables were populated with initial data required

for each evaluation. The structure of these tables are given in Table 4.

Table 4 : Database Table Data

Tickers Table: History Table:

Colum Name Data Type Colum Name Data Type
ticker_serial Long ticker_serial Long
ticker_id String ' transaction_date DateTime
.gnurce_id String open Double
sector_id String high Double
market_id String low Double
source_ticker_id String close Double
instrument_type_id int volume Long
currency_id String number_of_trades Long
country_code String turnover Double
decimal_places int viwap Double
decimal_correction_factor |int change Double
parent_ticker_ic String JCt_change Double
parent_source_ic Strihig FLISUARY ERES, Double
isin_code 5% Hling Cfigd Mgt Long
lot_size int cf in_wvolume Long
unit N String cf in_turnover Double
display_ticker String cf_out_count Long
comments String cf_out_volume Long
status Character cf out turnover Double
tick size Double is_ann int
last_updated_time DateTime news_provider string

increment_id Long
last_updated on DateTime

3.2.1.3 Benchmark Workload and Experimental Design

In this important phase of the benchmark design, parameters were selected to be varied in the
benchmark testing. During this research, the system throughput measured in queries per second
is used as the principal performance metric. Where illustrative, response time has also been
used as a performance indicator. The system performance was measured against the row count
and the number of concurrent connections. The definitions of the performance metrics used

here are as follows.

40

Scalable In-Memory Data Management Model for Enterprise Applications

e System throughput - The average number of transactions (queries) processed per unit
time.
e Response time - The time-to-last-record. i.e., from the time the query enters the system

until the time the last record in the response is returned.

The details of the experimental design used for this benchmark is given in Table 5.

Table 5 : Performance Metrics

Category 1D Operation

oP1 Mumber of Transactions vs RunTime
op2 Mumber of Transactions vs Transactions per second

Insert |OP3 Mumber of Concurrent Connections vs Transactions Per Second
OP4 P Mumber of Transactions vs Runtime
OP5 E- g Mumber of Transactions vs Transactions per second
OPa w v |Mumber of Concurrent Connections vs Transactions Per Second
QP7 " Mumber of Transactions vs Runtime
OP8 lEEJL R Mumber of Transactions vs Transactions per second

Select |OP9 S & E Y Mumber of Concurrent Connections vs Transactions Per Second
QP10 MNumber of Transactions vs RunTime
OP11 fumbenof Transactions vedransactions per segonc

Update |OP12 gmiﬁ".:E';f _oncurrent Connectiogs ys Transactions Per Second
oP13 e ber of Transactions vs BURTime
oPl14 NEtber Ol Transactiois betfransactions per se i

Delete |OF15 Mumber of Concurrent Connections vs Transactions Per Second

3.2.2 Benchmark Execution

To evaluate the selected scenarios, a simple test tool has been implemented which can test
different workload parameters and give the performance measures for each scenarios as

the output.

Table 6 : Benchmark Tool Implementation Details

Database |Language Support Libraries

Cracle C++ Oracle Call Interface {QCl)

SqLite C++ SaLite C/C++ Interface

MemSQaL |C++ MySQL Client and Drivers

H2 JAVA Java Database Connectivity(JDBC)

The system time is read and recorded in log files immediately before and after each query is

executed by each concurrently executing program. When all iterations of an experiment are

concluded, each the measurements of the each program is analysed. The details of the

41

Scalable In-Memory Data Management Model for Enterprise Applications

programming languages used to implement the benchmark tool and the support libraries used
for each database is given in Table 6. To have more accuracy in the results, each operation has

executed three times and the result is taken as the average of these three iterations.
3.2.3 Benchmark Analysis

After completing the evaluation, the gathered data was extracted from logs of the Benchmark
Tool and the performance related comparisons were derived. During this phase the
performance results on individual database systems were analysed and performance across
different data management systems were compared. Graphs were plotted for each benchmark
criteria and the details are given in the Section 3.3. This will result in an unbiased benchmark

for various in-memory databases and their performance.

3.3 Results

The various benchmark tests discussed in Section 3.2.1.3 have been carried out for each
selected data management system and the results of each test is presented in this section. To
have better result, each operation is repeated three times and average value of the three results

is taken as the final jesult.
3.3.1 Results for Insert Operation

To evaluate the insert operation performance on selected DBs and caches, previously described
tables were created in each database and the History table was populated with 1 million records
at the beginning. Then at each iteration, defined number of rows varied from 1 to 5 million was
inserted to history table and time taken for each set of transactions was recorded. To evaluate
the performance with multiple concurrent connections, the same steps were done with several
connections created using multiple threads. Sample Insert statement used in SQL based
databases is given in Figure 14.

ﬁNSERT INTO \

HISTORY

(TICKER SERTAL, TRANSACTION DATE, OPEN,HIGH, LOW, CLOSE, VOLUME,

NUMBER OF TRADES, TURNOVER, VWAP, CHANGE, PCT CHANGE, PRV_CLOSED,

CF_IN COUNT,CF IN VOLUME,CF IN TURNOVER,CF OUT COUNT, CF OUT VOLUME,

CF OUT TURNOVER, IS ANN,NEWS PROVIDER, INCREMENT ID)

VALUES B B B

(1421, TO DATE ('1994-07-22 20:14:40', 'YYYY-MM-DD HH24:MT:SS'),

10.21,14.64,9.32,11.43,11465,238,7186932.25,12.94,-0.5,1.61, 11.94,
QZO, 8435,64235.65,118, 45064,35245.45,0, '"ALSHAMIL',10043);

Figure 14: Example Insert Statement

42

Scalable In-Memory Data Management Model for Enterprise Applications

OP1: Number of Transactions vs Run Time

—®— SQlLite = —@®— Cache —@®— H2 MemSQL —@- =Oracle =— @ =FileDB
90 - 20000
30 } 18000 2
H [7]
70 b 16000
|)
— 60 r 14000 3
) b 12000 &
v 50 it o
1 S
£ L 10000 ©
= : L
c 40 | !
E P 8000 =
30 L6000 @
i E
20 v 4000 =
! c
10 P 2000 &
0 L0
100000 200000 500000 1000000 2000000 5000000
Number of Transactions
Figure 15 : Insert Operation -Run Time Comparison
OP2: Number of a-'lff@;5;“saction:~i vs Transagctions pex Second .
":.‘v) 7 A | V] L LS OO L7ISSU cll
—— S » = FileDB
160000 ~ 3000
1 o0
! Q
140000]
-] F 2500 &
c | S~
S 120000 !)
& L 2000 ®
~ 100000 , 5
[1
a \ -
w 80000 F 1500 @
o]]
B 60000 ' b
§ r 1000 §
1 o
S 40000 - —0— 0~ g _ ! 7}
" 20000 X ro0 g
=K mYem K = W =K K e =K | e
b %~ ’m K= M =X K= e =K o ! a
0) ! 0 .9
N Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q ©
N ,\,Q ‘00 ,\,QQ ’»00 o,QQ 000 000 6)000 QQQ QQQ 000 000 QQQ QQQ 8
N v Q Q Q Q Q Q (=
N Vv) ,\/0 '\«Q (90 E

Number of Transactions

Figure 16 : Insert Operation - Transactions per Second Comparison

43

Scalable In-Memory Data Management Model for Enterprise Applications

OP3 : Number of Concurrent connections vs Transactions per second

—m— SQLite MemSQL H2 = & -=Oracle

600000 - 450

500000 =+ 400

-+ 350
400000 !
/’—.\I—I\.\ 'i‘ 300
300000 ;
/)f/ ‘\'\\\\\ + 250
- —-_ :

200000 -
- I -+ 200
A A ~elE
./

Transactions Per Second

100000

-+ 150

Transactions Per Second - For Oracle

0 + 100
1 2 3 4 5 6 7 8 9 10
No of Concurrent Connections

Figure 17 : Insert Operation - Concurrent Connections vs TPS

When analysing the .insert operation.results, we can clearly see that IMDBs has higher
performance than théi?fracle DRDB, For. insert operation: IMDBs are around 200 times faster
than the Oracle. Flatf",ijilé basegd-has highes-transactions per second (TPS) than oracle for small
number of inserts. But as the number of records growth, the TPS of flat file based DB gradually

reduced.

