

STANDARD REST API FOR EMAIL

Kalana Guniyangoda

(118209x)

Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

June 2015

i

DECLARATION

“I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief, it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my dissertation, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date:

Name: Kalana Guniyangoda

The above candidate has carried out research for the Masters Dissertation under my

supervision.

Signature of the supervisor: Date:

Name of the supervisor: Prof. Gihan Dias

ii

ABSTRACT

Email has long been a most popular mode of electronic communication. Initially, email

communication was between multi-user hosts using the SMTP protocol, and later on,

with the popularity of client-server communication, protocols such as POP, IMAP and

Submit were developed for connecting e-mail clients and servers. Today, the most

popular method of e-mail access is via a web browser. However, there is still a lack of

standard protocol defined for e-mail access via web browsers. All the current web-mail

systems use proprietary communication between web interfaces and the backend server.

Therefore, each web-mail system can only be accessed with its own web interface and

vice versa. Therefore, it is opportune to develop a standard protocol for email servers

and browser-based email clients harnessed with HTML5 capabilities to communicate

over the HTTP protocol.

Representational State Transfer (REST) is a popular architectural style to implement

applications using the HTTP protocol and offers many features such as scalability and

loose coupling. This would be beneficial in implementing browser-based email clients

and would make it possible to create an open standardised HTTP based protocol similar

to SMTP.

In this dissertation, we analyse the major REST and non-REST HTTP-based e-mail

protocols and APIs, starting from Paul Prescod's initial proposal, as well as other email

protocols such as IMAP, and identify the set of features required of an http-based e-mail

protocol. We then define a standard API for this purpose, combing the strong features of

current systems and protocols. The REST API introduced in this dissertation provides

the needed functionality of an e-mail system, including authentication, sending emails,

reading emails and managing emails & attachments. Furthermore, we specify messaging

formats, error codes and notification mechanisms for the system. We have also

developed a server-side implementation which supports the API.

We have run the e-mail system under three scenarios, and show that it has acceptable

functionality and performance.

iii

ACKNOWLEDGEMENTS

I would like to dedicate my sincere thanks to my supervisor Prof. Gihan Dias for his

dedicated support for the success of this research. This would not have become a success

without your support from the initial stage of the research.

I would like to thank the entire academic and the non-academic staff of the Department

of Computer Science and Engineering for their kindness extended to me in every aspect.

Last but not least, I thank my family and all my friends who supported me for the

success of this piece of work. Your support was so precious.

iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ...ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES.. viii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS .. x

LIST OF APPENDICES ... xi

1. INTRODUCTION .. 1

1.1. Background.. 1

1.2. Objectives .. 2

2. LITERATURE SURVEY ... 3

2.1. Email.. 3

2.2. The history and evolution .. 3

2.3. Email Protocols ... 4

2.3.1. SMTP ... 4

2.3.2. POP and IMAP ... 5

2.4. Messaging Formats .. 6

2.4.1. Internet Message Format .. 6

2.4.2. Multipurpose Internet Mail Extensions .. 7

2.5. Web Services ... 7

2.6. Service Oriented Architecture (SOA) ... 8

2.7. Representational state Transfer (REST) .. 9

2.7.1. Application of REST .. 11

2.7.2. Use of HTTP request methods ... 12

v

2.7.3. HATEOAS ... 13

2.8. REST vs. SOAP... 14

2.9. XML .. 15

2.10. JSON .. 16

2.11. JSON vs. XML .. 16

2.12. Authentication mechanisms ... 18

2.12.1. HTTP Authentication ... 18

2.12.2. Query Based Authentication... 19

2.12.3. OAuth 2.0 Authorization Framework... 19

2.13. REST based email systems .. 20

2.13.1. “Reinventing Email using REST” .. 20

2.13.2. HTTP Access to Email Stores .. 21

2.13.3. Restful interface for database based email server 23

2.13.4. RESTMAIL by Marcin Bazydlo .. 25

3. STUDY OF EMAIL APIs .. 26

3.1. Gmail REST API ... 26

3.2. Outlook Mail REST API ... 29

3.3. Zimbra REST API ... 31

3.4. Sendinc API ... 32

3.5. Postmark REST API .. 34

3.6. Email Yak REST API .. 36

3.7. Context.IO Email REST API .. 37

3.8. Mailgun REST API ... 38

3.9. PostageApp API .. 39

3.10. Yahoo! Mail Web Service ... 40

3.11. Summary of Commercial API ... 41

3.12. Comparison of HTTP methods uses in APIs ... 42

4. COMPARATIVE ANAYLSIS OF API FUNCTIONS .. 43

4.1. Common functions of a generic email system .. 43

4.1.1. Login into email system ... 43

4.1.2. Listing email directories available in the account 44

vi

4.1.3. Listing mailbox content.. 44

4.1.4. Renaming mailboxes .. 45

4.1.5. Deleting mailboxes... 46

4.1.6. Display mail headers .. 46

4.1.7. Mail retrieval .. 47

4.1.8. Deleting Email messages ... 47

4.1.9. Retrieval of attachments ... 48

4.1.10. Email flag handling .. 48

4.1.11. Copy/Move directories/ emails within directories 49

4.1.12. Email Searching and filtering ... 49

4.1.13. Email Sending .. 50

4.2. Summary of Functions .. 51

5. THE SYSTEM DESIGN .. 53

5.1. Architecture ... 53

5.2. HTTP Methods .. 55

5.3. Data exchange language .. 55

5.3.1. Hypermedia Format ... 56

5.4. Resources ... 57

5.4.1. Base URL ... 58

5.4.2. Mail account ... 59

5.4.3. Mail directory ... 59

5.4.4. Mail .. 61

5.4.5. Attachments.. 63

5.5. Functionality .. 63

5.5.1. Login to mail system .. 64

5.5.2. Getting a list of mail directory ... 64

5.5.3. Creating new mail directory ... 65

5.5.4. Rename a mail directory .. 65

5.5.5. Delete a mail directory ... 66

5.5.6. Searching mails within a directory ... 67

5.5.7. Listing emails in a directory ... 67

vii

5.5.8. Displaying email .. 68

5.5.9. Retrieving email attachments ... 68

5.5.10. Posting/Creating email ... 69

5.5.11. Deleting email .. 70

5.5.12. Flag manipulation ... 70

5.5.13. Email sending ... 70

5.5.14. Moving/Copying email ... 71

5.6. Summary of Design ... 72

6. IMPLEMENTATION ... 73

6.1. Architecture ... 73

6.2. Development environment .. 73

6.3. Library usage ... 74

6.3.1. PHP: IMAP .. 74

6.3.2. Swift Mailer ... 75

6.4. Apache Configurations .. 75

6.5. API Configurations .. 76

6.6. User agent/ Client .. 76

6.7. Testing of the API ... 78

6.7.1. Correctness of functionality ... 79

6.7.2. Time consumption for each functionality .. 79

6.7.3. Observations ... 81

7. CONCLUSION & FUTURE WORK ... 82

REFERENCES ... 83

APPENDIX A: SOURCE CODE ... 86

viii

LIST OF FIGURES

Figure 2-1: Mail Sending Process .. 5

Figure 5-1: Fully REST based email system ... 53

Figure 5-2: Hybrid REST mail system... 54

Figure 5-3: Resources .. 58

Figure 6-1: Proposed Architecture ... 73

Figure 6-2: Google Chrome – REST client extension ... 77

Figure 6-3: CURL command line tool ... 77

Figure 6-4: Test Scenario 03 .. 78

Figure 6-5 Test Scenario 02 ... 78

Figure 6-6: Test Scenario 01 .. 79

file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629798
file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629799
file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629803
file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629804
file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629805
file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629806
file:///C:/Users/Anonymous/Desktop/Thesis/Thesis/20150712/Thesis.docx%23_Toc424629807

ix

LIST OF TABLES

Table 2-1: HTTP request methods ... 12

Table 2-2: REST vs. SOAP .. 14

Table 2-3: JSON vs. XML performance .. 18

Table 3-1: Mailgun customized error codes... 39

Table 3-2: Summary of Commercial API .. 41

Table 3-3: Summary of HTTP method use in API .. 42

Table 4-1 : Functionality Analysis of Vendor specific APIs ... 51

Table 5-1: Proposed HTTP request methods ... 55

Table 5-2: Parameter list for mail resource .. 62

Table 6-1: List of PHP:IMAP functions used .. 74

Table 6-2: Correctness of Functions .. 79

Table 6-3: Performance analysis .. 80

x

LIST OF ABBREVIATIONS

API Application Programme Interface

HATEOAS Hypermedia As The Engine Of Application State

HTTP Hypertext Transfer protocol

HTTPS HTTP over TLS

IANA Internet Assigned Numbers Authority

IMAP Internet Message Access Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

POP Post Office Protocol

REST Representational State Transfer

SMTP Simple mail transfer protocol

TLS Transport Layer Security

XML EXtensible markup Language

xi

LIST OF APPENDICES

Appendix Description Page

Appendix - A Source Code 115

1

1. INTRODUCTION

1.1. Background

Email is an essential part of modern communication. It was first introduced in 1961 in MIT's

CTSS system[1]. It became an integral part of the Internet, and the protocols to govern the email

communications were also gradually developed. The major protocols which were developed are

Simple Mail Transfer Protocol (SMTP)[2], Post Office Protocol (POP)[3] and Internet Message

Access Protocol (IMAP)[4]. These protocols cover most of the needs of email communication by

providing a complex array of functionalities. Some other helper protocols were also developed

alongside with these protocols and were standardized by the Internet Engineering Task Force.

The traditional email systems follow a client-server architecture where, the mails are stored in

servers and users access email storage using applications which support email protocols. With

the popularization of World Wide Web over the Internet, the email systems were also designed

with front-ends as web interfaces. However, the same traditional protocol stack was used as the

backend for these web interfaces.

 With the popularity of the Internet, and its integration to the business aspect, leads to the

introduction of web services and related concepts such as service oriented architecture. A web

service provides a set of well-defined functionalities which could be used by software programed

as an abstract unit. The REpresentational State Transfer [5] was another architectural style which

becomes popular as a way of providing abstract interfaces for software applications to

communicate programmatically. This type of architecture led to the popularized the "machine to

machine communication" and their benefits such as reusability, scalability and uniformity.

Therefore the idea of offering email as a web service was designed and implemented

accordingly. It is important to note that, even this type of implementations is based on HTTP

protocol; it significantly differs from the functionality of a webmail interface. The ability to

programmatically access the email store would allow developers to build mashup web

applications, third party productivity applications and many more.

2

 However, the APIs and email systems which were developed were not standardized. The

implementations were differed significantly, depending on what vendor desired to achieve

through the implementation. For example, while Google[6] and Microsoft[7] produced REST

APIs to allow programmers to interact with their email facilities, the API calls, semantics and

results vary significantly. And when we consider the APIs offered by products such as Sendinc,

the functionalities are offered to serve the purpose of sending emails only with different

semantics from either of Google or Microsoft implementations. The variations in the APIs would

force developers to build client application which is specific to APIs. Moreover, the data

exchanging formats which are used in the APIs differ and do not follow the REST constraints in

most of the cases. This would result in tight coupling of client/servers which forces the use of

proprietary technologies rather than open standards.

1.2. Objectives

In this dissertation, our goal is to introduce a standardized API which could follow by most of

the applications which provides email facilities and to standardize the semantics of it. We have

identified the required functionalities for a REST based email system by analysing the existing

APIs and email systems. Based on the analysis and best practices, we have designed a REST API

for interacting with an existing email store which was previously accessed using IMAP or related

traditional Email protocols. We also introduce the JSON semantic to be used in for email

communication over HTTP protocol.

3

2. LITERATURE SURVEY

2.1. Email

Email is the abbreviation of electronic mail, a method of exchanging messages electronically

between connected computers. Email now has become an essential part of communication in

every aspect. Therefore, it is interesting to study how emails evolve into its modern architecture,

the methodologies it uses and the limitations.

2.2. The history and evolution

The first form of email communication wasn‟t between connected computers. The first form of

email communication was host based where users would log into a central shared system and

able to leave messages which could be read by another user. The first such system is considered

to be MIT‟s Compatible Time-Sharing System (CTSS) [1] in 1961. Even though the email

content did not get transferred from one machine to another, users could log into the system

using remote terminal and read their emails conveniently. This system has evolved by providing

various features as per user convenience, yet provided the basic model of email communication.

Following the CTSS system many other host based email systems were developed such as UNIX

[8] mail and Professional Office System (PROFs) by IBM[9].

With the popularity of connected computers via network, emails were able to share

among several computers rather than keeping it in a shared system. With the research effort of

ARPANET in 1971 [10], emails were being able to send across networks reaching remote sites

and other organizations. Since then, emails protocols were formalized and it followed client/

server architectural mode. This architectural style inherently provides robustness and scalability

which helped the growth of the Internet. However, even though the standard protocols offered

common interface for interoperability, vendor specific functionalities and features lead to the

development of variety of solutions based on requirement. The email store would vary from

database based implementations to flat file system and endpoints vary from client side software

to web based interface. Webmail is another innovative way of providing a web based interface to

remote email store via Internet. This model offers easy access to email stores using a browser

4

instead of different email clients. But due to vendor specific implementations, a browser is used

to load web interface specific to vendor instead. Moreover, their internal architecture is also

differs based on their requirements. For example, while Gmail uses database system to store and

retrieve emails, the PHP based webmail access email store using generic protocols. With the

popularity of mobile devices as a platform for the Internet usage and messaging[11], more client

specific interfaces and software were developed to provide specific features.

While World Wide Web and the Internet rapidly grow, the need for system interoperability

increased. With this in mind, a new aspect called web service was developed. Web services are

used to connect existing software in such a way that application component can be reused. The

paradigm was supported by technologies such as SOAP and REST. Service providers used both

SOAP and REST to provide their own web services alongside with their other interfaces. Next

section, we would discuss about the protocols and formats which are used for emailing.

2.3. Email Protocols

2.3.1. SMTP

SMTP stands for Simple Mail Transfer Protocol. It was defined in RFC 821[2] and was used as

the Internet Standard from 1982 to 2008, which was then modified to consolidate old standards

and introduce new additions, by the Standard RFC. SMTP was first developed based on Telnet

and FTP protocols with the intention of transferring messages across connected computers.

However the protocol has been modified to adapt the increasing demand and functionality

requirements. Since the protocol was initially meant for message transferring only, to address

issues related to authentication and etc., a new Internet Standard was introduced as 'RFC

6409'[12]. The protocol which used specifically mail submission was identified as 'submission

protocol'.

 The SMTP protocol has being implemented in many by vendor and open source projects

to comply with the ' RFC 5321'[13] and is normally offered through port 25 of a server. The mail

submission protocol generally offered through port 587. The basic mechanism of how SMTP

protocol used in email system portrayed in figure 2-1.

5

First, the MUA (mail user agent) would connect to a MSA (mail submission agent) to submit a

properly formatted email message. Then the message would be handed over to MTA (mail

transfer agent) for transferring it to the receiver. The receiving MTA would keep the message on

the server till the receiver would consume the message. The role of the MSA is not mandatory as

many of the MTA's still accept formatted messages for transferring. The email message format is

defined in draft standard 'RFC 5322‟ [14] as “Internet Message Format”. The storage of such

message is varied from MTA implementations. Generally the MTA's keep their emails in local

file systems and some implementations keep it in special database structures. After the mail

received by recipient mailbox, mail retrieval protocols such as IMAP and POP would come into

play. We will discuss their functionality in the next chapter.

2.3.2. POP and IMAP

POP stands for Post Office Protocol and is used to access previously discussed mailboxes in

SMTP servers. The protocol was first defined in 1984 with 'RFC 918' [3] and was later improved

to add functionality and security. The current Internet Standard for POP protocol is defined in

'RFC 1939'[15] and is known as POP – version 3. The protocol is generally offered in port 110

and is one of the most common protocols used to access email stores besides IMAP protocol.

POP3 is supported by most of the contemporary mail clients as well. Same as SMTP, the POP

protocol was designed to listen for connections and act upon commands issued by the connected

client.

IMAP stands for Internet Message Access Protocol. It was first defined in 1988 by 'RFC

1064'[4] as ' Interactive Mail Access Protocol'. However the protocol was then developed into

the version which used today as ' Internet Message Access Protocol - Version 4' by 'RFC 3501”

[16] in 2003. Same as POP, IMAP protocol is also used to retrieve mails from an email store and

is generally offered through port 143 and is also a command driven service. Considering the

functionality of both protocols, even though both of them are being offered in all modern email

MUA MSA MTA

(SMTP)

USER

Figure 2-1: Mail Sending Process

6

clients, IMAP has additional set of functionality and could be considered to supplant POP

protocol. On an IMAP server, once logged in, the client could execute commands such as

SELECT, CREATE, DELETE, RENAME, SUBSCRIBE, STATUS, LIST using the mailbox

name as the parameter. A list of functional differences between the two protocols has been listed

below.

1. POP connects to the server as per request and would get disconnected thereafter while

IMAP would keep the connection. This would result in faster response time for IMAP

protocol.

2. IMAP servers could be accessed by multiple mail clients while POP is only allowed per

one client at one time.

3. Partial access to mail parts, such as MIME parts are allowed in IMAP and results in faster

message access.

4. IMAP supports storing of state information per mails and would provide greater control

to the client.

