
WEB SERVICES FOR

ONTOLOGY BASED INFORMATION EXTRACTION

L. C. T. Silva

138234L

Dissertation submitted in partial fulfillment of the requirements for the degree Master

of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2015

- ii -

WEB SERVICES FOR ONTOLOGY BASED INFORMATION

EXTRACTION

L.C.T.SILVA

138234L

This dissertation was submitted to the Department of Computer Science

and Engineering of the University of Moratuwa in partial fulfillment of the

requirements for the Degree of MSc in Computer Science specializing in

Software Architecture

Department of Computer Science & Engineering

University of Moratuwa, Sri Lanka

March 2015

- iii -

DECLARATION

The work included in this report was done by me, and only by me, and the work has

not been submitted for any other academic qualification at any institution.

..

Chamendri Silva Date

I certify that the declaration above by the candidate is true to the best of my

knowledge and that this report is acceptable for evaluation for the CS6999 MSc

Research Project.

...

Daya Chinthana Wimalasuriya (PhD) Date

- iv -

ABSTRACT

The amount of data contained in a textual format has increased rapidly in the recent

past. Such data includes web sites, documents of business organizations, etc., and

contain lots of information. Information Retrieval (IR) is a field that allows

identifying relevant document for a given query out of all these available documents.

Information Extraction is taking another step in this direction. Instead of returning the

set of documents that contains the relevant information, IE recognizes and returns the

information among the natural text in these documents.

Ontology is defined as the “formal, explicit specification of a shared conceptualization”. It

contains classes, properties, individuals and values to represent data in a certain domain. Most

of the time in Ontology-Based Information Extraction, an IE technique is used to

discover individuals for classes and values for properties to build ontology for a given

domain. However, sometimes these classes and properties also identified as part of the

IE technique rather than using a template with the pre-identified classes and properties

in the Ontology.

A traditional Ontology Based Information Extraction system contains two main

operations, ontology construction and ontology population. In the component-based

approach defined in the “Ontology-Based Components for Information Extraction

(OBCIE)”, the operation of constructing ontology is not changed. However, the

operation to populate the ontology is refined in to a pipeline of three separate

components: pre-processors, information extractors and aggregators.

By developing these components as web services, we have provided the ability for

other applications to use them to extract the information out of any text based

document. To demonstrate this concept, we have developed an application that

accepts a set of text documents, and extracts useful information. It uses “metadata

files”, which are dependent of the domain in which the ontology is created and

populate the given ontology.

- v -

ACKNOWLEDGMENTS

I would like to express profound gratitude to my advisor, Dr. Daya Chinthana

Wimalasuriya, for his invaluable support, encouragement, supervision and useful

suggestions throughout this research work. His continuous guidance enabled me to

complete my work successfully.

- vi -

TABLE OF CONTENTS

DECLARATION .. iii

ABSTRACT .. iv

ACKNOWLEDGMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS ... ix

Chapter 1 Introduction ... 1

Chapter 2 Literature Review .. 4

2.1 Ontology ... 5

2.1.1 Ontology creation ... 6

2.1.2 Ontology Population ... 6

2.2 Information Extraction .. 7

2.2.1 Ontology Based Information Extraction ... 9

2.3 Ontology Based Components for Information Extraction .. 11

2.3.1 Web Services for Ontology Based Information Extraction .. 12

2.4 Web Services .. 12

2.4.1 Service Oriented Architecture .. 14

2.4.2 SOAP .. 15

2.4.3 REST .. 16

2.5 Related Work .. 18

2.5.1 The OwlExporter .. 18

2.5.2 SOBA ... 19

Chapter 3 Methodology ... 21

3.1 High Level Architecture ... 22

3.2 Extraction Methods ... 22

3.2.1 Extraction Rules ... 22

3.2.2 Two Phase Classification .. 23

3.2.3 Tools used ... 24

3.3 Framework for Building RESTful Web Services ... 26

3.3.1 Apache Wink .. 26

3.3.2 Project Jersey .. 27

3.3.3 JBoss RESTEasy .. 27

3.3.4 Restlet Framework .. 28

3.3.5 Comparison ... 28

- vii -

3.4 Implementation ... 29

3.4.1 Front End .. 30

3.4.2 Preprocessor ... 31

3.4.3 Extractor ... 32

Chapter 4 Results and Conclusion ... 37

4.1 Implementation ... 38

4.2 Conclusion and Future Work .. 40

REFERENCES ... 41

APPENDIX A: Sample Metadata Files – Information Extractor ... 44

APPENDIX B: Sample Metadata File – Two-Phase Classifier .. 46

- viii -

LIST OF FIGURES

Figure 1 - Relationship between two classes ... 5

Figure 2 - Part of generalization/specialization hierarchy ... 5

Figure 3 - General Architecture of an OBIE System [3] ... 10

Figure 4 – Pipeline for Ontology Population in OBCIE .. 12

Figure 5 – General Process of Engaging Web Services [13] ... 14

Figure 6 – Obtaining REST architectural style from WWW ... 17

Figure 7 - General workflow of the OwlExporter [23] .. 19

Figure 8 – Pipeline used in SOBA ... 20

Figure 9 – High-level architecture ... 22

Figure 10 – Performance Metrics for different JAX-RS implementation [32] 29

Figure 11 – Message passing between web services ... 31

Figure 12 – A sample request json object sent to preprocessor ... 32

Figure 13 – Information Extractor method: a sample response json object from preprocessor 32

Figure 14 – Two-phase classifier method: a sample response json object from preprocessor. 33

Figure 15 – Information Extractor method: request json object for processing the metadata file

 ... 34

Figure 16 – Two-phase classifier method: request json object for processing the metadata file

 ... 34

Figure 17 – Information Extractor method: response json object for processing the metadata

file .. 35

Figure 18 - Two-phase classifier method: response json object for processing the metadata file

 ... 35

Figure 19 – Information Extractor Method: A sample request json object to extractor 35

Figure 20 – Two-phase classifier Method: A sample request json object to extractor 36

Figure 21 - Information Extractor Method: a sample response json object to extractor 36

Figure 22 – UI developed to populate ontology using information extractor method 38

Figure 23 – UI developed to populate ontology using two-phase classifier method 39

Figure 24 - UI developed to view a given ontology ... 39

file:///D:/Msc/Msc%20Research/Documents/Thesis/Thesis_138234L_modified_after_review.DOCX%23_Toc414398562
file:///D:/Msc/Msc%20Research/Documents/Thesis/Thesis_138234L_modified_after_review.DOCX%23_Toc414398563
file:///D:/Msc/Msc%20Research/Documents/Thesis/Thesis_138234L_modified_after_review.DOCX%23_Toc414398564
file:///D:/Msc/Msc%20Research/Documents/Thesis/Thesis_138234L_modified_after_review.DOCX%23_Toc414398565
file:///D:/Msc/Msc%20Research/Documents/Thesis/Thesis_138234L_modified_after_review.DOCX%23_Toc414398567

- ix -

LIST OF ABBREVIATIONS

IR Information Retrieval

IE Information Extraction

OBIE Ontology Based Information Extraction

SOA Service Oriented Architecture

NLP Natural Language Processing

HTML Hype-Text Markup Language

XML Extensible Markup Language

OBCIE Ontology Based Components for Information Extraction

WWW World Wide Web

WSDL Web Service Definition Language

UDDI Universal Description Discovery and Integration

SOAP Simple Object Access Protocol

REST Representational State Transfer

RPC Remote Procedure Call

HTTP Hyper Text Transfer Protocol

EAI Enterprise Application Integration

URI Uniform Resource Identification

SOBA SmartWeb Ontology Based Annotation

GATE General Architecture for Text Engineering

JAX-RS Java API for RESTFul Web Services

JAPE Java Annotation Pattern Engine

GDM GATE Document Manager

CREOLE Collection of Re-usable Objects for Language Engineering

GGI GATE Graphical Interface

WEKA Waikato Environment for Knowledge Analysis

MALLET Machine Learning for Language Toolkit

- x -

JSON Java Script Object Notation

MIME Multi-purpose Internet Mail Extension

CDDL Common Development and Distribution License

API Application Program Interface

- 1 -

Chapter 1

Introduction

- 2 -

The amount of data contained in a textual format has increased rapidly in the recent

past. Such data includes web sites, documents of business organizations, etc., and

contain lots of information. Finding useful information in a large set of documents is

difficult. As a result, the field Information Retrieval (IR) was born out of necessity in

1950s [1]. IR works for text-based documents and when a query is entered, which

contains a word or a set of words; it is searched among all the available documents

and returned the most relevant document. The challenge in IR is to return the most

relevant set of documents and reducing the amount of non-relevant documents

returned.