Out of the three IMDBs selected, MemSQL has the highest TPS. SQLite has the next highest
TPS and H2 has the lowest. IMDBs are around 100 times faster than the flat file database for
smaller number of inserts. In-memory data cache has the highest performance for any
transaction count. Cache is around 500 times faster than Oracle and 2 times faster than IMDBs.

MemSQL is built from the ground up to take advantage of modern hardware, leveraging dozens
of cores per machine, terabytes of memory, and horizontal scale-out on commodity hardware.
SQL.ite and other in memory databases are same as the disk-based one which is paged, and the
only difference is that the pages are never written to disk. So this disk I/O overhead is not
present in these databases.

Other than the disk residency, one cause of poor performance in Oracle is high communication
overhead. Oracle must process SQL statements one at a time. Thus, each statement results in

another call to Oracle and higher overhead. In a networked environment, SQL statements must

44

Scalable In-Memory Data Management Model for Enterprise Applications

be sent over the network, adding to network traffic. Heavy network traffic can slow down the

application significantly.
3.3.2 Results for Select Operation

Select operation was evaluated with Simple Select quires and Complex select queries with table
joins. To evaluate the simple Select operation performance on selected DBs and caches,
previously described tables were created in each database and the History table was populated
with 10 million records at the beginning. Then at each iteration, defined number of rows varied
from 1 to 5 million was selected from history table and time taken for each set of transactions

was recorded.

To evaluate the Join operation performance, both Tickers table and History table were used.
Tickers table was populated with 1 million records which corresponds to 1 million stock
symbols. Then history table was populated with 10 million records which corresponds to the
history data of the symbols in tickers table. Then at each iteration, defined number of rows
varied from 1 to 5 million was selected by joinina both history table and tickers table and time

taken for each set of gransactions wasecordech

To evaluate the peffc’;ﬁﬁénce with multiple concurrent connections, the same steps were done
with several connectrri'ah‘s created using multiple threads. Sample SQL statements used for SQL
based databases is given in Figure 18. File based DB is not used in Join operation test since
Join operation is not currently implemented in File based DB. For In memory data cache, exact
match selection procedure was taken as the equivalent for Select operation. It also not included

in Join statement test since no join operation is defined in the cache implementation.

(Simple Select Statement: \

SELECT * FROM history WHERE volume = 54343;

Select Statement with Joins:

SELECT * FROM history h

LEFT JOIN tickers t

ON t.ticker serial = h.ticker serial

WHERE h.volume = 54343 and t.source id = 'NSDQ')

Figure 18 : Example Select Statement

45

Scalable In-Memory Data Management Model for Enterprise Applications

OP4 : Number of Transactions vs Run Time (Simple Query)

Run Time (s)

—o—SQlite —m—Oracle MemSQL —m—H2 ——FileDB —@—Cache
" / /77
o / /77
9 / / A/
: / /77
7 / 000
s ,/éé
. o
4 >— & /
: e A
2 %—.——'
1
O F Y"7I T T T T T T T 1

5000

10000 20000 50000 100000 200000 500000 1000000 2000000 5000000
Number of Transactions

Figure 19 : Select Operation - Run Time Comparison

\

OP5: Number of Tsaction‘s MSCT sansactionpariSecon d(SimpleiQuery)

Transactions Per Second

4

Oracie’ - O IR mdqr U w12 FileDB Cache

500000

450000
400000

350000

300000

250000

200000

150000

100000

50000 +—

0

20000 50000 100000 200000 500000 1000000 2000000 5000000
Number of Transactions

Figure 20 : Select Operation — Transactions Per Second Comparison

46

Scalable In-Memory Data Management Model for Enterprise Applications

OP6 : Number of Concurrent connections vs Transactions per second (Simple Query)

60000

50000

40000

30000

20000

Tranactions per Second

10000

OP7: Number of T,

—o—SQlLite —®—Oracle MemSQL H2

/./I—I

NSA—a

2 3 4 5 6 7 8 9 10

No of Concurrent Connections

Figure 21: Select Operation - Concurrent Connections vs TPS

sactiofts Vs ransactions per Second (With Joins)

—e—sQlite’

500000
450000
400000
350000
300000
250000
200000
150000
100000
50000
0

Transactions Per Second

MemSQL

SQLite-Joins Oracle Oracle-Joins

MemSQL-Joins H2 H2-Joins

20000

50000 100000 200000 500000 1000000 2000000 5000000
No of Transactons

Figure 22 : Select with Joins - TPS Comparison

When analysing the Select operation results, we can clearly see that IMDBs has higher

performance than the Oracle DRDB when the number of select operations are higher. For select

operation IMDBs are around 2 times faster than the Oracle. Flat file based has less transactions

47

Scalable In-Memory Data Management Model for Enterprise Applications

per second (TPS) than all the other data sources. Oracle DB is around 3 times faster than the
Flat File DB and IMDBs are around 8 times faster than it. In-memory cache is around 15 times
faster than it. Out of the three IMDBs selected, MemSQL has the highest TPS. SQLite has the
next highest TPS and H2 has the lowest. In-memory data cache has the highest performance
for any transaction count. Cache is around 5 times faster than Oracle and 1.5 times faster than
IMDBs.

Transactions with join operations shows same curve shape but has less TPS than the simple
select operations for all databases. The TPS difference between the two curves is significant in
Oracle database. Join operation performs within main memory is faster than the disk based

operation.
3.3.3 Results for Update Operation

To evaluate the update statement performance, History table was initially populated with 10
million records and at each iteration, defined number of rows varied from 1 to 5 million was
updated from history table. To evaluate the performance with multiple connections, the same
test was done with mudtiple threags with eactythread.creating apew connection to the database.
Sample SQL Staterriif;ﬁ}@f‘used for S@brbaselldatabasss iDgiveninthigute 23.

