
SCALABLE IN-MEMORY DATA MANAGEMENT MODEL

FOR ENTERPRISE APPLICATIONS

Anupama Piyumali Pathirage

(138223D)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2015

SCALABLE IN-MEMORY DATA MANAGEMENT MODEL

FOR ENTERPRISE APPLICATIONS

Anupama Piyumali Pathirage

(138223D)

Thesis submitted in partial fulfilment of the requirements for the Master of Science in

Computer Science.

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2015

Scalable In-Memory Data Management Model for Enterprise Applications

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it does not

contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: …………………………… Date:………………………………..

Name: Anupama Piyumali Pathirage

I certify that the declaration above by the candidate is true to the best of my knowledge

and that this report is acceptable for evaluation for the Post Graduate Project.

Signature: ………………………… Date:………………………………..

Name: Dr. Amal Shehan Perera

Scalable In-Memory Data Management Model for Enterprise Applications

ii

ABSTRACT

Project Title: Scalable In-Memory Data Management Model for Enterprise Applications

Authors: Pathirage A.P

Supervisor/s: Dr.Shehan Perera (Supervisor)

Dr.Malaka Walpola (Coordinator)

With the rapid advances in technology and data volume, having efficient and scalable data

management system is essential for most of the enterprise applications. So In-Memory data

management systems are becoming the highly used data management solution in most of the

time critical enterprise solutions. Although In Memory Data Management Systems are widely

used, still they are having problems such as scalability issues, concurrency problems etc. This

project is an effort that aims to propose a scalable enterprise solution for in memory data

management, identifying the bottlenecks in the current In-Memory Data management systems.

Although there are various benchmarks are available for Disk Resident Databases, lack of a

fair metric for comparing the performance of different in-memory database systems has

become a problem when selecting the appropriate data management system for enterprise

applications. Currently there are various in-memory databases are available and when using

them with the enterprise applications, developers have to put lot of effort as there is no standard

API/Interfaces available for them.

This research project addresses these two problems by providing an unbiased performance

benchmark for various in-memory databases and developing a data connector framework to

access different data sources such as in-memory databases, disk resident databases, flat file

data bases and in-memory data caches.

This report provides details about the problem background, existing system implementations

and current research areas in this domain and how I’m going to achieve the objective.

Keywords: In-Memory Database, In-Memory Data Grid, Disk Resident Database, Data

Access Layer, Database Benchmarking

Scalable In-Memory Data Management Model for Enterprise Applications

iii

ACKNOWLEDGEMENT

I would like to thank Dr. Shehan Perera, my supervisor, for his invaluable support, assistance

and advices given throughout this project. His expertise and continuous guidance enabled me

to complete my work successfully and his help in moderating the content was invaluable. I

would also like to thank Dr. Malaka Walpola, the project co-ordinator, for his continuous

support and feedback on the structure of the project which motivates me to do my best.

Further I would like to thank all my colleagues for their help on finding relevant research

materials, sharing knowledge and experience and for their encouragement. My sincere

appreciation goes to my husband and parents for the continuous support and motivation given

to me to make this thesis a success.

Finally I would like to thank all my colleagues at DirectFN, who helped me to enhance my

knowledge and for the support given to me to manage my MSc research work.

Scalable In-Memory Data Management Model for Enterprise Applications

iv

TABLE OF CONTENT

Declaration ... I

Abstract .. II

Acknowledgement ... III

Table of Content ... IV

Table of Figures ... VI

Table of Tables .. VII

List of Abbrevations .. VIII

1. Introduction ... 2

1.1 Problem Background ... 2

1.2 In-Memory Data Management Systems ... 4

1.2.1 In-Memory Databases (IMDB) .. 5

1.2.2 In-Memory Data Grid (IMDG) .. 6

1.3 Limitations of Existing Solutions ... 8

1.4 Motivation .. 8

1.5 Objectives .. 9

2. Literature Review .. 10

2.1 Disk Resident Databases vs. IMDS ... 10

2.2 In-Memory Database Architecture .. 11

2.2.1 Impact of Memory Residency on IMDB functionality 14

2.3 Application of Main Memory Databases ... 18

2.3.1 IMDB for Embedded Systems ... 18

2.3.2 IMDB for Enterprise Applications ... 19

2.4 Performance Benchmarks for In-Memory Database...................................... 21

2.4.1 Wisconsin Benchmark ... 21

2.4.2 TimesTen Performance Throughput Benchmark (TPTBM) .. 23

2.4.3 Telecom Application Transaction Processing Benchmark(TATP) 24

2.4.4 Transaction Processing Performance Council -C Benchmark(TPCC) 26

2.5 Cloud based In-Memory Databases ... 27

3. Benchmarking Methodology ... 29

3.1 Analysis of Comparison and Evaluation Scenarios 29

3.1.1 Overview of Selected IMDB .. 30

3.1.2 Overview of Selected DRDB ... 34

3.1.3 Overview of In-Memory Data Caches ... 35

Scalable In-Memory Data Management Model for Enterprise Applications

v

3.1.4 Overview of Flat File Database .. 36

3.1.5 Feature Comparison of Selected Database ... 37

3.2 Analysis of Benchmark Criteria ... 37

3.2.1 Benchmark Design ... 39

3.2.1.1 System Configuration ... 39

3.2.1.2 Test Data ... 39

3.2.1.3 Benchmark Workload and Experimental Design ... 40

3.2.2 Benchmark Execution .. 41

3.2.3 Benchmark Analysis .. 42

3.3 Results ... 42

3.3.1 Results for Insert Operation ... 42

3.3.2 Results for Select Operation ... 45

3.3.3 Results for Update Operation ... 48

3.3.4 Results for Delete Operation .. 50

4. Framework Implementation ... 53

4.1 Problem Background ... 53

4.2 Design of the Framework ... 54

4.3 Implementation Details .. 56

4.3.1 Implementation of Flat File based DB ... 56

4.3.2 Implementation of In-Memory Cache .. 58

4.3.3 Implementation of the Framework for Data ... 61

4.4 Performance Analysis of Framework .. 65

5. Conclusion And Future Work .. 67

5.1 Conclusion .. 67

5.2 Future Work .. 69

6. References .. 70

Scalable In-Memory Data Management Model for Enterprise Applications

vi

TABLE OF FIGURES

Figure 1 : Moore's Law for Disk Speed ... 3

Figure 2 : In Memory Data Management System .. 5

Figure 3 : IMDG Architecture ... 7

Figure 4 : Disk Resident Databases vs. IMDS ... 11

Figure 5 : IMDB Architecture.. 13

Figure 6 : Usage of IMDB ... 18

Figure 7 : Enterprise Performance In Memory Cycle .. 20

Figure 8 : Times Ten Benchmark Throughput update (100% Updates) 24

Figure 9 : TATP benchmark on transaction processing time .. 25

Figure 10 : SQLite Architecture .. 30

Figure 11 : MemSQL Architectue ... 33

Figure 12 : Elements of Oracle .. 34

Figure 13 : Database System Benchmark Methodology.. 38

Figure 14: Example Insert Statement ... 42

Figure 15 : Insert Operation -Run Time Comparison .. 43

Figure 16 : Insert Operation - Transactions per Second Comparison 43

Figure 17 : Insert Operation - Concurrent Connections vs TPS .. 44

Figure 18 : Example Select Statement ... 45

Figure 19 : Select Operation - Run Time Comparison .. 46

Figure 20 : Select Operation – Transactions Per Second Comparison 46

Figure 21: Select Operation - Concurrent Connections vs TPS .. 47

Figure 22 : Select with Joins - TPS Comparison ... 47

Figure 23 : Example Update Statement ... 48

Figure 24 : Update Operation - Run Time Comparison .. 48

Figure 25 : Update Operation - Transactions Per Second Comparison 49

Figure 26 : Update Operation - Concurrent Connections vs TPS .. 49

Figure 27 : Example Delete Operation .. 50

Figure 28: Delete Operation -Run Time Comparison.. 50

Figure 29 : Delete Operation - Transactions Per Second Comparison 51

Figure 30 : Delete Operation - Concurrent Connections vs TPS ... 51

Figure 31 : Proposed Architecture for Database API .. 55

Figure 32: Database organization in Flat File DB ... 56

Figure 33 : Query Execution Method of Flat File DB ... 57

Figure 34 : Flat File DB - Table Data .. 58

Figure 35 : Example usage of In-Memory Cache .. 59

Figure 36: Class Diagram of In-Memory Cache.. 60

Figure 37 : Class diagram of Data Connection Framework .. 62

Figure 38 : ExecuteQuery Method for SQLite DB .. 64

Figure 39 : Example usage of Framework ... 64

Figure 40 : Insert Operation Performance of Framework - With Oracle 65

Figure 41 : Select Operation Performance of Framework - With SQLite 66

Figure 42 : Select Operation Performance of Framework .. 66

file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046751
file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046755
file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046760
file:///E:/Bkp/D/OldLP/LectureNotes/MSC/Project/PGProject/Docs/Thesis/CS5999-PGP-138223D_v2.docx%23_Toc420046764

Scalable In-Memory Data Management Model for Enterprise Applications

vii

TABLE OF TABLES

Table 1 : CSQL Wisconsin Benchmark Results .. 23

Table 2 : Feature Comparison of Selected Databases .. 37

Table 3 : Benchmark System Configurations .. 39

Table 4 : Database Table Data ... 40

Table 5 : Performance Metrics ... 41

Table 6 : Benchmark Tool Implementation Details ... 41

Scalable In-Memory Data Management Model for Enterprise Applications

viii

LIST OF ABBREVATIONS

Abbreviation Description

ACID Atomicity, Consistency, Isolation, Durability

ANSI American National Standards Institute

API Application Programming Interface

CDC Change Data Capture

CPU Central Processing Unit

CRUD Create, Read, Update, and Delete

CSV Comma Separated Values

DAL Data Access Layer

DBA Database Administrator

DML Data Manipulation Language

DRDB Disk Resident Database

IMDB In-Memory Database

IMDG In-Memory Data Grid

IMDS In-Memory Data Management System

IPC Inter Process Communication

JIT Just In Time

JDBC Java Database Connectivity

ODBC Open Database Connectivity

MMDB Main Memory Database

MVCC Multi Version Concurrency Control

RAM Random Access Memory

RDBMS Relational Database Management System

RTOS Real Time Operating System

SQL Structured Query Language

STL Standard Template Library

TPS Transactions per Second

Scalable In-Memory Data Management Model for Enterprise Applications

2

1. INTRODUCTION

This chapter is intended to provide the introduction to the project with the details of the problem

background and the importance of doing this project. This chapter mainly addresses the

drawbacks of traditional disk based databases, necessity of having an In Memory Data

Management System, including its definition, overview and limitations. This chapter will

further discuss about motivation factors which have affected for doing this research project and

the objectives of this research project.

1.1 Problem Background

With the development of information technology systems and many other scientific disciplines,

large data sets are very common nowadays. In domains such as weather/climate forecasting,

financial and stock trading, telecommunication, airline schedulers etc., large volume of data is

generated every day and these data needs to be accessed and analysed by sophisticated

techniques, so that enterprises can serve their customers quickly and effectively.

Magnetic disks are the primary means of storing online information of most software systems

for the past few decades. During that period magnetic disk technology has undergone a

dramatic improvement in terms of their capacity and storage mechanism such as file systems,

database systems etc. But the performance of disk based systems do not improve with the same

pace and most of the large scale enterprises are finding it problematic to scale disk based

systems to match the current business requirements.

According to most of the measures, computing power doubles every couple of years. Back in

the mid-1960’s, Gordon Moore, in his research paper “Cramming More Components into

Integrated Circuits” introduced the idea of 'Moore's Law' which postulated that CPU power

will get four times faster every three years [1]. While Moore’s law is correct for processor

speed and cost, later people have over-generalized this principle as it applies to disks and RAM

as well. But performance of many of the other components in the overall computer

infrastructure has not kept pace with the improvements in processing speeds. Performance

improvements in storage systems have noticeably lagged behind. The rotational speed of the

disk does not improve with the same pace and it is million times longer than raw RAM seek

time. Moore's Law is true for RAM and disk costs as prices are continually falling for them,

but the speed growth of disk does not follow the Moore's Law as shown in Figure 1 [2].

Scalable In-Memory Data Management Model for Enterprise Applications

3

So the combination of large dataset size, geographic distribution of users and resources and

computationally intensive analysis result in complex performance demands which are not

satisfied by any of the existing disk based data management infrastructures.

Figure 1 : Moore's Law for Disk Speed

With the rapid improvement in hardware technologies over the past few decades, multicore

architectures and the availability of large amount of main memory at low costs have made a

new era in data management techniques. Researchers have come up with the idea of in-memory

data management and computing where primary locus of online data has shifted from disk to

random access memory, with disk relegated to a backup/archival role. By moving data into

memory and distributing it across multiple servers, this approach aims for easier access to data,

improved scalability and better data analysis.

With the rapid growth in data volume and the requirement to access these data in real time, In-

Memory Data Management Systems have become more popular. Following are some of the

factors which have mainly contributed to the growth of In- Memory Data Management systems

[3].

 Large volume of Data.

According to the recent research and surveys the amount of data created and replicated

is increasing exponentially and 90% of today’s data were created in the last 2-3 years.

With this data explosion, enterprises are having the problem of how to manage, analyse

Scalable In-Memory Data Management Model for Enterprise Applications

4

and protect these vast quantities of data. With the increase of data volume, time taken

for access and analysis also has increased.

 Requirement for accessing big data in real time

As organizations have exponentially increased the volume, velocity and variability of

type of data they collect, process and manage, traditional database designs are not

adequate. This explosion of data presents many challenges related to scalability, timely

access for critical decisions and increased cost due to increased complexity.

 Requirement for faster analysis.