5. IMAP supports creation, renaming and deletion of mailboxes on the server.

6. IMAP could do server side searches for client requests

7. IMAP supports extensions to the base protocol which adds new functionalities.

2.4. Messaging Formats

2.4.1. Internet Message Format

Internet message format was first formalized as ARPA Internet Text Messages in 1977 in an

effort to formalize the informal practices over text messages send across computers. Later this

was standardized as “Internet Message Format” by draft standard RFC 5322[14]. Internet

message format specifies the syntax for text messages or rather US-ASCII only and does not

provide a provision for structured data such as audio or images. Each of character line should not

exceed 998 characters to support common implementations. Email message generally consists

with two parts; the body and the header. Header section has fields which are used to describe the

message while the body part of the message contains the actual message. The header section

contains several fields such as date/time and address which are specified by the standard.

7

2.4.2. Multipurpose Internet Mail Extensions

Apart from the text message exchange, which is specified by Internet message format, the MIME

specification is used to encode data such as audio, video, image and other types of data into

email as multi-part and non-textual message bodies. This was first formalized by N. Borenstein

in 1992 by RFC 1341[17]. MIME is now specified in six linked RFC documents which together

define the specification. Even though MIME was first introduced for messages transmitted over

SMTP, it is now used as Internet media type. The server which does the MIME encoding adds

MIME headers to the message which is then used by the client application to identify the

appropriate application to use in decoding the message. IME has specified the following header

fields;

 MIME version

 Content-Type: Indicate the Internet media type

 Content-Disposition: specify the presentation style

Since MIME formatted messages support multipart messages, the „Content-Type‟ fields

could be used to identify message boundaries for each part and decode them separately. The

various encoding mechanisms offered by MIME to represent binary data are 7bit, quoted-

printable, base64, 8 bits and binary.

2.5. Web Services

Web services are a way of communicating between connected computers over a network in a

machine understandable way. Thus it could be automated among computer programs. The

underlying implementation of the service is hidden from the consuming parties, yet a standard

interface was used. Thus the web services facilitated to make interoperable systems by

connecting heterogeneous computers. Web service model consist of three roles[18]: service

provider, service registry and service requestor and three interactions: publish, bind and find

operations. Typically the service provider would publish its service description to service

registry and a service requester could search for web services. Once a service requester finds the

required web service, it could bind itself to the service for future interactions. The above

8

operations have being implemented by standards such as WSDL[19], UDDI[20], SOAP [21]and

WS-Security[22].

Web Services Description Language (WSDL) is an XML format for describing the web

service and it would be bound into a concrete network protocol and message format to define an

endpoint. Universal Description Discovery & Integration (UDDI) is a set of services supporting

the discovery of web service providers and their technical interfaces. Simple Object Access

Protocol (SOAP) is a standardized XML based data formatting protocol used in message

exchanging between web services. However the SOAP protocol uses another network protocol to

carry their payload through the network. Mostly HTTP or SMTP is used for this task. SOAP

message has three parts: an envelope, a header and the body. Even though the SOAP header is

optional, it can be used to pass application specific instructions such as information related to

processing of the message. The body contains the SOAP call and response data. Optionally, we

could add “SOAP Fault” section to carry error information within a SOAP message. WS-

Security is a specification for web services to ensure the integrity and confidentiality of

messages. It also supports a variety of token mechanisms to support user identification and

business certifications. WS-Security is an OASIS Standard document produced by the Web

Services Security Technical Committee.

2.6. Service Oriented Architecture (SOA)

SOA is a design pattern which emphasis the services provided by the connected components

over a network. Considering what we discussed under web services, in SOA, the components

would exalt only in one of the functionalities than providing several. Components could act

together to provide a complete software. SOA was driven by the need of fulfilling the Business

to business (B2B) needs where one business can come up with software components which could

be later outsourced to another[23]. SOA design pattern made it easy to reuse and combine the

discrete business processes and services. SOA could be designed using open standards such as

web services and would provide interoperable heterogeneous system.

9

2.7. Representational state Transfer (REST)

Representational state transfer (REST)[5] is an architectural style for hypermedia systems which

was defined by Dr. Roy Fielding in his doctoral dissertation. It gives a set of principles which

guides REST and a set of interaction constraints to retain those principles. Hypermedia is a

concept which was formed as early as in 1965[24] when researches build systems with linked

content where a view could traverse through using documents itself. Nowadays, REST is applied

to HTTP protocol extensively. While it could be applied to any system, it aligns well with the

concept of web‟s architecture. The REST architectural style has defined six constraints, without

defining the design of each constraint. The constraints are as follows.

● Client-Server

○ Allows client server components to grow independently and provides

scalability

● Stateless

○ The server would not maintain a state and thus provides visibility to the client

site monitoring system, scalability in server side due to reduce resource usage.

● Cache

○ State whether the responses can be cached or not and thus provides

communication efficiency and scalability.

● Layered System

○ Layers provide independence over each component and provide scalability.

● Code on demand style

○ REST allows client functionality to be augmented at run time by downloading

and adding code on demand. This simplifies the initial design of the client.

● Uniform interface

○ It applies the software engineering principle of generality to the components

of the REST architectural style and thus provides simplicity.

REST architectural style identifies 3 types of architectural elements, including Data elements,

Connectors and Components. These three types of elements are an abstraction of hypermedia

system. However, it only focuses on the role of each element plays in a hypermedia system,

rather than the actual implementation of each.

10

Data Elements

The nature of the data element is a key aspect of the architecture. REST components

communicate by transferring a representation of a resource in a standard data type. The data type

is decided based on what a recipient desires or simply the nature of the resource. As defined by

Roy Fielding, the REST data elements are as follows,

● Resource - the intended conceptual target of a hypertext reference

● Resource identifier - URL, URN

● Representation - HTML document, JPEG image

● Representation metadata - media type, last-modified time

● Resource metadata - source link, alternates

● Control data - if-modified-since, cache-control

Connectors

REST uses various connector types to enclose the activities of accessing the above mentioned

resources and transferring the resource representations. By having a defined set of connectors

provides an abstract interface for component communications. This simplifies the process and

provides separation of concern for the implementation of resource and communication

mechanism used. As defined by Roy Fielding, the REST connector elements are as follows.

● Client – libwww, libwww-perl

● server – libwww, Apache API, NSAPI

● cache – browser cache, Akamai cache network

● resolver – bind (DNS lookup library)

● tunnel – SOCKS, SSL after HTTP CONNECT

Components

REST components are the element of the architecture which forms architecture with above

mentioned connectors and data elements. As defined by Roy Fielding, the REST Components

are as follows,

 origin server – Apache httpd, Microsoft IIS

11

 gateway – Squid, CGI, Reverse Proxy

 proxy – CERN Proxy, Netscape Proxy, Gauntlet

 user agent – Netscape Navigator, Lynx

2.7.1. Application of REST

As we have discussed the REST architectural style is based on the hypermedia system which is

governed by the state of the resource. REST architectural style can be explained easily with the

use of HTTP protocol since it is considered to be that REST is the set of guidelines on how

HTTP is to be originally used. The operations of HTTP performed through request methods such

as GET, PUT, POST, DELETE and content negotiation is used to define different types of

resource representations. To design a complete REST based solution the following steps should

be followed[25].

 Identify resources

First, depending on the system, the resource should be identified. For example, if the system in

consideration is a help desk, one of the resources would be customers. The designer should

always abstract the resource types to simplify the design. Each of these identified resources are

then should be made up the URI's of the hypermedia system. For example, the URI to list all the

customers in a bookshop the following URL can be used.

http://booksforsale.com/resources/customers

 Link resources

It is a must to link all the resources together to form a true hypermedia system. The state of the

client would transfer from clicking a hyperlink which would direct the user to another linked

page or a new representation of the current resource.

 Select and create formats

The resources of the hypermedia system have to be represented in a suitable format, such as

XML, which then could be then converted to HTML or Rich text format. The client could

request the content-type of the resource by setting the header values of the request or either

setting the URI to represent the desired content type.

12

 Identify method semantics

With the use of HTTP protocol, it defines 8 methods including GET, POST, PUT, DELETE,

OPTION, TRACE, PATCH and HEAD[26]. The designer should think of the system interns of

CRUD (Create, Read, Update and Delete) in order to understand all the required method for each

resource. The usage of each HTTP method should be in-line with its defined action.

 Select response codes

The response codes stands for the response codes the client would receive during the interactions

with hypermedia system. These response codes are helpful for system debugging and exception

handling. HTTP response codes are well defined and cover most of the aspects in hypermedia

communication.

2.7.2. Use of HTTP request methods

 When REST architectural constraints are applied to HTTP, the uniformity of interacting

with the resources is governed by HTTP methods. The methods require to be uniformly defined

for all the resources and thereby intermediaries don‟t have to know the resource type in order to

understand the meaning of the request. Therefore the method definition goes along with how it is

defined in the HTTP protocol itself. The definition of HTTP methods could be found on RFC

7231[26]. The specification defines three method properties; safe methods, idempotent methods

and cacheable methods. The safe methods request should not result in a state change on the

origin server. A method is considered idempotent if multiple identical requests would have the

same effect for a single such request. Request methods can be defined as cacheable to indicate

that responses to them are allowed to be stored for future reuse. The following table summarizes

the HTTP request methods which could be used to interact with resources in REST architecture.

Table 2-1: HTTP request methods

Method Description Properties

GET Transfer the current selected representation of the target

resource.

Cacheable,

Safe,

idempotent

HEAD Identical to GET. But the server does not send the message body Safe,

13

in response. idempotent

POST Process the representation in the request according to the

resource's own semantics. Can use to create and append new

data. The server responds with status code 201 If resource newly

created.

PUT Replace all current representations of the target resource with

the request payload. The server responds with status code 201 If

resource newly created, 200 if successfully modified.

Idempotent

DELETE Remove all current representations of the target resource. The

server responds with status code 202 for accepting requests, 204

when there is no response content and 200 when action taken

and has response.

Idempotent

CONNECT Establish a tunnel to the server identified by the target resource

and thereafter restrict its behaviour to blind forwarding of

packets, in both directions, until the tunnel is closed. Use in

proxies.

OPTIONS Describe the communication options for the target resource.

This would help clients to determine the options and

requirements associated with a resource.

Safe,

idempotent

TRACE Perform a message loop-back test where the final recipient of

the request would reflect the message received. The client must

not send a message body with the request.

Safe,

idempotent

PATCH[27] Uses for partial resource modifications since PUT only allow a

complete replacement of a resource.

2.7.3. HATEOAS

HATEOAS is the abbreviation of Hypermedia as the Engine of Application State. HATEOAS is

one of the sub constraints of “Uniform interface” as specified by Dr. Roy Fielding. This

constraint requires a server application to provide hypermedia responses which should assist

clients to understand the available interactions with that application. Even though there can be

few fixed entry points to the application, for a well-designed application which abides to this

14

constraint could be used by clients without making any assumptions or binding them to a

previously known set of interactions.

The interactions that could perform depends on the current resource representation client

had received and thus works as the “engine of the application state”. This would allow server

application to evolve independently and thus assist client-server architecture and scalability. The

responses should include resource URL‟s to perform further actions with explicit „link rel‟

attributes which describes the resource.

2.8. REST vs. SOAP

While discussing about REST it is important to note that, REST is not the first and the only web

service architecture which is in use. Simple Object Access Protocol (SOAP)[21] is another

protocol specification for web services. SOAP primarily depends on XML data format for

communication and runs on top of another application layer protocol such as HTTP. While

SOAP has its own advantages, as pointed out by Jakl[28], REST has features that favour the

design of efficient hypermedia system. Table A summarizes the comparison of SOAP vs. REST

by Jakl on various aspects of web services.

Addressing the low end network connection with high latencies, would not be a

complicated issue due to the support of cacheability. The scalability aspect of REST architecture

would support the fact that a mail system is distributed and highly connected and would grow

rapidly as it would gain more customer base.

Table 2-2: REST vs. SOAP

Aspect REST SOAP

1. Protocol

Approaches

A custom protocol using

existing protocol HTTP

Create a framework which

provides a basement

2. Standardization of

● Addressing

● Methods

● Messages

Only the message payload is

not standardized. Other two

have well defined standards.

None of the aspects are

standardized in this style.

15

3. Cacheability Define intermediaries which
reduce the network load.

SOAP messages does not
differentiate cacheability

4. Statelessness

Stateless, and thus provide

better scalability

Does not define server side

state.

5. Security

Uses predefined methods and

firewalls can interpret.

Common firewall products do

not identify messages.

2.9. XML

Extensible Mark-up Language [29] (XML) is a subset of Standard Generalized mark-up

Language and was developed by an XML working group formed under World Wide Web

Consortium in 1996. Their design goals for XML included it being directly usable over the

internet, supports variety of applications, should be easy to create; it should be reasonably clear

and etc. XML documents consist with units called entities which contain data. Even though

XML was originally designed to handle large-scale electronic publishing, nowadays it used for

data exchange. Therefore the XML document is designed and developed to carry data between

computers and application and was not intended for display formatting.

The specification has defined a list of requirements which should adhere by XML

formatting. A format which adheres to the specification is called „well formatted document‟. A

well-formatted XML document could be processed by XML parser and otherwise it will result in

an error. A well-formatted XML document must contain a root element and other elements are

nested within the root and its closing tag. After the introduction of XML, many schemas and

formats have been introduced and used for varies purposes. RFC 7303[] defines the rules to use

when constructing Internet Media Types when sending XML. An example of the document

object formatted in XML is as below:

Code Snippet 2-1: Example XML document

<letter>

<to>Recipient</to>

<from>Sender</from>

<heading>Example</heading>

<body>XML formatted mail</body>

</letter>

16

2.10. JSON

JavaScript Object Notation (JSON) is a text-based open standard which is similar to XML. JSON

primarily used as a lightweight data interchange format. It is derived from the JavaScript

scripting language for representing simple data structures and associative arrays, called objects.

The JSON format was specified in RFC 4627[30] by Douglas Crockford. JSON's design goals

were for it to be minimal, portable, textual, and a subset of JavaScript. Thus the processing of

JSON is much faster compared to XML and is more human readable compared to XML.

JSON message has two possible structures. One is name/value pairs which is realized as

objects and the other is ordered list of values which is realized as an array. Inside these structures

JSON can represent four primitive types of data: strings, numbers, Booleans, null and the two

structured types itself. An object begins with {(left brace) and ends with} (right brace) while an

array would begin with [(left bracket) and ends with] (right bracket). The example JSON

message in code snippet 2.2 shows the JSON representation of an object that describes a person;

Code Snippet 2-2: Example JSON document

{

"email":{

"sender”: "Sender Name",

"senderemail" : "sender@sender.com",

"receiverEmail" : "receiver@receiver.com",

"subject" : "Test Email"

"body" : "This is a testmail",

"attachments": [

{

 "id":0,

 "name": "test.txt",

 "contenttype": "text/plain"

}

]}}

2.11. JSON vs. XML

JSON and XML are used extensively in contemporary systems for data interchange. Both of the

formats have their own advantages and disadvantages based on the use cases. Therefore it is

important to understand the pros and cons of each technology. Alen [31] et al have done an

17

extensive comparison on XML and JSON. Based on their analysis, they have pointed out the

following factors

 Code and data model

XML documents are „well-formed‟ and the technologies used for manipulating and

formatting of XML documents are standardized by the World Wide Web Consortium (W3C).

Due to this XML could be used for data validation. JSON on the other hand is modelled

based on Java Script objects and thus, easy to parse by the OOP languages. JSON data

validation is not yet standardized. However, there is an Internet Draft called JSON Schema

which could be used for data validation.

 Accessing and extracting data

XML document could be modelled as a tree and then could be accessed for data extraction.

There are many models and tools developed for XML data parsing such as DOM, XSLT. On

the other hand JSON documents could be converted into objects and could be accessed as an

object.

 Extensibility

XML documents could be used to store varies types of data by expanding XML attributes

and CDATA sections. Even though this makes the document harder to read, it could be used

to transfer documents containing images, graphs, etc. JSON data representation is limited to

data types such as strings, Booleans, floating point numbers, etc. Therefore while JSON is

ideal for simple data representations, XML could be used to represent complex documents.

Nurzhan Nurseitov et.al[32] has done extensive testing on the performance difference of

XML and JSON interchange formats. Their study focuses on measuring the transmission times

and resource utilizations in a client/server environment. The first study has done by running a

single time-consuming transmission of a large quantity of objects and the second study has

conducted by gradually increasing the number of objects per test. The test result of the first study

is shown in the table. Their study has shown that JSON is significantly faster than XML when

considering the higher number of data objects. However the study also found that the CPU

utilization is higher for JSON processing.

18

Study One:

Table 2-3: JSON vs. XML performance

 JSON XML

Number of Objects 1000000 1000000

Total Time(ms) 78257.9 4546694.78

Average Time(ms) 0.08 4.55

2.12. Authentication mechanisms

Authentication is described in Internet Security Glossary as the process of verifying an identity

claimed by or for a system entity. The process could be broken into two steps as identification

step and verification step. When an identifier was presented to the security system, the system

would confirm the binding between the identifier and the entity. After authentication, the

authorization process would take place to grant permission to a system entity to access system

resources. Many authentication protocols have been introduced and used in today‟s applications.

In this section, we are discussion some of the popular authentication mechanisms used in the

APIs and applications which were considered under this study.

2.12.1. HTTP Authentication

HTTP protocol offers a general framework for access controlling and authentication via a set of

challenge-response authentication schemes[33]. The authentication schemes have been published

in the IANA Authentication Scheme Registry. Under challenge response mechanism, the server

could challenge a request from the client and the client could then provide the necessary

identification information. The authentication scheme uses „WWW-Authenticate‟ header field to

denote the authentication scheme and the related parameters used in the scheme. Once the user is

authenticated, the „realm‟ could be used to denote the resources that are authorized under the

given identifiers.