Information Extraction (IE) is taking this a step further. It scans texts and finds

information that is included implicitly and explicitly and combines and structures this

data. This is quite useful in many industries such as governments, publishers and

finance companies where they want to get the scattered information in to a single

database and find the relationships among them [2].

Ontology is defined as the “formal, explicit specification of a shared

conceptualization”. It typically contains components such as classes, individuals,

properties and values [3] [4] [5].

Ontology Based Information Extraction (OBIE) has emerged as a sub field of IE

where the ontologies are used by the information extraction process and the output is

presented using ontology. Ontologies are commonly defined for a particular domain

and since in most cases IE is concerned about extracting information in a particular

domain, ontologies are very useful [3] [4].

 Most of the time in Ontology-Based Information Extraction, an IE technique is used

to discover individuals for classes and values for properties to build ontology for a

given domain. However, these classes and properties are identified as part of the IE

technique rather than using a template. OBIE systems can have one or more

ontologies [5].

A traditional Ontology Based Information Extraction system contains two main

operations, Ontology construction where classes and properties are identified and

- 3 -

Ontology population where individuals and values are identified for the previously

identified classes and properties from the texts available in the given domain [5].

In the component-based approach defined in the “Ontology-Based Components for

Information Extraction (OBCIE)”, the operation of constructing ontology is not

changed. However, the operation to populate the ontology is refined in to a pipeline of

three separate components, pre-processors, information extractors and aggregators [5].

The pre-processor component takes various types of documents and converts them to

texts that can be understood by the information extractors. For example, the pre-

processor will remove all the unnecessary characters that will hinder the extraction

process. The information extractor components takes these pre-processed documents

as the input, tag them based on the rules defined using a given Ontology and extract

the information. The aggregator component combines the output from all the

information extractor components and does some adjustments [5].

The objective of this research is to use service-oriented architecture to separate these

components and implement them as separate entities so that anyone can use these

components all together or separately. The system developed in the “Ontology-Based

Components for Information Extraction (OBCIE)” contains components that perform

various functionalities in the different stages of creating ontologies. These

components can be implemented as web service to adhere to SOA.

Creating Ontologies has two steps, ontology construction and ontology population. In

ontology construction, the classes and properties are identified while in ontology

population individuals for the classes and values for the properties are identified. The

scope of this research is limited to developing web services for components in

ontology population, and populates an ontology using the extracted information.

The rest of the document in structured in the following manner. Chapter 2 contains the

literature review, which covers the theoretical aspects of ontology, ontology based

information extraction, web services and different implementation of web services as

well as related work done on this area. Chapter 3 contains the implementation details

and the architecture of the system developed. Finally, Chapter 4 contains the results

and the conclusions drawn from this research.

- 4 -

Chapter 2

Literature Review

- 5 -

2.1 Ontology

“Ontology” is a term originated from philosophy, which describes the existence of

being in the world. The field Artificial Intelligence (AI) in Computer Science has

adopted this name to describe the world to a program. Ontology is defined as “a

formal, explicit specification of a shared conceptualization”, which means that an

abstract model of a specific domain is presented in such a way that it can be

understood by a machine, and is accepted by a group of people [4].

Ontologies provide a shared understanding of a given domain thus eliminating the

conceptual and terminological confusion. Therefore, there will be less

miscommunication among different people as well as among different computer

systems. This shared understanding increases the interoperability among the systems

[6].

When defining Ontologies, entities of a particular domain (also known as concepts or

classes) and the relationship among these entities are identified. Then these ontologies

are used to formally model the structure of a system. For example, consider

Automobile domain. In this domain, Car and Person can be considered as entities. The

relationship between these two classes can be described as “a person drives a car”, as

depicted in Figure 1. In addition, a car can have a generalizations/specializations

hierarchy, which is also known as taxonomy. For example, a car can be manual gear

or auto gear [7]. This is depicted in Figure 2.

Car Person
drives

Figure 1 - Relationship between two classes

Figure 2 - Part of generalization/specialization hierarchy

Car

Manual

gear

Auto

gear

- 6 -

“Individuals” are the real world objects and belongs to classes. In other words, a class

is a collection of individuals. Examples of individuals for the class “car” can be Ford,

Nissan etc. “Properties” are a collection of relationships between individuals such as

has_identification_number, owned_by etc. These are used to describe the relationship

between individuals. Individuals are related to other individuals via properties.

2.1.1 Ontology creation

There is no standard method to create Ontology [6]. Following steps gives a basic

understanding of how ontology of a particular domain in developed [8].

• Identify the classes in the ontology, as they are the focus of most ontologies

and describes the concepts in the domain.

• Arrange the classes in to a hierarchical (super class - subclass) structure.

• Identify the properties of these classes. These properties give additional details

that describe the class.

There are many Ontologies widely available in different domains. It is always best to

use a readily available ontology and refine it to our needs as it will provide a strong

foundation to building the ontology and will save lot of time. Most of the ontologies

are available in electronic form and is possible to import in to any ontology

development environment [8].

There are libraries that contain re-usable ontologies, “Ontoligua Ontology Library” or

“DAML Ontology Library” is some of them. There are many ontologies which are

commercially available as well [8].

2.1.2 Ontology Population

Once the classes (entities) and properties are identified in an Ontology, then

information belonging to these classes and properties can be identified from natural

text. This process is known as “Ontology Population”. In other words, Ontology

Population can be described as identifying instances for classes and property values

for properties [5]. This can be done either manually, which is time consuming and not

efficient or using an automated method. Ontology Based Information Extraction

(OBIE) is a newly emerged sub-field, which is described under section 2.2.1, in which

- 7 -

most systems provide the ability to populate an ontology by extracting information

from natural text.

2.2 Information Extraction

Information Extraction (IE) is a newly emerging field in which widely scattered texts

in natural language is reduced in to a simple database. This database is created in such

a way that it contains the entities in a particular domain; i.e. information extraction

identifies these entities in natural language texts. On the other hand, Information

Retrieval, which is a more mature field than IE, retrieves a sub set of relevant

documents from a larger set of documents. This does not provide the required

information directly, but rather returns a set of documents that contains the

information. A good example of an IR system is a web search engine. However, in IE,

the information is extracted from these documents and presented in a structured

manner [2].

IE has the potential to be used in many industries in which the end user requires a

large amount of information to make decisions, such as finance companies, banks,

publishers and governments. As an example, Lloyds of London pays a large sum of

money to individuals to find information about daily ship sinking, which can be easily

done using an information extraction system, saving both time and money. Another

example will be searching movie reviews for actors and directors, especially if the

person is playing a non-standard role such as, a famous actor playing the role of a

movie director in some movies [2].

Nevertheless, IE techniques are not widely used and commercialized as IR, even

though it is more powerful, as it provides the information itself rather than the

documents that contains the information. As identified in [5], there are two reasons for

this. One is the requirement of a set of templates for each domain, which needs to be

created manually by a domain expert to be filled by the extraction process. In many

cases, creating these templates is not practical. Another reason is that the IE systems

are usually developed in such a way that there is no clear separation between the

domains. Therefore using these systems in a new situation is difficult. Due to these

reasons, the cost and complexity involved in developing an IE system is much higher

than an IR system.

- 8 -

IE process follows several steps when processing texts and produces unambiguous

data as the output. First, it takes documents in different formats as the input and

processes them using information extractors. These information extractors identify the

entities and relationships among these entities from the documents and ignore the non-

relevant information in them. Then this extracted information can be displayed to the

user as the output, stored in a database or used as an input to another system [9].