The reason that organizations are collecting and storing more data than ever before is

that their businesses depend on it and faster analysis and response are essential to

survive in competitive business environment.

 Distributed data.

In some of the enterprise applications, data are geographically distributed. To have

easier access to these data, improved scalability and better data analysis, data needs to

move in to memory and may need to distribute it across multiple servers.

 Application performance and scale

Application development efforts must consider how database systems are in use to best

determine their ultimate performance. For example, data storage systems and data

access may not be able to keep up with the increasingly higher volume of transactions

in an organization’s mission-critical applications and this will lead to an adverse effect

on the application’s performance.

1.2 In-Memory Data Management Systems

To address the above mentioned problems, In-memory data management systems (IMDS)

concept was introduced in the late twentieth century. An in-memory database system is a

database management system that stores data entirely in the main memory. This contrasts to

traditional disk based database systems, which are designed for data storage on persistent

media. Because working with data in memory is much faster than writing to and reading from

a file system, IMDSs can perform applications’ data management functions in an order of

magnitude. Since their design is typically simpler than that of on-disk databases, IMDSs can

also impose significantly lower memory and CPU requirements. So In memory data

management systems can achieve significant improvements in performance, processing time

Scalable In-Memory Data Management Model for Enterprise Applications

5

and throughput rates over conventional database systems by eliminating the need for I/O to

perform database applications. Since the price of random access memory is dropping and a

large number of real-time applications are emerging, MMDB has become a hot research topic

in database management.

As semiconductor memory becomes cheaper and chip density increases, it becomes feasible to

store larger databases in memory. Since computers’ main memory has different properties than

the magnetic disks, design and the performance of Memory resident data management systems

are different from disk resident data management systems. Memory resident database systems

store their data in main physical memory and provide very high speed access [4]. How the in-

memory data management systems are used in applications are shown in Figure 2.

Figure 2 : In Memory Data Management System

The existing In-memory data management systems can be broadly categorized in to two areas.

 In-Memory Databases (IMDB) – Also known as Main Memory Database System

(MMDB) or Memory Resident Database. IMDBs store their data in the main physical

memory and provide very high speed access.

 In-Memory Data Grid (IMDG) – IMDGs are off the shelf software products and its

data model is distributed across many servers in a single location or multiple locations.

All data is stored in the RAM of the server.

1.2.1 In-Memory Databases (IMDB)

In-memory databases (IMDB) can be used with different types of applications and they are

most commonly used in applications that demand very fast data access, storage and

manipulation, and in systems that don’t typically have a disk but required to manage

appreciable quantities of data.

Clients Application Tier

In-memory data
management system

Database

Scalable In-Memory Data Management Model for Enterprise Applications

6

In memory database systems can be used with both embedded and non-embedded systems.

IMDSs running on real-time operating systems (RTOSs) provide the responsiveness needed in

applications which require different functionalities such as IP network routing, telecom

switching, and industrial control. Since most embedded systems are highly resource-

constrained, the small memory and CPU footprint of In-memory databases make them ideal

for these systems.

Non-embedded enterprise applications which require exceptional performance are also an

important growth area for in-memory database systems. For example, algorithmic trading and

other applications for financial markets use IMDSs to provide instant manipulation of data in

order to identify and leverage market opportunities. Some multi-user Web applications such as

e-commerce and social networking sites use in-memory databases to cache portions of their

back end disk based database systems. These large enterprise applications sometimes require

very large in-memory data stores. So scalability is an important aspect for in-memory database

systems and still it is under research although various solutions are already present.

An in-memory database system can be used either as an embedded database or as a client/server

database system. The Client/server database systems are inherently multi-user and can be

accessed by multiple users/processes. The embedded in-memory databases are generally single

user, but it can also be shared by multiple threads/processes/users. First, the database can be

created in shared memory, with the database system providing a mechanism to control

concurrent access. Also, embedded databases can provide a set of interfaces that allow

processes to execute on network nodes remote from the database node and to read from and

write to the database. Also database replication can be used to copy the in-memory database to

the nodes where processes are located, so that network traffic and latency can be eliminated

[5].

1.2.2 In-Memory Data Grid (IMDG)

An In-Memory Data Grid (IMDG) is a distributed non-relational data or object store. It can be

distributed to span more than one server. IMDGs usually support linear scaling to support high

loads, data partitioning, redundancy, and automatic data recovery in case of failures. Most

IMDGs also support multimode topologies that span WANs. The IMDG is similar to MMDB

in that it stores data in the main memory, but it has a totally different architecture. The features

of IMDG can be summarized as follows [6].

Scalable In-Memory Data Management Model for Enterprise Applications

7

 Data is distributed and stored in multiple servers.

 Each server operates in the active mode.

 A data model is usually object-oriented (serialized) and non-relational.

 According to the necessity, you often need to add or reduce servers.

IMDG overcomes the limit of capacity by ensuring horizontal scalability using a distributed

architecture, and resolves the issue of reliability through a replication system. As shown in

figure 3, an application server has a client library provided by IMDG and it accesses IMDG by

using this library. Many IMDG products provide the feature of synchronizing data to RDBMS.

However establishing a separate permanent storage system such as RDBMS is not essentially

required.

Figure 3 : IMDG Architecture

In general, IMDB enables objects to be stored through serialization. Some products provide the

feature of storing objects that implement serializable interface, while some IMDGs provide an

independent serialization method. The features of IMDG can be summarized as follows.

 Enhanced performance because data can be written to and read from memory much

faster than it is possible with a hard disk.

 The data grid can be easily scaled and upgrades can be easily implemented.

 A key/value data structure rather than a relational structure provides flexibility for

application developers.

 The technical advantages provide business benefits in the form of faster decision

making, greater productivity and improved customer service.

Scalable In-Memory Data Management Model for Enterprise Applications

8

1.3 Limitations of Existing Solutions

Although existing In-Memory Data Management Systems provide a better performance and

scalability over traditional database systems, they have some limitations and still researches

are being carried on over these limitations.

 Lack of standard interface/standards and lack of monitoring and visualizing data nodes

has become a problem. Although a wide range of In-Memory Data Management

solutions are available, there are no unified interfaces or libraries for them to easily use

with enterprise applications. Different solutions are implemented with different APIs

and using them with applications makes them hard to interoperate.

 Much of database system research and development is centred on innovation in system

architectures, algorithms, and paradigms that deliver significant performance

advantages. Lack of a fair metric for comparing the performance of different systems

has become a problem when selecting the appropriate data management system for

enterprise applications.

 Although In-Memory Data Management system is a widely discussed topic over the

past few decades, they still have not taken the full advantages of cloud and virtualization

technologies [7].

 None of the IMDGs today offer "Change Data Capture (CDC)" capabilities. That is if

the backend enterprise repository is updated from the other sources. These events

should propagate to the IMDG. But users have to use 3rd party products or combination

of triggers and messaging to accomplish this [8].

 Lack of Global Data grid - Current enterprises demanding truly global applications

where users in different parts of the world are using the same app and updating the same

data set all in real-time. Because IMDGs are distributed by design, it makes them an

excellent starting point for building a global data grid.

1.4 Motivation

As detailed above, there are several advantages of using In-Memory Databases in Enterprise

applications instead of using traditional databases or In-Memory Data structures. But in today’s

world, still most of the enterprise applications are based on either traditional disk oriented

Scalable In-Memory Data Management Model for Enterprise Applications

9

databases or In-memory data structures. Although In-Memory data management systems have

been studied and developed over the past few decades, lack of performance evaluation or

comparison of them is one of the problems that enterprises face today. When selecting data

management methodologies such performance comparison details on In-memory databases,

traditional databases and in-memory data structures are highly valuable. If such performance

evaluation details are available it will be helpful for the researchers for their future studies and

also for the enterprises who are willing to use them for their applications.

Although a wide variety of In-memory databases are available, there is no standard API or

interface which can be easily integrated with the existing applications. So using them with

enterprise applications makes the task of integration more difficult.

Scalability of the database is another major problem that enterprise applications are facing

today. Cloud based solutions take the advantage of cloud resources to achieve that target. But

still In-memory databases have not taken the full advantage of the cloud based technologies.

So to get the maximum utilization and performance within enterprise applications, scalability

of the data management system is highly important and more research work needs to be carried

on in this area.

1.5 Objectives

The main objective of this research project is to propose a scalable and interoperable model for

in-memory data management system based enterprise applications. During this research, In-

Memory Databases will be studied and detailed objectives of this research can be listed as

follows.

 Develop a benchmark suit along with suitable workloads which can be used to

evaluate the performance of In-memory databases in comparison to In-memory data

structures and traditional disk based databases.

 Develop a standard API for In-memory databases which can be used with enterprise

applications so that applications can manage data with a seamless interface.

Scalable In-Memory Data Management Model for Enterprise Applications

10

2. LITERATURE REVIEW

This chapter is intended to provide the details of the in-memory databases along with their

architectural design details. This chapter mainly addresses the architectural and design

differences of disk resident and in memory databases, in-memory database architecture and

applications of in-memory databases. This chapter will further discuss about the existing

benchmarks for database evaluation along with their relevance to in-memory database and the

use of cloud based technologies with the in-memory databases.

2.1 Disk Resident Databases vs. IMDS

Since computers main memory has different properties than the magnetic disks, design and the

performance of Memory resident data management systems are different from disk resident

data management systems. These differences can be summarized as follows [9].

 The access time for main memory is orders of magnitude less than disk storage.

 The main memory is normally volatile and disk storage is non-volatile.

 Disks are block oriented storage device and main memory is not block oriented. So disks

have high, fixed cost per access that does not depend on the amount of data that is

retrieved during the access.

 Sequential access in disk is faster than random access. But sequential access is not

important on main memories. So the layout of data on disk is much more critical than

layout of data in main memory.

 Since main memory is directly accessible by the processor, it is more vulnerable to

software errors than disk resident systems.

As shown in Figure 4 [10], in a conventional RDBMS, client applications communicate with

a database server process over some type of IPC connection, which adds substantial

performance overhead to all SQL operations. But an application can link in-memory

databases directly into its address space to eliminate the IPC overhead and streamline query

processing. In disk resident databases most of the work is done under the assumption that

data is primarily disk resident. So Optimization algorithms, buffer pool management, and

indexed retrieval techniques are designed based on this fundamental assumption. On the other

hand IMDB is designed with the knowledge that data resides in main memory and can

therefore take more direct routes to data, reducing code path length and simplifying both

algorithm and structure.

Scalable In-Memory Data Management Model for Enterprise Applications

11

Figure 4 : Disk Resident Databases vs. IMDS

The complexity of IMDB is dramatically reduced since the assumption of disk-residency is not

present and the advantages are as follows [10].

 The number of machine instructions drops dramatically.

 Buffer pool management is not required.

 Extra data copies are not required

 Index pages shrink, and their structure is simplified.

 The Database design gets simpler and compact.

2.2 In-Memory Database Architecture

Since IMDB is not a new concept, the architecture of it has evolved during the past few decades.

Memory residency of data has become a key factor on the IMDB architecture and this actually

leads to much simpler design as compared to disk databases. There are six areas of difference

which has made the architecture of the IMDBs are different from Disk resident databases [11].

1. Query optimisation - In disk DBs, the I/O cost factor dominates the optimisation.

However, in IMDBs there is no such clear factor, which makes query optimisation very

Scalable In-Memory Data Management Model for Enterprise Applications

12

tricky. This is generally solved by taking constants and falling back on rule-based

optimisation.

2. Indexing - More memory-friendly data structures and algorithms are used for indexing.

While most disk DBs use B-Tree as a primary indexing data structure/algorithm,

IMDBs tend to use T-Tree as a primary indexing data structure/algorithm.

3. Internal data representation - Compactness of representation dominates concerns for

IMDBs. With all data being in memory, IMDBs tend to use direct memory pointers

heavily. This is very typical of the IMDB memory page, index data or relation

representations.

4. Durability and recovery - Contrary to popular belief, IMDBs are durable. They use

algorithms similar to disk DBs for persistence. However, the buffer management, which

is the biggest performance bottleneck for disk DBs, is eliminated. During database

loading, IMDBs tend to take a bit more time as they have to load the complete data into

memory. Hence, recovery is a bit slower.

5. Access methodology - Generally, disk DBs offer client server over sockets as a primary

access method. However, with no disk I/O, if IMDBs only offer sockets for access, this

will become a bottleneck. Hence, most IMDBs tend to offer shared-memory access as

a primary method. In a few cases, JDBC/ODBC interfaces are also supported.

6. Concurrency control - Due to inherent speed in processing, IMDBs can take coarser

locks and also do less to persist them. However, disk DBs take finer locks and take

elaborate measures to persist them.

A typical architecture for in-memory database is shown in Figure 5 [10]. The routines that

implement the IMDB functionality are embodied in a set of shared libraries that developers

link with their applications and execute as a part of the application's process. This shared library

approach is in contrast to a more conventional RDBMS, which is implemented as a collection

of executable programs to which applications connect, typically over a client/server network.

Applications can also use a client/server connection to access an IMDB Cache, though in most

cases the best performance will be realized with a directly linked application.

Scalable In-Memory Data Management Model for Enterprise Applications

13

Figure 5 : IMDB Architecture

The IMDB Cache resides entirely in main memory at runtime. It is maintained in shared

memory segments in the operating system and contains all user data, indexes, system

catalogues, log buffers, lock tables and temp space. Multiple applications can share one

database, and a single application can access multiple databases on the same system. Utility

programs are explicitly invoked by users, scripts, or applications to perform services such as

interactive SQL, bulk copy, backup and restore, database migration and system monitoring.

Checkpoint files contain an image of the database on disk. Some IMDB uses dual checkpoint

files for additional safety, in case the system fails while a checkpoint operation is in progress.