[UPDATE history SET volume = 50000 WHERE volume = 54243; |

Figure 23 : Example Update Statement

OP8: Number of Transactions vs Run Time

—— SQLite MemSQL H2 = ® -=Oracle
300 ~ 18000
1

% ¢ 16000 o
250 A <
k14000 8
= 200 k12000 g
2 - 10000 =
£ 10 L 8000 <2
c 1 Q
2 100 - L 6000 E
_-=u L 4000 T
50 p— 4= :_ é

I — L 2000

O T T T - T T T T : 0

20000 50000 100000 200000 500000 1000000 2000000 5000000
Number of Transactions

Figure 24 : Update Operation - Run Time Comparison

48

Scalable In-Memory Data Management Model for Enterprise Applications

OP9: Number of Transactions vs Transactions per Second

—o— SQlite MemSQL H2 = ® =Oracle
40000 T 350
()
! K]
35000 o L ©
_g - u 300 &
S 30000 > L o250 8
& rW_‘_‘_\ ! :
» 25000 [4 ! -
9 o r 200 §
@ 20000 - ; S ' S
2 15000 / r 150 %
5 1 A S0 [7]
2 l al L 100 @
S 10000 7 1 5
£ | » -
5000 1 =g -
=
O-WI‘I_._I.I‘ .I—.’I T T T T T T T T T T ; 0 E
- O O O O O O O O O O O O O o o o o o o
4 O O O O O 6 6 6 6 6 6 6 6 6 6 6 6 o6
- 1N O O O O O O O O O O O o o o o o
- N 1N O O O O O O O © O oo o o o
- N N O O O O O © O o O o
- N 1NN O O O 1n O uun un
- N 1N 1N O O N~
Number of Transactions
Figure 25 : Update Operation - Transactions Per Second Comparison
OP10 : Number of €oncurrent;¢eniaeetions Ns dransactions per-s6tond
SQlite o H2 11-MemSQL Oracle
60000 +— — 120
- S
L1110 g
= 50000 —— ! o
2 / M\ L 100 &
o ' w
& 40000 / \\p 0 2
@ !]
a a-- M~ - | Q
» 30000 ®-" - P = > 80 3
s -7 RS 5
k3]) g L 70 o
© 20000 ; ' 2
£ L L 60 B
(%}
" 10000 4 /7 _ = ! g
< 1 0§
wr | =
O T T T T T T T T T II: 40
1 2 3 4 5 6 7 8 9 10

No of Concurrent Connections

Figure 26 : Update Operation - Concurrent Connections vs TPS

When analysing the Update operation results, we can see that IMDBSs has higher performance
than the Oracle DRDB. For update operation IMDBs are around 80 times faster than the Oracle.
Out of the three IMDBs selected, H2 has the highest TPS for update operation. SQLite has the

49

Scalable In-Memory Data Management Model for Enterprise Applications

next highest TPS and MemSQL has the lowest TPS. For In-memory databases the transactions
per second become nearly constant even the number of transactions increasing. For Oracle,

TPS gradually increasing when the number of transactions increasing.

When number of concurrent connections are increasing the TPS of SQLite and H2 databases
are gradually decreased after showing a peak value when number of concurrent connections
are at 3 and 4 respectively. But for Oracle and MemSQL TPS remains nearly constant when

number of concurrent connections increasing.
3.3.4 Results for Delete Operation

To evaluate the Delete statement performance, History table was initially populated with 10
million records and at each iteration, defined number of rows varied from 1 to 5 million was
deleted from history table. To evaluate the performance with multiple connections, the same
test was done with multiple threads with each thread creating a new connection to the database.

Sample SQL statements used for SQL based databases is given in Figure 27.

DELETE From history where volume 5[342435

.-&.‘-. R e B S L L T I R TS e T S VA B TR S SPe EF R R PR RS

Figure 27 : Example Delete Operation

OP11: Number of Transactions vs Run Time

—o— SQLite MemSQL H2 - ® =Oracle
300 .
;. 35000
250 !
- 30000 &
1 (4]
— 200 F 25000 ©
~ 1 o
£ F 20000
£ 150 r =
1
5 r 15000 2
100 ! E
F 10000 ngé
1
>0 L 5000
r--—-"F----- 1
O T T T T T T T : 0

20000 50000 100000 200000 500000 1000000 2000000 5000000

Number of Transaction

Figure 28: Delete Operation -Run Time Comparison

50

Scalable In-Memory Data Management Model for Enterprise Applications

OP12: Number of Transactions vs Transactions per Second

—e— SQLite MemSQL H2 --m--Oracle
45000 - 600
K
40000 : ©
i r 500 §
S 35000 1 4: 5
@ 30000 — L 400
- el
& 25000 A r*w:‘/\~/\%ﬁ' <
n r 300
§ 20000 — A
& 15000 L 200 &
c I e
& 10000 s S
= / a r 100 =
5000 +— P | 5
- (7%}
0 '_.'-I-'.-'F"_I_I_I_I_._I_I_-._-.--.---'-_ = _I-rl T T T T T : 0 §
N OO O L O D O O ©® & © & =
N O L LLLLLLL L OO
MR PO RS ,,90 %Qo QQQ 000 000 000 QQQ QQQ
AN RS SRR S\ L
Ny 9
Number of Transactions
Figure 29 : Delete Operation - Transactions Per Second Comparison
OP13 : Number of’&rﬁcurrent cornections yscEransantians paisecond
—eo— SQLite iviemSQL H2 — m - Oracle
30000 ~ 120
! [}
' @
25000 ;110 d
° 1 e
g -~ 100 o
@ 20000 | N
© N\ L9 2
[7] N (=]
a I Q
s 15000 TN L 80 g
o ’,l-_~._——l'——l__.__-l\ I)
t = L 70 &
8 10000 ! @
c ! o
o L 60 B
i 1 13}
5000 ! §
L 50 5
1 =
O T T T T T T T T T : 40

1 2 3 4 5 6 7 8 9 10

No of Concurrent Connections

Figure 30 : Delete Operation - Concurrent Connections vs TPS

As with the other operations, for delete operation also IMDBs has higher performance than the
Oracle DRDB. For delete operation, IMDBs are around 250 times faster than the Oracle. Out

51

Scalable In-Memory Data Management Model for Enterprise Applications

of the three IMDBs selected, MemSQL has the highest TPS for update operation. SQL.ite has
the next highest TPS and H2 has the lowest TPS. For all IMDBs the TPS become gradually
increasing for small number of transactions, and then become a flat graph. For delete operation,

Oracle also shows a similar behaviour.

When the number of concurrent connections are increasing, the TPS gradually increasing for
all databases up to 4-5 number of connections and then remains constant. But for SQL.ite when

number of concurrent connections exceed 7, TPS gradually decreased.

52

Scalable In-Memory Data Management Model for Enterprise Applications

4. FRAMEWORK IMPLEMENTATION

This chapter is intended to illustrate the complete implementation effort of the data
management framework proposed by this research, highlighting the important design decisions
made during implementation phase. While Section 4.1 gives a brief summary of the
requirement of such a framework, Section 4.2 will illustrate further on implementation of In-

memory data cache, File based DB and finally the data management Framework.

In Section 4.3 the details of the performance comparison of the framework based
implementation and pure database API calls based implementation is given. There the

framework is evaluated against the results presented in Section 3.3.

4.1 Problem Background

In almost all the enterprise applications written today, it is required to incorporate database
CRUD (Create, Read, Update, and Delete) operations. A large enterprise application will
typically have one or more databases to store data and on top of this a data access layer (DAL)

to access the dat unicate with the
DAL, a business ,Ay?vgc. ining logic and classes representing the business domain, a service
layer to expose the ausiness |ay clients and fipal interf. Jlication such as

a desktop applic

Many developers often make database calls directly from an application layer, but this results
in maintenance or code change is extremely difficult when database access changes are
necessary. As with any application development endeavour, there is more than one way to
tackle it. A current industry trend is to separate the data access code from the rest of the code.
With this approach, it is possible to use the necessary database calls via the data access code.
This allows the developer to make database access or code changes without touching the rest

of an application. So a data access layer is an important part of a software application.

A data access layer follows the idea of "separation of concerns™ where all of the logic required
for the business logic to interact with the data sources is isolated to a single set of classes
(layer). This allows developers to more easily change the back-end physical data storage

technology without having a large impact to the business logic.