There are two types of information extraction techniques. One is the “Traditional IE”

where it uses the supervised learning techniques such as Hidden Markov Model and

self-supervised methods. These methods require a set of manually tagged documents

with rules to learn from and then apply these rules to new documents. This model

performs well when used in similar set of documents, but it performs poorly when

used in a documents in different style or domain [9]. The second technique provide a

solution to this problem is called “Open IE”, where rather than providing a pre-

defined set of rules for the system to learn, this method find the relations from the

texts [5] [9]. However, as mentioned in [5], we should make sure that the relations

discovered in this method are useful and in a structured manner so that they can be

reused.

In IE, the performance can be measured by precision and recall as done in IR. In IR

precision indicates the number of correctly identified documents as a portion of the

total number of identified documents and recall indicates the number of correctly

identified documents as a portion of the total number of correct documents available.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑅𝑒𝑙𝑒𝑣𝑒𝑛𝑡} ∩ {𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑}|

|{𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑}|

𝑅𝑒𝑐𝑎𝑙𝑙 =
|{𝑅𝑒𝑙𝑒𝑣𝑒𝑛𝑡} ∩ {𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑}|

|{𝑅𝑒𝑙𝑒𝑣𝑒𝑛𝑡}|

A weighted average of precision and recall is called F-measure and it is given in the

equation below. In this equation, β denotes the weighting of precision vs. recall, which

is also called F1 score. In most cases this is given the value 1, thus giving equal

weighting for precision and recall [3].

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛽2) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙

- 9 -

2.2.1 Ontology Based Information Extraction

Ontology contains a model that provides the application the ability to process the

information in it and reason about it. These provide a very good vocabulary along

with a formal semantics. Therefore, using Ontology in information extraction systems

enables using manually composed rules in a more flexible way. IE and Ontology can

be used in two ways. One is using Ontology to interpret natural language. The other is

to use IE to populate and improve the Ontology [9].

This sub-field of IE, which recently emerged, uses Ontology in the information

extraction process and returns the extracted information through the same Ontology.

I.e. in IE, Ontology is used to guide the information extraction process. As identified

in [3], listed below are the key characteristics of OBIE.

• Since IE is a sub-field of Natural Language Processing (NLP) and OBIE is a

sub-field of IE, it can be said that OBIE processes unstructured and semi-

structured texts, such as web pages, text files etc.

• An OBIE system can either use an existing Ontology as the input to guide the

information extraction process or construct Ontology to be used in the

extraction process. Therefore when identifying common characteristics, it will

be correct to say that an OBIE presents the output using Ontology.

• The word “guide” can describe the interaction between Ontology and an IE

system, which means that no new IE process is invented, but the existing ones

are oriented to identify the components of Ontology.

In [3], these key factors and definitions of IE is used to provide a definition for OBIE.

“An ontology-based information extraction system: a system that processes

unstructured or semi-structured natural language text through a mechanism guided by

ontologies to extract certain types of information and presents the output using

ontologies.”

As the output of the OBIE is given as an ontology, it can be used in Semantic Web,

where meaning is given to the web and a software agent can easily perform a task by

going through the documents in the web. In normal web, information is produced

targeting a wide range of users with normal user and machine at the two extreme ends

of the user spectrum. Information targeted for normal user includes TV commercials,

poetry etc, while information targeted for machines includes databases, sensor outputs

- 10 -

etc. Semantic Web tries to remove this distinction and allow the machines to

understand the content of the web in a much smarter manner. Ontologies defined will

allow the software agents to identify related information even though they are defined

in different ways in different documents and can be seen as the backbone of Semantic

Web. Therefore, OBIE is important to Semantic Web because it populates an

Ontology by extracting information from a set of documents [3] [10].

In [3], a common architecture is identified for the OBIE system, which is given in

figure 3. However, in practice, not all the components given in this architecture are

used. For example, some systems will use an already existing Ontology, rather than

generating one by scanning the documents. As depicted in figure 3, OBIE is a part of a

larger system. The preprocessor converts the input text in to format that can be

understood by the IE module. For example, a web page can be preprocessed and

remove all the HTML tags, before feeding it to the IE module. The IE module is

guided by an Ontology and uses techniques such as regular expressions, gazetteer

lists, construction of partial parse trees, analyzing HTML/XML tags as explained

before and classification techniques to extract the information. Ontology generator

component can generate an Ontology to be used by the IE system. This process might

use a semantic lexicon as well as human assistance when generating the Ontology. As

OBIE system is part of a larger system, the output is stored in a database or a

Figure 3 - General Architecture of an OBIE System [3]

- 11 -

knowledge base. The larger system, for example a query answering system can refer

to this database or knowledge base to perform its functionality [3].

2.3 Ontology Based Components for Information Extraction

Even though the information extraction field has improved rapidly over the time, it is

still not widely used as information retrieval. As mentioned in [5], one of the main

reasons is the cost of setting up a new IE system in a new domain. This requires

creating a new ontology for that domain, scanning and processing the documents to

identify individuals and values for classes and properties in the ontology. These tasks

involve a large cost, rather than in information retrieval, where the only cost

associated is scanning the documents to build and maintain an index.

In a given domain, there exist multiple ontologies falling under one of the following

two scenarios. One scenario is ontologies having different perspective of the same

domain. For example in the domain of marriages, an ontology can have two classes

called Husband and Wife, while another can have an object property names

“isSpouseOf”. The other scenario is specializing in sub-domains, such as the domain

university can have North American universities, British universities as the

specialized sub domains with each sub-domain containing characteristics only

relevant to that sub-domain [11]. Therefore, when using multiple ontologies of the

same domain in an IE system, we can see that, it is possible to re-use the information

extractors, which extracts individuals for a class and values for a property, if a class or

a property in one ontology is related to a class or a property in another ontology [5].

In [5], the above-mentioned idea is extended to apply information extractors from

different domains. To make the re-use of the information extractors straightforward,

the authors have introduced a platform and metadata. The platform is a domain

independent implementation of the IE techniques and metadata contains the domain

details. In this component-based approach, the population of ontology is refined in to

a pipeline with three steps. Each of these steps is a component and they are:

• Preprocessor Component – This pre-process the documents in to a format that

can be used by the information extractor component.

• Information Extractor Component – This contains a platform for an IE

technique which is domain independent and the metadata that are associated

- 12 -

with a particular class or a property represented by the information extractor.

We can also consider that the platform and metadata can be two sub-

components within this Information Extractor component.

• Aggregator Component – This combines the results produced by each

individual information extractor.

In this pipeline, the output of the previous component is given as the input to the next

component as depicted in figure 4.

A complete OBIE system, which contains the above pipeline, can have preprocessor

components, information extractor components aggregators. In addition, it can also

have multiple ontologies and an ontology construction module, which scans the

documents to identify the classes and properties.

2.3.1 Web Services for Ontology Based Information Extraction

The pipeline introduces separate components to process each step of the pipeline. By

introducing each component as a web service, it allows anyone to access these

components and build their own pipeline. Also these components can be used

separately as well, thus providing the ability for anyone to use them and build their

own application.

2.4 Web Services

Web services provide a method to communicate between two machines within a

network. In W3C working group note 11February 2004, the following definition for

web services is given [12]. “A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using SOAP-

Figure 4 – Pipeline for Ontology Population in OBCIE

Preprocessor Information Extractor Aggregator

Metadata Platform

- 13 -

messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.”

The purpose of web services it to provide a set of functionalities on behalf of the

owner of the web service. It can be either a “provider” or a “requester”. Usually the

“provider” initiates the communication, where the “requester” wants to use some

functionalities provided by the “provider”, although there are cases where the

communication happens the other way as well [13].

Web services communicate with each other using messages. A “service” defines the

set of functionalities exposed by the web service and an “agent” implements this. The

agent can be implemented using different technologies without any changes to the

“service” [13].

There are several steps a web service needs to follow, in order to have a successful

communication. Explained below are these steps of communication when SOAP

(Simple Object Access Protocol) is used. First, the two web services that need to

communicate should “become known” to each other, or at least the requester should

know about the provider. Web service registry called UDDI (Universal Description

Discovery and Integration) is used for this purpose, which is a platform independent

XML based registry for web services. Then the two web services agree on the service

description and the semantics that is to be used for the communication and separately

send these agreed upon information to their agents. WSDL (Web Service Definition

Language), an XML based document is used to describe the web services. Finally, the

agents use this information to send messages among each other, and are done using

SOAP (Simple Object Access Protocol) [13] [14]. Figure 5 depicts this process.