Changes to databases are captured in transaction logs that are written to disk periodically. If a

database needs to be recovered, IMDB merges the database checkpoint on disk with the

completed transactions that are still in the transaction log files. Normal disk file systems are

used for checkpoints and transaction log files.

Scalable In-Memory Data Management Model for Enterprise Applications

14

IMDB usually assigns a separate process to each database to perform operations including the

following tasks.

 Loading the database into memory from a checkpoint file on disk

 Recovering the database if it needs to be recovered after loading it into memory

 Performing periodic checkpoints in the background against the active database

 Detecting and handling deadlocks

 Performing data aging

 Writing log records to files

IMDB replication allows to achieve near-continuous availability or workload distribution by

sending updates between two or more servers. A master server is configured to send updates

and a subscriber server is configured to receive them. A server can be both a master and a

subscriber in a bidirectional replication scheme. Time-based conflict detection and resolution

are used to establish precedence in case the same data is updated in multiple locations at the

same time.

2.3 Impact of Memory Residency on IMDB functionality

In in-memory database systems data resides permanently in main physical memory and in disk

based databases data resides in disk. In Disk based databases data may be cached in to memory

for access and in IMDB the memory resident data may have a backup copy on the disk. So in

both cases, a given object can have copies on both in memory and on disk. The key difference

is that in IMDB the primary copy resides permanently in memory and this has important

implications on how it is structured and accessed. These differences can affect the IMDB

functionality as discussed in following section [9].

1. Concurrency Control

Since the access to the main memory is much faster than access to the disk, transactions

complete more quickly in IMDBs. So in lock based concurrency control systems locks will

be held on only for short period and the lock contention may not be as important as it is in

DRDBs. Usually small locking granules are used to reduce the locking contention. But in

IMDBs the contention is already low because data is memory resident and very large

locking granules such as relation level granules are most appropriate for IMDBs. In

extreme, the lock granule could be chosen to be the entire database [12]. This results in

serial execution of transactions and it is highly desirable since the cost of concurrency

Scalable In-Memory Data Management Model for Enterprise Applications

15

control such as setting and releasing locks, coping with deadlocks are almost completely

eliminated. Also the number of CPU cache flushes are greatly reduced.

However serial transactions are not practical when long transactions are present and there

should be some way to run short transactions concurrently with the long transactions.

Further multiprocessor systems may require some form of concurrency control even if all

transactions are short.

2. Commit Processing

Having a backup copy and keeping a log of transaction activities are essential to protect

against media failures. Since memory is usually volatile, this log must reside in stable

storage and before a transaction can commit, its activity records must be written to the log.

Logging can impact response time, since each transaction must wait for at least one

stable write before committing. Logging can also affect throughput if the log becomes a

bottleneck. Although these problems also exist when data is disk resident, they are

more severe in main memory systems because the logging represents the only disk

operation each transaction will require.

Several methodologies can be used to solve this problem. A small amount of stable main

memory can be used to hold a portion of the log and a transaction is committed by

writing its log information into the stable memory, a relatively fast operation [13]. A

special process or processor is then responsible for copying data from the stable

memory to the log disks. Although stable memory will not alleviate a log bottleneck,

it can eliminate the response time problem, since transactions need never wait for disk

operations.

Group commits technique can also be used to solve the log bottleneck. Under group

commit, a transaction’s log record need not be sent to the log disk as soon as it commits

and the records of several transactions are allowed to accumulate in memory. When enough

have accumulated all are flushed to the log disk in a single disk operation and it reduces the

total number of operations performed by the log disks [14].

3. Access Methods

A wide variety of index structures have been proposed and evaluated for main memory

databases including various forms of hashing and of trees. Trees such as the T-Tree

have been designed explicitly for memory-resident databases and they need not have the

Scalable In-Memory Data Management Model for Enterprise Applications

16

short, bushy structure of a B-Tree, since traversing deeper trees is much faster in main

memory than on a disk [15].

Since random access is fast in main memory, pointers can be followed quickly. Therefore,

index structures can store pointers to the indexed data, rather than the data itself.

This eliminates the problem of storing variable length fields in an index and saves

space as long as the pointers are smaller than the data they point to.

4. Data Representation

Main memory databases can also take advantage of efficient pointer following for data

representation. Relational tuples can be represented as a set of pointers to data values. The

use of pointers is space efficient when large values appear multiple times in the database,

since the actual value needs to only be stored once. Pointers also simplify the handling

of variable length fields since variable length data can be represented using pointers

into a heap.

5. Query Processing

Since sequential access is not significantly faster than random access in a memory

resident database, query processing techniques that take advantage of faster sequential

access lose that advantage. An example is sort-merge join processing, which first

creates sequential access by sorting the joined relations. Although the sorted relations

could be represented easily in a main memory database using pointer lists, there is really

no need for this since much of the motivation for sorting is already lost.

Because data is in memory, it is possible to construct appropriate, compact data structures

that can speed up queries. When relational tuples are implemented as a set of pointers

to the data values some relational operations can be performed very efficiently. Query

processors for memory resident data must focus on processing costs, whereas most

conventional systems attempt to minimize disk access [16].

6. Recovery

To protect against the loss of volatile data, backups of memory resident databases must be

maintained on disk. The recovery procedure has several components such as the procedure

used during normal database operation to keep the backup up-to-date, and the procedure

used to recover from a failure. Commit processing and check pointing can be used for

this purpose and check pointing brings the disk resident copy of the database more up-

Scalable In-Memory Data Management Model for Enterprise Applications

17

to-date, thereby eliminating the need for the least recent log entries. In an in-memory

database system, check pointing and failure recovery are the only reasons to access the

disk-resident copy of the database and check pointing should interfere as little as

possible with transaction processing [17].

7. Performance

Other than the commit processing, the performance of an in-memory database manager

depends primarily on processing time, and not on the disks. Even recovery management,

which involves the disks, affects performance primarily through the processor, since

disk operations are normally performed outside the critical paths of the transactions

[18].

But in IMDB, backups will be more frequent and will involve writes to devices an

order of magnitude slower than memory. Thus the performance of backup or check

pointing algorithms is much more critical and need to handle more carefully.

8. Application Programming Interface and Protection

In conventional disk based databases' applications exchange data with the database

management system via private buffers. In an IMDB, access to objects can be more efficient

since applications may be given the actual memory position of the object, which is used

instead of a more general object id. After the first read, the system returns the memory

address of the tuple, and it is used for subsequent accesses. However, there are some

potential problems such as once transactions can access the database directly, they can

read or modify unauthorized parts and the system has no way of knowing what has been

modified, so it cannot log the changes [19].

9. Data Clustering and Migration

In a DRDB, data objects such as tuples, fields that are accessed together are frequently

stored together, or clustered. But in an IMDB there is no need to cluster objects. This

introduces a problem that does not arise in conventional systems. That is when an object is

to migrate to disk, how and where it should be stored. There are a variety of solutions for

this, ranging from ones where the users specify how objects are to be clustered if they

migrate, to ones where the system determines the access patterns and clusters automatically

[20].

Scalable In-Memory Data Management Model for Enterprise Applications

18

2.4 Application of Main Memory Databases

In-memory databases are most commonly used in applications that demand very fast data

access, storage and manipulation, and in systems that don’t typically have a disk but must

manage appreciable quantities of data. Applications that use IMDBs can be categorized in to

two main categories as embedded systems and enterprise applications. According to a survey

done by Elliot King in 2011 the usage of IMDBs in applications is shown in Figure 6 [21].

Figure 6 : Usage of IMDB

2.4.1 IMDB for Embedded Systems

An important use for in-memory database systems is in real-time embedded systems. IMDSs

running on real-time operating systems (RTOSs) provide the responsiveness needed in

applications including IP network routing, telecom switching, and industrial control. IMDSs

manage music databases in MP3 players and handle programming data in set-top boxes. In-

memory databases’ typically small memory and CPU footprint make them ideal because most

embedded systems are highly resource-constrained. The main issues for IMDBs in embedded

systems can be summarized as follows [22].

 Minimization of the memory footprint: The memory demand for an embedded

system are most often, mainly for economic reasons, kept as low as possible. A typical

footprint for an embedded database is within the range of some kilobytes to a couple of

megabytes.

 Reduction of resource allocations: In an embedded system, the database management

system and the application are most often run on the same processor, putting a great

demand on the database process to allocate minimum CPU bandwidth to leave as much

capacity as possible to the application.

Scalable In-Memory Data Management Model for Enterprise Applications

19

 Support for multiple operating systems: In an enterprise database system, the DBMS

is typically run on a dedicated server using a normal operating system. The clients, that

could be desktop computers, other servers, or even embedded systems, connect to the

server using a network connection. Because a database most often run on the same piece

of hardware as the application in an embedded system, and that embedded systems

often use specialized operating systems, the database system must support these

operating systems.

 High availability: In contrast to a traditional database system, most embedded database

systems do not have a system administrator present during run-time. Therefore, an

embedded database must be able to run on its own [23].

2.4.2 IMDB for Enterprise Applications

The enterprise applications are going through a transformation in regulatory requirements,

technology, and operational resource needs. The era of highly customized, proprietary

hardware and software is no longer desirable because it breeds high infrastructure costs and

extends the time from concept to inception and implementation. For many years, financial

platforms were often based on home-grown software, using closed proprietary frameworks and

data management solutions. While the resulting home-grown infrastructures achieved some

measure of success, they often did not scale well and lacked the flexibility to cost-effectively

accommodate new services and technological innovation.

Non-embedded applications requiring exceptional performance are an important growth area

for in-memory database systems. For example, algorithmic trading and other applications for

financial markets use IMDSs to provide instant manipulation of data, in order to identify and

leverage market opportunities. Some multi-user Web applications – such as e-commerce and

social networking sites – use in-memory databases to cache portions of their back-end on-disk

database systems. These enterprise-scale applications sometimes require very large in-memory

data stores, and this need is met by 64-bit IMDS editions [24].

Whether running on enterprise servers, embedded in appliances, in the cloud, or processing

constantly-changing complex data, financial applications need a platform characterized by low

latency, high availability, and a scalable infrastructure that allows for rapid growth. IMDBs

provide the necessary agility for companies developing and deploying financial applications

that meet or exceed today’s stringent requirements. Also they provides developers a superior

Scalable In-Memory Data Management Model for Enterprise Applications

20

alternative to building or deploying other data management solutions and helps developers

deliver greater innovation with shorter time to market.

Figure 7 : Enterprise Performance In Memory Cycle

Currently, most of the data within a company is still distributed throughout a wide range of

applications and stored in several disjoint silos. Creating a unified view on this data is a time-

consuming procedure. Additionally, analytical reports typically do not run directly on

operational data, but on aggregated data from a data warehouse. Operational data is transferred

into this data warehouse in batch jobs, which makes flexible, ad-hoc reporting on up-to-date

data almost impossible. As a consequence, enterprises have to make decisions based on

insufficient information, which is not what the term real-time suggests. Since the hardware

architectures have evolved dramatically in the last decade this is changing now. Multi-core

processors and the availability of large amounts of main memory at low cost are creating new

breakthroughs in the software industry. It has become possible to store data sets of whole

companies entirely in main memory, which offers performance that is orders of magnitudes

faster than traditional disk-based systems. Hard disks will become obsolete. The only

remaining mechanical device in a world of silicon will soon only be necessary for backing up

data. With in-memory computing and insert-only databases using row- and column-oriented

storage, transactional and analytical processing can be unified. High performance in-memory

computing will change how enterprises work and finally offer the promise of real-time

computing. As shown in Figure 7, the combination of the technologies finally enables an

Scalable In-Memory Data Management Model for Enterprise Applications

21

iterative link between the instant analysis of data, the prediction of business trends, and the

execution of business decisions without delays [25].

2.5 Performance Benchmarks for In-Memory Database

With the recent, but widespread, acceptance of the Main-memory databases, there has been a

lot of different companies and people interested in the potential and advantages of main-

memory databases. There is currently dozens of different databases that use main-memory

techniques. The performance of databases does not rely solely on the actual speed of the

database. A big part of how effective a database is comes from how you use it. Different

databases are good at different things and different types of databases focus on optimizing

different utilities. In several studies, the performance of either traditional disk resident database

and a selected in-memory database or several in-memory databases are compared.

Another way to understand performance trade-offs between different in-memory databases is

to review independent benchmarks that are produced which compare each database under

different workloads. While such tests can never take the place of proof of concepts done using

the exact use cases and infrastructure that a new application is targeting, they can be useful to

understand the general strengths and weaknesses of a database under various workloads. In the

following section various benchmarks which can be used to evaluate the performance of in-

memory databases are discussed.

2.5.1 Wisconsin Benchmark

The Wisconsin Benchmark was introduced in 1983 and it was the first real benchmark for

relational databases. At that time no standard database benchmark existed and there were only

a few application-specific benchmarks. The benchmark was designed with two objectives in

mind. First, the queries in the benchmark should test the performance of the major components

of a relational database system. Second, the semantics and statistics of the underlying relations

should be well understood so that it is easy to add new queries and to their behaviour.

The database is designed so that one can quickly understand the structure of the relations and

the distribution of each attribute value. Consequently, the results of the benchmark queries are

easy to understand and additional queries are simple to design. The attributes of each relation

are designed to simplify the task of controlling selectivity factors in selections and joins,

varying the number of duplicate tuples created by a projection, and controlling the number of

partitions in aggregate function queries. It is also straightforward to build an index (primary or

Scalable In-Memory Data Management Model for Enterprise Applications

22

secondary) on some of the attributes, and to reorganize a relation so that it is clustered with

respect to an index.

The suite of benchmark queries was designed to measure the performance of all the basic

relational operations including:

 Selection with different selectivity factors.

 Projections with different percentages of duplicate attributes.

 Single and multiple joins.