One of the popular authentication schemes which use the above mechanism is basic

authentication scheme. The basic authentication mechanism name is defined as “Basic” and the

authentication parameter realm is set to be required. When a user tried to access a protected

19

resource the server would challenge with „Unauthorized‟ status code and „WWW-Authenticate‟

header field. The client software then should obtain a password and username from the user and

concatenate them with a single colon “:” character. Then the sequence would be encoded with

base64 encoding. Since the basic authentication mechanism passes the password in clear-text, it

is required to conduct the communication over HTTPS rather than HTTP. However, basic

authentication mechanism follows the HTTP semantic and thus complies with the RESTful

constraint of being stateless.

2.12.2. Query Based Authentication

Query based authentication[34] is another authentication mechanism used in RESTful services

where each and every request to the API is signed with a private credentials. Whenever a user

generates a request, the requested URI‟s parameters are re-organized in lower case alphabetical

order and then signed by a hashing algorithm. The resultant signature is appended to the URI as a

parameter. To avoid security threats against this mechanism, the users could deploy the support

of HTTPS connection.

Code Snippet 2-3: Query based authentication request example

GET

/object?timestamp=1261496500&apiKey=Qwerty2010&signature=abcdef0123456

789

2.12.3. OAuth 2.0 Authorization Framework

Traditional client server authentication model works well for scenarios where the client

authenticates itself directly to the server. The authentication mechanisms discussed in section

2.9.1 and 2.9.2 follows this model. However, in a situation where a new third party provides

services as an interface to the original server, the client has to share the credentials with the third

party. Sharing of credentials force third party apps to store it indefinitely and causes security

concerns. Moreover, the third party gets full access to the server on behalf of the client even

though the access in only required for some of the resources on the server.

OAuth was designed and developed to address these issues. In OAuth 2.0[35], four roles

have been identified to perform the authorization process; a resource owner, resource server,

20

client and the authorization server. The resource server and the authorization server interactions

are not covered in the specification and in fact it could be the same server. The process starts

when the client requests authorization from the resource owner. The authorization could be

granted to the client using one of four grant types. After obtaining the authorization, the client

then requests for an access token from the authorization server. The access token can then be

used to access resources from the resource server. The specification was designed to use with

HTTP and any other protocol are considered to be out of scope of the specification.

The OAuth 2.0 protocol itself is not an authentication protocol. The granting of

authorization would happen after proper authentication of resource owner or the client depending

on the grant type. This allows systems to use existing authentication protocols such as OpenID

Connect and SAML. OAuth 2.0 doesn‟t provide confidentiality of information and thus forces to

implement it over a secure connection such as TLS.

2.13. REST based email systems

2.13.1. “Reinventing Email using REST”

Paul Prescod has written an article on “Reinventing Email using REST”[36] with the idea of

acting as a suitable basis of replacing the existing email system with a complete HTTP based

system using REST architecture if HTTP becomes a dominant protocol. Paul Prescod describing

the basic concept in his article; “To get a representation from a resource we use the HTTP

method GET. To overwrite a resource based on a representation we use the PUT method. To

delete a resource we use the DELETE method. To modify a resource based upon its current state

(extend it or mutate it) we use POST.”

In his article, he has specified some generic cases of email usage, such as “Sending a Message”,

“Adding a Queuing Mailbox”, “Managing Mailboxes” and “Delivering Mail to the End User”.

The proposed system would have the following list of benefits:

1. Reuse of standard server side tools like Apache, Squid, standard web resource search and

management tools. Compatibility with generic web client-side tools like browsers. Every

21

web browser becomes a mailbox browser "for free". Web management tools would

become mailbox management tools.

2. Integration of email namespace with Web namespace means that web documents may

refer to mail messages/mailboxes and vice versa.

3. Integration of email namespace with Web namespace would allow individuals to have

one identifying URI per "persona” rather than a home page URI and a mailto: URI. This

could be achieved today if mail programs could extract the appropriate metadata from

a home page, but this kind of extraction is a core concept of REST: "hypermedia is the

engine of application state."

4. Features of HTTP protocol become available to mail programs "for free" (e.g. Security,

caching, reliability extensions, etc.)

5. Implementing a mail user agent requires knowledge not of three protocols, but of one:

HTTP.

2.13.2. HTTP Access to Email Stores

Lisa Dusseault has submitted an Internet-Draft “HTTP Access to Email Stores”[37], in which

she formulates a standard format and a standard navigation mechanism for accessing email stores

via HTTP protocol. This would provide interoperable access to mailboxes and messages over

HTTP. However, this internet draft has been expired and hasn‟t proceeded into a standard. This

Internet draft does not try to replace the existing protocol stack of the traditional email system.

Rather, it brings up the possibility of using HTTP features in accomplishing email use cases.

Below features could be implemented by using HTTP for accessing an email store.

● A persistent URL to download emails.

● A URL and response formats (XML, PDF) to download the mailbox content.

● Discovery capabilities for the email store.

● Delete method to remove listing of an email from an email store.

● POST method to add emails to an existing email store.

She has proposed the RESTful ATOM protocol for the purpose of providing content

listing of the email store. By using ATOM, it can be more easily integrated into clients and

servers which do not support HTTP email access functionality off the shelf. The ATOM protocol

22

provides direct functionalities which simplify the operations such as downloading the content in

XML format via GET request and much more. The functionality can be easily provided by an

existing feed reader and the feed reader then can be used as an HTTP email store browser.

The specification is only for the read-only access to the email stores and it has not

covered the email sending, delivering or managing spam or functions such as creating mailboxes.

Although with these limitations she has listed many of the use cases that this type of an email

system would be helpful in the Internet. Below is a summary of possible use cases for when

HTTP protocol access is available for email stores.

1. Fully fledged client utilities, which can get benefits from data in the email stores and

augment the functionality of it. (Ex: Calendar client)

2. Third party services which would access the email content and augment their services (

Ex: Twitter like service automatically fetching data from email store)

3. Mashups where several sites integrated together via the standardized API, and would be

able to provide collective functionality. The sites might include mailing lists.

More than the functionalities offered by the proposed system, it is interesting to study the

formatting which as being used to represent the email message body in XML. Since it is based

on ATOM protocol the message body can be considered as a feed. The feed begins with 'feed'

root element and 'entry' element marks the beginning of an email body. Four elements have been

used to describe the feed itself.

1. title' element – mailbox name

2. 'id' element – universally unique mailbox id

3. 'author' element – owner of the mailbox

4. Link element – contains the URL to the feed and sections in the feed. The link

element uses „rel‟ attribute values to describe the link type.

a. rel=self : the URL to the feed itself

b. rel=alternative: Other URLs to the mailbox, such as IMAP

c. rel=service : URL to the document describe server features

d. rel=current: URL to the most recent entries in the feed

e. rel=next: URL to the next section of entries in the feed

f. rel=prev URL to the previous section of entries in the feed

23

Within the feed element, to represent the contents of each feed, an „entry‟ element would be used

and within that element, the following elements have been used to represent email body.

1. 'id' - depends on the message id given by IMAP and SMTP.

2. 'title' - contains the subject of the message.

3. 'updated' - date received or the last time it was changed.

4. 'published' - sent date

5. 'summary' - contains a piece of body of the email

6. „link‟ - provides links to the entire message and the attachments. This has the

following rel attributes.

a. rel=self: human readable version of the message

b. rel=alternative: machine readable format of the message

c. rel=enclosure: attachments

d. rel=related: maps directly to message in the “Reference” header

e. rel=in-reply-to maps directly to messages in “In-Reply-To” header

2.13.3. Restful interface for database based email server

Karunarathna et al[38] have developed a restful interface to database based email server called

DBmail[39] with the aim of providing users with a clean HTTP based interface which follows

REST constraints. Their system also provides Restful interface to the offline mail client too.

Authors have used DBmail, which stores all the emails in relational database and provides

IMAP, POP3 and SMTP protocols to communicate with other email systems. However, DBmail

community itself has shown interest in providing a RESTful interface which works as an event-

driven daemon. The proposed daemon would return JSON responses and provide limited

functionality as of now.

Karunarathna et al has designed their RESTful interface to respond with XML. Since XML is

a well-established mark-up language, the authors could re-use the existing frameworks and

design their own tags to represent the email message content. The authors have given priority to

implementing a set of well-established IMAP commands which cover most of the generic usage

cases of users such as “login”, “logout”, “select”, “close”, “create” and “noop”. Using these

24

commands and the resources identified during their study, the following capabilities are offered

through their API:

● Host/restmail/user/lastLogin : Return the last login time

● Host/restmail/user/logout : Return the last login time

● Host/restmail/nap : Make sure server is connected or not for online offline feature.

● Host/restmail/user/inbox/All : Retrieve all mails

● Host/restmail/user/inbox/size : Size of all mails

● Host/restmail/user/inbox/delete : delete all mails

● Host/restmail/user/inbox/ 46576ac : Get specific mail

● Host/restmail/user/inbox/ 46576ac/size : Get the size of the mail

● Host/restmail/user/inbox/ 46576ac/Delete :Delete specific mail

● Host/restmail/user/inbox/ 46576ac/header : Get the header of the mail

● Host/restmail/user/inbox/ 46576ac/header : Get the header of the mail

● Host/restmail/user/inbox/46576ac/mailbody?mime=2432 : Get specific part of the

mailbody

● Host/restmail/user/inbox/ 46576ac?mark=seen/unseen : Mark mail as seen or unseen

● Host/restmail/user/inbox/move/?uid=46576ac&from=folder1&to=folder2 : Move mail

from folder to folder

● Host/restmail/user/inbox/Flags/All?Date=2010/02/23 : Retrieve all mails on given date

● Host/restmail/user/inbox/Flags (Seen, Unseen, Deleted, Recent) : Retrieve the mails

relates to each flag

● Host/restmail/user/inbox/Flags? Date= 2010/02/23 : Retrieve the mails relates to each flag

and given date

● Host/restmail/user/inbox/All? Amount=10& from= 2010/02/23&to=2010/02/25 :

Received mails from 2010/02/23 to 2010/02/25 at inbox retrieve 10 by 10

However, the URL‟s are constructed by giving prominence to the actions rather than to

the resources. For example, to delete all the mails, the URL contains the word „delete‟ and the

user is supposed to perform a „GET‟ request to the targeted url. Thus the authors are limited to

using only GET and POST request method for the entire API. The POST request method has

used only when email sending functionality. Moreover, the XML responses have no notion of

hypermedia concept built into it. Therefore, in my opinion, the API couldn‟t consider to be

RESTful.

25

2.13.4. RESTMAIL by Marcin Bazydlo

Marcin Bazydlo has proposed and implemented a model of restful email system[40] for his

master‟s thesis, taking the basic idea given by Paul Prescod[36] and improving it further into a

complete email system. He has designed the email system with email sending and receiving

functionalities. The mail sending functionality has implemented following the idea of Paul

Prescod, where mail sending is changed from PUSH mechanism to PULL mechanism. The

sender will create the email as a web resource in her own server and would then create a

notification web resource in recipient mailbox. If the recipient wishes to download the content,

she can pull the necessary email parts from sender‟s server.

 Marcin has defined four major resources while designing his proposed email system. The

resources are “message”, “notification”, “receipt” and “directory”. Notifications are used to

inform about new messages while receipts are used to convey the status of an operation. He has

used YAML to represent the responses generated by his API. The responses are well

documented and support hypermedia concept. Sample response for GET request to message

resource is shown in code snippet 2.4.

Code Snippet 2-4: Example of GET request on Message resource of RESTMAIL system.

:type: message

:title: Msg two

:id: "0588533542101"

:updated: 2009-06-11T16:42:05+02:00

:published: 2009-06-11T16:42:05+02:00

:links:

- :type: text/html

 :href:

http://localhost:3000/kajko/box/0521@localhost/01869@localhost/

 :rel: related

- :href: http://localhost:3000/kajko/box/0588533542101@localhost/

:rel: self

:author:

 :name: Unknown

Marcin has used GET, PUT, POST and DELETE HTTP request methods properly on each

resource to perform actions accordingly. Thus he has not used any actions in the URLs to

safeguard the Restfulness of the API. Although this system offers the complete email solution

via HTTP via restful API, the integration with the traditional mail system is not possible.

26

3. STUDY OF EMAIL APIs

Email has become a business critical technology in today‟s world. To support this, many free and

commercial email systems have been developed since the introduction of email. In this chapter,

we are doing a critical comparative study on the Restful APIs provided by some of the popular

commercial products. In the next chapters, we would discuss the critical features which should

be supported by an Email system and how each of them is done in the most effective way.

3.1. Gmail REST API

Gmail is a popular email service provided by Google Inc. from 2004, and has gained popularity

among the webmail users. Gmail offers IMAP connections to its email stores apart from its

standard web mail interface. With the popularity of mobile device usage and their applications,

in June 2014, Google introduced a RESTful interface to Gmail[6]. By using the new API,

programmers were able to develop applications for mobile devices which could communicate

with Gmail without using their web mail interface or the IMAP protocol. The Gmail REST API

supports functionalities such as reading, composing and sending mails after proper authorization.

It also identifies email threads and labelling used by Gmail. The authorization and authentication

is handled by OAuth 2.0 and it provides scopes and tokens to determine authorization. The API

uses JSON payloads for communication and has introduced API client libraries to ease up

programming against the API. The Gmail API, commonly used by application developers to do

read-only mail extraction, custom labelling of emails, automated mail sending and to migrate

email account from other providers. Gmail REST API has identified five primary resources and

has built functionalities around it.

 Messages: Messages are a basic unit of a mailbox which holds the email message.

Users are able to create or delete messages. However the messages can‟t be updated

or changed.

 Labels: Labels are another basic unit which used to categorize emails depending on

user and system requirements.

27

 Drafts: Contains draft email messages. Draft email messages can‟t be modified;

however, they could be replaced by a newer version. Sending a draft mail would

result in deleting the draft and creating a new mail with SENT label.

 History: History resource is a collection of recently modified messages.

 Threads: Threads resource represents a conversation and it could be only deleted and
updated with new messages. Users can‟t create a thread resource.

Resources are represented as JSON objects. The “Message” resource has several unique

parameters such as “threadId” and “labelIds[]” to support threading and labelling features. The

“snippet” property contains a short part of the message for quick viewing while “payload”

property contains all the parsed message parts. The parts include standard RFC 2822 header

array, parts array representing container MIME message parts and message body parts. Code

snippet 3-1 shows a sample representation of message resource response in Gmail REST API.

Code Snippet 3-1: Sample representation of Message resource of Gmail REST API

{

 "id": string,

 "threadId": string,

 "labelIds": [

 string

],

 "snippet": string,

 "historyId": unsigned long,

 "payload": {

 "partId": string,

 "mimeType": string,

 "filename": string,

 "headers": [

 {

 "name": string,

 "value": string

 }

],

 "body": users.messages.attachments Resource,

 "parts": [

 (MessagePart)

]

 },

 "sizeEstimate": integer,

 "raw": bytes

}

28

Apart from the five main resources, the API provides a sub resource for “messages” as

“attachments”. This would allow clients to download attachments separately from the message

body if the attachments are external to the mail body. In that case the message body contains the

attachment ID‟s, their filenames and MIME types. The clients could then download each

attachment based on its ID. The attachment resource has ID, size and data parameters. The data

are presented as base64 encoded string. Gmail REST API has used GET, POST, PUT, PATCH

and DELETE HTTP request methods to interact with the above resources. The API uses POST

for resource creation and PUT for resource update function as shown in below example:

 POST /userId/labels : creates a new label

 PUT /userId/labels/Id: Updates the specified label.

It is interesting to note the usage of the PATCH HTTP request method in the Gmail REST API.

The patch method is used for partial updates of resources as shown in below example:

 PATCH /userId/labels/id: Updates the specified label. This method supports patch

semantics.

Although, most of the URL‟s of the API is constructed properly to give prominence to the

resources and then to run the actions by the use of the appropriate HTTP request method, some

of the URL‟s are constructed with actions. For example the code snippet 3-2 has a list of URLs

which has verbs as resources

Code Snippet 3-2

 POST /userId/drafts/send: Sends the specified, existing draft

 POST /userId/messages/id/modify: Modifies the labels on the

specified message.

 POST /userId/messages/send: Sends the specified message

 POST /userId/messages/id/trash: Moves the specified message to

the trash.

 POST /userId/messages/id/untrash: Removes the specified message

from the trash.

 POST /userId/threads/id/trash: Moves the specified thread to the

trash.

29

3.2. Outlook Mail REST API

Outlook Mail REST API[7] is a part of Office 365 REST APIs developed by Microsoft to

provide programmatically access to their Office 365 suite. This includes messaging platform,

event & calendar, contact details and OneDrive files/folders. The REST API would help

developers to build apps for mobile devices and cloud platforms easily. Apart from the REST

API, Microsoft provides client libraries which could be used for programming. The Outlook

Mail REST API could be used to perform mail activities such as reading, composing, sending

messages & attachments and to manage folders.

Outlook API supports 4 HTTP request methods GET, POST, PATCH and DELETE.

Microsoft has used JSON as the request/response format for their API and is using the Microsoft

Azure Active Directory and OAuth to authenticate. The API specifies Folder, Message and User

as major resources.

 User: A User in the system. Microsoft has used “me” to indicate current users‟ email

address itself. User resources contain „RootFolder‟, “MailboxGUID”, “folders” etc.

 Folder: Is a folder in the user‟s mailbox such as Inbox or Sent Items. This resource may

contain resources such as other Folders and Messages. Users could perform Get, Create,

Update, Delete and Move/Copy operations against this resource.