Based on how the web services communicate with each other, we can identify two

styles of web services, namely RPC (Remote Procedure Call) style and REST

(Representational State Transfer). SOA is an example for RPC-style web service

architecture.

- 14 -

Figure 5 – General Process of Engaging Web Services [13]

2.4.1 Service Oriented Architecture

This is an architectural style with the goal of achieving loose coupling among

different components and can be implemented using web services. Each of these

components performs tasks they are specialized to do and interact with other

components to get additional services. In order to provide the services to other

components each component has clearly defined universally available interfaces.

Component use messages to interact with each other and these messages follow a

schema that is understood by all the components [15].

As mentioned in [15], there are four rules that an architecture should follow before it

can be called service oriented.

• The components are responsible for solving the problem. Therefore, the

messages should be descriptive rather than instructive.

• The messages should be written in a format that is understood by all the

components involved in the system.

• As the environment change, the system should have the ability to change

accordingly. Therefore, extensibility it very important in SOA and can be

achieved by making the messages used extensible. Even though, introducing

restrictions to the messages will make it easier to understand, it will affect the

extensibility of the system. Therefore, it is important to find a good balance

between the restrictions and extensibility.

- 15 -

• There should be a mechanism for a consumer to discover a service provider

that has the functionalities sought by the consumer.

One drawback on SOA is that it is RPC- style architecture. Therefore, the services are

abstracted based on RPC. The interface defines a set of discrete number of procedures

to be accessed, limiting the set of services produced by the service provider. If the

number of procedures exposed is increased, the complexity and the cost of the system

will increase thus making it difficult to scale the system [16].

In SOA, SOAP messages are used to communicate between the web services.

2.4.2 SOAP

This is a lightweight protocol proposed by W3C, for information exchange in a

distributed, decentralized environment using XML. SOAP consists of three parts [17]:

• SOAP envelope – a framework for defining what is in the message, who is the

recipient and whether it is optional or mandatory.

• SOAP encoding rules – defines a serialization mechanism that can be used to

exchange instances of application-defined data types.

• SOAP RPC representation – A convention that can be used to represent remote

procedure calls and responses.

SOAP messages are generally uses HTTP envelopes and HTTP POST to transfer data

from one web service to another. It is an XML document, which contains mandatory

SOAP envelope and SOAP body, and an optional SOAP header.

Listed below are some of the advantages and disadvantages of using SOAP [14] [16]

[18].

Advantages

• Supported by major software platforms, thus making it easier to transform an

interface defined in any major platform (such as Java or C#) in to a SOAP

interface and generate the WSDL and required stubs.

• It opened a new market for middleware products that aims to simplify some of

the EAI challenges.

• SOAP has built in error handling.

- 16 -

• Support from other standards such as WDSL, WS-*.

Drawbacks

• SOAP promotes high coupling between the producer and consumer.

• Does not offer any separation of concerns as the supported model does not

separate network centric operations from local operations.

• Additional parsing and packaging is required on both client and server sides to

pack and unpack a SOAP package.

• SOAP package contains additional information; therefore, the payload is rather

high.

2.4.3 REST

REST (Representational State Transfer) is an architectural style first proposed by

Fielding in his doctoral dissertation [19] for distributed hypermedia systems. He

applied a set of constrained to the World Wide Web (WWW) to define this style.

These set of constraints in many ways abstracted the principles that make the World

Wide Web scalable [20]. In the first step, separation of concern is applied to the

WWW, where the result is the client-server architecture style. Then the

communication in the server is constrained to be stateless, thus resulting in the client-

stateless-server architecture style. Figure 6 depicts how these constraints are applied to

obtain REST architectural style from WWW.

The interface defined for REST is optimized for large grain of hypermedia data

transfer, and contains four interface constraints. They are identification of resources,

manipulation of resources through representations, self-descriptive messages and

hypermedia as engine of application state. [19].

REST is similar to navigating web links and when a link is selected, the information is

moved from where it is stored to where it will be used [19] [20].The most known

REST implementation is the HTTP protocol. HTTP allows the ability to uniquely

locate the resource as well as tell how to operate the resource. In REST, request and

response is done through four operations namely GET, POST, PUT and DELETE.

The functionalities of each method are described below.

- 17 -

• GET – Allows retrieving the current state of the resource. This method is safe,

as it does not change the server state.

• POST –Transfer the state of the resource in to a new state

• PUT – Add a new resource

• DELETE – Removes an existing resource

The security model of REST is simple and effective. It abstracts everything in to

resources and every resource uses a URI to identify itself. These URIs can be exposed

or hidden based on whether the resource identified by the URI is required to be hidden

or exposed. In addition, we can achieve different security policies by setting different

security settings for each of the four operations described above [16].

Listed below are some of the advantages of using REST [14] [16] [18] [21].

WWW

Client - Server

Client – Stateless - Server

Client – Cache - Stateless - Server

Uniform - Client – Cache - Stateless - Server

Uniform – Layered - Client – Cache - Stateless - Server

REST

Separation of Concerns

Communication is stateless in the server

Cache in the client

Uniform interface between components

Layered system constraints

Code on demand

Figure 6 – Obtaining REST architectural style from WWW

- 18 -

Advantages

• In REST, separation of concern in clear.

• Same protocol is used to access all the resources, and a resource can be

replaced by just changing its name.

• The standards used in the messages sent between the producer and the

consumer does not contain any contextual information of the message.

• High performance in REST is due to inherent simplicity.

• As HTTP is a widely used, no additional platforms are required.

• Small learning curve, and relies less on tools.

Drawbacks

• Tool support is minimal, as the focus was in SOAP.

• Since there is a limited API, interfaces might be perceived as too thin when

managing everything as resources.

• Using HTTP as a protocol inside an EAI middleware is not cost efficient.

• Assumes a point-to-point communication model.

2.5 Related Work

Many systems exists that are implemented using OBIE. Given below are two such

systems. Both systems follow a pipeline to populate the ontology, while SOBA has

implemented the components in the pipeline as web services, which is similar to the

high-level architecture proposed in the methodology of this document.

2.5.1 The OwlExporter

GATE (General Architecture for Text Engineering) [22] is a framework which

facilitates NLP application development. A large number of components support

standard tasks such as tokenization, POS tagging, and these components can be easily

assembled in to more complex application pipelines. However, populating an ontology

based on these analysis is not an easy task. As a solution to this “OwlExporter” is

introduced. This automates the ontology population process and can be used in an

existing pipeline in GATE [23].

- 19 -

The idea behind OwlExporter is to get the annotated set of documents from an

existing pipeline in GATE, and use them to populate the given ontology. Figure 7

below depicts this [23].

Figure 7 - General workflow of the OwlExporter [23]

2.5.2 SOBA

“SmartWeb” is a multi-model dialog system, which derives its answers from

unstructured resources such as web. SOBA (SmartWeb Ontology Based Annotation),

which is a component in SmartWeb, automatically populates the knowledge base on

soccer using information extraction and respect to an underlying ontology. The

resources used to populate the knowledge base are found on web [24].

SOBA consists of three parts. The web crawler, which monitors the relevant web sites

such as FIFA site on a daily basis, downloads and sends the relevant documents,

which have a recent update, to the linguistic annotation component. In the linguistic

annotation component, the retrieved documents are annotated using gazetteer, part-of-

speech and a set of rules defined for soccer specific entries such as actors (players,

referees etc.), teams and tournaments. Then these linguistic annotated documents are

processed further by the semantic transformation component, which maps the

annotated entities in to classes and their properties in the ontology. Each of these

components is implemented as web services. Figure 8 depicts the pipeline followed by

SOBA to populate the ontology using the latest updates in the sites it monitors in the

web [24].

- 20 -

Figure 8 – Pipeline used in SOBA

- 21 -

Chapter 3

Methodology

- 22 -

3.1 High Level Architecture

This section describes the high-level architecture proposed for the system “Web

Services for Ontology Based Information Extraction”. This architecture follows the

pipeline proposed in [5] to a certain extent and identifies each component as a web

service. The last component, the aggregator is not developed separately as a web

service since it will not add any value by having it as separate web service.

A new web service called the “front end, is introduced to demonstrate how these web

services can be used to implement a system. This will accept a corpus, metadata files

and a ontology and will return the populated ontology.