 Simple aggregates and aggregate functions.

 Append, delete, modify.

In addition, for most queries, the benchmark contains two variations: one that can take

advantage of a primary, clustered index, and a second that can only use a secondary, non-

clustered index. Elapsed time is used as the performance metric [26].

Limitations:

 It is a benchmark designed to evaluate Disk based databases and no IMDB concept is

taken in to account.

 It is a single user benchmark and no tests for concurrency control and recovery.

 It tests features of the query optimizer only.

This benchmark is used to evaluate some main memory databases in past such example is as

follows. For the above said operations, time taken is measured in microsecond for leading

traditional database system and for CSQL Main Memory Database System. CSQL is an open

source main memory high-performance relational database management system developed at

sourceforge.net. It is designed to provide high performance for SQL queries and DML

statements. The benchmarking application and the database server runs in the same

machine/host and table fully cached in RAM during the test. The elapsed time is measured in

micro seconds and the results are shown in Table 1. From these results, CSQL is claimed that

it is approximately 30 times faster than leading database with standard JDBC interface for real

time database operations [27].

Scalable In-Memory Data Management Model for Enterprise Applications

23

Table 1 : CSQL Wisconsin Benchmark Results

Statement Type

Leading DRDB CSQL Times Faster

No
Index

Hash
Index

Tree
Index

No
Index

Hash
Index

Tree
Index

No
Index

Hash
Index

Tree
Index

Select Int 6097 331 325 247 11 11 24.68 30.09 29.55

Select Str 6495 979 356 286 16 15 22.71 61.19 23.73

Select -100 6861 NA 826 508 NA 120 13.51 NA 6.88

Insert 218 265 213 20 13 11 10.9 20.38 19.36

Update 5572 217 188 473 14 12 11.78 15.5 15.67

Delete 5741 200 168 573 15 13 10.02 13.33 12.92

Join 10K * 1K 6459 320 292 35 11 11 184.54 29.09 26.55

Join 10K * 10K 14916 411 320 36 13 14 414.33 31.62 22.86

2.5.2 TimesTen Performance Throughput Benchmark (TPTBM)

Oracle TimesTen In-Memory database is a high performance event-processing software

component that enables applications to capture, store, use, and distribute information in real-

time, while preserving transactional integrity and continuous availability. TimesTen

Performance Throughput Benchmark (TPTBM) is shipped with TimesTen and measures the

total throughput of the system. The workload can test read-only, update-only, delete and insert

operations or mix of them as required. It is a multi-user throughput benchmark. By default, the

transaction mix consists of 80% SELECT (read) transactions and 20% UPDATE (write)

transactions. The ratio of SELECTs, UPDATEs and INSERTs can be specified and each

transaction consists of one or more SQL operations [10].

Limitations:

 TPTBM is a proprietary benchmark and shifts with oracle times ten only.

 TPTBM is vendor specific.

Figure 8 shows the performance impact of placing the TimesTen logs on file cache, compared

to traditional approaches that place the logs on cached disk-array storage. These tests were

conducted using the TimesTen TPTBM benchmark running on a 2-processor Sun E450 server

[28].

Scalable In-Memory Data Management Model for Enterprise Applications

24

Figure 8 : Times Ten Benchmark Throughput update (100% Updates)

2.5.3 Telecom Application Transaction Processing Benchmark(TATP)

The Telecommunication Application Transaction Processing (TATP) Benchmark is an open

source workload designed specifically for high-throughput applications, well suited for in-

memory database performance analysis and system comparison.

The TATP benchmark simulates a typical Home Location Register (HLR) database used by a

mobile carrier. The HLR is an application mobile network operators use to store all relevant

information about valid subscribers, including the mobile phone number, the services to which

they have subscribed, access privileges, and the current location of the subscriber's handset.

Every call to and from a mobile phone involves look ups against the HLRs of both parties,

making it a perfect example of a demanding, high-throughput environment where the

workloads are pertinent to all applications requiring extreme speed: telecommunications,

financial services, gaming, event processing and alerting, reservation systems, and so on. The

benchmark generates a flooding load on a database server. This means that the load is generated

up to the maximum throughput point that the server can sustain. The load is composed of pre-

defined transactions run against a specified target database.

The benchmark uses four tables and a set of seven transactions that may be combined in

different mixes. The most typical mix is a combination of 80% or read transactions and 20%

of modification transactions [29].

Scalable In-Memory Data Management Model for Enterprise Applications

25

The TATP software collects two types of results from the benchmark, namely Mean Qualified

Throughput (MQTh) and transaction response time distributions. MQTh is the number of

successful transactions per time unit. In TATP, we use one second as a time unit, resulting in

MQTh tps. The response time is measured for each individual transaction and reported by

transaction type. This provides seven distributions measured with a millisecond resolution. The

maximum response time recorded is set to be 10,000 millisecond (10 seconds). Longer

response times are discarded.

The TATP benchmark transaction response time comparison between an in-memory database

and a hybrid database is shown in Figure 9 [30].

Limitations:

 It is an Application specific benchmark - simulates a typical Home Location Register

(HLR) database used by a mobile carrier.

Figure 9 : TATP benchmark on transaction processing time

Scalable In-Memory Data Management Model for Enterprise Applications

26

2.5.4 Transaction Processing Performance Council -C Benchmark(TPCC)

The Transaction Processing performance Council introduced the TPC Benchmark C in August

1992. At the time the TPC had two other OLTP benchmarks, TPC-A and TPC-B. The TPC

continued to support and publish results on TPC-A, its first OLTP benchmark until December

1995. TPC-A simulates all the major functions of a simple OLTP system and was, until its

retirement by the TPC, accepted by the industry as the leading tool for comparing systems.

Since then, TPC-C has replaced it in that role and gained even greater recognition.

TPC-C was designed to carry over many of the characteristics of TPC-A. Therefore, TPC-C

includes all the components of a basic OLTP benchmark. For the benchmark to be applicable

to systems of varying computing powers, TPC-C implementations must scale both the number

of terminals and the size of the database proportionally to the computing power of the measured

system. To test whether the measured system is fully production-ready, including efficient

recovery capabilities, the database must provide what are defined as the ACID properties:

atomicity, consistency, isolation, and durability.

TPC-C involves a mix of five concurrent transactions of different types and complexity that

are executed either on-line or queued for deferred execution. The major characteristics that

TPC-C added beyond TPC-A can be summarized as follows [31].

 Multiple types of transactions of varying complexity

 On-line and deferred execution of transactions

 More complex database structure, resulting in

 Greater diversity in the data that are manipulated

 Higher levels of contention for data access and update

 Input data that include basic real-life characteristics, such as:

 Non-uniform patterns of data access to simulate data hot spots

 Data access by primary as well as secondary keys

 More realistic requirements, such as:

 Terminal input/output with full-screen formatting

 Required support for basic features of users' interface

 Required application transparency for all database partitioning

 Transaction rollbacks

Scalable In-Memory Data Management Model for Enterprise Applications

27

TPC-C performance is measured in new-order transactions per minute. The primary metrics

are the transaction rate (tpmC), the associated price per transaction ($/tpmC), and the

availability date of the priced configuration.

Limitations:

 It is a benchmark designed to evaluate Disk based databases and no IMDB concept is

taken in to account.

2.6 Cloud based In-Memory Databases

Traditionally the server and their applications of a business are located in private or exclusive

computer centres. The availability of broadband internet connections makes it possible to

dispense of internal computer centres and to utilize dynamically the computer capacity of a

Computing Cloud of an external server.

Cloud Computing is of interest to business as no capital expenditure occurs and through the

use of scale effect running costs can be minimized. The cost to customers can also be reduced

by taking advantage of the elasticity of the cloud concept. Enterprises pay only for the required

computing performance. Is less or more computing output required, the supplier can make this

automatically available through an interface. While in classical computer centres hardware has

to be dimensioned for a maximum load, using cloud computing enables to employ only the

actually required hardware resources which are expanded or minimized depending on the

required capacity. Cloud computing systems are not customer-based (on-premise) but are used

and scaled depending on demand (on-demand). The operating risk of the computer centre is

outsourced from the enterprise to the manager of the cloud. This goes together with the promise

that employees from everywhere at any time have access to their data within the cloud, although

this can lead to security problems.

Today most enterprises have consider using one of the many available cloud platforms to

improve on speed of delivery, cost saving, and reliability. One of the most attractive features

of today’s cloud offerings is that they enable IT to extend the capacity of their solutions beyond

the scope of on-premise servers. This can be in terms of high availability, disaster recovery,

or scaling to meet planned and unplanned spikes in usage.

A major challenge in moving applications from on-premise data centres to public clouds is the

reluctance to store sensitive data on the cloud, for various reasons such as perceived lack of

Scalable In-Memory Data Management Model for Enterprise Applications

28

control over the storage, security concerns or non-compliance issues when data is stored

beyond the enterprise's boundaries, or the need to store the data on-premise for other internal

applications to access. There might also be cases where the data resides within systems or

servers that simply have no equivalent component available on the cloud, such as a proprietary

data store like a file system, or mainframe database [24].

Still the in-memory databases with cloud based solutions are under the research and only few

database vendors stepped in to that. Oracle Exalogic Elastic Cloud (Exalogic) is an integrated

hardware and software system designed to provide a complete platform for a wide range of

application types and widely varied workloads using oracle in-memory database called

TimesTen. Oracle Exalogic is intended for large-scale, performance-sensitive, mission-critical

application deployments. It combines Oracle Fusion Middleware software and industry-

standard Sun hardware to enable a high degree of isolation between concurrently deployed

applications, which have varied security, reliability, and performance requirements. Real-time

OLTP applications can benefit greatly from the combined compute power of Exalogic and

TimesTen [28].

Scalable In-Memory Data Management Model for Enterprise Applications

29

3. BENCHMARKING METHODOLOGY

This chapter is intended to compare various different data management systems against the in

memory databases, with the intention of integrating in to the proposed data management

framework which is discussed in Section 4.2.

This chapter provides a comprehensive analysis among different IMDBs, DRDBs, in memory

data structures and flat file based DBs, with the intention of identifying the best possible

candidate to be integrated in the final solution. The details of the evaluation scenarios

considered in this research project is given in Section 3.1. In Section 3.2, a detailed analysis

of benchmark procedure is given along with the performance metrics and workload parameters.

In Section 3.3, the results of the benchmark procedure is discussed under different selected

operation categories.

3.1 Analysis of Comparison and Evaluation Scenarios

During the initial phase, the evaluation scenarios which are considered under this research

project was clearly identified. Although various performance tests and benchmark results are

available in literature, they are considering either only few solutions or they are fully vendor

specific which are biased towards a particular vendor. So main objective of the research is to

provide unbiased evaluation results for in-memory databases, so that any enterprise level

application can choose the suitable solution based on that. For this evaluation, several open

source and proprietary in-memory and disk based databases were selected and following

evaluation scenarios are considered.

 IMDB vs DRDB – To evaluate the performance between selected in-memory

databases and disk resident databases.

 IMDB vs In-memory data structures – To evaluate the performance between the

selected in-memory databases and selected in-memory data cache which is based on

structures such as maps, vectors, queues etc.

 IMDB vs Flat File database systems – To evaluate the performance between the

selected in-memory databases and text file databases.

 Different IMDBs – To have an unbiased comparison for the existing popular in-

memory DBs, different IMDBs are evaluated.

The details of selected data management systems for this evaluation is given in the next section.

Scalable In-Memory Data Management Model for Enterprise Applications

30

3.1.1 Overview of Selected IMDB

SQLite

SQLite is an in-process library which provides an embedded SQL database engine and

designed in 2000. It is a self-contained, serverless, zero-configuration, transactional SQL

database engine and it distributed as a free and open source database engine. The SQLite

database is normally stored in a single ordinary disk file and it can be configured to work as an

in-memory database where required. Unlike client–server database management systems, the

SQLite engine has no standalone processes with which the application program communicates.

Instead, the SQLite library is linked in and thus becomes an integral part of the application

program. The library can also be called dynamically. A block diagram of SQLite Architecture

components and how they interrelate is shown in the Figure 10.

Figure 10 : SQLite Architecture

The application program uses SQLite's functionality through simple function calls, which

reduce latency in database access because function calls within a single process are more

efficient than inter-process communication. Some important features of SQLite is as follows

[33].

Scalable In-Memory Data Management Model for Enterprise Applications

31

 Transactions are fully ACID-compliant, allowing safe access from multiple processes

or threads.

 Supports most of the query language features found in the SQL92 (SQL2) standard.

 Written in ANSI-C and provides simple and easy-to-use API.

 Available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows (Win32, WinCE,

WinRT).

 Interface API support available for C++, Java, PHP, Perl and Python

A SQLite database is normally stored in a single ordinary disk file. However, in certain

circumstances, the database might be stored in memory. The most common way to force an

SQLite database to exist purely in memory is to open the database using the special filename

":memory:". When this is done, no disk file is opened. Instead, a new database is created purely

in memory. The database ceases to exist as soon as the database connection is closed. Every

“:memory:” database is distinct from every other. So, opening two database connections each

with the filename ":memory:" will create two independent in-memory databases.

H2 Database

H2 is a relational database management system written in Java. It can be embedded in Java

applications or run in the client-server mode. H2 implements an embedded and standalone

ANSI-SQL89 compliant SQL engine on top of a B-tree based disk store. The following

connection modes are supported by H2 database:

 Embedded mode (local connections using JDBC)

 Server mode (remote connections using JDBC or ODBC over TCP/IP)

 Mixed mode (local and remote connections at the same time)

It is possible to create both in-memory tables, as well as disk-based tables. Tables can be

persistent or temporary. In H2 database the index types are implemented as a hash table and a

tree is for in-memory tables, and b-tree for disk-based tables. All data manipulation operations

are transactional. Table level locking and multi-version concurrency control are implemented.