 Message: A mail message in mail directory. The „attachments‟ come as a sub resource

from Message resource and could be accessed by its id. The availability of attachments is

indicated with “HasAttachments” parameter. The message resource has an email body

preview property as well as the whole email body. The format of the „body‟ of the email

is denoted with „ContentType‟ property. Even though the message body provides a

WebLink property which could be used to open the message in the Outlook web app, the

resource representations do not denote any notion of hypermedia. Message resource

supports Get, Send, Reply, Forward, Update, Delete, Move/Copy, get attachments, create

attachments and delete attachment operations.

Important factors to note in Outlook Mail API is the use of the PATCH request method instead

of PUT and the schematics used in Move/ Copy operations of folders and messages. Following is

30

an example of the PATCH request method to update the message resource. The data would be

sent as JSON encoded and the server would reply with status code and resultant resource state.

PATCH https://outlook.office365.com/api/v1.0/me/messages/{message_id}

The Move and Copy operations have been designed by appending „move‟ or „copy‟ to the end of

the URL used to denote the resource which wants to be moved or copied. The destination would

be send as JSON encoded POST data to the server. Following is an example of a move operation

for a message in Outlook API.

POST

https://outlook.office365.com/api/v1.0/me/messages/{message_id}/move

Message sending in Outlook mail API covers several possible scenarios such as “only the fly”,

“sending drafts messages”, “creating new draft message”, “create a reply draft message”, “create

a reply to all message” and forward messages. On the fly mail sending is performed by posting

email content to the following URL.

POST https://outlook.office365.com/api/v1.0/me/sendmail

 While a creating draft message is simple as posting to the message resource, to send draft

messages, the following URL is used. The message_id is the message ID of the draft message.

POST

https://outlook.office365.com/api/v1.0/me/messages/{message_id}/send

Similarly, replying and forwarding URL‟s are as follows.

POST

http://outlook.office365.com/api/v1.0/me/messages/{message_id}/reply

POST

http://outlook.office365.com/api/v1.0/me/messages/{message_id}/forward

31

3.3. Zimbra REST API

Zimbra Collaboration server[41] is an open source collaboration server consisting with

features such as email system, calendar service, file sharing, document management, etc. All of

these features and administrative functionality is provided through a web interface [20]. Zimbra

provides a desktop client which would allow its users to sync content from the server to the

desktop and this in-turn provides mobility. Zimbra has provided a REST API and a SOAP API

both. The REST API facilitates applications to access the data stored by a Zimbra server such as

emails, calendars, and contact address. The URL template for the REST commands in Zimbra is

as follows:

Code Snippet 3-3: Zimbra URL Template

{protocol}://{host}:{port}/home/{user}/{object}?{params}

protocol : transport protocol

host : zimbra server IP or hostname

port : zimbra server port number

user : user account

object : objects or parameters to act upon

Zimbra supports a variety of response formats based on the resource and what user specifies in

the query URL. The users can specify the required format as a parameter value as shown below:

http://localhost:7070/home/john.doe/tasks?fmt=ics : provides ics format

http://localhost:7070/home/john.doe/tasks?fmt=xml : provides xml format

The authentication process is supported by allowing cookie Auth token check or check for query

parameter Auth token or prompting for basic authentication. Zimbra uses only the „GET‟ and

„POST‟ request methods in their API and has defined the below set of tasks which could be

performed against the API.

 Get folder : Get the items in the folder (Use GET)

 Import Messages : Imports a message to a mail folder (Use POST)

 Get Contacts: Gets the contacts in the designated folder. (Use GET)

 Import Contacts: Import contacts to a designated folder. (Use POST)

 Get Calendar: Gets the appointments from the calendar (Use GET)

32

 Get FreeBusy: Gets the calendar. (Use GET)

 Import Appointments: Import appointments. (Use POST)

 Get Tasks: Gets the calendar (Use GET)

 Get Item: Gets an item (Use GET)

 Get Briefcase: Gets the list of items in the briefcase folder (Use GET)

 Get Briefcase Item: Gets a specified item from the briefcase folder (Use GET)

 Export mailbox: Exports the entire contents of a mailbox.(Use GET)

3.4. Sendinc API

Sendinc [42] is a service which can be used to encrypt email messages without having to

implement encryption mechanisms into the users own email system. The website of Sendinc

provides an interface for email communication provided that the users have already registered

with Sendinc. Both sender and the receiver should register into the site for sending email and

receiving it. The keys used for encryption would not be stored by any third party or by Sendinc

Therefore, only the recipients would be able to read the emails. The importance of this service

would be that it provides a mechanism that users should not need to create their own keys or to

publish and securely share the key information but still would be able to send and receive emails

securely. Sendinc would generate the necessary random keys and would email it to the recipient

in a form of a link without keeping a copy of it and following least privileged principle.

Sendinc provides an API which would provide a way to integrate secure email into user

applications. Sendinc has provided two API types, SMTP API and REST API. While SMTP API

facilitates existing email systems and client software to integrate Sendinc services, REST API

provides a mechanism to send and receive encrypted messages for HTTP enabled application.

Here we focus on the REST API provided by Sendinc to identify its capabilities. The Sendinc

REST API uses GET and POST HTTP request methods for its operations and provides responses

in XML or JSON depending on the requests extension. The authentication mechanism supported

by Sendinc is basic authentication and the communication is encrypted using 256 bit SSL to

provide transport encryption. It is interesting to look into the message formatting offered by

Sendinc API. The code snippet 3-4 shows the API response to the account information in JSON

format.

33

Code Snippet 3-4: Account resource representation

{

"account":

 {

 "email": "email@address.com",

 "first_name": "Bill",

 "last_name": "Lumbergh",

 "date_created": "2011-07-11 18:01:22",

 "type": "pro",

 "max_messages_per_day": 200,

 "max_recipients": 100,

 "max_attachment_size": 209715200

 }

}

Apart from the email, first name, last name and the date created, other information tags are of

business interest to Sendinc. Similarly, to send emails, the API has specified to POST pre-

defined set of parameters to “message.json” or “message.xml” depending on which format the

client wants to consume. List of parameters which should include in the message as follows;

● email - Sender email. (Must match Sendinc user unless Corporate user)

● recipients - Recipients. Separated by commas.

● recipients_cc - CC recipients. Separated by commas.

● recipients_bcc - BCC recipients. Separated by commas.

● subject - Message Subject

● message - Body of message.

● copy_me - Send a copy of the message to the sender

● notify - Receive an email notification when a recipient opens your message.

● expires - Set an expiration date (in days) for your message to expire

Users could retrieve a message by accessing the correct URL and performing a GET

operation. This results in a JSON or xml response based on user preference. The message body

consists of parameters such as body, subject, sender_name, sender_email, created, expired,

recipient and attachments. Attachments handling of the messages are done by using

multipart/form-data formatted POST request. The retrieval of attachment could be performed by

a GET request to the attachment identified by its ID. If the response could not be completed, the

server would generate error messages with HTTP error code accordingly. It is interesting to note

34

that Sendinc hasn‟t followed any hypermedia convention and provide URL‟s within the

response.

3.5. Postmark REST API

Postmark[43] provides SMTP service that made possible its customers to send HTTP emails at it

and Postmark would process the emails and then send it out to the designated recipients. It would

keep a track of the email transactions and provides an administrative interface which facilitates

its users to monitor volume, bounces, spam complaints, and send activity. Postmark also

provides an inbound HTTP service which would accept various format types of emails and

would output a JSON format email from the designated recipient. This functionality provides a

way for web applications to communicate with traditional third party SMTP/POP email servers

without implementing their own mail servers.

PostMark provides a REST API for their customers, which would accept emails in JSON

format with the POST HTTP method. Authentication would happen through API a key which

passes through HTTP headers. Keys could be bound to libraries for automation and further

usages. The communication is secured by the use of HTTPS layer for transportation. PostMark

API provides both HTTP response codes and API error codes. Below is a list of API error codes

with regards to the interest of our study.

 300 - Invalid email request - Validation failed for the email request JSON data that you

provided.

 402 - Invalid JSON - The JSON data you provided is syntactically incorrect.

 403 -Incompatible JSON - The JSON data you provided is syntactically correct, but still

doesn‟t contain the fields we expect.

 604 - You don‟t have delete access -You don‟t have permission to delete Servers through

the API.

 701 - Message doesn‟t exist

 813 - Not a valid email address or domain.

PostMark, through their API, provides functionalities such as sending mails, bounce mail

monitoring and outbound mail statistic analysing. PostMark email sending is performed as POST

request with the payload shown in code snippet 3-5.

35

Code Snippet 3-5:

{

 "From": "sender@example.com",

 "To": "receiver@example.com",

 "Cc": "copied@example.com",

 "Bcc": "blank-copied@example.com",

 "Subject": "Test",

 "Tag": "Invitation",

 "HtmlBody": "Hello",

 "TextBody": "Hello",

 "ReplyTo": "reply@example.com",

 "Headers": [

 {

 "Name": "CUSTOM-HEADER",

 "Value": "value"

 }

],

 "TrackOpens": true,

 "Attachments": [

 {

 "Name": "readme.txt",

 "Content": "dGVzdCBjb250ZW50",

 "ContentType": "text/plain"

 },

 {

 "Name": "report.pdf",

 "Content": "dGVzdCBjb250ZW50",

 "ContentType": "application/octet-stream"

 }

]

}

 PostMark is using base64 encoding for attachment encoding and would pass it with the

message itself. PostMark hasn‟t included URL‟s in their responses and has no notion of

hypermedia in the API. It is interesting to study the implementation of outbound/inbound

message search functionality implemented by PostMark. For this, they have used query string

parameters in URL, where they have specified various parameters such as message count, offset,

recipient, fromemail, tags and subject. Apart from email sending, for all the other functionalities,

PostMark uses the HTTP request method GET. Example outbound message search query is as

follows:

"https://api.postmarkapp.com/messages/outbound?recipient=john.doe@yaho

o.com&count=50&offset=0&tag=welcome" \

36

3.6. Email Yak REST API

Email Yak[44] is a service which can be used by web applications to send and receive emails. A

user can create an account and then register a domain which is used as the domain that the emails

are send out and receives and then use the REST API with JSON message formatting. The users

can change the MX records in their domain name server to point to the domain name created in

Email Yak service. For sending emails through Email Yak service, the users have to POST

JSON formatted messages to a specified URL by the API. The JSON message contains

parameters such as FromAddress, ToAddress, Subject, TextBody and Attachments. The

attachments are base64 encoded and would be sending in line with the message itself. Code

snippet 3-6 shows email sending request in Email Yak API.

Code Snippet 3-6: Email Sending Request for Email Yak.

POST https://api.emailyak.com/v1/private_api_key/json/send/email/

{ "FromAddress" : "from@example.com",

 "FromName" : "Sam Jones",

 "SenderAddress" : "sender@example.com",

 "ToAddress": "receiver1@example.com, receiver2@example.com",

 "ReplyToAddress": "replyto@example.com",

 "CcAddress": "receiver3@example.com, receiver4@example.com",

 "BccAddress": "receiver4@example.com, receiver5@example.com",

 "Subject" : "Test",

 "HtmlBody" : "Hello",

 "TextBody" : "Hello",

 "Headers" : [{"Name" : "CUSTOM-HEADER-1", "Value" : "Header Value"},

 {"Name" : "CUSTOM-HEADER-2", "Value" : "Header Value"}]

 "Attachments" : [{"Filename" : "File1.txt", "Content" : "SG93ZHkh"},

 {"Filename" : "File2.txt", "Content" : "SGV5IEhleSEh"}]

}

Similarly the GET request method on API specified URL could be used to retrieve the email

message content. Email ID and a Boolean value of whether to retrieve headers or not would be

passed in as parameters in the URL and it would output JSON message similar to the above

example. Example of mail retrieving URL is as follows:

https://api.emailyak.com/v1/private_api_key/json/get/email/?EmailID=Ra

ndomEmailID&GetHeaders=True

Similarly, the user could use API to obtain a list of all the emails or new emails from the email

store. Email Yak has featured an email delete functionality which could be used to purge emails

37

and their attachments. For this, the user has to POST the required email ID to the API. For this

the API has specified the following URL:

https://api.emailyak.com/v1/private_api_key/json/delete/email/

Analysing the URLs used by Email Yak API, it is apparent that rather than identifying resources,

they have given prominence to actions such as „get‟, „delete‟, „send‟. This way, we would not be

able to use HTTP request methods properly since a URL is bind to one single action. The Email

Yak API has not covered hypermedia concepts in their API too.

3.7. Context.IO Email REST API

Context.IO [45] is a web service which provides an API, that when connected to an email store,

would provide instant access to data such as email content, attachment, etc. This would turn the

mailboxes into online data stores and would provide developers to make applications which

would enable web-based previews for the attachments, get version history of attachment files,

get a list of modifications to the two versions of attachments, etc. API would return JSON

messages and this would allow a web application to access email store without IMAP protocol

support. Context.IO offers two API versions; Lite and 2.0 API. The Lite version has lesser

features and focused on providing lightweight operations while it receives emails. The 2.0 API is

focused on providing a much more complete feature set where the clients would be able to use

contacts lists, directories, threads and historical data.

Context.IO API provides authentication through OAuth2. The user should need a

consumer_key which is sent with the request and a consumer_secret which should be kept as a

secret. Using the secret, a signature is generated for the request and the signature is included in

the request itself. When Context.IO receives the request, it would check for the validity of the

signature and would authenticate the request. For now Context.IO provides support for HMAC-

SHA1 for signature generation and sending the data would be done through HTTP AUTH

headers. Context.IO provides much functionality via HTTP POST, GET and DELETE request

methods.

Context.io 2.0 API has implemented five major resources; messages, threads, files, contacts,

and web hooks. It has no notion of hypermedia content and have used HTTP request methods

PUT and POST both for content creation & modification. Even though there is a „message‟

38

resource, sources and contact resources too have messages as a sub resources. This would helpful

in filtering messages based on contact name or the folder name without setting other parameters.

The 2.0 API allows clients to move messages between directories and delete messages. These

features are not present in Lite version. However the API does not support email sending

functionality. The API also provides customized error messages which enable clients to figure

out whether the error is server side or client side. Example of email body retrieval in Context.IO

is shown in code snippet 3-7.

Code Snippet 3-7: Email body retrieval in Context.IO 2.0

GET https://api.context.io/2.0/accounts/id/messages/message_id/body

[

 {

 "type": stringMIME type of message part being fetched,

 "charset": stringencoding of the characters in the part of message,

 "content": stringthe actual content of the message part being pulled,

 "body_section": string indicating position of the part in the body

structure,

 }

]

3.8. Mailgun REST API

Mailgun [46] is a programmable email platform which allows programmers to build email

capabilities into their own web applications easily. The functionality includes sending and

receiving of messages, tracking messages, forwarding messages and storing messages and event

handling. For this the API has defined four resources; domains, messages, stats and events. The

API uses GET, POST, PUT and DELETE request methods for its functionality. The POST

request method is used for new content creation while PUT has been used for content update.

Their REST API provides JSON response messages while error messages are passed using

standard HTTP error codes. Mailgun also has implemented wrapper libraries which would help

developers accessing the API.

Mailgun API offers basic authentication over SSL/TLS connection for security. The mail

sending functionality is a major part in this API and uses could send both MIME formatted

messages and individual parts of an email. The API has specified a set of parameters including

“from”, “to”, “subject”, “text” and “attachment”. Successful message sending would result in a

39

JSON response. Mail receiving, forwarding and storing would uses routes defined by the user.

Email retrieval format depends on the content header parameter of the request. The API returns

error codes using the following HTTP response codes:

Table 3-1: Mailgun customized error codes

Code Description

200 Everything worked as expected

400 Bad Request - Often missing a required parameter

401 Unauthorized - No valid API key provided

402 Request Failed - Parameters were valid but request failed

404 Not Found - The requested item doesn‟t exist

500, 502, 503, 504 Server Errors - something is wrong on Mailgun‟s end

3.9. PostageApp API

PostageApp[47] is a service which facilitates to design, send and analyse emails easily. The users

can have their own templates for the email for reuse using HTML and CSS, and can customize

the templates with variables to personalize the emails and analytical capabilities. PostageApp has

provided several plugins and frameworks for simplified usage of their API. A user of

PostageApp could access the API using one of those plugins or using their own code.

PostageApp API depends only on POST HTTP request method and responds with JSON

messages. The POST request content type has to be set to JSON for correct handling of the

request at the API endpoint. The code snippet 3-8 shows account information retrieval example.

Code Snippet 3-8: PostageApp account information request

curl -v \

-H "Content-type: application/json" \

-X POST \

-d ' { "api_key" : "PROJECT API KEY" } ' \

https://api.postageapp.com/v.1.0/get_account_info.json

Error messages are handled by the API and would provide detailed error information via JSON

response. PostageAPP uses API key for user authentication and this has to be used in each and

every message and SSL/TLS is used to provide security between web application and API. When

sending messages, the attachments are embedded in JSON messages in base64 encoding with the

40

content type tag. PostageApp does not have any notion of hypermedia content. Since it does only

support POST requests, it couldn‟t be considered as a restful API.

3.10. Yahoo! Mail Web Service

Yahoo! is one of the first free email service providers which became popular with their web mail

interface. The Yahoo! Mail Web Service gives programmatically access to the developers to

build web application which could use to interact with user mail accounts. It is important to note

that this is a web service and it is not Restful. However, we have included this API to get a better

understanding of the differences of the two methodologies.