These web services follow the REST architecture style. The major reason behind

using REST, rather than SOAP is that, SOAP introduces additional overhead to the

messages passed between the two web services. As this proposed system passes a

large amount of text between the web services, this additional overhead introduced by

SOAP will have a significant effect. The below depicts the high-level architecture of

this system.

Figure 9 – High-level architecture

3.2 Extraction Methods

The implemented system contains two extraction methods to extract information from

the given text. These two extraction methods are developed in [5], and it is used to

implement the web services. Given below is a detailed description of each extraction

method.

3.2.1 Extraction Rules

The metadata file for extraction rules method contains the class, the identifier name

and JAPE grammar rules to extract the information. JAPE stands for Java Annotation

Front End

Preprocessor Extractor

Corpus Documents, Metadata files, Ontology Populated Ontology

- 23 -

Pattern Engine, and it can identify regular expressions in annotations on documents.

This grammar consists of a set of phases and each phase consists of a set of pattern or

action rules. There are two sides in this grammar. The left hand side consists of an

annotation pattern description and the right hand side consists of annotation

manipulation statements [25].

When this metadata file is sent to the extractor, it extracts the JAPE grammar from the

xml file and store as a .jape file under a unique id. When a text string is received with

this unique id, a GATE pipeline is started to process this text string and annotate it

using the previously stored gate file. Then this annotated string is further processed to

extract the information from the annotated text string and return the extracted

information for the given class and the identifier name [5].

3.2.2 Two Phase Classification

In this method, first the related sentences are identified and then the words within

these sentences are identified. There are two different approaches to combining these

above two phases.

• Pipeline approach – word level classifier only operates on the sentences

selected by the sentence level classifier.

• Combined approach – The word level classifier operates on all sentences, but

uses the sentence selected by the sentence level classifier as one feature in

classification.

Out of these two methods, second one yield best results, so it is incorporated in to the

platform. For the two phase classification technique, it is found that the following

classifiers are best for each phase [5].

1. Sentence level classifier – Bayesian technique (specially naïve bayes

models) used with bagging (Weka system for this and any other

classification techniques)

2. Word level classifier – Conditional Random Field (CRF), which is a

sequence tagging technique (uses Mallet system for this)

The metadata file for the two-phase classifier also contains the class and the identifier

name. However, unlike in extraction rules where it contains the JAPE rule, this

- 24 -

contains a list of words, synsets and gazetteer lists to be used during the extraction

process. The extractor will extract this information from the metadata file; store them

as separate lists under a unique id. Then this id can be used to identify which metadata

should be used to process a text string.

The processing of a text document is done in two levels; sentence level and word

level. In the sentence level, the text document is first annotated using the gazetter

information given in the metadata file. Then this text is annotated with the keys for

that document and finally it is annotated with the synsets and words given in the

metadata file. Once the text string is annotated, a Weka training file is created from

this string, one for the training corpus and one for the test corpus. Both of these files

are then used to train using Weka, which will give output files for training corpus and

test corpus [5].

Once the training is done by weka, the word level processing is done separately to the

training corpus and the test corpus. In this level of processing, first the preprocessed

text string is annotated so that it can be understood by Kylin. Some of the annotations

given to the strings are "@single_letter@", @atleast_one_digit@, @two_digits@,

@contains_underscore@ and @stopword@. Then this annotated string is used to

generate a training file for Kylin and run it. The output file generated from running

Kylin is then converted to be used in Mallet and train it using this converted files for

both training corpus and test corpus and give the final output for two phase extraction

method [5].

3.2.3 Tools used

The following sections give a brief description of the tools used to develop the

extractor component in the pipeline. The use of these tools are mentioned in the above

section for each extraction method.

3.2.3.1 GATE (General Architecture for Text Engineering)

GATE is originally developed at University of Sheffield in 1995 and now it is widely

used for all sorts of natural language processing tasks. It is designed to meet the

following objectives [26].

- 25 -

• Provide the ability to interchange information between other language

engineering modules without specifically mentioning a theoretical approach.

• Provide the ability to integrate modules written in any language.

• Provide a graphical user interface to visualize data and manage corpora, and

the ability to evaluate and refine other language engineering modules and

systems built from them.

GATE comprises of three main elements: GDM: GATE document manager based on

TIPSTER document manager, CREOLE: a collection of re-usable objects for

language engineering and the GGI: GATE graphical interface [26].

The GDM is the central repository which stores all the information generated about

the texts it processes and provides a uniform API for the language engineering

systems to manipulate the data they produce and consume [26].

CREOLE modules are usually wrappers for pre-existing language engineering

modules such as taggers, parsers and lexicon index. These objects can be developed

from scratch as well. This element does the text analyzing part in GATE [26].

The GGI encapsulates the GDM and CREOLE to provide the ability to build and test

language engineering components and systems interactively [26].

The GATE API allows other applications to initialize and run CREOLE modules and

use the output.

3.2.3.2 Weka

Weka (Waikato Environment for Knowledge Analysis) is a tool developed by the

Machine Learning Group in java, which provides a set of machine learning algorithms

for data mining tasks. Weka provides the ability for data preprocessing, classification,

regression, clustering, association rules and visualization. Weka works under the

assumption that data is available in a single flat file or relation where each data point

is described by a fixed number of attributes [27].

3.2.3.3 Mallet

Mallet (Machine Learning for Language Toolkit), is a Java-based package for

statistical natural language processing, document classification, clustering, topic

- 26 -

modeling, information extraction, and other machine learning applications to text.

Mallet includes a variety of document classification algorithms such as Naïve Bayes,

Maximum Entropy, and Decision Trees. This also includes algorithms for sequence

tagging such as Hidden Markov Models, Maximum Entropy Markov Models and

Conditional Random Fields [28].

3.3 Framework for Building RESTful Web Services

JAX-RS (Java API for RESTful Web Services) is a Java API that provides support in

creating web services according to the REST architectural pattern. This uses

annotations, which helps to map a resource class to a web resource. These annotations

are:

• @Path – the relative path to a resource or a method

• @GET, @POST, @DELETE, @PUT and @HEAD – Http request types of a

resource

• @Consumes – the accepted media type of a request

• @Produces – the response media type of a request

This API is developed by Oracle Corporation and is under CDDL License (Common

Development and Distribution License). From version 1.1 it is an official part of Java

EE 6. This means that JAX-RS can be used in any Java EE development without any

configuration. JAX-RS 2.0 is the current major release of JAX-RS [29] [30].

The next sub sections contain a high-level overview of some of JAX-RS

implementations and a comparison between them.

3.3.1 Apache Wink

Apache Wink is a fully compliant java based solution for implementing and

consuming REST based web services. This provides a set of reusable and extensible

classes and interfaces that can be used by the developer to build REST based web

services. This provides two modules: a server module developing web services and a

client module for consuming web services [31].

Apache wink reflects the design principles of a REST web service, by providing the

developer with a set of java classes that enable the implementation of “Resources” and

“Representations” and the association between them [31].

- 27 -

Apache Wink supports a wide variety of industry standard data formats such as XML,

Atom, Json etc. Also this provides easy spring integration through an additional

module that comes with the core framework, providing features such as registering

resources and providers as classes or spring beans [32].

3.3.2 Project Jersey

Project Jersey is an open source, dual license JAX-RS implementation develop by Sun

for building RESTful web services. This is more than a reference implementation and

provides API that extends JAX-RS toolkit with additional features and utilities to

further simplify RESTFul service and client development. This is shipped as part of

Glassfish application server download [32] [33].

The client API of Jersey provides the ability to invoke any RESTful web service, not

just JAX-RS compliant web services. This also allows a pluggable HTTP

implementation and supports common data formats such as Atom, Json and MIME

Multipart data. Jersey also supports extension based support for Spring framework and

Google Guice framework [32].

3.3.3 JBoss RESTEasy

This is a JAX-RS compliant framework developed by Red Hat and can be used in any

serverlet-based environment. This is licensed under the GNU Lesser General Public

License (LGPL). Embeddable server implementation for junit testing, client

framework that leverages JAX-RS annotations so that it is easy to write HTTP clients,

server in memory cache, local response cache are some of the features of RestEasy

[32] [34].