The 2-phase commit protocol is supported in this database, but no standard API for distributed

transactions is implemented. Following connection scenarios are available for in-memory

mode [34].

Scalable In-Memory Data Management Model for Enterprise Applications

32

 Only one connection to an in-memory database: This means the database to be opened

is private. Opening two connections within the same virtual machine means opening

two different (private) databases.

 Multiple connections to the same in-memory database: The database URL must include

a name. Accessing the same database using this URL only works within the same virtual

machine and class loader environment.

 Access an in-memory database from another process or from another computer: Need

to start a TCP server in the same process as the in-memory database was created. The

other processes then need to access the database over TCP/IP or TLS, using a database

URL.

According to the literature, following reasons are given as the advantages of H2 over SQLite

Database [35].

 Full Unicode support including UPPER() and LOWER().

 Streaming API for BLOB and CLOB data.

 Full text search.

 Multiple connections.

 User defined functions and triggers.

 Database file encryption.

 Reading and writing CSV files (this feature can be used outside the database as well).

 Referential integrity and check constraints.

 Better data type and SQL support.

 In-memory databases, read-only databases, linked tables.

 Better compatibility with other databases which simplifies porting applications.

 Possibly better performance (so far for read operations).

 Server mode (accessing a database on a different machine over TCP/IP).

MemSQL

MemSQL is a distributed, in-memory database that is part of the NewSQL movement. It is an

ACID-compliant RDBMS that most notably converts SQL into C++ through code generation.

It is being developed by MemSQL Inc., which was founded in 2011.

It uses multi-version concurrency control (MVCC) and lock-free data structures to enable high

throughput for large concurrent workloads without sacrificing consistency. As a result, reads

Scalable In-Memory Data Management Model for Enterprise Applications

33

do not block writes, and vice versa, providing the fast access necessary to achieve real-time

analytics on a Big Data scale. MemSQL combines lock-free data structures and a just-in-time

(JIT) compiler for processing highly volatile workloads. More specifically, MemSQL

implements lock-free hash tables and lock-free skip lists in memory for fast random access to

data. Queries sent to the MemSQL server are converted into C++ and compiled through GCC.

MemSQL works best on workloads with highly concurrent read and write queries. Each query

is individually executed on exactly one core. Read queries are never blocked by other reads or

writes because of multi-version concurrency control.

 MemSQL architecture is shown in Figure 11. It has a two-tiered, clustered architecture that

consists of two types of nodes:

 Aggregator nodes serve as mediators between the client and the cluster. They query

the relevant leaf nodes and aggregate results before sending them back to the client.

Aggregators store only metadata. An aggregator is responsible for breaking up the

query across the relevant leaf nodes and aggregating results back to the client.

 Leaf nodes, store and process data. MemSQL has a shared-nothing architecture, which

means that no two nodes share memory, disk, or CPU. A leaf node is a MemSQL

database. MemSQL uses hash partitioning to distribute data uniformly across the

number of leaf nodes.

Figure 11 : MemSQL Architectue

MemSQL has two types of tables: reference tables and distributed tables. Each node in the

cluster has an identical copy of all reference tables. Distributed tables are spread across all

nodes in the cluster, so each node has a piece of each distributed table. This enables joins to be

more efficient, with compute overhead offloaded to the leaf nodes [36].

Scalable In-Memory Data Management Model for Enterprise Applications

34

3.1.2 Overview of Selected DRDB

Oracle

Oracle Database is a disk resident object-relational database management system produced and

marketed by Oracle Corporation. It is a fourth generation relational database management

system and Oracle server provides efficient and effective solutions for the major database

features. Oracle revolutionized the field of enterprise database management systems with the

release of Oracle Database 10g and currently oracle can be considered as the market leader in

database solutions. Oracle Database is the first database designed for enterprise grid

computing, the most flexible and cost effective way to manage information and applications.

The Oracle RDBMS stores data logically in the form of tablespaces and physically in the form

of data files. Tablespaces can contain various types of memory segments, such as Data

Segments, Index Segments, etc. An Oracle database is a collection of data treated as a unit. The

database has logical structures and physical structures. Because the physical and logical

structures are separate, the physical storage of data can be managed without affecting the access

to logical storage structures.

Figure 12 : Elements of Oracle

Optimising performance is ensuring that Oracle is reading from disk as little as possible, and

minimize the contention between users as far as possible. A normally active database will

Scalable In-Memory Data Management Model for Enterprise Applications

35

consist of an Instance running on a server, which manages requests from user processes to

access the data files which may, or may not, be on permanent media within the server. The

elements of the active database is shown in Figure 12. The background processes are all

internally managed by Oracle, although a DBA can alter some of the processes. It demonstrates

the various disk, memory, and process components of the Oracle instance. All of these features

working together allow Oracle to handle data management for applications ranging from small

"data marts" with fewer than five users to enterprise-wide client/server applications designed

for online transaction processing for 50,000+ users in a global environment.

The latest version of the database is Oracle 12c and Oracle Database 11g Enterprise Edition

Release has been used for this research [37].

3.1.3 Overview of In-Memory Data Caches

The need for caching behaviour sometimes arises during system development because a

complex calculation is needed to obtain the result, or because it must be obtained via a time

consuming I/O operation. If the total number of such results dealt with over the lifetime of the

system does not consume excessive memory, it may suffice to store them in simple key-value

containers such as maps, sets.

In memory data caches can do part of what a database do with a high performance on big sets

of data as long as complex queries are not required. But any database system goes far beyond

giving a set of interfaces to manage collections, lists, etc. This typically includes support for

ACID (atomic, consistent, isolated and durable) transactions, multi-user access, a high level

data definition language, one or more programming interfaces (including industry-standard

SQL), triggers/event notifications, and more.

A key-value container based caching system is a useful tool in any programmer’s performance

optimisation tool-kit. Although there are lot of such solutions for Java language, there is no

ready-to-use implementations provided in the standard library or the widely used boost libraries

for C++ Language. So C++ developers are likely resort to inefficient or incorrect

approximations to the logic. For this research an in-memory caching system is used, which is

designed to increase application performance by holding frequently-requested data in memory,

while reducing the need for database queries to get that data. The implementation is based on

the C++ standard library’s map data types. The implementation details of this caching system

is given in Section 4.3.2

Scalable In-Memory Data Management Model for Enterprise Applications

36

3.1.4 Overview of Flat File Database

A flat file database is a database which, when not being used, is stored on its host computer

system as an ordinary, non-indexed "flat" file. To access the structure of the data and

manipulate it, the file must be read in its entirety into the computer's memory. Upon completion

of the database operations, the file is again written out in its entirety to the host's file system.

A flat file database is the simplest form of database systems. There is no possibility to access

the multiple tables like a RDBMS. Because it uses the simple structure, a text file considered

as a table. Every line of the text file is rows of table and the columns are separated by delimiters

like comma, tab, and some special characters. The database does not have specific data type.

A flat file can be a plain text file or a binary file. There are usually no structural relationships

between the records. Some advantages and disadvantages of flat file databases are as follows.

Advantages

 Easy to understand.

 Easy to implement.

 Less hardware and software requirements.

 Less Skills set are required to hand flat database systems.

 Best for small databases.

Desadvantages

 Less security easy to extract information.

 Data Inconsistency

 Redundancy

 Sharing of information is cumbersome task

 Slow for huge database

 Searching process is time consuming

During this research, to compare the performance of in-memory databases, flat file database is

also used as it is the simplest form of database systems. The flat file database system developed

for this research has been implemented using C++ language and the details of the design and

implementation is given in Section 4.3.1.

Scalable In-Memory Data Management Model for Enterprise Applications

37

3.1.5 Feature Comparison of Selected Database

The features and support for various programming models of these selected databases is

summarized in Table 2.

Table 2 : Feature Comparison of Selected Databases

 SQLite H2 MemSQL Oracle

Licence Public domain

Eclipse Public

License Proprietary Proprietary

Database

model Relational Relational

Relational

Distributed

data structure Relational

Data Storage

File System

Volatile

memory

File System

Volatile

memory

File System

Volatile

memory

File System

ASM

Embeddable Yes Yes Yes No

OS Support

Windows, OS

X,Linux, BSD,

Unix,

Amigaz/OS,

Symbion, iOS,

Android

Windows, OS

X,Linux, BSD,

Unix, z/OS,

Android

64-bit Linux-

based OS

Windows, OS

X,Linux,

Unix, z/OS

Programming

Language

Java , Delphi,

Python Java C++ C++

Query

Language SQL SQL SQL

SQL,

HTTP,Xquery,

Xpath, Java

API, REST

3.2 Analysis of Benchmark Criteria

Benchmarking is one of several alternate methods of performance evaluation, which is a key

aspect in the selection of database systems. Database benchmarking is a process of performing

well defined tests on that particular database management system for the purpose of evaluating

its performance. Benchmarking requires that the systems be implemented so that experiments

Scalable In-Memory Data Management Model for Enterprise Applications

38

can be run under similar system environments. Although benchmarks are costly and time

consuming, it provides the most valid performance results. In data management system

benchmarking, a system configuration, a database, and a workload to be tested should be

clearly identified and defined [38].

During this research, a suite of benchmarks is created to compare the run-times of different

data management implementations under the same work load. Different benchmarks stress

different aspects of a system by making small adjustments to the workload, such as the

transaction type, record count and the table properties. Various benchmark suites discussed in

Section 2.4 are taken in to consideration when finalizing the benchmark criteria.

System
Configurations

Test Data

Benchmark
Workload

Experimental
Design

System 1

System 2

System n

...

System 1
Analysis

System 2
Analysis

System n
Analysis

Comparative Analysis
Of Systems

...

Benchmark
Design

Benchmark
Execution

Benchmark
Analysis

Figure 13 : Database System Benchmark Methodology

The benchmark methodology for database systems consists of three stages as Benchmark

Design, Benchmark Execution and Benchmark Analysis. The Figure 13 illustrates the

methodology as a flow chart and the remainder of this chapter will discuss each phase in detail.

Scalable In-Memory Data Management Model for Enterprise Applications

39

3.2.1 Benchmark Design

The benchmark design is the first step of benchmarking process and it is made up of four stages

which provide input to the final step of experimental design. The design of a benchmark

involved establishing the environment of the database system to be tested and developing the

actual tests to be performed. These four areas of the benchmark design phase: system

configuration, test data, benchmark workload and experimental parameters of this research

project are discussed in this section.

3.2.1.1 System Configuration

To evaluate the selected databases and data caches hardware and software configurations given

in Table 3 are used in the test servers. The system configuration consists of a wide variety of

parameters which relate to both hardware and software.

Table 3 : Benchmark System Configurations

Operating System Red Hat Enterprise Linux Server release 5.9 (Tikanga)

Memory Page Size 4096 Bytes

CPU Speed 2.70GHz 64 Cores

Main Memory 64GB

Hard Disk 4 TB

3.2.1.2 Test Data

One of the major considerations in the benchmark experiment is that of what test data will be

used for the testing. Theoretically there are two methods for obtaining a test database. That is

either using an already existing application database or developing a synthetic database. For

this research, an already existing application database is used and it was implemented on each

of the candidate systems to be tested. The use of real data, has the advantage that it demonstrates

database system performance on realistic application environments. So this is clearly the best

method when the evaluation is done to select a system for a known database environment.

 The TPC-C benchmark is used as a reference benchmark when designing the benchmark for

this research and the application database has taken from the financial market domain. The test

database contains data of stock symbols and their historical price data. The test database has

two tables named as Tickers and History. Tickers table has the master details of the stock

symbols of larger number of stock exchanges. The history table has trade price details of each

stock on daily basis. The primary key for the tickers table is Ticker_serial which is a unique

identifier for a stock symbol. The combination of the ticker_serial and the transaction_date is

Scalable In-Memory Data Management Model for Enterprise Applications

40

used as the primary key for the history table. During this benchmarking process, these tables

were created in each database under study and tables were populated with initial data required

for each evaluation. The structure of these tables are given in Table 4.

Table 4 : Database Table Data

Tickers Table: History Table:

3.2.1.3 Benchmark Workload and Experimental Design

In this important phase of the benchmark design, parameters were selected to be varied in the

benchmark testing. During this research, the system throughput measured in queries per second

is used as the principal performance metric. Where illustrative, response time has also been

used as a performance indicator. The system performance was measured against the row count

and the number of concurrent connections. The definitions of the performance metrics used

here are as follows.

Scalable In-Memory Data Management Model for Enterprise Applications

41

 System throughput - The average number of transactions (queries) processed per unit

time.

 Response time - The time-to-last-record. i.e., from the time the query enters the system

until the time the last record in the response is returned.

The details of the experimental design used for this benchmark is given in Table 5.

Table 5 : Performance Metrics

3.2.2 Benchmark Execution

To evaluate the selected scenarios, a simple test tool has been implemented which can test

different workload parameters and give the performance measures for each scenarios as

the output.

Table 6 : Benchmark Tool Implementation Details

The system time is read and recorded in log files immediately before and after each query is

executed by each concurrently executing program. When all iterations of an experiment are

concluded, each the measurements of the each program is analysed. The details of the

Scalable In-Memory Data Management Model for Enterprise Applications

42

programming languages used to implement the benchmark tool and the support libraries used

for each database is given in Table 6. To have more accuracy in the results, each operation has

executed three times and the result is taken as the average of these three iterations.

3.2.3 Benchmark Analysis

After completing the evaluation, the gathered data was extracted from logs of the Benchmark

Tool and the performance related comparisons were derived. During this phase the

performance results on individual database systems were analysed and performance across

different data management systems were compared. Graphs were plotted for each benchmark

criteria and the details are given in the Section 3.3. This will result in an unbiased benchmark

for various in-memory databases and their performance.