The standard for cross platform SQL database connectivity is Open Database Connectivity
(ODBC) which a standard database access method developed by the SQL Access group in

53

Scalable In-Memory Data Management Model for Enterprise Applications

1992. The goal of ODBC is to make it possible to access any data from any application,
regardless of which database management system is handling the data. ODBC manages this by
inserting a middle layer, called a database driver, between an application and the DBMS [39].
ODBC is more than a database interface, it also defines an underlying connection protocol etc.
So the application developers has to deal with the code complexity associated with ODBC
when connecting with the database. Although there are several C++ wrappers and libraries for
it, there is no widely used free API for this. Another limitation with these libraries is they are
mainly focused on SQL based databases and other forms of data sources such as file based DB,

in-memory caches are not addressed.

So the proposed framework will address these problems and it is implemented as a C++ library
to access various data sources such as SQL based in-memory and disk based databases, flat file
databases and in-memory data caches. Since it is implemented in an extensible way, support
for any other new data source can be integrated with it. The details of the implementation of

the framework is given in the following sections of this chapter.

4.2 Design he mev

ok ; i _
A data access layet5(BDAL) inlcommputec software, is d layecdfia com program which
provides simplified aceess to'data stored i pefsistel ich as an entity-

relational database. it is an appiication programming interface whnich unifies the
communication between a computer application and databases. Traditionally, all database
vendors provide their own interface tailored to their products, which leaves it to the application
programmer to implement code for all database interfaces developer would like to support.
Database abstraction layers reduce the amount of work by providing a consistent API to the
developer and hide the database specifics behind this interface as much as possible. This
approach provides flexibility to change an application’s persistence mechanism over time

without the need to re-engineer application logic that interacts with the data access layer.

The high-level logical diagram for the proposed Data Connector Framework is shown in
Figure 31. The presentation layer is what a system user sees or interacts with. It can consist
of visual objects such as screens, web pages or reports or non-visual objects such as an
interactive voice recognition interface. To provide the required functionalities to the client, the
application needs to interact with the Data Layer. The business logic layer represents the

business rules that are enforced via programming logic regarding how those rules are applied.

54

Scalable In-Memory Data Management Model for Enterprise Applications

The data access layer consists of the definitions of database tables and columns and the

computer logic that is needed to navigate the database.

B b

IMDB DRDB Files Data Cache

&

Data Connector API

g

Business Logic Layer

g

Presentation Layer

r

= g VT

Figure 31 : Proposed Architecture for Database API

The data can be stored in various forms such as in-memory database, disk resident database of
simple flat files. In the current enterprise applications the application layer is tightly coupled
with the data layer and the data storage method cannot be changed later based on the business
requirements. The proposed solution is a database connector API which provides a seamless
interface for the application developers so that the underline data storage mechanism does not
affect the application interface. The connector API will provide all the required functionalities
for either IMDB, DRDB or flat files so that all data handling logics will be excluded from the

application layer.

55

Scalable In-Memory Data Management Model for Enterprise Applications

4.3 Implementation Details

The proposed data connector framework in this research is a C++ library for accessing multiple
SQL based disk resident and in memory databases, flat file database and in memory data cache.
It uses native APIs of target data source so applications developed with this framework library
run swiftly and efficiently. This library acts as middle-ware and delivers database portability
across various different data sources. The In-memory data cache and the flat file database is
developed using C++ language and both of them were integrated with the data connector
framework. The following sections of this chapter describes the implementation details of the
in-memory cache, flat file database and finally the data connector framework along with their

features and design.

4.3.1 Implementation of Flat File based DB

The flat file database system is implemented based on File Input Output processing and
Streams. To access the structure of the data and manipulate it, the file is read in it’s entirely
into the computer's memory The database is a system folder with the given database name,
which is created in t?gpredefmed databdse focation within-the fife'systém. In this system the
tables are holding all‘fhe data in the Torm of flat files. Organization of databases and tables are

shown in Figure 32.

Table History

) () ()

Table Intraday

Table Tickers

TradeDB

Figure 32: Database organization in Flat File DB

In this System, the table structure has two parts as header rows and data rows. Header Row
consists the column names. Data Rows consist the records related to the columns. Some special

symbols are used as a delimiters for data columns.

56

Scalable In-Memory Data Management Model for Enterprise Applications

wvold FileDB: :Executefuery()

{

std: :wvector<String> vecQueryWords:

String z{uery = p_FileDBStmt->GFet{uery ()
CreateDatahrravFromString (vecQueryWords, zQuery, ' ')

if {wvecQueryWords[0] = "CREATE™)
{
if (vecfueryWords[l] = " ba
CreatelB (vecQuervWords[2])
else if (wvecQueryWords[l] == "IRELE™)
CreateTable (vecQueryWords[Z] ,p_FileDBStmt-»GetDatabase () ,vecQueryWords[3]);
}
else if (vecQueryWords[0] == "USE")
{
UselB (vecQueryWords[1]) :
}
else if (vecfueryWords[0] == "LELETE"
{
if (wecfueryWords.size() >= 5)
{
atd: :vector<3itring> wecOperatorData = SplitByString(vecQueryWordsa[4],"="):
DeleteRecord (vecQueryWords[2], p FileDBStmt->GetDatabase (), vecOperatorDatal0],
vecOperatorDatal[l]) ;
}
}

else if (vecfueryWords[0] = "IN

{

RI™)

String zColummlrray = vecQueryWords[Z]:
zColumnirray.ReplaceR11 (" (", "")
zColumndrra r1l)

String =zV=zl
ZWaluelrra

ZValuelArray

InsertReccord (g

_____ sArray) ;

}

else if (vecfueryWords[(] == "SELECT"

{
String zColummArray = wecQueryWords([l]:
String zTableName = wvecQueryWords[3]:

ztd: ivector<String> wecClauseData = SplitByString(zQuery,"W
String zWherellause = wecClauseDatal[C]:

kool bOpFound = false:;

String zOperator:;
GetlperatorFromClause (2WhereClause , bOpFound , 20perator) ;
String zComparedColum, zComparedvValue;

if (b0pFound)

{
std: :vector<String> wecOpData = SplitByString(zWherellause, z0perator) ;
zComparedColum = wecCpDatal[l]:
zComparedValue = wecCpDatal[l]:

atd: :vector<DBRecord*> wecERes = SelectRecords (p_FileDBStmt->»GetDatabase () ,zTableName,
z0perator, zComparedColum, zComparedValue) ;

}

else
gtd: icout<<"invalid operation"<<std::endl;

Figure 33 : Query Execution Method of Flat File DB

57

Scalable In-Memory Data Management Model for Enterprise Applications

The record and column separators used in this flat file database is as follows. Example table is

shown in Figure 34.

e Record Begin — Hex 2: STX (Start of Text)
e Record End - Hex 3: ETX (End of Text)

e Column Separator — |’ Pipe

EATICKER SERIAL|TXN DATE|OPEN|HIGH|LOW|CLOSE IVDLUI{EZITIGVE.R | VWAF | CHANGE | BCT_CHG| PREV_CLOSED|NEWS_FRV| INC_IDENE
EREA142112013/3/27:20:26:11(10.42(11.32(10.31111.02|6302|32125.32(110.95/1.53|0.32|10.92 |DFNS|1000 @08
EIWA142112013/4/29:20:27:11110.43111.02110.23/10.592111302164125.32111.9511.5310.62(11.92|DJNS|1001 ¥