Yahoo! mail web service has recently introduced an OAuth authentication mechanism over

their previous BBAuth mechanism. Yahoo has introduced libraries which should be used for

programming and it covers JSON endpoints and OAuth authentications. The libraries have

implemented the JSON - RPC specification on top of the web service and the requests follow the

specific serialized JavaScript object. The formatted JavaScript object has the following

properties.

 Method: Method indicated the name of the method called by the request. At present there

are twenty three methods supported by Yahoo! API. The methods included operations for

manipulating mail Folders, Message manipulation, Attachment handling and SPAM

filtering.

 Params: an array containing the method parameters.

 Id (optional): the ID of the request, allows asynchronous clients to match a response back

up with the original request. The service responds with serialized JavaScript as well.

Once again, the JavaScript object follows a specific data format:

 Result: the return from the API method must be null if there was an error.

 Error: an error object resulting from the call being made (like an exception), must be null

if there was no error.

41

3.11. Summary of Commercial API

Most of the commercial APIs are focused on providing a specific set of features and has been

built around those features. However, fully featured email clients such as “Gmail” and “Outlook”

have developed to cover most of the generic requirements of an email user. Considering the

features offered by Even though the implementation and feature additions differ from these email

systems, core functionalities remain the same.

Table 3-2: Summary of Commercial API

Service Purpose Protocols Data Formats Authentication

Gmail Full email system
REST/IMAP

/SMTP
JSON OAuth 2.0

Outlook Full email system
REST/IMAP/PO

P/SMTP
JSON OAuth 2.0

Zimbra Full email system REST/SOAP XML, JSON Basic HTTP

Sendinc
Send and receive

secure messages
REST/SMTP XML, JSON Basic HTTP

Postmark Transactional Mail REST/SMTP JSON
Token in Auth

Header

Email Yak Email for web apps REST XML, JSON Query Auth

Context.io API for email store REST JSON OAuth 2.0

Mailgun Transactional Mail REST/SMTP XML Basic HTTP

PostageApp Transactional Mail REST JSON Basic HTTP

Yahoo! Full email system JSON-RPC JSON OAuth 2.0

42

3.12. Comparison of HTTP methods uses in APIs

The table 4-1 summarizes the use of HTTP request methods of the REST email systems

discussed in section 2.13 and the APIs studied in chapter 4. A tick sign indicates that the request

method has been used as explained in section 2.7.2. A cross sign indicates that the method has

been used for function outside of the specification.

Table 3-3: Summary of HTTP method use in API

EMAIL API GET POST PUT DELETE PATCH

PRESCOD [36] ✓ ✓ - - -

HTTPMAIL [37] ✓ ✓ - ✓ -

REST/Offline Mail[38] X
1
 ✓ - - -

RESTMAIL[40] ✓ ✓ ✓ ✓ -

Gmail[6] ✓ X
2
 ✓ ✓ ✓

Outlook[7] ✓ X
3
 - ✓ ✓

Zimbra[41] ✓ ✓ - - -

Sendinc[42] ✓ ✓ - - -

Postmark[43] ✓ ✓ ✓ ✓ -

Email Yak[44] ✓ X
4
 - - -

Context.IO[45] ✓ ✓ ✓ ✓ -

Mailgun[46] ✓ ✓ ✓ ✓ -

PostageAPP[47] - X
5
 - - -

1
GET method has used for resource deletion/ moving

2
POST method has used for resource trashing

3
POST method has used for resource moving/copying

4
POST method has used for resource deletion

5
POST method has used to get resource/ list resources

43

4. COMPARATIVE ANAYLSIS OF API FUNCTIONS

Depending on the study on APIs in previous chapter, we have identified common functions of a

generic email system which is suited for the majority of the day-to-day email activities. In this

chapter, we would analyse each of these functionalities and their implementation. With that

knowledge, we would design our email system after choosing the most suitable features and their

relevant resource representations.

4.1. Common functions of a generic email system

4.1.1. Login into email system

Considering the systems studied in the previous chapter, most of the APIs either used HTTP

basic authentication or OAuth2 authentication mechanism. Postmark and EmailYak has used

different methods, respectively Token based and Query Authentication. In Postmark the client

has to use the header „X-Postmark-Server-Token‟ and if the header is missing or wrong, the API

would respond with an HTTP Response 401 (Unauthorized). Postmark uses two types of

authentication tokens; “Server token” and “Account token”. The required authentication header

to be used will be specified by each reference page to the API endpoints.

Microsoft outlook REST API and Google Gmail API use Oauth2 as their authentication

and authorization mechanism. Google has implemented Oauth2 mechanism to comply with

“OpenID Connect” specification to provide authentication. For Outlook REST API, the

applications should first register themselves with the “Azure Active Directory” before using the

OAuth2 protocol with “Authorization Code Grant Flow”. Both of the APIs uses „scopes‟

extensively to specify the authorization granted to application. The „scope‟ specifies the

resources that are accessible using the granted permissions.

The most popular mechanism used by the studied APIs is the “HTTP basic

authentication” mechanism. Basic authentication is simple to implement, but limited in

functionality. It is a must to use a secure channel to transport data between the client and the

server if this method is used.

44

4.1.2. Listing email directories available in the account

Even though this is not a common feature of studied APIs, Context.IO, RESTMAIL and Outlook

API have developed this functionality into their email systems. From a REST architectural

perspective, here we are accessing a resource which would result in a representation of that

resource. In the case of Context.IO Lite API, they have identified „folders‟ as the resource and a

„GET‟ request on folders resource would result in listing all the folders under a particular mail

account. For example:

GET https://api.context.io/lite/users/id/email_accounts/label/folders

In RESTMAIL, this resource has been identified as the first „/‟ of the URL and thus omitting the

resource shown in the URL. For example:

GET http://localhost:3000/

In the Outlook API, this functionality has been identified as “Get folders” and it supports GET

HTTP method. The resulting resource would contain ID‟s of each folder in the user‟s mailbox.

For example:

GET https://outlook.office365.com/api/v1.0/me/folders

4.1.3. Listing mailbox content

 Listing particular mailbox content is a common functionality offered by the studied APIs.

Some implementations have considered messages to be a sub resource of a folder while others

specifically construct the URL to denote the message collection as a resource. APIs including

Outlook, Sendinc, Postmark, Context.IO 2.0 API, Mailgun and PostageApp has used “messages”

resource to denote the collection of emails in a particular folder. For example:

GET https://outlook.office365.com/api/v1.0/me/messages

GET domains/<domain>/messages

GET https://api.context.io/2.0/accounts/id/messages/message_id/folders

GET https://api.postageapp.com/v.1.0/get_messages.json

Gmail has identified a resource called threads to denote conversations and thus have introduced

the “thread” resource which could be used to get a list of threads.

GET https://www.googleapis.com/gmail/v1/users/userId/threads

45

For the Zimbra API the email collection is returned when a particular folder has been accessed

using the GET method. This is the same URL template used in RESTMAIL. The folders could

be the default set of folders or any user defined folder. For example:

GET http://localhost:7070/home/john.doe/inbox?fmt=xml

GET {mailbox_name}/{box}/[{path}]/

The Email Yak API has specified a special URL which could be used to list the emails.

However, in every API has used „GET‟ HTTP method for obtaining a representation of the email

messages.

4.1.4. Renaming mailboxes

Even though the IMAP commands supports renaming of a folder in the mailbox, only two of the

APIs from the study has implemented this feature. Outlook API has the ability to rename the

folder name using the PATCH HTTP method. For example:

PATCH https://outlook.office365.com/api/v1.0/me/folders/{folder_id}

The folder ID could be a well-known folder name such as Inbox or a user given ID. The body of

the PATCH request passed in as a JSON formatted object. For example:

{

 "DisplayName": "Business"

}

Since Google has used “Labels” to denote the folders, to rename the folder name, we should

change the Label name. Gmail supports both „PUT‟ and „PATCH‟ HTTP methods for this

purpose. For example:

PATCH https://www.googleapis.com/gmail/v1/users/userId/labels/id

PUT https://www.googleapis.com/gmail/v1/users/userId/labels/id

The PUT method would require user sending the request with the new name and a few other

settings, the PATCH method supplies the relevant potion of the Label resource. In both cases, the

server responds with the new version of the resultant Label resource.

46

4.1.5. Deleting mailboxes

Mailbox deletion is supported by three of the studied APIs including Outlook API, Gmail API

and RESTMAIL. Since Gmail API uses „Labels‟ to denote the folder, deleting the label would

remove the label from all the messages tagged under that label. Here the messages won‟t get

affected by this action. For example:

DELETE https://www.googleapis.com/gmail/v1/users/userId/labels/id

However, Outlook API and RESTMAIL has treated messages and sub folders as the content

under the folder in subject and a deletion of parent folder would result in a deletion of its content

too. For example:

DELETE https://outlook.office365.com/api/v1.0/me/folders/{folder_id}

DELETE /{mailbox_name}/{box}/[{path}]/

4.1.6. Display mail headers

Most of the APIs support displaying of the mail header for a particular email. While some of the

APIs embedded header information in the message itself, other APIs has designed the header

retrieval via special URL‟s or by specifying parameters to obtain the header. For example, the

following has used descriptive URL in retrieving headers:

GET

https://api.context.io/lite/users/id/email_acc/label/folders/fol

der/messages/m_id/headers

GET

https://api.postmarkapp.com/messages/inbound/:messageid/details

Outlook Mail API and Email Yak have used parameters to request the header only. The Outlook

API uses OData in Accept-header to specify the parameters while Email Yak specifies it as a

GET variable. Gmail and Mailgun would return the full headers within the message body, when

requests for a particular message.

47

4.1.7. Mail retrieval

Email display is a must have function for all the APIs and email systems to support mail receive

and viewing functionality. Two of the common features of all the APIs are the use of GET HTTP

method for message retrieval and the use of a “message id” to denote the message to be

downloaded. The following URL structures have been used for message retrieval.

GET https://www.googleapis.com/gmail/v1/users/userId/messages/id

GET https://outlook.office365.com/api/v1.0/me/messages/{message_id}

GET http://localhost:7070/home/john.doe/?id=288

GET https://rest.sendinc.com/message/{X-Sendinc-Message-Id}.json

GET https://api.postmarkapp.com/messages/inbound/:messageid/details

GET

https://api.emailyak.com/v1/private_api_key/json/get/email/?EmailID=Em

ailID

GET https://api.mailgun.net/v3/domains/mydomain.com/messages/messageid

The response for a successful message request would result in a response generally containing

the message id, email headers, subject, body parts, email size, mime types etc. In Context.IO

API, the mail content has been separated as sub resources of the message resource. Thus only the

mail body would be delivered. Most of the APIs follows MIME RFC2822[14] format for

correctly denoting email body fields.

4.1.8. Deleting Email messages

Email deletion is supported by four of the studied APIs. Gmail, Outlook, Email Yak and Mailgun

has provided the functionality by sending DELETE HTTP method request to a URL specifying

the message ID of the mail to be deleted. It is interesting to note that Gmail and Outlook APIs

would respond for a successful deletion with HTTP status code „204‟ which stands for “No

Content” and would not provide any other feedback. For an example of a deletion request in

Gmail API, the following format is used:

DELETE https://www.googleapis.com/gmail/v1/users/userId/messages/id

48

4.1.9. Retrieval of attachments

Attachment retrieval is another common function supported by the studied APIs. APIs such as

Google, Outlook, Sendinc, Zimbra and Context.IO has designed their APIs to be able to

download attachments as a sub resource based on their attachment ID, under the particular

message. For example the URL structure of Gmail is as follows.

GET

https://www.googleapis.com/gmail/v1/users/userId/messages/messageId/at

tachments/id

However Email Yak and Mailgun APIs have designed their API to return URL‟s of the

attachment in the message body when requested in the email. The Email Yak does not specify

the details of the attachment; however Mailgun specifies the size and the content type of the

attachment. The Postmark API would return the attachment with the message Body.

4.1.10. Email flag handling

Email flagging is an important concept which helps in manipulating and managing email

messages. IMAP supports flags such as “Seen”, “Answered”, “Flagged”, “Deleted”, “Draft” and

“Recent”. However, only two of the APIs studied handles email flagging. Gmail has designed

their system to support the label concept which works as the flag system. To update the flags, a

Gmail API either uses PUT or PATCH HTTP methods on the specified message or thread label.

Apart from common flags Gmail supports flags such as “Inbox”, “Spam”, “Trash”, “Important”,

“Sent” and a set of special categories such as “personal”, “social”, “promotions” etc. Context.IO

handles flags as a sub resource of the message resource. However the API only allows retrieving

of the flag and does not support to update it.

GET

https://api.context.io/lite/users/id/email_acc/label/folders/folder/me

ssages/m_id/flags

The Context.IO API provides a way of marking messages as read or unread. The following URL

could be requested by either POST or DELETE methods to set email message read or unread

respectively.

POST

https://api.context.io/lite/users/id/emailacc/label/folders/folder/mes

sages/message_id/read

49

4.1.11. Copy/Move directories/ emails within directories

Email or folder copying/moving is only facilitated in Outlook REST API. The IMAP

standard[16] has specified “rename” for folder name changes and “Copy” for email copying.

Email moving is supported by an extension[48] to the IMAPv4. The Outlook REST API has

similar URL structure for copy/move operations. The following URL is used for moving a

message to a destined folder.

POST

https://outlook.office365.com/api/v1.0/me/messages/{message_id}/move

Here the POST request body contains the “DestinationId” parameter which has the

destination folder ID. Similarly the moving and copying of message folders could be performed

using POST method and specifying the destination in the request body. It is important to note

that the URL itself contains the action which is going to be performed. Following is an example

request with the request body for folder copying.

POST

https://outlook.office365.com/api/v1.0/me/folders/{folder_id}/copy

{ "DestinationId": "inbox" }

4.1.12. Email Searching and filtering

Email searching is another functionality supported by IMAP standard. Few of the studied APIs

supports email searching functionality. Gmail API support query parameters in-order to perform

searching and filtering of email messages. API users could filter messages by properties such as

the sender, date, or label. Following is an example of a query which retrieves all messages sent

by the user between Jan 1, 2014 and Jan 30, 2014:

GET https://www.googleapis.com/gmail/v1/users/me/messages?q="in:sent

after:2014/01/01 before:2014/01/30"

The Outlook API supports email filtering and searching by the use of OData [] query parameters.

The users could use actions such as filtering, selecting, ordering, count, etc. The following

example URL would filter the messages which are in “Unread” state.

GET https://outlook.office365.com/api/v1.0/me/messages?$filter=IsRead

eq false

50

4.1.13. Email Sending

Email Sending is another important functionality of an email system. Apart from Context.IO API

others have provided mail sending functionality using different methodologies. In Gmail API,

the message to be sent should be encoded in base64 and then would be included in the request

body with the parameter raw. Users could either send mail directly or could save it as a draft

message before sending. The following requests are performed for the mail sending functionality

in Gmail API. The Gmail API has imposed a maximum file size limit of 35MB.

POST https://www.googleapis.com/upload/gmail/v1/users/userId/messages/send

POST https://www.googleapis.com/upload/gmail/v1/users/userId/drafts/send

In the Outlook REST API, the email sending could be done directly or could send an email

already in the draft folder. The sender should create a JSON “Message” object as specified by

the API and then make a POST request to the following URL

POST https://outlook.office365.com/api/v1.0/me/sendmail

Users could choose to save the email message in send folder by setting parameters in the

request body. For a draft message which is already in the email box as a message, a POST

request would be performed for the following URL.

POST https://outlook.office365.com/api/v1.0/me/messages/{message_id}/send

Outlook API users could also create a draft message before sending the mail. The API also

facilitates message forwarding, reply and reply to all functionalities via special URL‟s. In all the

cases, the API requires to use POST method. A similar method to Outlook API is followed by

Postmark, Email Yak, Mailgun and PostageApp APIs for email sending. The email content is

formatted as a JSON message with parameters specified by the API and then the content would

be posted into a specified URL. The Gmail API requires the attachment content to be base64

encoded with the email body; other APIs specify the attachment array in JSON message

separately. The attachment array generally has the content type property and the attachment

content would be base64 encoded before embedding to the message.

51

4.2. Summary of Functions

Table 4-1 : Functionality Analysis of Vendor specific APIs

Function Gmail API
Outlook

API

Zimbra

API

Sendinc

API

Postmark

API

Context.IO

API

Email Yak

API

Mailgun

API

PostageApp

API

Login Oauth2 Oauth2 Basic HTTP Basic HTTP

Token in

Auth

Header

Oauth2 Query Auth Basic HTTP Basic HTTP

List

directories

GET

request for

Labels

GET

request for

folders

x x x

GET request

for

folders

x x x

List emails

GET

request for

messages

GET

request for

messages

GET

Request for

folder

x

GET request

for

messages

GET request

for

messages

GET request

for

messages

GET request

for

messages

POST request for

messages

Create

directories

POST

request on

labels

POST

request to

create child

folders

x x x

PUT/POST

request on

threads

x x x

Rename

directories

PUT or

PATCH the

label name

PATCH the

directory

name

x x x

PUT and

POST to

update

message

folder

x x x

Delete

directories

DELETE

request on

a label

DELETE

request on

a directory

x x x

POST to

remove

folder

affiliation

from

messages

x x x

Display

Headers

GET

request on

GET

request on

GET

request on

GET request

on a

GET request

on a

GET request

on a header

GET request

on a message

GET request

on a message
x

52

a message a message a message message message

Display

mailbody

GET

request on

a message

GET

request on

a message

GET

request on

a message

GET request

on a

message

GET request

on a

message

GET request

on a

message

body

GET request

on a message

GET request

on a message

POST request on a

message

Delete mail

DELETE

request on

message ID

DELETE

request on

message ID

x x x

DELETE

request on

message ID

POST request

on message id

DELETE

request on

message id

x

Get

attachments

GET

request on

attachment

ID

GET

request on

attachment

ID

GET

request on

attachment

ID

GET request

on

attachment

ID

GET request

on a

message

GET request

on

attachment

ID

GET request

on a

message(gives

URL for

attachment)

GET request

on a

message(gives

URL for

attachment)

x

Flag

Handling

PUT or

PATCH the

label name

x x x x

GET request

to check

flags and

POST to

update

x x x

Copy/Move

folders

PUT or

PATCH the

label name

POST folder

ID to copy

and move

methods

x x x

POST to

message ID

with

necessary

parameters

x x x

Search &

filter

GET query

parameters

GET query

parameters

GET query

parameters
x

GET query

parameters

GET request

on folder sub

resource in

message

resource

x x x

Send email

POST

messages

to send

method

POST

messages

to sendmail

method

x

POST to

message

resource

POST to

email

resource

x
POST to

send/email

POST to

messages

resource

POST to

send_message.json

53

5. THE SYSTEM DESIGN

In this chapter, we are presenting our design considerations for a REST API for email system.