3.3 Results

The various benchmark tests discussed in Section 3.2.1.3 have been carried out for each

selected data management system and the results of each test is presented in this section. To

have better result, each operation is repeated three times and average value of the three results

is taken as the final result.

3.3.1 Results for Insert Operation

To evaluate the insert operation performance on selected DBs and caches, previously described

tables were created in each database and the History table was populated with 1 million records

at the beginning. Then at each iteration, defined number of rows varied from 1 to 5 million was

inserted to history table and time taken for each set of transactions was recorded. To evaluate

the performance with multiple concurrent connections, the same steps were done with several

connections created using multiple threads. Sample Insert statement used in SQL based

databases is given in Figure 14.

INSERT INTO

HISTORY

(TICKER_SERIAL,TRANSACTION_DATE,OPEN,HIGH,LOW,CLOSE,VOLUME,

NUMBER_OF_TRADES,TURNOVER,VWAP,CHANGE,PCT_CHANGE,PRV_CLOSED,

CF_IN_COUNT,CF_IN_VOLUME,CF_IN_TURNOVER,CF_OUT_COUNT, CF_OUT_VOLUME,

CF_OUT_TURNOVER, IS_ANN,NEWS_PROVIDER,INCREMENT_ID)

VALUES

(1421,TO_DATE('1994-07-22 20:14:40', 'YYYY-MM-DD HH24:MI:SS'),

10.21,14.64,9.32,11.43,11465,238,7186932.25,12.94,-0.5,1.61, 11.94,

120, 8435,64235.65,118, 4564,35245.45,0,'ALSHAMIL',10043);

 Figure 14: Example Insert Statement

Scalable In-Memory Data Management Model for Enterprise Applications

43

OP1: Number of Transactions vs Run Time

Figure 15 : Insert Operation -Run Time Comparison

OP2: Number of Transactions vs Transactions per Second

Figure 16 : Insert Operation - Transactions per Second Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

10

20

30

40

50

60

70

80

90

100000 200000 500000 1000000 2000000 5000000

R
u

n
 T

im
e

 (
s)

 -
Fo

r
O

ra
cl

e
/F

ile
D

B

R
u

n
 T

im
e

 (
s)

Number of Transactions

SQLite Cache H2 MemSQL Oracle FileDB

0

500

1000

1500

2000

2500

3000

0

20000

40000

60000

80000

100000

120000

140000

160000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

 -
Fo

r
O

ra
cl

e
/F

ile
D

B

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

SQLite Cache H2 MemSQL Oracle FileDB

Scalable In-Memory Data Management Model for Enterprise Applications

44

OP3 : Number of Concurrent connections vs Transactions per second

Figure 17 : Insert Operation - Concurrent Connections vs TPS

When analysing the insert operation results, we can clearly see that IMDBs has higher

performance than the Oracle DRDB. For insert operation IMDBs are around 200 times faster

than the Oracle. Flat file based has higher transactions per second (TPS) than oracle for small

number of inserts. But as the number of records growth, the TPS of flat file based DB gradually

reduced.

Out of the three IMDBs selected, MemSQL has the highest TPS. SQLite has the next highest

TPS and H2 has the lowest. IMDBs are around 100 times faster than the flat file database for

smaller number of inserts. In-memory data cache has the highest performance for any

transaction count. Cache is around 500 times faster than Oracle and 2 times faster than IMDBs.

MemSQL is built from the ground up to take advantage of modern hardware, leveraging dozens

of cores per machine, terabytes of memory, and horizontal scale-out on commodity hardware.

SQLite and other in memory databases are same as the disk-based one which is paged, and the

only difference is that the pages are never written to disk. So this disk I/O overhead is not

present in these databases.

Other than the disk residency, one cause of poor performance in Oracle is high communication

overhead. Oracle must process SQL statements one at a time. Thus, each statement results in

another call to Oracle and higher overhead. In a networked environment, SQL statements must

100

150

200

250

300

350

400

450

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

 -
Fo

r
O

ra
cl

e

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

No of Concurrent Connections

SQLite MemSQL H2 Oracle

Scalable In-Memory Data Management Model for Enterprise Applications

45

be sent over the network, adding to network traffic. Heavy network traffic can slow down the

application significantly.

3.3.2 Results for Select Operation

Select operation was evaluated with Simple Select quires and Complex select queries with table

joins. To evaluate the simple Select operation performance on selected DBs and caches,

previously described tables were created in each database and the History table was populated

with 10 million records at the beginning. Then at each iteration, defined number of rows varied

from 1 to 5 million was selected from history table and time taken for each set of transactions

was recorded.

To evaluate the Join operation performance, both Tickers table and History table were used.

Tickers table was populated with 1 million records which corresponds to 1 million stock

symbols. Then history table was populated with 10 million records which corresponds to the

history data of the symbols in tickers table. Then at each iteration, defined number of rows

varied from 1 to 5 million was selected by joining both history table and tickers table and time

taken for each set of transactions was recorded.

To evaluate the performance with multiple concurrent connections, the same steps were done

with several connections created using multiple threads. Sample SQL statements used for SQL

based databases is given in Figure 18. File based DB is not used in Join operation test since

Join operation is not currently implemented in File based DB. For In memory data cache, exact

match selection procedure was taken as the equivalent for Select operation. It also not included

in Join statement test since no join operation is defined in the cache implementation.

Simple Select Statement:

SELECT * FROM history WHERE volume = 54343;

Select Statement with Joins:

SELECT * FROM history h

LEFT JOIN tickers t

ON t.ticker_serial = h.ticker_serial

WHERE h.volume = 54343 and t.source_id = 'NSDQ'

Figure 18 : Example Select Statement

Scalable In-Memory Data Management Model for Enterprise Applications

46

OP4 : Number of Transactions vs Run Time (Simple Query)

Figure 19 : Select Operation - Run Time Comparison

OP5: Number of Transactions vs Transactions per Second(Simple Query)

Figure 20 : Select Operation – Transactions Per Second Comparison

0

1

2

3

4
5
6

7

8

9

10
11

12

5000 10000 20000 50000 100000 200000 500000 1000000 2000000 5000000

R
u

n
 T

im
e

 (
s)

Number of Transactions

SQLite Oracle MemSQL H2 FileDB Cache

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

20000 50000 100000 200000 500000 1000000 2000000 5000000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

SQLite Oracle MemSQL H2 FileDB Cache

Scalable In-Memory Data Management Model for Enterprise Applications

47

OP6 : Number of Concurrent connections vs Transactions per second (Simple Query)

Figure 21: Select Operation - Concurrent Connections vs TPS

OP7: Number of Transactions vs Transactions per Second (With Joins)

Figure 22 : Select with Joins - TPS Comparison

When analysing the Select operation results, we can clearly see that IMDBs has higher

performance than the Oracle DRDB when the number of select operations are higher. For select

operation IMDBs are around 2 times faster than the Oracle. Flat file based has less transactions

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Tr
an

ac
ti

o
n

s
p

e
r

Se
co

n
d

No of Concurrent Connections

SQLite Oracle MemSQL H2

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

20000 50000 100000 200000 500000 1000000 2000000 5000000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

No of Transactons

SQLite SQLite-Joins Oracle Oracle-Joins

MemSQL MemSQL-Joins H2 H2-Joins

Scalable In-Memory Data Management Model for Enterprise Applications

48

per second (TPS) than all the other data sources. Oracle DB is around 3 times faster than the

Flat File DB and IMDBs are around 8 times faster than it. In-memory cache is around 15 times

faster than it. Out of the three IMDBs selected, MemSQL has the highest TPS. SQLite has the

next highest TPS and H2 has the lowest. In-memory data cache has the highest performance

for any transaction count. Cache is around 5 times faster than Oracle and 1.5 times faster than

IMDBs.

Transactions with join operations shows same curve shape but has less TPS than the simple

select operations for all databases. The TPS difference between the two curves is significant in

Oracle database. Join operation performs within main memory is faster than the disk based

operation.

3.3.3 Results for Update Operation

To evaluate the update statement performance, History table was initially populated with 10

million records and at each iteration, defined number of rows varied from 1 to 5 million was

updated from history table. To evaluate the performance with multiple connections, the same

test was done with multiple threads with each thread creating a new connection to the database.

Sample SQL statements used for SQL based databases is given in Figure 23.

OP8: Number of Transactions vs Run Time

Figure 24 : Update Operation - Run Time Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

50

100

150

200

250

300

20000 50000 100000 200000 500000 1000000 2000000 5000000

R
u

n
 T

im
e

 (
s)

-
Fo

r
O

ra
cl

e

R
u

n
 T

im
e

 (
s)

Number of Transactions

SQLite MemSQL H2 Oracle

UPDATE history SET volume = 50000 WHERE volume = 54243;

Figure 23 : Example Update Statement

Scalable In-Memory Data Management Model for Enterprise Applications

49

OP9: Number of Transactions vs Transactions per Second

Figure 25 : Update Operation - Transactions Per Second Comparison

OP10 : Number of Concurrent connections vs Transactions per second

Figure 26 : Update Operation - Concurrent Connections vs TPS

When analysing the Update operation results, we can see that IMDBs has higher performance

than the Oracle DRDB. For update operation IMDBs are around 80 times faster than the Oracle.

Out of the three IMDBs selected, H2 has the highest TPS for update operation. SQLite has the

0

50

100

150

200

250

300

350

0

5000

10000

15000

20000

25000

30000

35000

40000
1

1
0

1
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

2
0

0
0

0

5
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

5
0

0
0

0
0

1
0

0
0

0
0

0

2
0

0
0

0
0

0

5
0

0
0

0
0

0

5
5

0
0

0
0

0

6
0

0
0

0
0

0

6
5

0
0

0
0

0

7
5

0
0

0
0

0 Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

 -
Fo

r
O

ra
cl

e

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

SQLite MemSQL H2 Oracle

40

50

60

70

80

90

100

110

120

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

 -
Fo

r
O

ra
cl

e

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

No of Concurrent Connections

SQLite H2 MemSQL Oracle

Scalable In-Memory Data Management Model for Enterprise Applications

50

next highest TPS and MemSQL has the lowest TPS. For In-memory databases the transactions

per second become nearly constant even the number of transactions increasing. For Oracle,

TPS gradually increasing when the number of transactions increasing.

When number of concurrent connections are increasing the TPS of SQLite and H2 databases

are gradually decreased after showing a peak value when number of concurrent connections

are at 3 and 4 respectively. But for Oracle and MemSQL TPS remains nearly constant when

number of concurrent connections increasing.

3.3.4 Results for Delete Operation

To evaluate the Delete statement performance, History table was initially populated with 10

million records and at each iteration, defined number of rows varied from 1 to 5 million was

deleted from history table. To evaluate the performance with multiple connections, the same

test was done with multiple threads with each thread creating a new connection to the database.

Sample SQL statements used for SQL based databases is given in Figure 27.

OP11: Number of Transactions vs Run Time

Figure 28: Delete Operation -Run Time Comparison

0

5000

10000

15000

20000

25000

30000

35000

0

50

100

150

200

250

300

20000 50000 100000 200000 500000 1000000 2000000 5000000

R
u

n
 T

im
e

 (
s)

 -
Fo

r
O

ra
cl

e

R
u

n
 T

im
e

 (
s)

Number of Transaction

SQLite MemSQL H2 Oracle

DELETE From history where volume = 54243;

Figure 27 : Example Delete Operation

Scalable In-Memory Data Management Model for Enterprise Applications

51

OP12: Number of Transactions vs Transactions per Second

Figure 29 : Delete Operation - Transactions Per Second Comparison

OP13 : Number of Concurrent connections vs Transactions per second

Figure 30 : Delete Operation - Concurrent Connections vs TPS

As with the other operations, for delete operation also IMDBs has higher performance than the

Oracle DRDB. For delete operation, IMDBs are around 250 times faster than the Oracle. Out

0

100

200

300

400

500

600

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

-
Fo

r
O

ra
cl

e

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

SQLite MemSQL H2 Oracle

40

50

60

70

80

90

100

110

120

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

 -
Fo

r
O

ra
cl

e

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

No of Concurrent Connections

SQLite MemSQL H2 Oracle

Scalable In-Memory Data Management Model for Enterprise Applications

52

of the three IMDBs selected, MemSQL has the highest TPS for update operation. SQLite has

the next highest TPS and H2 has the lowest TPS. For all IMDBs the TPS become gradually

increasing for small number of transactions, and then become a flat graph. For delete operation,

Oracle also shows a similar behaviour.

When the number of concurrent connections are increasing, the TPS gradually increasing for

all databases up to 4-5 number of connections and then remains constant. But for SQLite when

number of concurrent connections exceed 7, TPS gradually decreased.

Scalable In-Memory Data Management Model for Enterprise Applications

53

4. FRAMEWORK IMPLEMENTATION

This chapter is intended to illustrate the complete implementation effort of the data

management framework proposed by this research, highlighting the important design decisions

made during implementation phase. While Section 4.1 gives a brief summary of the

requirement of such a framework, Section 4.2 will illustrate further on implementation of In-

memory data cache, File based DB and finally the data management Framework.

In Section 4.3 the details of the performance comparison of the framework based

implementation and pure database API calls based implementation is given. There the

framework is evaluated against the results presented in Section 3.3.

4.1 Problem Background

In almost all the enterprise applications written today, it is required to incorporate database

CRUD (Create, Read, Update, and Delete) operations. A large enterprise application will

typically have one or more databases to store data and on top of this a data access layer (DAL)

to access the database. On top of this there may be some repositories to communicate with the

DAL, a business layer containing logic and classes representing the business domain, a service

layer to expose the business layer to clients and finally some user interface application such as

a desktop application or an web application.