Figure 34 : Flat File DB - Table Data

The flat file database system is implemented using C++ language and Input/output stream class
to operate on files. The queries are implemented in a similar way to standard SQL query
language and Create, Insert, Delete and Select and Drop statements are supported in the current

version and the DB query execution method of flat file DB is given in Figure 33.
4.3.2 Implementation of In-Memory Cache

The C++ Standard Template Library (STL) is a powerful and versatile collection of classes and
functions that provié’ég"an efficient, lightweight, and extensible framework for application
development. STLals® offess.a sophistigated devel of abstraction that promotes the use of
generic data structurgs and algorithms without the overhead of a generic solution. A STL
container is a holder object that stores a collection of other objects (its elements). They are
implemented as class templates, which allows a great flexibility in the types supported as
elements. The in-memory cache is developed using these STL containers and maps, sets, lists,
arrays and vectors have been extensively used for that. The main features of this cache is as

follows.

e Able to define Data tables, data rows and cells so that data organization look similar to
traditional database.

e Able to define primary key columns for tables.

e Provide support for indexing for faster access operations.

e Provide support for data types including bool, int, long, float, double and DateTime.

e Able to query the data table for various operations including exact match, partial match,
greater than, less than and between.

e Able to delete records based on given criteria.

e Able to clear tables and delete tables and alter tables by adding new columns.

58

Scalable In-Memory Data Management Model for Enterprise Applications

When using this in-memory cache, first the cache tables need to define. Table column names,
their data types and primary key columns for the tables are initially defined. Then data records
can be added to each table by setting values for each column of the record. Then these cache
tables can be queried for various operations such as exact match, greater than, less than etc.

Example usage of this in-memory cache is shown in Figure 35.

f/Define Table Columns

CacheColumnInfo* pInfol = new CacheColummInfo ("TICEER SERIRL"™, CACHE DATR TYPE LONG) ;
\CTICH_DRTE™, CACHE DATZ TYPE DRTE TIME)
", CRCHE DRTR TYPE DOUBLE) ;

", CRCHE DARTR TYPE DOUEBLE) ;
CacheColummInfo* pInfod = new CacheColummInfo(” ", CRCHE DATR TYPE DOUBLE) :
CacheColummInfo* pInfoS = new CachelolurmInfo ("CLOSE", CACHE DATA TYPE DOUBLE) ;

CacheColumnInfo* pInfol = new CacheColumnInfo(”
CacheColumnInfo* pInfo? = new CacheColumnInfo(”

CacheColumnInfo* pInfo3 = new CacheColumnInfo(”

std: ivector<CacheColumnInfo> vec Collnfo:
vec ColInfo.push back({*pInfol);
vec CollInfo.push back{*pInfol);
vec ColInfo.push back{*pInfol);
vec_ColInfo.push back({*pInfo3);
vec ColInfo.push back({*pInfod);
vec CollInfo.push back{*pInfob);

S/Define primary kevs

atd: :wvector<5tring> wvec Hey

vec KeyCols.push

vec EeyCols.push T 2O DREE]Y

FfCreate Cache

Cache* pCache = n

CacheTakle* pTableHistocry = plache->*Createlable vec_Collnfc,wec KeyCols);

ffRdding Data Records

long lRowCount = 10;

DateTime dtTransactionDate.SetDateTime (Z014,2,1,23,12,55);
long iVael = 0;

while(iWVal < 1RowCount)

{
CacheRecord* pCacheRec = pTableHistory-*FetEmptyRecord();
pCacheRec—>zZet (0) . Set (iVal) ;
dt TransactionDate.hAddMinutes({l}:
pCacheRec—->Eet (1) .Set {dt_TransactionDate) ;
placheRec—>Zet (2) .Setc(10_12);
placheRec—>Zet (2) .Bet (12} ;
pClacheRec—>Zet (4) .Set (= _.21) ;
pCacheRec—->zZetc (5) .Sec (= _22);
pTableHistory->*Insert (pCacheRec) ;
++iVal;

}

S /Fetching Row Count and Exact Match Results

int iBecordCount = pTakleHistory->EetBecordCount()
std: rset<CachelBecord*?> setBesults;
pTableHistory->*JueryForExactMatch (0, 2, setResultqj:

Figure 35 : Example usage of In-Memory Cache

59

Scalable In-Memory Data Management Model for Enterprise Applications

The implementation of in-memory cache has four basic classes namely Cache, CacheTable,

CacheRecord and CacheCell. The detailed class view of the system is shown in Figure 36.

Cache CacheTable
-map_Tables : Map<String, CacheTable *> -z_TableName : String
+CreateTable(in : String, in : Vec<CacheColumninfo>, in : Vec<String>) : void —|_Ca||s(-:0un£: int
+GetTable(in : String) : void -p_Key : Key
+DropTable(in : String) : bool -vec_Columninfo : Vec<CacheColumninfo>

-pset_Records : Set<CacheRecord*>*
-map_Numberindex : map<long, map<int, set<cacheRecord*>*>*>

1 -map_Floatindex : map<float, map<int, set<cacheRecord*>*>*>
1.* ['map_StringIndex : map<String, map<int, set<cacheRecord*>*>*>
CacheRecord +Insert(in : CashRecord*) : bool
-p_Data : CacheRecordData* +GetEmptyRecord() : CashRecord*
-p_Table : CacheTable* +QueryForExactMacth() : void
+Gel(in : int) : CacheCell 1.x 1 |+QueryForPartialMatch() : void

+QueryForGreaterThan() : void
l +QueryForLessThan() : void

«extends»q
1
! 1 1 1.*

Key CacheRecordData CacheColumninfo
-vec_KeyColumn : Vec<int> -p_CacheCellData : CacheCellData[1:n] -z_Name : String
+GetKeyCount() : int -e_Type : CacheDataType

CacheCellBase 1
-p_Data : CacheCellData*
+GetBool() : bool i
+Getlnt() : int 5
+GetLong() : long
+GetFloat() : float
+GetDouble() : double
+GetString() : String i
EXIANAS»
ﬁk CacheCellData CacheCellValue
#Union:
-m_Value : CacheCellValue
CacheCell — -b_Data : bool
1 -i_Data : int
+Set(in : bool) : void 1 -|_Data long
+Set(in : int) : void 1 L -f_Data.lroat
+Set(in : long) : void -d_Data: doulile
+Set(in : float) : void -z_Data'._char
+Set(in : double) : void -t_data : time_t
+Set(in : String) : void 1

Figure 36: Class Diagram of In-Memory Cache

60

Scalable In-Memory Data Management Model for Enterprise Applications

4.3.3 Implementation of the Framework for Data

The data connector API is designed to create a development experience that insulates
application developers from being domain experts in the data persistence layer. This allows
database experts to optimize interaction with the persistence layer without impacting the
application development process. The decoupling was obtained by defining a set of interfaces
setting the contracts for retrieving and persisting objects. This data connector framework is
designed as a C++ dynamic library and it directly calls native API's of target data source. The

features of the framework is as follows.

e Provide support for Oracle, SQLite, Flat File DB and In-Memory cache and designed
in an extensible way so that new data sources can be added at any point.

e The procedures for database connection creation and query execution are simplified
and the developers are not directly exposed to complex database specific code. So this
framework reduce the developer effort and time.

e Since it is designed as a C++ library, it can be easily integrated with enterprise

applicati

e Provide pg§?§ for Select.and.ofhef-pon-query eperations: inses jte and delete

e Datasource arﬁd(ection datametarscani: 2d configuration
file. So the underline data source of the enterprise applications can be changed with no
code changes.