The design is based on the comparative study of APIs done in chapter 04 and the REST

architectural constraints and other technical concerns discussed in chapter 03.

5.1. Architecture

Considering the APIs and the past work on the REST based email systems, we have

identified two major branches of designs, based on the backend they have used. While

backend is not visible to the clients who use the API, we believe it has a strong impact on the

feature set that could be offered by the system. The Email systems proposed in [37], the

author specifies a design which would provide an HTTP interface to an existing email store.

While email sending functionality is not specified, many other features could be implemented

with the API. The design specified in [40] offers fully functional email system with its own

backend. In this approach, we have to implement the functionalities such as mail routing,

notification and email storing. Noticeably in this architectural model, we could achieve email

pull model rather than the traditional push model where the server needs to push the email to

the correct servers. However, unless the system implements capabilities to communicate with

traditional email protocols, integrating the new mail system to the existing environment

would be a challenging task. Figure 5-1 depicts a generic architectural diagram of fully

RESTful email

system.

Figure 5-1: Fully REST based email system

54

The approach taken by [38] addresses this problem by using a backend which supports

traditional protocols and has a database which could be used to implement the RESTful API.

Similar approaches have been taken by some of the APIs and vendor systems which were

studied in chapter 4. For example, both Gmail and Yahoo support the traditional protocol

stack alongside with their new REST API and the webmail interface. This architectural

design allows seamless integration with the existing technology and does not require to

completely abandoning the already existing and well established email infrastructure.

Another important factor on using this model is that the mail receiving functionality has been

handled by the underlying protocols rather than the HTTP itself or the API. However API

such as [43] has implemented inbound webhooks which handles the incoming mails which

are posted to special URL.

Figure 5-2: Hybrid REST mail system

Even though there are proposed email servers which follows the first architectural model

which was discussed, the industry has adopted the second model for their implementations. It

can be supported by the fact that it co-exist with the existing email infrastructure while

providing the most of the benefits of having a RESTful interface to the email store.

Noticeably the REST API could be reused for any standard email servers and thus would

make it easy to be integrated and deployed. Due to the above facts, we have designed our

system to follow the second architectural model where the REST interface connects to a

traditional email store/ server and utilize the capabilities provided by email server to

communicate with other traditional email servers.

55

5.2. HTTP Methods

Accurate use of HTTTP method is important for providing uniformity over the resources in

our email system. Even though the HTTP specification[26] has defined nine HTTP request

methods, according to the study, only GET, POST, PUT and DELETE are frequently used by

the systems. As we have shown in table 3-12, some of the email systems and APIs who has

confined their HTTP request methods to GET and POST methods have constructed their API

URI‟s to indicate the action by adding verbs. This would limit the usability and clarity. The

other APIs have used HTTP request methods appropriately. However, it is important to

discuss about the different usages of POST, PUT and PATCH. Considering the systems

which use both POST and PUT methods, both Gmail and Mailgun has used POST for new

resource creation and PUT for a complete update of an existing resource. This is in-line with

the HTTP specification where PUT is used when the client has knowledge on resultant URL

and POST is used when the server is in charge of designating the URL for the new resource.

However Postmark has used both POST and PUT in different scenarios which make it hard to

map the action to the HTTP request method as defined in the specification.

In the case of the PUT and PATCH usage, only Gmail API supports both of the

request methods and Outlook API only supports PATCH favouring over PUT. Implementing

PATCH method support for JSON object, conferring to the PATCH semantics[49] would

help to reduce the amount of data which should be passed by the client than when using the

PUT request method. This is due to the fact that the PUT method requires the client to send

the complete resource back to the origin server; while PATCH only requires sending the parts

which were changed. Considering the above factors and generic usage based on HTTP

specification, we have decided to use the following HTTP request methods in our API.

Table 5-1: Proposed HTTP request methods

Method Name Functionality

GET Used to obtain a representation of a resource

POST Used to create a new resource.

PATCH Used to update, rename & modify a resource.

DELETE Delete a resource.

5.3. Data exchange language

56

Resource representation data exchanging is another important factor for the API. The study

revealed that the majority of the APIs are using JSON as the primary data exchange format

for representing resource. Even though some of the APIs offer XML as another data

exchange format based on the analysis in section 2.8, we have concluded that JSON has

better performance over objects with smaller size. Considering an email system, unless the

email has attachments the communication mostly consist with smaller size messages. The

responses generated for application communication could be easily designed to be smaller in

the size too. Therefore, in most of the scenarios, the use of JSON could be justified for its

better performance and the ease of processing at client end.

5.3.1. Hypermedia Format

To adhere to REST constraint of being HATEOAS, the media format must use hypermedia

formats. Since JSON does not inherently supports hypermedia formats, various formats have

purposed to augment JSON to handle hypermedia content. For example, JSON-LD[50],

HAL[51] and Collection JSON[52] are some of the formats which are in the process of

standardization. Many other formats have also been introduced, based on the requirements of

the API.

Since the hypermedia formats are not standardized, we have designed our own format to

represent the resources in the REST mail system to comply with HATEOAS constraint.

However, this practice may lead to tight coupling between the client and the server unless the

hypermedia format wasn‟t standardised alongside with the API. We have followed the IANA

link relation registry [53] to describe the hyperlinks whenever possible. The proposed

hypermedia format is a JSON object with following mandatory parameters.

 Type : Type of the resource

 Set of parameters which are unique to each representation of resources.

 Entities Object: Collection of sub resources. Has type parameter to identify items in

the entity collection.

 Links Object: Contain links to the resource itself or a starting point and if paging

available the links to the previous and next page is also available in this “Links”

object.

 Actions array: The actions which could be performed on the resource by using HTTP

request methods. The actions array could have several action objects, starting from the

57

action name. The first parameter in action object is the type of action. If the action

involves GET query parameters, the type would be set to “query” and if the action is

performed on a resource without additional parameters, the type would be set as

“resource”. The action object also has “href” and “method” properties to denote the

link, the HTTP request method which should be performed to execute that action. If

there are any parameters to be passed to the action, it will be set in fields array.

Code Snippet 5-1 : Proposed Hypermedia Format

{

 "type": (Resource Type),

 "parameter01": "(value01)",

 "parameter02": "(value02)",

 "entities": [

 {

 "type": "(Resource Type)",

 "parameter01": "(value01)",

 "link": {

 "href": (URL for an item) ",

 "rel" : "self"

 }

 }

],

 "link": [

 "href": "(URL for the resource)",

 "rel": "self"

],

 "actions": [

 "(Action name)" : {

 "type": "(query or resource)",

 "href": "(URL for the resource/query)",

 "method": "(http request method)",

 "fields": [

 {"name":"type","value":"value"}

]

 }

]

}

5.4. Resources

As we have discussed in the section 2.4.1, one of the first steps of designing the REST API

includes the identification of resources in our proposed system. This would help us in

building the functionalities and URI‟s accordingly. For our system, we have identified four

main resources as “mail account”, “mail directory”, “mail” and “attachments”. Apart from

58

this, entry point to the system is identified as the base URL. The error and successful message

for API request are represented by special resource type “status”. The resources and their

hierarchical structure have been depicted in figure 5-3.

Figure 5-3: Resources

5.4.1. Base URL

Base URL is the entry point to our proposed system. The base URL is used for authentication

to the system and once the client is properly authenticated, the system provides the details

related to the mail account with the hypertext linking to the next resource the user could

access. If properly authenticated, the API would respond with HTTP status code 200 while

failure in authentication would result in 401. For example, code snippet 5-2 shows the

response message for a successful authentication by a client.

Code Snippet 5-2 : Successful Authentication message

{

 "type" : "Status",

 "status": "success",

 "message": "User successfully authenticated",

 "link": {

 "href": "http://restmail.lk/{username}",

 "rel": "start"

 }

}

59

5.4.2. Mail account

Mail Account resource represents the mail directories for the account. When the user visits

the web site with a given domain name, users would be replied with the Mail account

representation. Thus the mail account resource is considered as our starting resource for the

API. For example the resource representation when accessing a mail account is as follows;

Code Snippet 5-3 : Mail account resource representation.

{

 "type": "MailAccount",

 "name": "username",

 “entities": [

 {

 "type": "Mail Directory",

 "title": "Directory Name",

 "link": {

 "href":"https://domain/username/dir_name",

 "rel": "self"

 }

 }

],

"link": {

 "href": " https://domain/username

 "rel": "start"

 },

 "actions": [

 "(creat_dir)" : {

 "type": "resource",

 "href": " https://domain/username",

 "method": "POST",

 "fields": [

 {"name":"type","value":"Directory"},

 {"name":"name","value":"NewName"}

]

 }

]

}

5.4.3. Mail directory

Mail directory resource represents one of the mail directories and is a sub resource of the mail

account. The list of emails in this selected directory has been represented as a JSON array.

The following example shows the resource presentation of „mail directory‟.

Code Snippet 5-4: Mail directory resource representation.

{

 "type": "Directory",

 "name":"Directory Name"

 "MailCount": “Number of mail in directory”,

60

 "PerPageMails": “Mails per page”,

 "entities": [

 {

 "type": "mail",

 "msgno": message sequence number,

 "from": "Sender <sender@domain>",

 "to": "Receiver <receiver@domain>",

 "subject": "Subject",

 "bytesize": Message size,

 "date": "Message send date",

 "flags": {

 "recent": 0,

 "unseen": 1,

 "flagged": 0,

 "answered": 0,

 "deleted": 0,

 "draft": 0

 },

 "link": {

 "href": " https://domain/username/dir/m_ID",

 "rel": "self"

 }

 }

],

 "link": [

 {"href":"https://domain/username/dir", "rel": "self"},

 {"href":"https://domain/username/dir?page=pid","rel": "next"},

 {"href":"https://domain/username/dir?page=pid","rel": "prev"},

],

 "actions": [

 "(rename_dir)" : {

 "type": "resource",

 "href": " https://domain/username/dirname",

 "method": "PATCH",

 "fields": [

 {"name":"op","value":"replace"},

 {"name":"path","value":"/name"},

 {"name":"value","value":"newName"}

]

 },

 "(post_mail)" : {

 "type": "resource",

 "href": " https://domain/username/dirname",

 "method": "POST",

 "fields": [

 {"name":"type","value":"mail"},

 {"name":"m_uid","value":"<m_uid@domain>"},

 {"name":"date","value":"unixdate"},

 {"name":"from","value":"<from@domain>"},

 {"name":"to","value":"<to@domain>"},

 {"name":"cc","value":"<cc@domain>"},

 {"name":"bcc","value":"<bcc@domain>"},

 {"name":"subject","value":"subject"},

 {"name":"bodyHTML","value":"html encoded"},

 {"name":"bodyPlain","value":"plain text"},

 {"name":"attachmentName","value":"name"},

61

 {"name":" attachmentType","value":"MIME type"},

 {"name":" attachmentData","value":"base64

encode"}

]

 },

 "(delete_dir)" : {

 "type": "resource",

 "href": " https://domain/username/dirname",

 "method": "DELETE"

 }

]

}

The resource starts with its resource type name “Directory”. Inside the directory we have a

collection of mail items in entity array. Each mail item contains the type of the item, its

message number and other related information in the mail. Since multiple pages are expected

in the response, the resource supports pagination via „page‟ attribute. The link relation types

„next‟ and „prev‟ has been used to denote the next and the previous pages while „relation‟

type „self‟ denotes the resource itself.

5.4.4. Mail

Mail resource represents an email within a mail directory. It is a sub resource of the mail

directory. The resource type name would be set to mail in this instance. Previous and next

emails in the mailbox have been linked with hypertext. For an example, following is a mail

resource representation.

Code Snippet 5-5: Mail resource representation.

{

 "type": "mail",

 "msgno": {int},

 "m_uid": "<uid@domain>",

 "from": "sender@domain",

 "to": "receiver@domain",

 "cc": null,

 "bcc": null,

 "subject": "subject",

 "size": "byte size",

 "date": "Unix date",

 "flags": {

 "recent": 0,

 "unseen": 0,

 "flagged": 0,

 "answered": 0,

 "deleted": 0,

 "draft": 0

 },

 "bodyHTML": "HTML encoded body",

62

 "bodyPlain": "Plain text body.",

 "hasAttachments": "true",

 "entities": [

 {

 "type": "attachment",

 "attachmentID": "a_id",

 "attachmentName": "name",

 "attachmentType": "MIME type",

 "attachmentSize": "byte size",

 "link": {

 "href": https://domain/user/dir/m_id/a_id",

 "rel" : "self"

 }

 }

]

 "link": [

 {"href":"https://domain/username/dir/m_id ", "rel": "self"},

 {"href":"https://domain/username/dir/next_id ","rel": "next"},

 {"href":"https://domain/username/dir/prev_id","rel": "prev"},

]

 "actions": [

 "(delete_mail)" : {

 "type": "resource",

 "href": " https://domain/username/dir/m_id",

 "method": "DELETE"

 },

 "(update_flags)" : {

 "type": "resource",

 "href": " https://domain/username/dir/m_id",

 "method": "PATCH"

 "fields": [

 {"name":"op","value":"replace"},

 {"name":"path","value":"/flags/{0-5}"},

 {"name":"flag name","value":"0 or 1"}

 }

]

}

The parameters specified in Table 5-3 are used for detail representation.

Table 5-2: Parameter list for mail resource

Parameter Intention

Type Resource Type

msgno Message sequence number

m_uid Unique mail ID

from/ to Sender and Receiver email addresses

cc/bcc CC and BCC email addresses

subject Email Subject

size Email message size in bytes

63

date Date of email sent

flags Email Flag if set 1 and if not 0

bodyHTML HTML formatted mail body

bodyPlain Plain text mail body

hasAttachments True if has attachments, false if not

attachmentID ID of the attachment

attachmentName Name of the attachment

attachmentType Attachment MIME type

attachmentSize Byte size of the attachment

5.4.5. Attachments

The attachments have been identified as a separate resource from „mail‟, since the size of the

attachment might affect the loading of whole „mail‟ resource. The attachment resource would

contain its ID, name, MIME type, size and the base64 encoded version of the attachment

data. Based on the attachment ID, the clients could access multiple attachments separately.

The link array includes a link in the email message which the attachments belong to with the

relation type „up‟.

Code Snippet 5-6: Attachment resource representation

{

 "type": "attachment",

 "attachmentID": "a_id",

 "attachmentName": "name",

 "attachmentType": "MIME type",

 "attachmentSize": "byte size",

 "attachmentData": "base64 encoded data",

 "link": {

 {"href":"https://domain/username/dir/m_id/a_id ", "rel": "self"},

 {"href":"https://domain/username/dir/m_id/prv_id ","rel": "prev"},

 {"href":"https://domain/username/dir/m_id/nxt_id ","rel": "next"},

 {"href":"https://domain/username/dir/m_id/","rel": "up"},

 }

}

5.5. Functionality

After the analysis of the proposed REST email systems and commercial REST APIs we have

compiled a list of functionality which could be considered as compulsory for having a

64

functional RESTful email system. Starting from section 5.5.1, we would discuss the

designing of each of those functionalities in our proposed system.

5.5.1. Login to mail system

The authentication to the mail system was designed by using basic authentication mechanism.

Even though OAuth2 would have provided further functionality and support more use cases,

the complexity of implementing OAuth2 functionality to the existing email servers would be

an additional burden for an integration process. This would become a drawback for our

proposed API. In our design, the API would require clients to authenticate when they reach

the “root resource” and the credentials given here would be used to authenticate the user to

the existing mail system. Since the credentials are passed in plain text format, it is required

that the clients to the API and the API to mail server to use a secure communication channel.

Assuming our API is exposed via the domain name “www.restmail.lk”, the following request

would prompt the user to provide credentials for the authentication.

GET https://www.restmail.lk/

Otherwise for the machine to machine communication would be done by passing the

credentials in the HTTP authorization header itself.

GET https://username:password@www.restmail.lk/

An unsuccessful login attempt would result in HTTP status code „401‟ and would be

responded with login failure. The logout functionality could be implemented at client side

based on user agent used for authentication. Generally in browsers, the client would provide

erroneous username/passwords intentionally to reset the authentication headers.

5.5.2. Getting a list of mail directory

Listing of directories under a particular mail account is important for account owners to

organize emails and for easy access. This feature is implemented in [6] as labels while [45]

and [7] provides folder resource to represent the folders in the mailbox. In our design, the

clients would be able to retrieve a list of available mailboxes by following request.