Many developers often make database calls directly from an application layer, but this results

in maintenance or code change is extremely difficult when database access changes are

necessary. As with any application development endeavour, there is more than one way to

tackle it. A current industry trend is to separate the data access code from the rest of the code.

With this approach, it is possible to use the necessary database calls via the data access code.

This allows the developer to make database access or code changes without touching the rest

of an application. So a data access layer is an important part of a software application.

A data access layer follows the idea of "separation of concerns" where all of the logic required

for the business logic to interact with the data sources is isolated to a single set of classes

(layer). This allows developers to more easily change the back-end physical data storage

technology without having a large impact to the business logic.

The standard for cross platform SQL database connectivity is Open Database Connectivity

(ODBC) which a standard database access method developed by the SQL Access group in

Scalable In-Memory Data Management Model for Enterprise Applications

54

1992. The goal of ODBC is to make it possible to access any data from any application,

regardless of which database management system is handling the data. ODBC manages this by

inserting a middle layer, called a database driver, between an application and the DBMS [39].

ODBC is more than a database interface, it also defines an underlying connection protocol etc.

So the application developers has to deal with the code complexity associated with ODBC

when connecting with the database. Although there are several C++ wrappers and libraries for

it, there is no widely used free API for this. Another limitation with these libraries is they are

mainly focused on SQL based databases and other forms of data sources such as file based DB,

in-memory caches are not addressed.

So the proposed framework will address these problems and it is implemented as a C++ library

to access various data sources such as SQL based in-memory and disk based databases, flat file

databases and in-memory data caches. Since it is implemented in an extensible way, support

for any other new data source can be integrated with it. The details of the implementation of

the framework is given in the following sections of this chapter.

4.2 Design of the Framework

A data access layer (DAL) in computer software, is a layer of a computer program which

provides simplified access to data stored in persistent storage of some kind, such as an entity-

relational database. It is an application programming interface which unifies the

communication between a computer application and databases. Traditionally, all database

vendors provide their own interface tailored to their products, which leaves it to the application

programmer to implement code for all database interfaces developer would like to support.

Database abstraction layers reduce the amount of work by providing a consistent API to the

developer and hide the database specifics behind this interface as much as possible. This

approach provides flexibility to change an application’s persistence mechanism over time

without the need to re-engineer application logic that interacts with the data access layer.

The high-level logical diagram for the proposed Data Connector Framework is shown in

Figure 31. The presentation layer is what a system user sees or interacts with. It can consist

of visual objects such as screens, web pages or reports or non-visual objects such as an

interactive voice recognition interface. To provide the required functionalities to the client, the

application needs to interact with the Data Layer. The business logic layer represents the

business rules that are enforced via programming logic regarding how those rules are applied.

Scalable In-Memory Data Management Model for Enterprise Applications

55

The data access layer consists of the definitions of database tables and columns and the

computer logic that is needed to navigate the database.

Presentation Layer

Data Connector API

IMDB DRDB Files Data Cache

Business Logic Layer

Figure 31 : Proposed Architecture for Database API

The data can be stored in various forms such as in-memory database, disk resident database of

simple flat files. In the current enterprise applications the application layer is tightly coupled

with the data layer and the data storage method cannot be changed later based on the business

requirements. The proposed solution is a database connector API which provides a seamless

interface for the application developers so that the underline data storage mechanism does not

affect the application interface. The connector API will provide all the required functionalities

for either IMDB, DRDB or flat files so that all data handling logics will be excluded from the

application layer.

Scalable In-Memory Data Management Model for Enterprise Applications

56

4.3 Implementation Details

The proposed data connector framework in this research is a C++ library for accessing multiple

SQL based disk resident and in memory databases, flat file database and in memory data cache.

It uses native APIs of target data source so applications developed with this framework library

run swiftly and efficiently. This library acts as middle-ware and delivers database portability

across various different data sources. The In-memory data cache and the flat file database is

developed using C++ language and both of them were integrated with the data connector

framework. The following sections of this chapter describes the implementation details of the

in-memory cache, flat file database and finally the data connector framework along with their

features and design.

4.3.1 Implementation of Flat File based DB

The flat file database system is implemented based on File Input Output processing and

Streams. To access the structure of the data and manipulate it, the file is read in it’s entirely

into the computer's memory. The database is a system folder with the given database name,

which is created in the predefined database location within the file system. In this system the

tables are holding all the data in the form of flat files. Organization of databases and tables are

shown in Figure 32.

TradeDB

StockDB

Table History

Table Intraday

Table Tickers

Figure 32: Database organization in Flat File DB

In this System, the table structure has two parts as header rows and data rows. Header Row

consists the column names. Data Rows consist the records related to the columns. Some special

symbols are used as a delimiters for data columns.

Scalable In-Memory Data Management Model for Enterprise Applications

57

Figure 33 : Query Execution Method of Flat File DB

Scalable In-Memory Data Management Model for Enterprise Applications

58

The record and column separators used in this flat file database is as follows. Example table is

shown in Figure 34.

 Record Begin – Hex 2: STX (Start of Text)

 Record End - Hex 3: ETX (End of Text)

 Column Separator – ‘|’ Pipe

Figure 34 : Flat File DB - Table Data

The flat file database system is implemented using C++ language and Input/output stream class

to operate on files. The queries are implemented in a similar way to standard SQL query

language and Create, Insert, Delete and Select and Drop statements are supported in the current

version and the DB query execution method of flat file DB is given in Figure 33.

4.3.2 Implementation of In-Memory Cache

The C++ Standard Template Library (STL) is a powerful and versatile collection of classes and

functions that provides an efficient, lightweight, and extensible framework for application

development. STL also offers a sophisticated level of abstraction that promotes the use of

generic data structures and algorithms without the overhead of a generic solution. A STL

container is a holder object that stores a collection of other objects (its elements). They are

implemented as class templates, which allows a great flexibility in the types supported as

elements. The in-memory cache is developed using these STL containers and maps, sets, lists,

arrays and vectors have been extensively used for that. The main features of this cache is as

follows.

 Able to define Data tables, data rows and cells so that data organization look similar to

traditional database.

 Able to define primary key columns for tables.

 Provide support for indexing for faster access operations.

 Provide support for data types including bool, int, long, float, double and DateTime.

 Able to query the data table for various operations including exact match, partial match,

greater than, less than and between.

 Able to delete records based on given criteria.

 Able to clear tables and delete tables and alter tables by adding new columns.

Scalable In-Memory Data Management Model for Enterprise Applications

59

When using this in-memory cache, first the cache tables need to define. Table column names,

their data types and primary key columns for the tables are initially defined. Then data records

can be added to each table by setting values for each column of the record. Then these cache

tables can be queried for various operations such as exact match, greater than, less than etc.

Example usage of this in-memory cache is shown in Figure 35.

Figure 35 : Example usage of In-Memory Cache

Scalable In-Memory Data Management Model for Enterprise Applications

60

The implementation of in-memory cache has four basic classes namely Cache, CacheTable,

CacheRecord and CacheCell. The detailed class view of the system is shown in Figure 36.

+CreateTable(in : String, in : Vec<CacheColumnInfo>, in : Vec<String>) : void

+GetTable(in : String) : void

+DropTable(in : String) : bool

-map_Tables : Map<String, CacheTable *>

Cache

+Insert(in : CashRecord*) : bool

+GetEmptyRecord() : CashRecord*

+QueryForExactMacth() : void

+QueryForPartialMatch() : void

+QueryForGreaterThan() : void

+QueryForLessThan() : void

-z_TableName : String

-i_CallsCount : int

-p_Key : Key*

-vec_ColumnInfo : Vec<CacheColumnInfo>

-pset_Records : Set<CacheRecord*>*

-map_NumberIndex : map<long, map<int, set<cacheRecord*>*>*>

-map_FloatIndex : map<float, map<int, set<cacheRecord*>*>*>

-map_StringIndex : map<String, map<int, set<cacheRecord*>*>*>

CacheTable

+Get(in : int) : CacheCell

-p_Data : CacheRecordData*

-p_Table : CacheTable*

CacheRecord

+GetKeyCount() : int

-vec_KeyColumn : Vec<int>

Key

-p_CacheCellData : CacheCellData[1:n]

CacheRecordData

-z_Name : String

-e_Type : CacheDataType

CacheColumnInfo

+GetBool() : bool

+GetInt() : int

+GetLong() : long

+GetFloat() : float

+GetDouble() : double

+GetString() : String

-p_Data : CacheCellData*

CacheCellBase

#Union:

-b_Data : bool

-i_Data : int

-l_Data : long

-f_Data : float

-d_Data : double

-z_Data : char*

-t_data : time_t

CacheCellValue

-m_Value : CacheCellValue

CacheCellData

+Set(in : bool) : void

+Set(in : int) : void

+Set(in : long) : void

+Set(in : float) : void

+Set(in : double) : void

+Set(in : String) : void

CacheCell

«extends»

1

1..*

1..* 1

1

1..*

1

11 1

1..*

1

«extends»

1

1

1

1

Figure 36: Class Diagram of In-Memory Cache

Scalable In-Memory Data Management Model for Enterprise Applications

61

4.3.3 Implementation of the Framework for Data

The data connector API is designed to create a development experience that insulates

application developers from being domain experts in the data persistence layer. This allows

database experts to optimize interaction with the persistence layer without impacting the

application development process. The decoupling was obtained by defining a set of interfaces

setting the contracts for retrieving and persisting objects. This data connector framework is

designed as a C++ dynamic library and it directly calls native API's of target data source. The

features of the framework is as follows.

 Provide support for Oracle, SQLite, Flat File DB and In-Memory cache and designed

in an extensible way so that new data sources can be added at any point.

 The procedures for database connection creation and query execution are simplified

and the developers are not directly exposed to complex database specific code. So this

framework reduce the developer effort and time.

 Since it is designed as a C++ library, it can be easily integrated with enterprise

applications

 Provide support for Select and other non-query operations: Insert, update and delete

 Data source and connection parameters can be configured in XML based configuration

file. So the underline data source of the enterprise applications can be changed with no

code changes.

In this framework, the DataConnector class is the one which reads the data source configuration

files and initialize the defined data connection in that file. The DataConnection is the base class

for all the data sources and it has two basic methods as ExecuteQuery and ExecuteNonQuery.

All the sub classes which corresponds to different data sources inherit these two methods and

implement them using the data source specific API methods. So all the database specific

method calls and other complex data structures required are used only at this level and it has

simplified the application developer’s effort.

To provide a generic result set for all select queries in different data sources, several wrapper

classes are used to wrap the selected data. At the application level, developer has to iterate this

generic ResultSet class to get the results for a particular query. The DBRecord and DBField

corresponds to data value and data record in database. The underline data structure used to store

different data values is a union. So it is possible to save memory by using the same memory

region for storing different objects at different times. The detailed class diagram of the

Scalable In-Memory Data Management Model for Enterprise Applications

62

framework is given in Figure 37 and SQLite query execution method is shown in Figure 38.

An example code which shows how this framework can be used is given in Figure 39.

+Init() : void

+ExecuteQuery(in : ContextDataQuery*) : void

+ExecuteNonQuery(in : ContextDataNonQuery*) : void

-p_Connection : DataConnection*

-xdoc_Config : XMLDocument

DataConnector

+ExecuteQuery(in : String) : ResultSet

+ExecuteQuery(in : String) : int

DataConnection

+GetAll() : DBTable

+GetNext() : bool

-p_QueryResults : QueryResults*

ResultSet

+GetInt(in : int) : int

+GetLong(in : int) : long

+GetFloat(in : int) : float

+GetDateTime(in : int) : DateTime

-vec_ColumnInfo : Vector<ColumnInfo>

-vec_CurrentRecord : Vector<Field>

QueryResults

-Union

-b_Data : bool

-d_Data : double

-z_Data : char*

Field

-p_SqliteConn : Sqlite3*

DataConnectionSqlite

-p_Env : OCIEnv*

DataConnectionOracle

-p_Cache : Cache*

DataConnectionCache

-p_FileDB : FileDB*

DataConnectionFileDB

+GetRecord(in : int) : DBRecord

+GetColumnIndex(in : String) : int

-p_Data : Data*

DBTable

-vec_Columns : Vector<ColumnInfo>

-dec_Records : deque<DBRecordData>

Data

-z_Name : String

-m_DataType : DBDataType

ColumnInfo

+GetInt() : int

+GetLong() : long

+GetFloat() : float

+GetDouble() : double

+GetString() : String

-p_FieldData : DBFieldData*

-m_DataType : DBDataType

DBField

+GetInt() : int

+GetLong() : long

+GetFloat() : float

+GetDouble() : double

+GetString() : String

-i_Data : int

-d_Data : double

-pz_Data : String*

-tv_Data : timeval

DBFieldData

+GetFiled(in : int) : DBFieldData

+AddFiled(in : int) : void

+AddField(in : long) : long

+AddField(in : String) : void

-vec_fields : vec<DBFieldData>

DBRecordData

+GetField(in : int) : DBField

-p_RecordData : DBRecordData*

-vec_ColumnInfo : Vector<ColumnInfo>

DBRecord

1

1

«extends»

**

*

*

1 11..* 1

1

1..*1 1 1 1..*

1

1

1..*

1

1

1..*

1

1

1..*

1

Figure 37 : Class diagram of Data Connection Framework

Scalable In-Memory Data Management Model for Enterprise Applications

63

Scalable In-Memory Data Management Model for Enterprise Applications

64

Figure 38 : ExecuteQuery Method for SQLite DB

Figure 39 : Example usage of Framework

Scalable In-Memory Data Management Model for Enterprise Applications

65

4.4 Performance Analysis of Framework

Abstraction versus performance is one of the major design consideration which should be

considered when developing such a data access layer. As discussed in the previous section,

there is an abstraction layer, which helps developers transparently connect to the currently

configured store. The information regarding the database and provider is generally specified in

a configuration file. While this approach is very flexible, it can become a performance overhead

if not designed appropriately. So after implementing the framework, same benchmarks carried

out in Section 3.2 are carried out again with the framework. The results for insert operations

which are measured with Oracle and SQLite databases are as given in Figure 39 and Figure

40. The results for the select operation is given in Figure 41.

During this analysis, the direct database API calling method which is given in section 3.3 and

the database operations through the Data Connector API is compared. For both scenarios, how

the transactions per second varies when the number of transactions are increasing is plotted.