In this framework, the DataConnector class is the one which reads the data source configuration
files and initialize the defined data connection in that file. The DataConnection is the base class
for all the data sources and it has two basic methods as ExecuteQuery and ExecuteNonQuery.
All the sub classes which corresponds to different data sources inherit these two methods and
implement them using the data source specific APl methods. So all the database specific
method calls and other complex data structures required are used only at this level and it has
simplified the application developer’s effort.

To provide a generic result set for all select queries in different data sources, several wrapper
classes are used to wrap the selected data. At the application level, developer has to iterate this
generic ResultSet class to get the results for a particular query. The DBRecord and DBField
corresponds to data value and data record in database. The underline data structure used to store
different data values is a union. So it is possible to save memory by using the same memory

region for storing different objects at different times. The detailed class diagram of the

61

Scalable In-Memory Data Management Model for Enterprise Applications

framework is given in Figure 37 and SQL.ite query execution method is shown in Figure 38.

An example code which shows how this framework can be used is given in Figure 39.

DataConnector DataConnection

-p_Connection : DataConnection*
-xdoc_Config : XMLDocument

+ExecuteQuery(in : String) : ResultSet

+Init() : void +ExecuteQuery(in : String) : int
+ExecuteQuery(in : ContextDataQuery*) : void
+ExecuteNonQuery(in : ContextDataNonQuery*) : void «extdnds»
1
* *
*
DataConnectionSqlite DataConnectionOracle DataConnectionCache DataConnectionFileDB
-p_SqliteConn : Sqlite3* -p_Env : OCIEnv* -p_Cache : Cache* -p_FileDB : FileDB*

——

Field QueryResults
Union -vec_Columninfo : Vector<Columninfo> ResultSet
-b_Data : bool -v;c_lm(l.rrenFR()acc.)rd - Vector<Field> -p_QueryResults : QueryResults*
-d Data: double +Getlint(in K |nt_ sint +GetAll() : DBTable
_z Data : char* 1.* 1 [+GetLong(in :int): long 1 1 at
— +GetFloat(in : int) : float +GetNext(: bool
+GetDateTime(in : int) : DateTime
1 1 ‘ 1 4% 1.*
& 1
. 1 | |
DBTable f =3) Datéa Golumninfo
-p_Data : Data* -vec_Colymps : Vector<Columpinfo> [-z_Name : String |
+GetRecord(in : int) : DBRector= dec \Records : deguesDBRecordData> -m_DataType : DBDataType
: : *
+GetColumnlindex(in : String) : int ! . L.
1"* —l
DBField | DBRecordData
DBFieldData - i :vec< i >
-p_FieldData : DBFieldData* _ _ vec_ﬂ.eldsl ve.c DBFleI(ljData
-m_DataType : DBDataType -i_Data : int 1 L+GetFiled(in :int) : DBFieldData
+G_etlnt() Sint -d_Data : double 1 +AddFiled(in :int) : void
+GetL0n§() long 1 |-pz_Data: String* —+AddField(in : long) : long
+GetFloat() . float -tv_Data : timeval +AddField(in : String) : void
+GetDouble() : double +Getint() : int 1
+GetString() : String +GetLong() : long
+GetFloat() : float DBR d
+GetDouble() : double ecor 1
+GetString() : String -p_RecordData : DBRecordData*
-vec_Columninfo : Vector<Columnlinfo>
+GetField(in : int) : DBField

Figure 37 : Class diagram of Data Connection Framework

62

Scalable In-Memory Data Management Model for Enterprise Applications

BesultSet DataConnection3QLite::ExecuteQuery(String _z5QL)
I
//Prepare Query Statement
sglited_stmt* pStmt;
const char *taill;
int iError = sglite3_prepare (p_SQLiteConn, _=z5QL.GetCString(), _=z5QL.Getlength(), &pStmt, &taill):
if (iError !'= SQLITE_OK)
| {
return NULL:

f/Initialize query results.
SQLiteQueryResults* plueryResults = new SQLite(ueryResults(this, pStmt):

//Get Column Count
int col_cnt = sglite3_column count (pStmt) ;
fprintf{stdout, "%d ns'n", col_cnt);
int rowcount = 0;

//Execute the Query
sglite3_step(pStmt) ;
for (int i=0; i<col_cnt; i++)
| {
DBDatalype dtColumn = DB DATA TYFE NONE:

//Get column data type and the name
int iDataType = sglite3_column_type (pStmt, i) ;
const char* zColName = sglite3_column name (pStmt, i);
String zColumniame (zColName) ;
switch (iDataTlype)
| {
case SQLITE INTEGER:
dtColumn = DB_DATA TYPE INT:
break;
case SQLITE TEXT:
drColumn =
break;
case SQLITE FL

default:
break;

pRueryResults->»vec_ColumnInfo.push_back(ColumnInfo (zColumntame, dtColumn, iDatalength, 10003} :

fprintf(stdout, "%d. %s|%d\n", i, sglite3_column name (pStmt, i),sglited_column_type (pStmt, i)}

/f Define local variables
for(unsigned int j = 0; J < col_cnt: ++j)
plueryResults-»vec_CurrentReccrd.push_back (SQLiteQueryResulcs::Field()):

std::vector<ColumnInfo>::iterator itrInfo = pQueryResults->»vec ColumnInfo.begin():
atd: :vector<ColumnInfo>::iterater itrInfoEnd = plueryResults->»vec ColumnInfo.end() ;

std: :vector<3QLiteQueryResults: :Field»::iterator itrDefine = pQueryResults-»vec_CurrentReccrd.begin() |

Sfhllocate data for fields
int k= 1:
while (itrInfo != itrInfoEnd)
| {
int ilength = 0:
DBDatalype dtColumn = itrInfo->GetDatalype():
switch (dtColumn)
{
case DB DATR TYFE INT:
case DB_DATA TYPE_LONG:
case DB _DATA TYFE FLOAT:
case DB _DATA TYPE DOUBLE:
break;
case DB _DATA TYPE_STRING:
ilength = itrInfo->GetMaxDatalength) :
ilength *= 3;

63

Scalable In-Memory Data Management Model for Enterprise Applications

itrDefine-»z_Data = new char[ilength + 1]:
itrDefine-»z_ Data[l] = O:
break:

case DB _DATA TYPE USTRING:
ilength = itrInfo->GetMaxDatalengthi) :
ilength *= 2;
itrDefine-»uz_Data = new UChar[ilength + 1]:
itrDefine-»uz_Data[0] = 0:
break;

default:
break;

++k;
++itrDefine;
++itrInfo;

return plueryBesults;

Figure 38 : ExecuteQuery Method for SQLite DB

//Initialize the DB Connection
DataConnector* phat
pDataConnector->Init

f/Execute the DB
int i_UniguelDl = C
String zQuery = "5

ContextDatafuery* plontextla
pDataConnector->Executeijuery (plontexthataguery) ;

//Get the result set
DETzble mDBTable = pContextDatafuery->GetTakle():

//Iterate through the result set
DBRTable::Iterator itr = mDBTable.Begin():
DBTable::Iterator itrEnd = mDBTable.End()

int iFieldIdExchange = -1, iFieldIdSymbol = -1:
iFieldIdExchange = mDBTakble.GetColumnIndex (" TICKER ")
iFieldIdSymbol = mDBTable.GetlolumnIndex (" :
while({itr != itrEnd)

H A

[ERecord& rRecord = *itr:

String zExchange,zSymbol ;
if{iFieldIdExchange > -1)

zExchange = rRecord[iFieldIdExchange] :
if (iFieldIdSymbol > -1)

z3vmbol = rRecord[iFieldIdSymbol]

%35",zExchange.GetCString() ,zSymbol.GetCString()) ;

m_LogFile.Log (M _LOG_LEVEL 3,M LOG CATEGORY_LE,
++itr;

Figure 39 : Example usage of Framework

64

Scalable In-Memory Data Management Model for Enterprise Applications

4.4 Performance Analysis of Framework

Abstraction versus performance is one of the major design consideration which should be
considered when developing such a data access layer. As discussed in the previous section,
there is an abstraction layer, which helps developers transparently connect to the currently
configured store. The information regarding the database and provider is generally specified in
a configuration file. While this approach is very flexible, it can become a performance overhead
if not designed appropriately. So after implementing the framework, same benchmarks carried
out in Section 3.2 are carried out again with the framework. The results for insert operations
which are measured with Oracle and SQL.ite databases are as given in Figure 39 and Figure
40. The results for the select operation is given in Figure 41.