RESTEasy has a built-in client proxy framework that is a slightly different way of

writing RESTful Java clients. It works by reusing the JAX-RS annotations on the

client side, using the annotations to turn a method call into an equivalent HTTP

request [32].

RESTEasy supports most of the popular data formats such as XML, Json, Atom and

multipart. This also supports integration with frameworks and standards such as

Enterprise Java Beans (EJB) technology, spring and Google Guice [32].

- 28 -

3.3.4 Restlet Framework

This framework is slightly different from other JAX-RS implementation, as it existed

before JAX-RS is implemented and finalized. This was designed as a light weight

REST based java framework with pluggable extensions for different functionalities.

An extension exists as part of the Restlet framework that implements JAX-RS

specification. This is fully open source and can be used under Apache Software

License [32] [35].

This provides a client API that makes it easy to consume any HTTP-based services,

not just JAX-RS services. The Restlet Framework is based on a connectors and

components architecture, where a connector enables communication between

components, usually by implementing a network protocol [32].

This framework too supports many of the common data formats such as XML, Json,

Atom etc. In addition, Restlet supports integration with frameworks and standards

such as Spring, Jetty, Grizzly, JAXB etc. [32].

3.3.5 Comparison

When comparing the above four JAX-RS implementation with respect to the

suitability of using in the implementation of web services for OBCIE, one of the main

aspects considered is the performance of the implementation. The following

performance test done in [32] to measures the relative transactional throughput,

measured in transactions per second, of these implementation. This test can be used to

get a general idea of their relative performance characteristics.

Figure 10, which is taken from the study performed in [32], plots the number of

transactions per second for each JAX-RS implementation. It can be seen that Apache

wink, RESTEasy and Jersey have similar performance while RESTlet framework lags

behind a little.

However, for OBCIE web services extensive data format support adds more value and

with sending a large amount of text between web services, a high throughput is

important. Therefore, Apache wink is chosen as the JAX-RS implementation to

develop the web services.

- 29 -

Figure 10 – Performance Metrics for different JAX-RS implementation [32]

3.4 Implementation

The three main web services, preprocessor, extractor and the front end, in this

application as described in section 3.1 communicate using REST methods. The front

end web services accepts user input and send this information to each web service to

process the string and extract the information based on the given metadata file. A

unique id, based on the metadata file name, information extraction method and the

current time is used to identify which metadata should be used to extract information

from the given string. This ID is returned from the extractor when the metadata files

are sent to be processed.

Also throughout the application, each document is assigned an integer as the file

number from the front end, and this number is passed with the string containing the

content of the document, along with the total number of documents. This is useful in

two phase classifier method, as described under section 3.2.1.2. Even though this is

not used in the information extractor method, as each document is fully processed

independent of each other, if the sending application sends these two values, the

extractor accepts these values to maintain uniformity between the two methods.

Since all of these components are developed as web services, anyone can use both

preprocessor and extractor separately or together to develop their own applications.

- 30 -

3.4.1 Front End

This is the front end of the application and contains the user interface as well as the

base logic that handles the pipeline for each information extraction method. This also

provides the ability to view a populated and unpopulated ontology. For the

information extractor method, the front end accepts three inputs from the user; an

ontology (.owl file), corpus (this can contain many files) and metadata files.

All the communication between the web services is done using Apache Wink. In

REST web services all the resources are accessed through URIs. Apache Wink

provides the functionality to call the desired operation on the resources using the

given URL, whether it is POST, DELETE, PUT or GET.

When the user gives the input, the front end will first send the metadata files to the

extractor and accepts the returned unique ids. Then for each document, it will start the

pipeline. First, the text from the document is send to the preprocessor, along with the

extraction method for the string to be preprocessed. Then the returned string from the

preprocessor is send to the extractor, with all the unique ids, to extract the information

from the string. Then the returned string is used to add the information to the ontology

using GATE API [27]. Once all the documents followed the pipeline, the ontology is

fully populated, and it will be available for download.

When using the two-phase classifier as the extraction method, it accepts a training

corpus, keys for the training corpus, test corpus, keys for the test corpus, metadata

files and the ontology. A single document may contain multiple key files, therefore

all the text from these key files are aggregated in to one string for both test corpus and

training corpus. This method will also follow the same pipeline as information

extractor method, with the addition of sending the aggregated key string along with

the preprocessed string and the unique ids for metadata to the extractor.

Figure 11 below depicts how the messages are passed between the web services.

A limitation introduced in this method is that, in order to identify which keys files

belong to which document, the key files should follow a standard method to name the

files. It should be named as “<name of the document>_<key file number>”. As an

example, consider a training document is named as “training_doc_1.txt”, then the key

files should be names as “training_document_1_1.txt”, “training_document_1_2.txt”.

- 31 -

Figure 11 – Message passing between web services

The front end also allows ontologies to be viewed as an additional functionality. To

provide this, it uses OWL API to convert and render the ontology file (.owl) file in to

html format.

3.4.2 Preprocessor

The main functionality of this web service is to process a string and format it based on

the given information extraction method and return the preprocessed string. For each

information extraction method, the output string will be slightly different. The

information extraction method is sent as an integer value, where “1” indicates

information extractor method, and “2” indicates two-phase classifier method.

For the information extractor method, since the strings are given as input to GATE

method calls in the extractor, it should be made GATE compatible by removing the

“@” and replacing it with a space character.

For the two-phase classifier method, in addition to making the string GATE

compatible, it is further processed by splitting the text in to sentences.

For each information extraction method, there is a unique URI in preprocessor to

perform POST operation. Only the POST operation is used in preprocessor, as this

web services does not maintain any resources and will return the output for each input.

Given below are the two URIs for the two information extraction methods

implemented in this system.

Preprocessor
Text string, unique id

Preprocessed String, unique id

Extractor
Metadata

Unique id

F
r
o
n
t

E
n
d

Extractor
Preprocessed String, unique id

Extracted

information

Test corpus, training
corpus, key files,
metadata, un-
populated ontology

Populated ontology

- 32 -

• Information Extractor : “http://localhost:8080/obcie-preprocessor/rest/corpus-

preprocessor/extractionrules”

• Two-Phase Classifier : “http://localhost:8080/obcie-preprocessor/rest/corpus-

preprocessor/two-phase-classifier”

This web service accepts a json object as the input, which contains the string to be

processed and the file number, and the total number of files. A sample of an input json

object is given below in figure 12.

Figure 12 – A sample request json object sent to preprocessor

Once the string is preprocessed, the output string is returned from the preprocessor as

a json object. This output differs based on the information extraction method used. A

sample of each output string is given below in figure 13 and 14.

Figure 13 – Information Extractor method: a sample response json object from preprocessor

3.4.3 Extractor

This web service does the main processing in the information extraction process. It

accepts the information extractor metadata files, processes them, stores the

information in the web service, and returns a unique id to identify and use these stored

information during the actual information extraction process. As in the pre-processor,

the information extraction method is sent as an integer value when processing the

metadata, where “1” indicates information extractor method, and “2” indicates two-

phase classifier method.

As described in section 3.4.2, the extractor web service uses URIs to give access to it

as well. As this web service provides two separate functionalities: process the

metadata files and extract the information using the processed metadata information

and preprocessed string, there are unique URIs to access each of these functionalities.

- 33 -

Figure 14 – Two-phase classifier method: a sample response json object from preprocessor

Again, the POST operation is used when processing the metadata file and extracting

information from a preprocessed string, and the DELETE operation is used to remove

the metadata information from the extractor web service. Given below are the URIs

that can be used to access the two functionalities in the extractor web service.

• Information Extractor: “http://localhost:8080/obcie-extractor/rest/corpus-

extractor/extractionrules”

• Two-phase Classifier: “http://localhost:8080/obcie-extractor/rest/corpus-

extractor/two-phase-classifier”

• To process the metadata: “http://localhost:8080/obcie-extractor/rest/platform”

Based on the URI used, the extractor chooses the extraction method. A detailed

description of these two extraction methods is given in section 3.2. Given below in

- 34 -

figure 15 and 16 are the sample json object used to send a metadata file to the

extractor.

Figure 15 – Information Extractor method: request json object for processing the metadata file

Figure 16 – Two-phase classifier method: request json object for processing the metadata file

The figure 17 and 18 below gives sample response json objects from the extractor

after processing the metadata file, containing the unique id and the other relevant

information extracted from the metadata file.