As we can see in the graphs, the TPS difference between the two scenarios are not significant.

So we can conclude that adding an extra layer in between the business logic layer and the data

layer does note degrade the application performance.

Figure 40 : Insert Operation Performance of Framework - With Oracle

0

50

100

150

200

250

300

350

400

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

Oracle-Without Framework Oracle - With Framework

Scalable In-Memory Data Management Model for Enterprise Applications

66

Figure 41 : Select Operation Performance of Framework - With SQLite

Figure 42 : Select Operation Performance of Framework

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

SQLite-Without Framework SQLite-With Framework

0

50000

100000

150000

200000

250000

300000

350000

400000

20000 50000 100000 200000 500000 1000000 2000000 5000000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

Number of Transactions

SQLite Oracle SQLite_Framewok Oracle_Framework

Scalable In-Memory Data Management Model for Enterprise Applications

67

5. CONCLUSION AND FUTURE WORK

This chapter is intended to discuss the summary of benchmark results, final conclusion about

the project and the remaining works of this project. While Section 5.1 gives a brief summary

of the results, Section 4.2 gives details about future progress and remaining tasks.

5.1 Conclusion

Data growth is one of the major challenge that enterprise applications are facing today. As data

accumulates, there is a corresponding burden on software developers to maintain acceptable

levels of performance, whether that is measured by the speed with which an application

responds, the ability to aggregate and deliver data, or the business value of information.

Organizations are recognizing that their growing data stores bring massive, and largely

untapped, potential to improve business intelligence. So researches on scalable data

management solutions has gained more popularity within the industry now a days. During this

research basically two major aspects of this problem domain is covered.

 Develop an unbiased benchmark for different In-Memory databases by comparing them

with disk resident databases, In-Memory Data Caches and flat file database systems.

 Develop a framework for Data Source Management so that enterprise applications can

be designed without concerning the underline data source.

To address the first problem, comprehensive performance evaluation was carried out for insert

update, delete and select operations of different data sources. System throughput and the

response time was taken as the performance metrics and the tests were carried out by varying

the number of transactions and number of concurrent connections. For this benchmark, SQLite,

MemSQL, and H2 in-memory databases, Oracle disk resident database, in-memory data cache

and in-memory database are used.

According to the benchmark results obtained in Section 3.3, it is clear that In-Memory

databases performs well than the disk resident databases. For insert operation IMDBs are

around 200 times faster than the Oracle. For update operation IMDBs are around 80 times

faster than the Oracle and for delete operation they are around 250 times faster. But for insert

operation, oracle also performs comparatively well than the other operations and IMDBs are

only 2 times faster than the Oracle. The disk I/O overhead and the network delay has become

the biggest factors for delays in disk resident databases like Oracle.

Scalable In-Memory Data Management Model for Enterprise Applications

68

Out of the three in-memory databases selected, MemSQL has the highest TPS for insert, select

and delete operations. But for update operation, MemSQL has the lowest performance when

compared to the other two databases. For insert, delete and select operations, SQLite has the

next highest TPS than the other two IMDBs and H2 has the lowest. For update operation H2

database has the highest TPS. A key capability of the MemSQL platform is fast deletes. Users

need to be able to delete data even faster than they can insert it so the system is not

overwhelmed. When the data ingest rate is faster than the system can delete, users are forced

to limit the amount of data they retain for real-time analytics. A system that can delete large

volumes of data quickly can increase the amount of data that can be retained for real-time

analytics.

Flat File Database has less run time for insert operation than the Oracle database as well. Non

availability of transaction recovery mechanisms such as transactions logs and not having any

constraint checking are the reasons for fast insert operation of file database. But for select

operation flat file database become very slow when number of transactions increased. The

reason for this poor performance of flat file DB is, to access the structure of the data and

manipulate it, the file must be read in its entirety into the computer's memory.

For both insert and select operations, in-memory data cache is performing much better than the

other databases. Cache is around 500 times faster than Oracle and 2 times faster than IMDBs

for insert operations. For select operation it is around 5 times faster than Oracle and 1.5 times

faster than IMDBs. Although in-memory data cache is not a good data persistent mechanism

due to its volatile nature, it is good for enterprise applications which required high data

processing rate such as complex event processing systems.

When number of concurrent connections are increasing, for all databases the TPS is initially

increased gradually and then remains constant. But for SQLite database, TPS is gradually

decreased when number of concurrent connections are high. According to the results, it can be

seen that oracle database can support larger number of concurrent connections without

degrading the performance.

To address the second problem of not having a standard framework to access data source layer,

a data connector framework is developed in C++ language. By looking at the performance

analysis results of the Framework given in Section 4.4, it can be concluded that adding an extra

layer between the presentation layer and the data layer does not affect the performance of the

application as there is no significant difference between the two curves.

Scalable In-Memory Data Management Model for Enterprise Applications

69

5.2 Future Work

At this initial release of the data management framework, support for a stack of most useful

data sources used in the enterprise application is provided. But sometimes these data sources

will not perfectly match with the some of the enterprise applications, since there are large

number of databases using in this domain. Since this framework is extensible solution, it is

possible to enhance its features by providing support for more databases and data sources which

are used in the applications. Hence in future, it is possible to provide a data source stack which

contains almost all databases and data sources under each specific category and then it will be

more flexible to developers, when managing their data sources.

Currently the data management framework is supported for Linux OS and GNU GCC C++

compiler only. So as future work we could add cross platform support for this so that it will be

more usable for enterprise applications.

Cloud computing is quickly gaining popularity with companies in all industries. The cloud's

on-demand elasticity, enabling it to expand its computational power as needed for peak loads,

creates new and important benefits for enterprise computing. So in future we could research on

how cloud based data sources can be integrated with this framework and how effective it would

be for enterprise applications.

Security will be one of the major factors which impact greatly in software development. All

the core business data and other organization data are stored in these data sources. So accessing

and altering these data should be done in more secure manner. So the security aspects such as

enable password protection for data source connections and add support for encrypted data can

be integrated with this framework in future.

Scalable In-Memory Data Management Model for Enterprise Applications

70

6. REFERENCES

[1]. Gordon E. Moore., "Cramming More Components into Integrated Circuits ", in proceedings

of the IEEE, vol. 86, No. 1, January 1998.

[2]. Donald K. Burleson, "Oracle Tuning: The Definitive Reference", Rampant TechPress, 2nd

Ed. New York: Wiley, 2010, pp. 483-485.

[3]. IBM Inc." Applying new analytics tools to reveal new opportunities". Internet:

http://www.ibm.com/smarterplanet/us/en/business_analytics/article/it_business_intelligen

ce.html. [Accessed: 03-Jan-2014].

[4]. F. Raja et al., "A Comparative Study of Main Memory Databases and Disk Resident

Databases", in World Academy of Science, Engineering and Technology 14 , 2008

[5]. H0. Plattner and A. Zeier, "In-Memory Data Management: An Inflection Point for

Enterprise Applications", Springer, Berlin Heidelberg, 2011.

[6]. Manghul Tu et al., “Secure Data Objects Replication in Data Grid", in IEEE Transactions

on Dependable and Secure Computing, Vol 7 No 1, Jan 2010

[7]. Pierangelo Di Sanzo et al.,"Auto-tuning of Cloud-based In-memory Transactional Data

Grids via Machine Learning", in IEEE Second Symposium on Network Cloud Computing

and Applications , 2012

[8]. InfoQ Articles."Jags Ramnarayan on In-Memory Data Grids". Internet:

http://www.infoq.com/articles/in-memory-data-grids. [Accessed: 22-Jan-2014].

[9]. Hector Gracia and Kenneth Salem., “Main Memory Database Systems: An overview", in

IEEE Transactions on Knowledge and Data Engineering, Vol 4 No 6, Dec 1992

[10]. Oracle TimesTen, "Oracle Times Ten In-Memory Database Architectural Review",

Oracle Press, USA, 2006, pp. 10-11.

[11]. Cha S.K. et al., "An extensible architecture for main-memory real-time storage systems",

in IEEE Third International Workshop on Real-Time Computing Systems and

Applications,1996

[12]. H.Garcia-Molina and K. Salem, “High performance transaction processing with

memory resident data,” in Proc. Int. Workshop OII High Performance Transaction

Systems, Paris, Dec. 1987

[13]. R.B. Hagmann, “A crash recovery scheme for a memory-resident database system,”

IEEE Transactions and Computing.. Vol. C-35, pp. 830-842. Sept. 1986.

Scalable In-Memory Data Management Model for Enterprise Applications

71

[14]. D. J. DeWitt et al., "Implementation techniques for main memory database systems",

in Proceedings of ACM SIGMOD Conference, June. 1084.

[15]. Krueger J. et al., "Data structures for mixed workloads in in-memory databases", in IEEE

5th International Conference on Computer Sciences and Convergence Information

Technology (ICCIT), 2010

[16]. T.J. Lehman and M. J. Carey, "Query processing in main memory database management

systems," in Proc. ACM SIGMOD Conference, Washington, DC, May, 1986.

[17]. M. H. Eich, "A classification and comparison of main memory database recovery

techniques," in Proceedings of International Conference on Data Engineering, Feb. 1987,

pp. 332-339.

[18]. S. K. Cha et al., “Object-oriented design of main-memory DBMS for real-time

applications," in Proceedings of 2nd International Workshop on Real-Time Computing

Systems and Applications, Oct. 1995.

[19]. H.Garcia Molina and K. Salem, "High performance transaction processing with

memory resident data," in Proceedings of International Workshop on High Performance

Transaction Systems, Paris, Dec.1987.

[20]. M.Stonebraker, "Managing persistent objects in a multi-level store," in Proceedings of

ACM SIGMOD Conference, Denver, CO, May 1991, pp.2-11.

[21]. Elliot King., “The Growth And Expanding Application Of In-Memory Databases", for

Information Value Loyola University Maryland, June 2011

[22]. Liu Yang et al., "The Research of Embedded Linux and SQLite Database Application in

the Intelligent Monitoring System", in IEEE International Conference on Intelligent

Computation Technology and Automation (ICICTA),Vol 3, 2010

[23]. Olson, M.A., "Selecting and implementing an embedded database system", in IEEE

Computer Society, Volume 33 Issue 9,Sept 2000

[24]. Jens Krueger et al.,”Main Memory Databases for Enterprise Applications", in IEEE 18Th

International Conference, Vol. 1 No 6, Sept 2011.

[25]. Hasso Plattner and Alexander Zeier, “Introduction to IMDB,” in In-Memory Data

Management - An Inflection Point for Enterprise Applications, 2nd Ed. New York:

Springer, 2011, pp. 3-5.

[26]. David J. DeWitt, "The Wisconsin Benchmark: Past, Present, and Future," in The

Benchmark Handbook, 2nd Ed. Morgan Kaufmann Publishers Inc, 1993.

[27]. CSQL, "CSQL Wisconsin Benchmark Results” [Online]. Available:

http://csql.sourceforge.net/bresults.html [Accessed On: 2014 February 14]

http://csql.sourceforge.net/bresults.html

Scalable In-Memory Data Management Model for Enterprise Applications

72

[28]. “Oracle TimesTen In-Memory Database on Oracle Exalogic Elastic Cloud” , white

paper, Oracle Corp., July. 2011.

[29]. “Telecommunication Application Transaction Processing (TATP) Benchmark

Description”, white paper, IBM Software Group Information Management., March. 2009.

[30]. “Using the TATP Benchmark to Measure the Effect of Additional Memory Capacity on

Database Performance”, white paper, IBM System x and Database Performance Analysis,

June, 2011.

[31]. Francois Raab, " TPC-C -- The Standard Benchmark for Online transaction Processing,"

in The Benchmark Handbook, 2nd Ed. Morgan Kaufmann Publishers Inc, 1993.

[32]. Yao, S. Bing; Hevner, Alan R., "A Guide to Performance Evaluation of Database

Systems," in The NBS Special Publication 500-188, 1984.

[33]. SQlite.org, "SQLite Database ” [Online]. Available: https://www.sqlite.org/ [Accessed

On: 2015 February]

[34]. H2database.org,"H2 Database ” [Online].

Available: http://www.h2database.com/html/main.html [Accessed On: 2015 February]

[35]. “Comparison of Hibernate with H2 server vs Hibernate with SQLite embedded”, in

JPA Performance Benchmark, 2010

[36]. Memsql.org, “MemSQL Documentation” [Online]. Available:

http://developers.memsql.com/docs/latest/[Accessed On: 2015 February]

[37]. Oracle Cooperation, “Oracle Database” [Online]. Available:

http://www.oracle.com/us/corporate/index.html [Accessed On : 2015 March]

[38]. Bitton, D., DeWitt, D. J., and C. Turbyfil, "Benchmarking Database Systems: A

Systematic Approach," Computer Sciences Department Technical Report #526, Computer

Sciences Department, University of Wisconsin, December 1983.

[39]. Pierangelo Masahiko Tanaka et al.,"Database Operation Using ODBC/JDBC in the KEK

8gev LINAC", in International Conference on Accelerator and Large Experimental Physics

Control Systems, Italy,1999

http://csql.sourceforge.net/bresults.html
http://www.h2database.com/html/main.html
http://developers.memsql.com/docs/latest/
http://www.oracle.com/us/corporate/index.html