GET https ://{domain}/{username}

65

This URL would be automatically available in the response after a successful authentication.

The API would respond with a list of mailboxes in the mail account with HTTP status code

„200‟. In the case of [7] & [45], the „folders‟ resource would requires additional resources to

denote the hierarchical structure of the system. For example in [45], the „folders‟ should be

followed by the „folder name‟. However, in our design, the username could be followed by

the mailbox names discovered by this representation. Therefore, in our design, the URL

structure would be shorter, clearer and would provide more emphasis on the hierarchical

structure in mail box.

5.5.3. Creating new mail directory

Apart from the default or already existing mail directories for a mail account, the owner could

create more directories for mail organization. Since we are creating a new resource in the

server, the HTTP request method POST has been chosen for this. The new directory name is

required to be passed through the POST request as JSON object as shown below.

POST https://{domain}/{username}

{ “type”: “Directory”, “name”:”new_dir_name”}

The “Directory” parameter is mandatory and the client could specify any string as the new

directory name. Successful execution would result in a response with status code „201‟ and a

success message with the URL to the newly created directory and the mail account. The

design of this functionality is similar to the design of [7] & [40] apart from the URL

structure.

5.5.4. Rename a mail directory

The directory renaming functionality has been implemented in API such as [6] has [7]. The

directory renaming could also be considered as „moving‟, only if it happens within the

directory. In our system we have only designed the directory renaming functionality by the

following request.

PATCH https://{domain}/{username}/{dir_name}

{ "op": "replace", "path": "/name", "value": "new_name" }

Here, the URL denotes the directory, which is subjected to the renaming. We are performing

a PATCH HTTP request against the resource and the request should follow the patch

66

semantics. A successful execution of this request would result in HTTP status code „200‟ and

JSON object with the success message and the resultant URL. A failed execution would

occur when the mail account has a directory with a similar name. In that situation, the system

would respond with HTTP status code of „409‟ and the error status message.

5.5.5. Delete a mail directory

The directory deletion functionality has been implemented in several APIs with DELETE

HTTP request method. The following request could be performed to delete a directory in our

system.

DELETE https://{domain}/{username}/{dir_name}

The URL denotes the directory which is going to be deleted and the successful execution of

this would result in HTTP status code 200 and the JSON formatted success status message

and in the case of URL does not exist, the system would respond with the HTTP status code

404.

67

5.5.6. Searching mails within a directory

Email searching is a basic requirement for mail system. However, other than exposing a

controller resource, it is difficult to create a RESTful URL for the searching function.

Therefore, in most of the APIs, GET query parameters have been used. Therefore, in our

design, similar to the way we have set parameters for paginations; two separate query

parameters could be set to filter out the mails in a directory. First parameter is the “filter”.

The “filter” depends on the back-end implementation and it is recommended to implement

the criteria defined by IMAP protocol. In our design, we are supporting several criteria such

as “from”, “to”, “subject”, “all”. The second parameter is “string” and it is used to set the

string value given by user for searching. The search results would be displayed as a directory

resource with pagination parameters. However, only the matching mails would be available

through the resource representation.

GET

https://{domain}/{username}/{dir_name}?filter={all}&string=”hello

”

5.5.7. Listing emails in a directory

The emails are considered to be a sub resource of the directories. Therefore, to list emails in a

particular directory, the client could perform a GET request against the directory resource.

GET https://{domain}/{username}/{dir_name}

Based on the given directory name, this will return a collection of emails as a JSON array

with HTTP status code 200. If the directory is empty, the API would return an empty JSON

message linking back to the root resource. If the directory does not exist the API would return

HTTP status code 404. As we have discussed in section 4.1.3, this functionality has been

implemented by most of the systems which were studied. It is important to note that we have

added pagination support for this resource due to the possible high volume of emails in a mail

store. The page number is set by GET parameter “page” and the resource representation

would provide hyperlinks for the previous and next page. Both [6] and [7] has used the

parameters to denote the pagination information.

68

5.5.8. Displaying email

Displaying the email message is an important feature of an email system. As per the study on

APIs email retrieval was done by performing a GET request on message ID. Following

request could be used to retrieve the full message in our system.

GET https://{domain}/{username}/{dir_name}/{m_id}

In our design the message ID is set to be the message sequence number in the IMAP

mail store. More details on resource representation have been discussed in section 5.4.4. The

message body is formatted as a JSON object and the parameters discussed in table 5.3 could

be obtained via that representation. The mail resource has been separated from mail

attachment data. This was done to control the load time increase due to attachment size. The

links to download the attachments are available in the mail resource itself. Unlike in [6] and

[7] where the client requires to obtain the attachment ID and then construct the request URL,

the method we have used here would support HATEOAS constraint. A successful request for

message would result in HTTP status code „200‟.

5.5.9. Retrieving email attachments

As we discussed in section 5.5.7, after successfully retrieving the email message, the client

could work through the parameters and identify whether there are any attachment for the

particular mail. The attachment ID is used to identify the attachment and thus the multiple

attachments act as sub resources of the mail. The URL pointing to the attachments could be

used to perform a GET request to obtain the attachment resource as shown below;

GET http://{domain}/{user}/{dir}/{m_id}/{attachment_id}

Successful retrieval of the attachment would result in a JSON object containing the

information related to the attachment and the base64 encoded attachment data. The HTTP

status code for successful retrieval is „200‟ while for non-existing URL the HTTP status code

has been set to 400‟.

69

5.5.10. Posting/Creating email

The API allows clients to POST emails into directories. This functionality is available in

IMAP as appending email and could use to implement many other features such as email

sending, copying and moving. A special JSON object which is similar to the JSON object

which would client receive when accessing the „mail resource‟ should be generated prior to

posting the mail. The email addresses, dates and the mail ID follow the RFC 2822[14]

specification. Code snippet 5-4 shows sample request for mail creation. Here, the

„attachmentData‟ field should contain the base64 format of the attachment data.

Code Snippet 5-4: Email Creation in a given mail directory

POST https://{domain}/{user}/{mail_dir}

{

 "type": "mail",

 "msgno": {int},

 "m_uid": "<uid@domain>",

 "from": "sender@domain",

 "to": "receiver@domain",

 "cc": null,

 "bcc": null,

 "subject": "subject",

 "size": "byte size",

 "date": "unix date",

 "bodyHTML": "HTML encoded body",

 "bodyPlain": "Plain text body.",

 "hasAttachments": "true",

 "attachmentName" :"small.gif",

 "attachmentType":"application/octet-stream",

 "attachmentData":"base64"

}

70

5.5.11. Deleting email

Mail deletion has been implemented in few APIs such as [6], [7], [46] and [40]. The standard

way to perform the deletion is to perform a DELETE HTTP request against the mail resource.

The following is an example request;

DELETE https://{domain}/{username}/{dir}/{m_id}

As we discussed in 4.1.8, the APIs such as [6] and [7] would responds with „no

content‟ HTTP status code. This is the logical response after a successful deletion of

resources by a REST API. However, since we are trying to achieve HATEOAS system, the

„no content‟ response would leave the client in a state where they no longer have any link to

follow. Therefore, we have designed our system to respond to a successful email deletion

with a JSON formatted success message and HTTP status code of 200.

5.5.12. Flag manipulation

The API supports email flags, including „recent‟, „unseen‟, „flagged‟, „answered‟, „deleted‟

and „draft‟. The flags could be updated by performing a PATCH HTTP request to the

targeted mail resource. The PATCH semantics should be followed for the request body. The

JSON pointer to the flag should be derived from the „Mail‟ representation that the client may

download prior to flag manipulation. For example, recent flag would have the path variable

as /flag/0 since it is the first element of flags object. To set the flag, the value should be set to

1 and to clear, set the flag value to 0. For a successful flag update, the API would respond

with a JSON formatted success message and HTTP status code of 200. Sending an

unsupported flag would result in an error message with HTTP status code of 400.

PATCH https://{domain}/{user}/{mail_dir}/{mail_id}

{"op": "replace", "path": "/flags/{0-5}", "value": "0 or 1" }

5.5.13. Email sending

Email sending an important feature supported by our system. In general, the APIs we have

studied have used POST HTTP request method to create the resource against a special URL

which would indicate the API that client requires the mail to be sent. For example [7] would

perform the request against a resource named „sendmail‟. Such methods would utilize the

71

„action‟ described by the resource rather than giving priority to the HTTP request method.

However, unless we are following the email sending mechanism suggested in system such as

[40], performing a POST request against the „Sent‟ directory is the most common practice

followed by the APIs.

The client could perform the POST request which was described in section 5.5.9

against the sent directory and the system would automatically send the email to the receiver

end. After sending the mail, the system would save a copy in the sent directory. If the client

requires sending a mail which is already in „Draft‟ directory, first, a copy of the mail should

be obtained by a GET request and then POST the message into „Sent‟ directory after

formatting. DELETE request should be made against the mail message in the Draft directory

when the API responds with an operation success message. Successful message sending

would result in HTTP status code 200 message while erroneously formatted request would

result in HTTP status code 400. The following POST request and the payload should be

followed to perform „send‟ operation.

POST https://{domain}/{user}/Sent

{

 "type": "mail",

 "msgno": {int},

 "m_uid": "<uid@domain>",

 "from": "sender@domain",

 "to": "receiver@domain",

 "cc": null,

 "bcc": null,

 "subject": "subject",

 "size": "byte size",

 "date": "unix date",

 "bodyHTML": "HTML encoded body",

 "bodyPlain": "Plain text body.",

 "hasAttachments": "true",

 "attachmentName" :"small.gif",

 "attachmentType":"application/octet-stream",

 "attachmentData":"base64"}

5.5.14. Moving/Copying email

Moving and copying email messages within directories are only supported in API [6] and [7].

Since [6] uses labels to identify the directories, manipulating the labels would have the same

effect of performing a move operation. However in [7], as discussed in section 4.1.11, the

authors have construct the URL by adding the move verb and thus limiting the unified

interface which considered as a constraint in RESTful systems. Therefore, to protect the

REST constraints, we have designed our API to perform a copy or move operations by

72

obtaining a copy of the original mail and creating a new mail message on desired location.

Even though this method requires two operations, the server does not have to keep the status

of the pervious request to track the client. However, if the mail account is used by multiple

clients, this design may run into a race condition situation.

The client could first obtain the original mail which needs to be copied or moved by

the same way discussed in section 5.5.7 and 5.5.8. Then the retrieved email content has to be

re-formatted and then append to the desired mail directory as shown in section 5.5.9.

If the client performing a move operation, the client has to delete the original mail as a

third step. Mail deleting would be discussed in section 5.5.10. A successful message creation

would result in a JSON formatted success message and HTTP status code 201.

5.6. Summary of Design

Comparing the common functionalities identified in the section 4.1 with the functionalities

we have designed for our API, apart from the searching and filtering functionality, all the

other functionalities were designed into our system. With this design, our goal of designing

an API which gives priority to REST constraints and open standards have been achieved and

the API could be used in already established traditional email infrastructure which gives it

added advantage.

In functionality perspective the move/ copy function has been changed significantly to

avoid having verbs in the URL. This could be argued by defining such verbs as a “controller

resources” in the API. However, in our design, the move and copy operations could be

performed without sending additional parameters and could perform in a stateless manner.

With regards to our design, we have proposed substantial deviations from other APIs for

URI structures by following hierarchical structure and for data exchange formats by adding

hypertext links extensively. A hierarchical URI structure may lead to tight coupling of client

and server. However, since the representations are linked with hypertext, the HATEOAS

constraint if fulfilled and thus the hypertext could be used to traverse through the system

without following the hierarchical structure.

73

6. IMPLEMENTATION

In this dissertation, our goal is to study existing APIs and come up with a standard

specification which could standardize as an open protocol. To achieve this goal, we have

implemented server side scaffolding which follows the design metrics discussed in chapter 5.

The API could be tested by generic client side tools. Thus, we have not implemented any

specific client side tools for testing.

As per the discussion in section 5.1, we have followed the architectural model where the

API would connect to existing email store which supports IMAP and SMTP protocols. As

shown in figure 5-2, the REST interface to the email store could be either hosted on a

different system or the same system where the email store is hosted if there is a web server

which supports our API implementation. In this chapter, we would discuss the use of

technologies to implement the model API which was designed based on the chapter 5 design

requirements.

6.1. Architecture

As we have discussed in section 5.1, we have chosen to base our implementation of the REST

API on an architectural model depicted in figure 5-2. In our case, the communication channel

between the REST API and the traditional email store was chosen to be IMAP/ SMTP

protocols. The diagram 6-1 depicts the architectural diagram which was followed during the

implementation.

Figure 6-1: Proposed Architecture

6.2. Development environment

74

The API was developed using PHP 5.5.9 language and was hosted on Apache 2.4.7 server.

PHP was chosen due to its popularity and simplicity in programming. This would help users

quickly adapt or understand the implementation details to come up with their own

implementation. Apache is the most commonly used web server and hence most of the users

would be able to seamlessly integrate our API into their existing systems. The email store

which was used for the development was a dovecot version 1.2.15 and postfix version 2.7.

6.3. Library usage

The libraries are a collection of resources used by computer programs to develop software.

These libraries contain pre-written code, classes, methods and documentation. Using a library

would help us to reduce the development time and reduce the erroneous code. In our

implementation, we have used “PHP:IMAP”[54] and “Swift Mailer”[55] libraries to facilitate

us in communicating with the IMAP and SMTP servers which was mentioned in previous

section.

6.3.1. PHP: IMAP

The IMAP library provides a set of functions which could use to interact with IMAP

protocol, as well as the NNTP, POP3. However, in our implementation, we have not provided

support for other protocols than IMAP. The IMAP library was used in implementing all the

functionality related to accessing the IMAP server. Some of the functions in the library have

provided us one to one matching for our functions, requiring less program effort. Table 6-1

list down the PHP: IMAP functions used by our API.

Table 6-1: List of PHP:IMAP functions used

Function Functionality

imap_open Open an IMAP stream to a mailbox

imap_createmailbox Create a new mailbox

imap_fetch_overview Read an overview of the information in the headers

imap_renamemailbox Rename an old mailbox to new mailbox

imap_deletemailbox Delete a mailbox

imap_append Append a string message to a specified mailbox

imap_fetchstructure Read the structure of a particular message

imap_body Read the message body

imap_list Read the list of mailboxes

imap_headers Returns headers for all messages in a mailbox

imap_uid This function returns the UID for the given message

75

imap_clearflag_full Clears flags on messages

imap_setflag_full Sets flags on messages

imap_expunge Delete all messages marked for deletion

imap_base64 Decode BASE64 encoded text

imap_qprint Convert a quoted-printable string to an 8 bit string

Even though features such as copying and moving emails are directly supported by the PHP:

IMAP library, we have given priority to protecting REST constraints over the functionality.

Therefore, some of the functions in our implementation require additional work by the client

side software to achieve the same effect.

6.3.2. Swift Mailer

Swift mailer is a library developed for the purpose of sending email from PHP 5

applications. Even though it has begun as a one-class project in 2005 by Chris Corbyn, the

library now has developed into fully fledged email sending library by providing more

functionality than the inbuilt mail() function of PHP. Swift mailer is now maintained by

Fabien Potencier. Another alternative library which was considered for our use is PHPMailer.

However considering that Swift mailer is licensed under MIT license[56] and PHPMailer has

licenses under LGPL 2.1[57], it was decided to use Swift mailer avoid licensing issues.

6.4. Apache Configurations

In order to maintain URL structure for the API and to provide secure communication

channel, the „mod_rewrite‟ and „mod_ssl‟ models were used. For the testing purposes, the

HTTPS connection was supported using a „self-signed‟ certificate with key length of 2048.

All the communication to the API and from the API to the mail server is mandatory go

through a secure connection to protect credentials which are passed through during the

communication. Since the URL structure is important in denoting the resource hierarchy and

to provide clear URL‟s the following mod_rewrite parameters were set in „.htaccess‟ file in

the apache „DocumentRoot‟ directory.

RewriteEngine on

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)$ index.php/$1

76

6.5. API Configurations

The API was designed for easy deployment by any users who can fulfil the basic

requirements of having a PHP supported Apache web server with the modules and libraries

mentioned in section 6.3 and 6.4. The mandatory configuration fields for the API can be

configured in the simple text file located in the project directory. The following parameters

have to be configured in „restmail. conf‟ file before using the API

 IMAP mail server / port

 IMAP server transport security

 SMTP server / port

 SMTP server transport security

 Domain name of the API hosted server.

 Number of mails per page.

6.6. User agent/ Client

As we have pointed out in section 5.2, the API was designed to support only four out of nine

HTTP request methods. Even though this may restrict our capabilities to perform actions

against the resources, HTML 4[58] & HTML 5[59] specifies support for only GET and

POST request methods. Thus making the browsers restricted to those two methods. However,

the java script object „XMLHttpRequest‟[60] could be used to construct application which

could generate request methods other than GET and POST. Therefore, using client side

JavaScript libraries, it is possible to access the API via generic web browsers which supports

JavaScript.

Since implementation of the client is out of the scope of our work, for the testing purposes of

the API, we have used a browser extension named “Advance REST client” for Google

Chrome browser and CURL software. In both of these tools, we can set the HTTP request

method to be used and the relevant payload where it is necessary. The browser extension

would request the password for the basic authentication via browser and would use the

browser session thereafter, it would represent a typical browser based client for the API. For

curl software, we have to manually set every parameter, including the credentials for each

request, which might resemble machine to machine communication. Figure 6-2 and 6-3

shows a sample request performed using each of the above client software against our API.