During this analysis, the direct database API calling method which is given in section 3.3 and
the database operations through the Data Connector API is compared. For both scenarios, how
the transactions per second varies when the number of transactions are increasing is plotted.
As we can see in the graphs, the TPS difference between the two scenarios are not significant.
So we can conclude that adding an extra tayer in between the business togic layer and the data

layer does note degrédelthe application performande)

400
350
300
250
200
150

100

Transactions Per Second

50

Number of Transactions

Figure 40 : Insert Operation Performance of Framework - With Oracle

65

Transactions Per Second

Transactions Per Second

90000
85000
80000
75000
70000
65000
60000
55000
50000
45000

Scalable In-Memory Data Management Model for Enterprise Applications

- & =SQlite-Without Framework —@— SQLite-With Framework

40000

Number of Transactions

ure 41 Select Opération Pérformance of Framewoark- With sQLite ™
\ fo s :

— & -SQlite = — ® -Oracle —&—SQlite_Framewok —#— Oracle_Framework

400000
350000
300000
250000
200000
150000
100000
50000
0

20000 50000 100000 200000 500000 1000000 2000000 5000000
Number of Transactions

Figure 42 : Select Operation Performance of Framework

66

Scalable In-Memory Data Management Model for Enterprise Applications

S. CONCLUSION AND FUTURE WORK

This chapter is intended to discuss the summary of benchmark results, final conclusion about
the project and the remaining works of this project. While Section 5.1 gives a brief summary
of the results, Section 4.2 gives details about future progress and remaining tasks.

5.1 Conclusion

Data growth is one of the major challenge that enterprise applications are facing today. As data
accumulates, there is a corresponding burden on software developers to maintain acceptable
levels of performance, whether that is measured by the speed with which an application
responds, the ability to aggregate and deliver data, or the business value of information.
Organizations are recognizing that their growing data stores bring massive, and largely
untapped, potential to improve business intelligence. So researches on scalable data
management solutions has gained more popularity within the industry now a days. During this

research basically two major aspects of this problem domain is covered.

e Develop an upbiased benchmark for different In-Memory databases by comparing them
with disk resg@ht datahases, In-Memory. Data, Gaches.and flat file database systems.
e Develop a frameworkfor@atalSourceddanagement so that enterprise applications can

be designed without concerning the underline data source.

To address the first problem, comprehensive performance evaluation was carried out for insert
update, delete and select operations of different data sources. System throughput and the
response time was taken as the performance metrics and the tests were carried out by varying
the number of transactions and number of concurrent connections. For this benchmark, SQL.ite,
MemSQL, and H2 in-memory databases, Oracle disk resident database, in-memory data cache

and in-memory database are used.

According to the benchmark results obtained in Section 3.3, it is clear that In-Memory
databases performs well than the disk resident databases. For insert operation IMDBs are
around 200 times faster than the Oracle. For update operation IMDBs are around 80 times
faster than the Oracle and for delete operation they are around 250 times faster. But for insert
operation, oracle also performs comparatively well than the other operations and IMDBs are
only 2 times faster than the Oracle. The disk I/O overhead and the network delay has become

the biggest factors for delays in disk resident databases like Oracle.

67

Scalable In-Memory Data Management Model for Enterprise Applications

Out of the three in-memory databases selected, MemSQL has the highest TPS for insert, select
and delete operations. But for update operation, MemSQL has the lowest performance when
compared to the other two databases. For insert, delete and select operations, SQLite has the
next highest TPS than the other two IMDBs and H2 has the lowest. For update operation H2
database has the highest TPS. A key capability of the MemSQL platform is fast deletes. Users
need to be able to delete data even faster than they can insert it so the system is not
overwhelmed. When the data ingest rate is faster than the system can delete, users are forced
to limit the amount of data they retain for real-time analytics. A system that can delete large
volumes of data quickly can increase the amount of data that can be retained for real-time

analytics.

Flat File Database has less run time for insert operation than the Oracle database as well. Non
availability of transaction recovery mechanisms such as transactions logs and not having any
constraint checking are the reasons for fast insert operation of file database. But for select

operation flat file database become very slow when number of transactions increased. The

reason for this poor nerformance of flat file DR is. to access the structure of the data and

manipulate it, the fileq EJnead amaisentiretyl intattheiconipuitdr's rien
For both insert and'$@1Eet operations, in-memory. dat h better than the
other databases. ter than IMDBs

for insert operations. For select operation it is around 5 times faster than Oracle and 1.5 times
faster than IMDBs. Although in-memory data cache is not a good data persistent mechanism
due to its volatile nature, it is good for enterprise applications which required high data

processing rate such as complex event processing systems.

When number of concurrent connections are increasing, for all databases the TPS is initially
increased gradually and then remains constant. But for SQLite database, TPS is gradually
decreased when number of concurrent connections are high. According to the results, it can be
seen that oracle database can support larger number of concurrent connections without

degrading the performance.

To address the second problem of not having a standard framework to access data source layer,
a data connector framework is developed in C++ language. By looking at the performance
analysis results of the Framework given in Section 4.4, it can be concluded that adding an extra
layer between the presentation layer and the data layer does not affect the performance of the

application as there is no significant difference between the two curves.

68

Scalable In-Memory Data Management Model for Enterprise Applications

5.2 Future Work

At this initial release of the data management framework, support for a stack of most useful
data sources used in the enterprise application is provided. But sometimes these data sources
will not perfectly match with the some of the enterprise applications, since there are large
number of databases using in this domain. Since this framework is extensible solution, it is
possible to enhance its features by providing support for more databases and data sources which
are used in the applications. Hence in future, it is possible to provide a data source stack which
contains almost all databases and data sources under each specific category and then it will be
more flexible to developers, when managing their data sources.

Currently the data management framework is supported for Linux OS and GNU GCC C++
compiler only. So as future work we could add cross platform support for this so that it will be

more usable for enterprise applications.

Cloud computing is quickly gaining popularity with companies in all industries. The cloud's
on-demand elasticity, enabling it to expand its computational power as needed for peak loads,
creates new and impertant benefits forenterprise computing. S6.1n future we could research on
how cloud based daté??)mces canheantegratédwith this frasnework amdshow effective it would

be for enterprise app'liiéations.

Security will be one of the major factors which impact greatly in software development. All
the core business data and other organization data are stored in these data sources. So accessing
and altering these data should be done in more secure manner. So the security aspects such as
enable password protection for data source connections and add support for encrypted data can

be integrated with this framework in future.

