COMPARISON OF SUITAILITY OF DIFFERENT BINDING MATERIALS IN BRIQUETTE FORMING

A.M.D.Shyamalee

(09/8967)

Degree of Master of Science in Sustainable Process Development

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

August 2013

COMPARISON OF SUITAILITY OF DIFFERENT BINDING MATERIALS IN BRIQUETTE FORMING

Aththanayaka Mudiyanselage Daham Shyamalee

(09/8967)

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

August 2013

DECLARATION, COPYRIGHT STATEMENT THE AND

STATEMENT OF THE SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for aDegree or Diploma in any

other University or institute of higher learning and tothe best of my knowledge and

belief it does not contain any material previouslypublished or written by another

person except where the acknowledgement ismade in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right toreproduce

and distribute my thesis/dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or partin future works (such as

articles or backs). University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

Date: 11/11/2013

A.M. Daham Shyamalee

The above candidate has carried out research for the Master thesis under my

supervision.

Signature of the supervisor: Dr. A.D. U.S. Amarasinghe Date: 12/11/2013

Signature of the supervisor: Dr. S.A.M.A.N.S. Senanayaka Date: 11/11/2013

iii

ABSTRACT

needed additional two cycles.

The process ofmanual saw dust briquette making was tested with different binding agents in the laboratory with 1.5 ton hydraulic jack. Dry cow dung, wheat flour and paper pulp were selected as binding agents. This briquette was designed with size 35mm Diameter x 35mm length and cylindrical shape.

Saw dust was sieved through 2mm screen mesh and 6 different samples were prepared with sieved saw dust and each binding agents as 5%, 10%, 20%, 30%, 40%, and 50% dry basis. Cow dung samples were shown difficulties of mould detaching. Wheat flour and paper pulp binder samples with 5%, 10%, and 20% (dry basis) binders also failed onmould detaching due to breaking of briquettes. The minimum requirement of binder percentage was found to be with 30% dry binder of wheat flour and paper pulp to form stable briquette and hence it was selected for comparison of properties. Densities of briquettes with 30% binder of wheat flour and paper pulp were 373.7 kg/m³ and 289.8 kg/m³ respectively.

Compression behavior of Ibriquettes with 30% (dry basis) binding agents was examined for cyclic loading applied using the hydraulic jack. Maximum load of 110kg (35.9 kg/cm² pressure) was maintained for all the experiments. Number of force cycles needed to reach the pre-determined load was recorded; paper and wheat flour binder briquettes were needed five cycles and cow dung briquettes were

Natural drying time was evaluated at 86~89% relative humidity and 25~30°C ambient temperature, It was recorded that briquettes came to 25% moisture content (Wet basis) within 33 hours and 20% moisture content (Wet basis) within 35 hours.

Compressive strength of the briquettes was tested for binder percentages of 30%, 40% and 50% (dry basis) of wheat flour and paper pulp binders. Results have indicated that compressive strength increased with the increase of binder percentage. Paper binder briquettes have comparatively high compressive strength in the range

of 0.124N/mm^2 to 0.238N/mm^2 while wheat flour briquettes have 0.032N/mm^2 to 0.055N/mm^2 .

Calorific values of raw materials and briquettes were tested. Briquettes obtained from 30% paper binder and 30% wheat flour binder has calorific values of 18.14MJ/kg and 20.04MJ/kg respectively.

ACKNOWLEDGEMENTS

I take this opportunity to those who have done an immense support to enable my thesis work a success from its start to the end. First of all my sincere thanks goes to my supervisor Dr. ADUS Amarasinghe, Former head, Department of Chemical and Process Engineering, University of Moratuwa for his continuous in depth guidance throughout my research. The valuable suggestions and technical guidance given by my co-supervisor Dr.SAMANSSenanayake, Senior lecturer, Department of Mechanical Engineering, Open University of Sri Lanka is remarkable. I am grateful to Dr.ThusithaSugathapala and Dr. MahinsasaNarayana as examiners of my thesis work for their guidance which made me encouraged to comprehensively studying the research area. I also thank to Mr. JayanthaSisira Kumara, Senior technical officer, Department of Mechanical Engineering, Open University of Sri Lanka for his technical support given to me.It is great pleasure to mention the financial support given to me from NOMA fund from Telemark University, Norway.

University of Moratuwa, Sri Lanka.

I am grateful to my mother, father, Husband and family for giving me their best support and encouragement. Finally any warm thank goes to all staff colleagues in the Department of Mathematics and Philosophy of Engineering, Open University of Sri Lanka as they were with me to share my research experience.