77

Figure 6-2: Google Chrome – REST client extension

Figure 6-3: CURL command line tool

78

6.7. Testing of the API

Testing of the API was conducted in different environments to assess its correctness and

performance in each environment. Although the correctness is an important factor to validate

our proposed API, the performance would depend on external factors which are out of the

scope of API design. However, we have tested our API against the following three scenarios:

1. Client, web server and the mail server in same computer. (Figure 6-6)

2. Client, web server and the mail server in same local area network (Figure 6-5)

3. The client connects via the Internet to the web server and mail server which is in

same local area network. (Figure 6-4)

Figure 6-4 : Scenario 02 Figure 6-5 : Scenario 03 Figure 6-5 Test Scenario 02 Figure 6-4: Test Scenario 03

80

Even though the functionalities worked as expected, the time consumed for a request to

complete varied based on the scenario. Table 6-3 contains time consumption for

functionalities complete in above three scenarios. Time was calculated using the „curl‟ and

„time‟ Linux utilities. Same parameters and emails were used for all test cases. The results

show a significant increase of time for functionality to complete in scenario 3. This may be

due to the number of intermediate nodes the request has to pass when it connects through the

Internet. Intermittent network issues may have affected the scenario 2 results because some of

the results show more time consumption than scenario 3.

Table 6-3: Performance analysis

Functionality Scenario 1

(ms)

Scenario 2

(ms)

Scenario 3

(ms)

1. Login to system 108 134.33 2202.33

2. Getting list of mail directories 176.67 219 6930.33

3. Creating a new mail directory 170.67 200.33 6262

4. Rename a directory 165.33 223.33 6488

5. Deleting mail directory 170 228.33 5086.33

6. Email Searching 178.4 236.2 5561

7. Listing email in a directory 181.33 244.67 6299.67

8. Displaying email 175.67 241.67 5507

9. Displaying attachment 175 237.33 6322.33

10. Post mail to a directory 203 243 7089.67

11. Deleting email 257.67 354.67 6929.67

12. Flag manipulation 235.33 357.33 7531.67

13. Email Sending 2654 5524 21313.67

81

6.7.3. Observations

 The results show a significant increase of time for functionality to complete with

scenario 3. This may be due to the number of intermediate nodes the request has to

pass, when the system connects through the Internet.

 The time taken for email sending operation significantly increase for all scenarios.

Since the same content which was used in the function 9 was used in for this, the

additional time taken should be the SMTP server processing time for the email

sending and its reply.

 Email deletion had a slight increase in processing time compared to other operations

in each scenario. This may be due to the fact that the API performs deletion as two

separate processes; marking the message for deletion and then deleting the mail by

expunging the mailbox.

 Email move and copy operation were not tested as it is the accumulated time for email

retrieval, posting and deleting an email.

82

7. CONCLUSION & FUTURE WORK

In this dissertation, we have designed and implemented a RESTful API for email stores

which supports IMAP protocol. The design was based on the comparative study conducted on

commercial REST mail APIs in the market and analysis of previous attempts on building

REST email systems. Relative technologies used with the above systems were also studied to

identify the appropriate supporting technologies for the system. In our design we have given

priority to protecting the REST architectural concepts while trying to maintain the usability

of the API. It would aid us to use our design as a guideline for standardizing REST email

API.

In this design we have identified a required set of resources which could represent a mail

account and has defined a URL structure, which could use to access the resources. Moreover,

we have identified a subset of HTTP request methods which could be used in identifying

resources to achieve common functional requirements for a mail system. While designing, we

have striven to maintain a resource representation format which would safeguard HATEOAS

constraint. Therefore a client would be able to interact with the email system as a hypermedia

system after entering to our API through the root resource. Our model implementation covers

the functionalities which are proposed by our design. Since we are following an architectural

model where our API could be directly used with an existing email infrastructure, it would

easier for community test and improve the concept. With this design, we hope the community

would be able to standardize the RESTful API design requirements rather than going for

vendor specific designs and thereby providing more uniform, standardized interfaces where

the client side application would be easier and would help to decouple the client and server

applications and allow them to grow independently.

As future work on this matter, data exchange formats and resource representation could be

improved and register it as a media type by IANA registration procedures. The API could be

improved by standardizing the email search and filtering functionality as we have discussed

in section 5.6. It is also possible to implement other back ends for the API where emails may

store is in a database and is independent of traditional email servers and resides on the web

server itself. Another area of improvement is adding mail receiving functionality to the API

via special URL, where email receiving could be performed on HTTP.

83

REFERENCES

[1] T. Van Vleck, “Electronic mail and text messaging in CTSS, 1965-1973,” Ann. Hist.

Comput. IEEE, vol. 34, no. 1, pp. 4–6, 2012.

[2] J. Postel, “Simple Mail Transfer Protocol”, RFC Editor, RFC0821, Aug. 1982.

[3] J. K. Reynolds, “Post Office Protocol,” RFC Editor, RFC0918, Oct. 1984..

[4] M. R. Crispin, “Interactive Mail Access Protocol: Version 2,” RFC Editor, RFC1064, Jul.

1988.

[5] R. T. Fielding, “Architectural styles and the design of network-based software

architectures,” University of California, Irvine, 2000.

[6] Google Inc., “Gmail REST API,” Google Developers. [Online]. Available:

https://developers.google.com/gmail/api/. [Accessed: 08-Apr-2015].

[7] Microsoft Corporation, “Outlook Mail REST API reference.” [Online]. Available:

https://msdn.microsoft.com/en-us/office/office365/api/mail-rest-operations. [Accessed:

22-Apr-2015].

[8] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual. Bell Telephone

Laboratories, 1975.

[9] A. Hunter, “PROFS for the Scientist,” Central Computing Division, Jan-1987. [Online].

Available: http://www.chilton-

computing.org.uk/ccd/literature/ccd_newsletters/forum/p87a.htm#s1. [Accessed: 22-Apr-

2015].

[10]T. V. Vleck, “The History of Electronic Mail.” [Online]. Available:

http://www.multicians.org/thvv/mail-history.html. [Accessed: 22-Apr-2015].

[11]J. van Rijn, “The ultimate mobile email statistics overview,” Email marketing consultant

| Emailmonday, Jun-2015.

[12] R. Gellens and J. Klensin, “Message Submission for Mail,” RFC Editor, RFC6409, Nov.

2011.

[13] J. Klensin, “Simple Mail Transfer Protocol,” RFC Editor, RFC5321, Oct. 2008.

[14] P. Resnick, “Internet Message Format,” RFC Editor, RFC5322, Oct. 2008.

[15] J. Myers and M. Rose, “Post Office Protocol - Version 3,” RFC Editor, RFC1939, May

1996.

[16] M. Crispin, “Internet Message Access Protocol - version 4rev1,” RFC Editor, RFC3501,

Mar. 2003.

[17]N. Borenstein and N. Freed, MIME (Multipurpose Internet Mail Extensions):

Mechanisms for Specifying and Describing the Format of Internet Message Bodies.

IETF, 1992.

[18]S. Dustdar and W. Schreiner, “A Survey on Web Services Composition,” Int J Web Grid

Serv, vol. 1, no. 1, pp. 1–30, Aug. 2005.

[19]E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web services description

language (WSDL) 1.1. W3C, 2001.

[20]T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, Y. L. Husband, and M. Hondo,

“UDDI V3 Specification.” [Online]. Available: http://www.uddi.org/pubs/uddi-v3.00-

published-20020719.htm. [Accessed: 22-Apr-2015].

[21]N. Mitra and Y. Lafon, “SOAP Version 1.2 Part 0: Primer (Second Edition),” W3C,

W3C Recommendation, Apr. 2007.

[22]K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker, “Web services

security: SOAP message security 1.1 (WS-security 2004),” OASIS OASIS Stand. Feb,

2006.

84

[23]A. Arsanjani, “Service-oriented modeling and architecture,” IBM Dev. Works, pp. 1–15,

2004.

[24]F. Kappe, G. Pani, and F. Schnabel, “The architecture of a massively distributed

hypermedia system,” Internet Res., vol. 3, no. 1, 1993.

[25]R. Ekblom, “Applied Representational State Transfer", Umeå University, Department of

Computing Science, 2011.

[26] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content,” RFC Editor, RFC7231, Jun. 2014.

[27] L. Dusseault and J. Snell, “PATCH Method for HTTP,” RFC Editor, RFC5789, Mar.

2010, 2010.

[28]M. Jakl, “REST Representational State Transfer,” 2008.

[29]T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible

markup language (XML),” World Wide Web Consort. Recomm. REC-Xml-19980210

Httpwww W3 OrgTR1998REC-Xml-19980210, p. 16, 1998.

[30]T. Bray, The JavaScript Object Notation (JSON) Data Interchange Format. IETF, 2014.

[31]A. Šimec and M. Magličić, “Comparison of JSON and XML data formats,” in CECIIS -

2014, 2014.

[32]N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of JSON and XML

Data Interchange Formats: A Case Study.,” Caine, vol. 2009, pp. 157–162, 2009.

[33] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Authentication,”

RFC Editor, RFC7235, Jun. 2014.

[34]A.Bouchez, “How to implement RESTful authentication,” 24-May-2011. [Online].

Available: http://blog.synopse.info/post/2011/05/24/How-to-implement-RESTful-

authentication. [Accessed: 07-May-2015].

[35] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC Editor, RFC6749, Oct.

2012.

[36]P. Prescod, “Reinventing Email using REST,” 11-Aug-2002. [Online]. Available:

https://web.archive.org/web/20020811103430/http://www.prescod.net/rest/restmail/.

[Accessed: 10-May-2015].

[37]L. Dusseault, HTTP Access to Email Stores. IETF, Internet Draft, 2008. Available:

http://tools.ietf.org/html/draft-dusseault-httpmail-00. [Accessed: 23-Jun-2015]

[38]G. Dias, D. G. . Karunarathna, G. P. D. . Udantha, J. A. I. . Gunathilake, P. S. .

Pathirathna, and R. A. T. . Rathnayake, “Database based and RESTful email system with

offline web based email client,” in 2011 International Conference on Advances in ICT for

Emerging Regions (ICTer), 2011, pp. 127–127.

[39] M. Frydrych and W. Horzelski, “DBMAIL – database architecture e mail system,”

Studia Informatica, vol. 31, no. 2B, pp. 439–448, Jun. 2010.

[40]M. Bazyd\lo, “RESTmail–Design and Implementation of E-Mail System as a RESTful

Web Service,” Master‟s thesis, Institute of Computing Science, Poznań University of

Technology (September 2009).

[41]“Zimbra REST API Reference - Zimbra :: Wiki,” Zimbra: Email and collaboration for

the Post-PC era. [Online]. Available:

http://wiki.zimbra.com/wiki/ZCS_6.0:Zimbra_REST_API_Reference. [Accessed: 22-

Apr-2015].

[42] Sendinc, “ REST API - Developer - Sendinc Email Encryption,” Sendinc Email

Encryption. [Online]. Available: https://www.sendinc.com/solutions/developer/rest.

[Accessed: 22-Apr-2015].

[43] Postmark, “Introduction | Postmark Developer Documentation.” [Online]. Available:

http://developer.postmarkapp.com/. [Accessed: 22-Apr-2015].

85

[44] Email Yak , Email Yak Documentation. [Online]. Available: http://docs.emailyak.com/.

[Accessed: 22-Apr-2015].

[45]Context.IO, “Context.IO | lite,” Context.IO Email API. [Online]. Available:

https://context.io/docs/lite. [Accessed: 22-Apr-2015].

[46]Mailgun, “API Reference - Mailgun REST API 2.0 documentation.” [Online]. Available:

https://documentation.mailgun.com/api_reference.html. [Accessed: 22-Apr-2015].

[47] PostageApp, “API Overview / API / Knowledge Base - PostageApp Support.” [Online].

Available: http://help.postageapp.com/kb/api/api-overview. [Accessed: 22-Apr-2015].

[48] A. Gulbrandsen and N. Freed, “Internet Message Access Protocol (IMAP) - MOVE

Extension,” RFC Editor, RFC6851, Jan. 2013.

[49] P. Bryan and M. Nottingham, “JavaScript Object Notation (JSON) Patch”, RFC Editor,

RFC6902, Apr. 2013.

[50] M. Lanthaler, M. Sporny, and G. Kellogg, “JSON-LD 1.0,” W3C, W3C

Recommendation, Jan. 2014..

[51] M. Kelly, JSON Hypertext Application Language. IETF, Internet Draft, 2013. Available:

https://tools.ietf.org/html/draft-kelly-json-hal-06. [Accessed: 23-Jun-2015].

[52] M. Amundsen, “The Item and Collection Link Relations,” RFC Editor, RFC6573, Apr.

2012.

[53] M. Nottingham, “Web Linking,” RFC Editor, RFC5988, Oct. 2010.

[54] “PHP: IMAP - Manual.” [Online]. Available: http://php.net/manual/en/book.imap.php.

[Accessed: 11-Jun-2015].

[55] C. Corbyn, Swift Mailer. 2005.

[56] Open Source Initiative ,“The MIT License (MIT) | Open Source Initiative”, [Online].

Available: http://opensource.org/licenses/MIT. [Accessed: 11-Jun-2015]

[57] GNU Operating System, "GNU Lesser General Public License, version 2.1",[Online].

Available: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html. [Accessed: 11-

Jun-2015].

[58] A. L. Hors, D. Raggett, and I. Jacobs, “HTML 4.01 Specification,” W3C, W3C

Recommendation, Dec. 1999.

[59] E. D. Navara et.al., “HTML 5.1,” W3C, W3C Working Draft, Jun. 2014

[60] H. Steen, J. Aubourg, A. van Kesteren, and J. Song, “XMLHttpRequest Level 1,” W3C,

W3C Working Draft, Jan. 2014.

86

APPENDIX A: SOURCE CODE

The source code and the libraries which were used with the software have been included in

the attached compact disc. A guide on how to install the software for testing has been

included with the software source code.

	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	1. INTRODUCTION
	1.1. Background
	1.2. Objectives

	2. LITERATURE SURVEY
	2.1. Email
	2.2. The history and evolution
	2.3. Email Protocols
	2.3.1. SMTP
	2.3.2. POP and IMAP

	2.4. Messaging Formats
	2.4.1. Internet Message Format
	2.4.2. Multipurpose Internet Mail Extensions

	2.5. Web Services
	2.6. Service Oriented Architecture (SOA)
	2.7. Representational state Transfer (REST)
	2.7.1. Application of REST
	2.7.2. Use of HTTP request methods
	2.7.3. HATEOAS

	2.8. REST vs. SOAP
	2.9. XML
	2.10. JSON
	2.11. JSON vs. XML
	2.12. Authentication mechanisms
	2.12.1. HTTP Authentication
	2.12.2. Query Based Authentication
	2.12.3. OAuth 2.0 Authorization Framework

	2.13. REST based email systems
	2.13.1. “Reinventing Email using REST”
	2.13.2. HTTP Access to Email Stores
	2.13.3. Restful interface for database based email server
	2.13.4. RESTMAIL by Marcin Bazydlo

	3. STUDY OF EMAIL APIs
	3.1. Gmail REST API
	3.2. Outlook Mail REST API
	3.3. Zimbra REST API
	3.4. Sendinc API
	3.5. Postmark REST API
	3.6. Email Yak REST API
	3.7. Context.IO Email REST API
	3.8. Mailgun REST API
	3.9. PostageApp API
	3.10. Yahoo! Mail Web Service
	3.11. Summary of Commercial API
	3.12. Comparison of HTTP methods uses in APIs

	4. COMPARATIVE ANAYLSIS OF API FUNCTIONS
	4.1. Common functions of a generic email system
	4.1.1. Login into email system
	4.1.2. Listing email directories available in the account
	4.1.3. Listing mailbox content
	4.1.4. Renaming mailboxes
	4.1.5. Deleting mailboxes
	4.1.6. Display mail headers
	4.1.7. Mail retrieval
	4.1.8. Deleting Email messages
	4.1.9. Retrieval of attachments
	4.1.10. Email flag handling
	4.1.11. Copy/Move directories/ emails within directories
	4.1.12. Email Searching and filtering
	4.1.13. Email Sending

	4.2. Summary of Functions

	5. THE SYSTEM DESIGN
	5.1. Architecture
	5.2. HTTP Methods
	5.3. Data exchange language
	5.3.1. Hypermedia Format

	5.4. Resources
	5.4.1. Base URL
	5.4.2. Mail account
	5.4.3. Mail directory
	5.4.4. Mail
	5.4.5. Attachments

	5.5. Functionality
	5.5.1. Login to mail system
	5.5.2. Getting a list of mail directory
	5.5.3. Creating new mail directory
	5.5.4. Rename a mail directory
	5.5.5. Delete a mail directory
	5.5.6. Searching mails within a directory
	5.5.7. Listing emails in a directory
	5.5.8. Displaying email
	5.5.9. Retrieving email attachments
	5.5.10. Posting/Creating email
	5.5.11. Deleting email
	5.5.12. Flag manipulation
	5.5.13. Email sending
	5.5.14. Moving/Copying email

	5.6. Summary of Design

	6. IMPLEMENTATION
	6.1. Architecture
	6.2. Development environment
	6.3. Library usage
	6.3.1. PHP: IMAP
	6.3.2. Swift Mailer

	6.4. Apache Configurations
	6.5. API Configurations
	6.6. User agent/ Client
	6.7. Testing of the API
	6.7.1. Correctness of functionality
	6.7.2. Time consumption for each functionality
	6.7.3. Observations

	7. CONCLUSION & FUTURE WORK
	REFERENCES
	APPENDIX A: SOURCE CODE