69

Scalable In-Memory Data Management Model for Enterprise Applications

6. REFERENCES

[1].Gordon E. Moore., "Cramming More Components into Integrated Circuits ", in proceedings
of the IEEE, vol. 86, No. 1, January 1998.

[2].Donald K. Burleson, "Oracle Tuning: The Definitive Reference”, Rampant TechPress, 2nd
Ed. New York: Wiley, 2010, pp. 483-485.

[3].1BM Inc." Applying new analytics tools to reveal new opportunities”. Internet:
http://www.ibm.com/smarterplanet/us/en/business_analytics/article/it_business_intelligen
ce.html. [Accessed: 03-Jan-2014].

[4].F. Raja et al., "A Comparative Study of Main Memory Databases and Disk Resident
Databases", in World Academy of Science, Engineering and Technology 14 , 2008

[5].HO. Plattner and A. Zeier, "In-Memory Data Management: An Inflection Point for
Enterprise Applications”, Springer, Berlin Heidelberg, 2011.

[6].Manghul Tu et al., “Secure Data Objects Replication in Data Grid", in IEEE Transactions
on Dependable and Secure Computing, Vol 7 No 1, Jan 2010

[7].Pierangelo Di Saazo et al., "Auto-tuning-af, Cloud-hased: In-memory Transactional Data
Grids via Machi@earning", indREE $econd.Symposium-on Network Cloud Computing
and Applications=2012

[8].InfoQ Articles."Jags Ramnarayan on In-Memory Data Grids". Internet:
http://www.infoq.com/articles/in-memory-data-grids. [Accessed: 22-Jan-2014].

[9].Hector Gracia and Kenneth Salem., “Main Memory Database Systems: An overview", in
IEEE Transactions on Knowledge and Data Engineering, Vol 4 No 6, Dec 1992

[10]. Oracle TimesTen, "Oracle Times Ten In-Memory Database Architectural Review",
Oracle Press, USA, 2006, pp. 10-11.

[11]. Cha S.K. et al., "An extensible architecture for main-memory real-time storage systems",
in IEEE Third International Workshop on Real-Time Computing Systems and
Applications, 1996

[12]. H.Garcia-Molina and K. Salem, “High performance transaction processing with
memory resident data,” in Proc. Int. Workshop OII High Performance Transaction
Systems, Paris, Dec. 1987

[13]. R.B. Hagmann, “A crash recovery scheme for a memory-resident database system,”
IEEE Transactions and Computing.. Vol. C-35, pp. 830-842. Sept. 1986.

70

Scalable In-Memory Data Management Model for Enterprise Applications

[14]. D. J. DeWitt et al., "Implementation techniques for main memory database systems",
in Proceedings of ACM SIGMOD Conference, June. 1084.

[15]. Krueger J. et al., "Data structures for mixed workloads in in-memory databases", in IEEE
5th International Conference on Computer Sciences and Convergence Information
Technology (ICCIT), 2010

[16]. T.J. Lehman and M. J. Carey, "Query processing in main memory database management
systems," in Proc. ACM SIGMOD Conference, Washington, DC, May, 1986.

[17]. M. H. Eich, "A classification and comparison of main memory database recovery
techniques,” in Proceedings of International Conference on Data Engineering, Feb. 1987,
pp. 332-339.

[18]. S. K. Cha et al., “Object-oriented design of main-memory DBMS for real-time
applications," in Proceedings of 2nd International Workshop on Real-Time Computing
Systems and Applications, Oct. 1995.

[19]. H.Garcia Molina and K. Salem, "High performance transaction processing with
memory resident data,” in Proceedings of International Workshop on High Performance
Transaction Systems, Paris, Dec.1987.

[20]. M.Stonebrakeré'v%ls\/lanaging persistent objects in a_multi-level store,” in Proceedings of
ACM SIGMODBBanterence, Depyer, CO, May 1991, pp.2-11.

[21]. Elliot King., T_he Growth And Expanding Application Of In-Memory Databases", for
Information Value Loyola University Maryland, June 2011

[22]. Liu Yang et al., "The Research of Embedded Linux and SQL.ite Database Application in
the Intelligent Monitoring System", in IEEE International Conference on Intelligent
Computation Technology and Automation (ICICTA),Vol 3, 2010

[23]. Olson, M.A., "Selecting and implementing an embedded database system", in IEEE
Computer Society, Volume 33 Issue 9,Sept 2000

[24]. Jens Krueger et al.,”Main Memory Databases for Enterprise Applications”, in IEEE 18Th
International Conference, VVol. 1 No 6, Sept 2011.

[25]. Hasso Plattner and Alexander Zeier, “Introduction to IMDB,” in In-Memory Data
Management - An Inflection Point for Enterprise Applications, 2nd Ed. New York:
Springer, 2011, pp. 3-5.

[26]. David J. DeWitt, "The Wisconsin Benchmark: Past, Present, and Future,” in The
Benchmark Handbook, 2nd Ed. Morgan Kaufmann Publishers Inc, 1993.

[27]. CSQL, "CSQL Wisconsin Benchmark Results” [Online]. Available:
http://csql.sourceforge.net/bresults.html [Accessed On: 2014 February 14]

71

http://csql.sourceforge.net/bresults.html

Scalable In-Memory Data Management Model for Enterprise Applications

[28]. “Oracle TimesTen In-Memory Database on Oracle Exalogic Elastic Cloud” , white
paper, Oracle Corp., July. 2011.
[29]. “Telecommunication Application Transaction Processing (TATP) Benchmark

Description”, white paper, IBM Software Group Information Management., March. 2009.

[30]. “Using the TATP Benchmark to Measure the Effect of Additional Memory Capacity on
Database Performance”, white paper, IBM System x and Database Performance Analysis,
June, 2011.

[31]. Francois Raab, " TPC-C -- The Standard Benchmark for Online transaction Processing,"
in The Benchmark Handbook, 2nd Ed. Morgan Kaufmann Publishers Inc, 1993.

[32]. Yao, S. Bing; Hevner, Alan R., "A Guide to Performance Evaluation of Database
Systems," in The NBS Special Publication 500-188, 1984.

[33]. SQlite.org, "SQLite Database ” [Online]. Available: _https://www.sqlite.org/ [Accessed
On: 2015 February]

[34]. H2database.org,"H2 Database ” [Online].

Available: http://www.h2database.com/html/main.html| [Accessed On: 2015 February]

[35]. “Comparison of Hibernate with H2 server vs Hibernate with SQL ite embedded”, in
JPA Performancé&Benchmari; 2010

[36]. Memsql.org,g_'l%fcmSQL DoduitiéntaticiBCfOnline] SAVALhBI!
http://develc S con/dotsHatest A ceessed On: 2015 February]

[37]. Oracle Cooperation, “Oracle Database” [Online|. Available:
http://www.oracle.com/us/corporate/index.html [Accessed On : 2015 March]

[38]. Bitton, D., DeWitt, D. J., and C. Turbyfil, "Benchmarking Database Systems: A
Systematic Approach,” Computer Sciences Department Technical Report #526, Computer

Sciences Department, University of Wisconsin, December 1983.

[39]. Pierangelo Masahiko Tanaka et al.,"Database Operation Using ODBC/JDBC in the KEK
8gev LINAC", in International Conference on Accelerator and Large Experimental Physics
Control Systems, Italy,1999

72

http://csql.sourceforge.net/bresults.html
http://www.h2database.com/html/main.html
http://developers.memsql.com/docs/latest/
http://www.oracle.com/us/corporate/index.html