- 35 -

Figure 17 – Information Extractor method: response json object for processing the metadata file

Figure 18 - Two-phase classifier method: response json object for processing the metadata file

This web service accepts a json object as the input which contains the preprocessed

string from which the information to be extracted and the file number, and the total

number of files. Total number of files is not mandatory when using the information

extractor method. A sample of an input json object for each information extraction

method is given below. When using both preprocessor and the extractor as a pipeline,

the response json object from the preprocessor can be used as the request object to the

extractor.

Figure 19 – Information Extractor Method: A sample request json object to extractor

When accepting a string to be processed by the extractor using two-phase classifier

methods, it should contain the text string and the relevant key strings in the same

object. As described in the section 3.2.2, for two-phase classifier, all the training files

and test files should be provided at once for Weka to train. Therefore, since the

extractor has the ability to receive multiple files, it needs to collect all the files before

sending to Weka. The document number and the number of documents parameters in

the input json object is used for this purpose. The extractor assumes that the document

numbers are sent in order, and when the document number matches the number of

documents, it performs the rest of the steps in the two-phase classifier extraction

process and returns the extracted results. Until the last document is sent, for two-phase

classifier, the extractor will return a null json object. This does not happen in the

information extractor, since it can fully process each input string separately and return

the extracted results.

- 36 -

Figure 20 – Two-phase classifier Method: A sample request json object to extractor

Figure 21 - Information Extractor Method: a sample response json object to extractor

- 37 -

Chapter 4

Results and Conclusion

- 38 -

4.1 Implementation

Using the web services described in methodology, an application is developed to

populate a given ontology. This provides the ability to extract information using both

methods: information extractor method and two-phase classifier method.

In information extractor method, there are three input fields to accept the input from

the user: Corpus location, information extractor metadata and the ontology. Both

corpus location and information extractor fields can accept multiple files. Figure 22

depicts the image of the UI developed for this.

Figure 22 – UI developed to populate ontology using information extractor method

In two phase classifier method, there are six input fields to accept user input: Test

corpus location, key files location for test corpus, training corpus location, key files

location for training corpus, metadata files and the ontology. All input fields except

the ontology field accepts more than one file. Figure 23 depicts the image of the web

page developed for this.

- 39 -

Figure 23 – UI developed to populate ontology using two-phase classifier method

In additional to the above two main functionality, this system also provides the user to

view an ontology. This will list down the classes, properties, instances and the values

for each property. In order to display the ontology, a third party library called “owl

api” is used. This will accept the ontology file and render the information provided in

this ontology file in HTML format. A sample output of a rendered ontology is given in

figure 24.

Figure 24 - UI developed to view a given ontology

- 40 -

4.2 Conclusion and Future Work

As the amount of available data grows, it becomes a challenge to extract the useful

information easily from them. As a result, fields such as ontology based information

extraction have emerged. However, most of the applications developed in this area

are domain dependent. Therefore, if anyone to use information extraction methods in a

new domain, then the amount of work that needs to be done is very large. By

developing domain independent web services to extract information, the amount of

time and effort required can be reduced greatly.

The web services developed here allows anyone to extract information from a set of

documents according to a given set of rules. The rules provide the required domain

dependent information and anyone can develop applications in any domain using them

to give information to the users in a meaningful way.

The application developed here is one such instance. It accepts a set of documents and

a set of rules and populates a given ontology using the extracted information. This

populated ontology can be used in other applications developed for different purposes.

As future work, the application developed can provide the functionality for a user to

design an ontology from scratch, rather than just displaying an already created

ontology. Also the preprocessor can be improved to accept different type of

documents, and return the content as simple text based documents. For example, when

an HTML page is given as the input to the preprocessor, it should process it, remove

the HTML tags and return the content as a simple text file. Also the message passing

among the web services is done using json. As future work, the web services can be

modified to support other data formats as well.

When extracting information using the two-phase classifier method, in order for it to give

better output by training, it should have a large amount of data. Also this data is accumulated

in the web service until they are used to train and analyze the information. This will take a

long time to run and will lead to performance issues such as high usage of memory and other

resources. Therefore as future work, this developed system can be improved to have good

performance, while giving accurate information as the output.

- 41 -

REFERENCES

[1] Amit Singhal, "Modern Information Retrieval: A Brief Overview," BULLETIN OF THE

IEEE COMPUTER SOCIETY TECHNICAL COMMITTEE ON DATA ENGINEERING,

2001.

[2] J Cowie and Y Wilks, "Information Extraction," , 1996.

[3] Daya C. Wimalasuriya and Dejing Dou, "Ontology-based information extraction: An

introduction and a survey of current approaches," Journal of Information Science 2010,

vol. 36, no. 3, pp. 306-323, June 2010.

[4] R Studer, V.R Benjamins, and D Fensel, "Knowledge Engineering: Principles and

Methods," in Data and Knowledge Engineering 25, 1998, pp. 161-197.

[5] Daya C. Wimalasuriya and Dejing Dou, "Components for Information Extraction:

Ontology-Based Information Extractors and Generic Platforms," in CIKM '10

Proceedings of the 19th ACM international conference on Information and knowledge

management, 2010, pp. 9-18.

[6] M. Gruninger and M. Uschold, "Ontologies: Principles, Methods and Applications,"

Knowledge Engineering Review, vol. 11, no. 2, pp. 93--136, June 1996.

[7] N. Guarino, D. Oberle, and S. Staab, "What Is an Ontology?," in Handbook on

Ontologies, International Handbooks on Information Systems.: Springer-Verlag Berlin

Heidelberg, 2009.

[8] Noy, Natalya F and McGuinness, Deborah L.. (2001, March) Ontology Development

101: A Guide to Creating Your First Ontology. [Online]. Available:

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-

mcguinness.html

[9] Carlos Vicient Monllaó, "Ontology-based Information Extraction," Interuniversity

Master in Artificial Intelligence (UPC-URV-UB), LSI Department, Technical University

of Catalonia, Master of Science Thesis 2011.

[10] Tim Berners-Lee, James Hendler, and Ora Lassila. (2001, May) The Semantic Web.

Document.

[11] Daya C. Wimalasuriya and Dejing Dou, "Using Multiple Ontologies in Information

Extraction," in 18th ACM conference on Information and knowledge management, 2009,

pp. 235-244.

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html

- 42 -

[12] W3C. (2004, February) Web Service Glossary, W3C Working Group Note 11. [Online].

Available: http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

[13] W3C. (2004, February) Web Service Architecture, W3C Working Group Note 11.

[Online]. Available: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#gengag

[14] Einar Landre and Harald Wesenberg, "REST versus SOAP as Architectural Style for

Web Services," in ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages and Applications, Montréal, Québec, Canada, 2007.

[15] Hao He. (2003, September) What Is Service-Oriented Architecture. Document.

[16] Xinyang Feng, Jianjing Shen, and Ying Fan, "REST：An Alternative to RPC for Web

Services," in ICFIN 2009, First International Conference on Future Information

Networks. , Beijing , 2009, pp. 7-10.

[17] W3C. (2000, May) Simple Object Access Protocol (SOAP) 1.1 , W3C Note 08 May 2000.

[Online]. Available: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[18] P.A. Castillo, J.L. Bernier, M.G. Arenas, J.J. Merelo, and P. Garcia-Sanchez, "SOAP vs

REST: Comparing a master-slave GA implementation," in First International Workshop

of Distributed Evolutionary computation in Informal Environment, New Orleans, 2011.

[19] Roy Thomas Fielding, "Architectural Styles and the Design of Network-based Software

Architectures," University of California, Irvine, Doctoral dissertation 2000.

[20] M. zur Muehlen, J.V. Nickerson, and K.D. Swenson, "Developing Web Services

Choreography Standards – The Case of REST vs. SOAP," Decision Support Systems -

Special issue: Web services and process management, vol. 40, no. 1, pp. 9-29, July 2005.

[21] G. Mulligan and D. Gracanin, "A Comparison of SOAP and REST Implementation of a

Service Based Interaction Independence Middleware Framework," in Winter Simulation

Conference, Austin, TX , 2009, pp. 1423-1432.