TABLE OF CONTENTS

Declaration, copyright statement and the statement of the supervisor	i
Abstract	iv
Acknowledgements	vi
Table of contents	vii
List of tables	x
List of figures	xi
1.0 Introduction	1
1.1 Introduction	1
1.2 Scope and Aim	2
1.3 Objective	2
2.0 Literature Review	4
2.1 Raw material availability in Sri Lanka	5
2.2 Factors affecting to the strength and durability of briquette	7
2.3 Manual densification of Biomass Toratuwa, Sri Lanka.	7
2.4 Biomass densification with the use of electricity tations	
2.5 Pretreatment and Post itreatment c.lk	11
2.6 Binding mechanism and Binding agents	13
2.6.1 Binding Mechanism	14
2.6.2 Binding Agents	16
2.7 Factors affecting on the combustion characteristics of the briquettes	21
2.8 Properties of biomass briquettes	22
2.8.1 Density	22
2.8.2 Friability index	23
2.8.3 Heat Value	24
2.8.4 Moisture content	25
2.9 Emissions and environmental impact of biomass fuels	25
3.0 Materials and exerimental methods	27
3.1 Collection of raw materials	27
3.1.1 Base Material	27
3.1.2 External Binding Material	27
3.2 Preparation of Raw Materials	27

3.2.1 Preparation of saw dust	28
3.2.2 Preparation of cow dung	28
3.2.3 Preparation of wheat flour	28
3.2.4 Preparation of paper	28
3.3 Equipment	28
3.3.1 Choice of Briquetting Machine	28
3.3.2 Size and shape of the Briquette	29
3.3.3 Choice of Mould	29
3.4 Sample preparation	30
3.4.1 Blending of materials	30
3.4.2 Pressing	31
3.4.3 Drying	32
3.5 Laboratory tests	32
3.5.1 Moisture content of the biomass	32
3.5.2 Calorific value of the biomass	32
3.5.3 Compressive strength of the briquette	33
4.0 Results and Discussion Electronic Theses & Dissertations 4.1 Data analysis	34
4.1 Data analysis www.lib.mrt.ac.lk	34
4.1.1 Moisture content	
4.1.2 Calorific value (HHV)	34
4.2 Results of cyclic pressurization	36
4.2.1 Compression behavior	36
4.2.2 Cyclic loading	37
4.2.3 Size and density of the briquette samples	39
4.3 Drying Behavior	40
4.3.1 Natural drying process	40
4.4 Compressive strength & Friability Index of the briquettes	42
4.5 Combustion characteristics of briquettes	44
4.6 Comparison of binding agents in saw dust briquettes	46
4.7 Economic evaluation	47
4.7.1 Availability (annually)	48
4.7.2 Economic feasibility	49
4.7.3 Socio-Economic Context	51
5.0 conclusions and future recomendations	53

5.1 Conclusions	53
5.2 Future recommendations	55
Bibiliography	57
Appendix A	63

LIST OF TABLES

Table 2.1. Composition of dried cow dung	19
Table 2.2. Average emissions of a rural household per month	26
Table 3.1. Addition of water as a mixing media	31
Table 4.1. Visual observations of mould detaching	36
Table 4.1.Force acting on the mould	38
Table 4.3. Size and density of the briquette (Diameter 35mm)	39
Table 4.4. Calorific value of biomass	45
Table 4.5. Comparison of quality of briquettes	47
Table 4.6. Availability of raw materials	48
Table 4.7. Availability of raw materials	49
Table 4.8. Comparison of cost of energy.	50

LIST OF FIGURES

Figure 2.1. Pellets	4
Figure 2.2. Briquettes	5
Figure 2.3. Biomass briquettes made with Mini Briant press, Peterson press, Lee	;
Hite Press, Bottle press and Hand balls (Left to Right)	8
Figure 2.4. Lee Hite Press.	8
Figure 2.5. Mini Briant Press	9
Figure 2.6. Peterson Press.	10
Figure 2.7. Changes of physical appearance of biomass after steam explosion	12
Figure 2.8. Changes of physical appearance of biomass after torrefaction	13
Figure 2.9. Light microscoy image of cross section of biomass briquette	15
Figure 2.10. UV auto fluorosence image of ground biomass before briquetting	17
Figure 2.11. Ingredients of cowdung.	18
Figure 2.12. Bulk density of defferent biomass products	23
Figure 3.1. Mould and Hydraulic jack. University of Moratuwa, Sri Lanka.	30
Figure 4.1. Applied load variation on mould. Dissertations	37
Figure 4.2. Pictorial view of hand pressed briquettes.	
Figure 4.3. Natural drying curve of saw dust briquettes	41
Figure 4.4. Influence of binder % on compressive strength of saw dust briquette	s42
Figure 4.5. Comparison of different biomass materials and briquettes burning	
behavior in Bomb Calorimeter	44
Figure 4.6. Smoke emitted from burning of cowdung cake	52