[22] Hamish Cunningham, Valenti Tablan, Angus Roberts, and Kalina Bontcheva, "Getting

More Out of Biomedical Documents with GATE's Full Lifecycle Open Source Text

Analytics," PLOS Computational Biology, vol. 9, no. 2, February 2013.

[23] René Witte, Ninus Khamis, and Juergen Rilling, "Flexible Ontology Population from

Text: The OwlExporter," in Seventh International Conference on Language Resources

and Evaluation (LREC'10), Valletta, Malta, 2010.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#gengag
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

- 43 -

[24] Paul Buitelaar, Philipp Cimiano, Stefania Racioppa, and Melanie Siegel, "Ontology-

based Information Extraction with SOBA," in LREC, Genoa, Italy, 2006.

[25] (2015) GATE General Architecture for Text Engineering, Chapter 8, JAPE:Regular

Expressions over Annotations. [Online]. Available:

https://gate.ac.uk/sale/tao/splitch8.html

[26] Hamish Cunningham, Kevin Humphreys, Robert Gaizauskas, and Yorick Wilks, "GATE

- A General Architecture for Text Engineering," in Proceedings of the Fifth Conference

on Applied Natural Language Processing: Descriptions of System Demonstrations and

Videos, Washington, DC, USA, 1997, pp. 29--30.

[27] Ian H Witten et al., "Weka: Practical Machine Learning Tools and Techniques with Java

Implementations," , 1999.

[28] A. K. McCallum. (2002) MALLET: A Machine Learning for Language Toolkit. [Online].

Available: http://mallet.cs.umass.edu

[29] (2015) Java API for RESTful Web Services. [Online]. Available:

http://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services

[30] Java.net. (2014) Java API for RESTful Services (JAX-RS). [Online]. Available:

https://jax-rs-spec.java.net/

[31] (2010, April) Apache Wink 1.4.0 user guide. [Online]. Available:

https://wink.apache.org/1.4.0/Apache_Wink_User_Guide.pdf

[32] Vishnu Vettrival. (2010, April) RESTful Web services with Apache Wink, Part 3: Apache

Wink and the REST - A comparison of Apache Wink and other open source JAX-RS

implementations. [Online]. Available: http://www.ibm.com/developerworks/library/wa-

apachewink3/

[33] (2015) Jersey: RESTful web services in java. [Online]. Available: https://jersey.java.net/

[34] RestEasy:A jboss project. [Online]. Available: http://resteasy.jboss.org/

[35] Restlet Framework. [Online].Available: http://restlet.com/products/restlet-framework/

[36] Kalina Bontcheva, Valentin Tablan, Diana Maynard, and Hamish Cunningham,

"Evolving GATE to Meet New Challenges in Language Engineering," Natural Language

Engineering, vol. 10, no. 3/4, pp. 349-373, 2004.

https://gate.ac.uk/sale/tao/splitch8.html
http://mallet.cs.umass.edu/
http://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
https://jax-rs-spec.java.net/
https://wink.apache.org/1.4.0/Apache_Wink_User_Guide.pdf
http://www.ibm.com/developerworks/library/wa-apachewink3/
http://www.ibm.com/developerworks/library/wa-apachewink3/
https://jersey.java.net/
http://resteasy.jboss.org/
http://restlet.com/products/restlet-framework/

- 44 -

APPENDIX A: Sample Metadata Files – Information Extractor

Extract Currency Information

<?xml version="1.0"?>

<InformationExtractor

xmlns="http://aimlab.cs.uoregon.edu/obie/StandardXMLSchema/1.0/">

<Language>EN</Language>

<IETechnique>http://aimlab.cs.uoregon.edu/obie/IETechniques/LinguisticExtractionR

ules.xml</IETechnique>

<Concept>Currency</Concept>

<ConceptType>Class</ConceptType>

<IdentifierName>hasName</IdentifierName>

<Feature>rule-input:Lookup</Feature>

<Feature>rule:

({Lookup.minorType == post_amount})

: curr -->

{

 gate.AnnotationSet curSet = (gate.AnnotationSet)bindings.get("curr");

 FeatureMap features = Factory.newFeatureMap();

 outputAS.add(curSet.firstNode(), curSet.lastNode(),"CurrencyX", features);

}

</Feature>

</InformationExtractor>

- 45 -

Extract the names of Capitals mentioned in the corpus

<?xml version="1.0"?>

<InformationExtractor

xmlns="http://aimlab.cs.uoregon.edu/obie/StandardXMLSchema/1.0/">

<Language>EN</Language>

<IETechnique>http://aimlab.cs.uoregon.edu/obie/IETechniques/LinguisticExtractionR

ules.xml</IETechnique>

<Concept>Capital</Concept>

<ConceptType>Class</ConceptType>

<IdentifierName>hasName</IdentifierName>

<Feature>rule-input:Lookup</Feature>

<Feature>rule:

({Lookup.minorType == city})

: loc -->

{

 gate.AnnotationSet curSet = (gate.AnnotationSet)bindings.get("loc");

 FeatureMap features = Factory.newFeatureMap();

 outputAS.add(curSet.firstNode(), curSet.lastNode(),"CapitalX", features);

}

</Feature>

</InformationExtractor>

- 46 -

APPENDIX B: Sample Metadata File – Two-Phase Classifier

To identify the Perpetrators given in the corpus

<?xml version="1.0" encoding="UTF-8"?>

<InformationExtractor

xmlns="http://aimlab.cs.uoregon.edu/obie/StandardXMLSchema/1.0/">

<Language>EN</Language>

<IETechnique>http://aimlab.cs.uoregon.edu/obie/IETechniques/TwoStepClassificatio

n.xml</IETechnique>

<Concept>Perpetrator</Concept>

<ConceptType>Class</ConceptType>

<IdentifierName>hasName</IdentifierName>

<Feature>word:attack</Feature>

<Feature>word:kidnap</Feature>

<Feature>word:kill</Feature>

<Feature>word:threaten</Feature>

<Feature>word:burn</Feature>

<Feature>word:civilian</Feature>

<Feature>word:peasant</Feature>

<Feature>word:leader</Feature>

<Feature>word:politician</Feature>

<Feature>word:officer</Feature>

<Feature>word:military</Feature>

<Feature>word:innocent</Feature>

<Feature>word:terrorist</Feature>

<Feature>word:soldier</Feature>

<Feature>word:guerrilla</Feature>

<Feature>word:armedforces</Feature>

<Feature>word:armed</Feature>

<Feature>word:individual</Feature>

<Feature>word:suspected</Feature>

<Feature>word:commando</Feature>

- 47 -

<Feature>word:officers</Feature>

<Feature>word:army</Feature>

<Feature>word:murderer</Feature>

<Feature>word:leftist</Feature>

<Feature>word:rightwing</Feature>

<Feature>word:kidnapper</Feature>

<Feature>word:navy</Feature>

<Feature>word:airforce</Feature>

<Feature>word:revolutionary</Feature>

<Feature>word:movement</Feature>

<Feature>word:spokesman</Feature>

<Feature>word:spokeswoman</Feature>

<Feature>word:clandestine</Feature>

<Feature>word:arson</Feature>

<Feature>word:shoot</Feature>

<Feature>word:dynamite</Feature>

<Feature>word:tnt</Feature>

<Feature>word:explosive</Feature>

<Feature>word:grenade</Feature>

<Feature>word:bullet</Feature>

<Feature>word:axe</Feature>

<Feature>word:fuse</Feature>

<Feature>synset:attack</Feature>

<Feature>synset:kidnap</Feature>

<Feature>synset:kill</Feature>

<Feature>synset:threaten</Feature>

<Feature>synset:burn</Feature>

<Feature>synset:civilian</Feature>

<Feature>synset:peasant</Feature>

<Feature>synset:leader</Feature>

<Feature>synset:politician</Feature>

<Feature>synset:officer</Feature>

- 48 -

<Feature>synset:military</Feature>

<Feature>synset:innocent</Feature>

<Feature>synset:shoot</Feature>

<Feature>gazetteer:firstname</Feature>

<Feature>gazetteer:lastname</Feature>

<Feature>gazetteer:military_rank</Feature>

<Feature>gazetteer:job_title</Feature>

<Feature>gazetteer:terrorist_organization</Feature>

<Feature>gazetteer:instrument_type</Feature>

</InformationExtractor>

