SEISMIC HAZARD ASSESSMENT FOR COLOMBO CITY WITH LOCAL SITE EFFECTS

Serasinghe Mudiyanselage Priyantha

(118625T)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Degree of Master of Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2016

SEISMIC HAZARD ASSESSMENT FOR COLOMBO CITY WITH LOCAL SITE EFFECTS

Serasinghe Mudiyanselage Priyantha

(118625T)

Dissertation submitted in partial fulfillment of the requirement for the degree of Master of Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2016

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher education and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis / dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature :

Date :

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

This above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor :

Date :

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Dr. C.S.Lewangamage, for his continuous friendly support, valuable discussion, critical reading of the manuscript and encouragement during this study. Also I would like to thank Dr. K.K.Wijesundara, Senior Lecturer of University of Peradeniya for providing valuable data and discussion that made this study to progress. Their research experience and the understanding of the subject were of great importance for results achieved through this study.

Also I would like to thank to Director General and the technical staff of National Building Research Organisation for providing borehole data and providing opportunity to use useful computer software etc.

Last but not least, I present my deepest thanks to all other members of academic staff and non-academic staff of Civil Engineering Department, University of Moratuwa www.lib.mrt.ac.lk who gave me the support in various means to finalize this project successfully.

SEISMIC HAZARD ASSESSMENT FOR COLOMBO CITY WITH LOCAL SITE EFFECTS

Abstract

Sri Lanka was believed to have no seismic threat compared to other natural hazards such as floods, droughts, landslides etc. Due to the experiencing of ground shaking in last few decades and the disaster on 26th December, 2004 due to tsunami, Sri Lanka cannot further treated as an earthquake damage free country. Few research has been carried out to investigate seismic hazards at Colombo city area and the response spectrum at rock level for Colombo city area has been proposed with the PGA (Peak Ground Acceleration) of 0.1g. However, no studies have been carried out to develop earthquake response spectrum for Colombo city with local soil variations.

This study discusses generalized soil profiles for Colombo city and earthquake response spectrum with local site effects for Colombo city area.

77 borehole logs done at the study area are collected and locations were plotted on a map of study area. Eight vertical sections were obtained through the study area and using them eight soil profiles which have horizontal soil layers were developed. All eight profiles highlight that the average soil cover in Colombo city area is about 20m. Just above the basement rock dense to very dense silty sand/sand layer is present. Copmost layer also having loose to dense sandy soil. In between both of sand layers, very loose to loose clay/ silt or organic material layer is encountered in all boreholes.

The developed soil profiles were used to analyze with earthquake motions using the computer software called EduShake. The six earthquake motions are applied at rock level as input motions. The response spectra at rock level and the response spectra with the local soil effects were obtained as the output file. The program was run for the eight soil profiles and obtains the average value of both output files as final result. Finally, earthquake response spectrum has been proposed for Colombo city area and it was compared with existing response spectrum at rock level for Colombo city.

According to this study, the PGA with local site effects is 0.13g for Colombo city area.

Key words: Colombo city, local site effect, seismic hazard analysis, intra-plate earthquakes.

TABLE OF CONTENTS

Declaration	i
Acknowledgement	ii
Abstract	iii
Table of contents	iv
List of Figures	vii
List of Tables	ix
Notations	xi

1.	INTRODUCTION1			
1.1 Background		1		
	1.2	Earthquakes	1	
	1.2.1	Type of Earthquakes	1	
	1.2.2	Earthquakesviethetwoold Moratuwa, Sri Lanka	3	
	1.2.3	Earthquakentana inoTheses & Dissertations	3	
	1.3	Scope and Objectivesrt. ac. 1k	5	
	1.4	Overview of the Report	8	
2.	LITE	RATURE SURVEY	10	
	2.1	Terminology	10	
	2.2	Geological and Tectonic Structures	13	
	2.2.1	Geologic Structures of Sri Lanka	13	
	2.2.2	Internal Structure of the Earth	13	
	2.3	Seismic Waves	16	
	2.4	Wave Propagation	18	
	2.5	Waves in Unbounded Media	18	
	2.5.1	One dimensional wave propagation in unbounded media	19	
	2.5.1.1	Longitudinal waves in an infinitely long rod	19	
	2.5.1.2	Torsional waves in an Infinity long rod	.22	
	2.5.1.3	Solution for the one dimensional equation of motion	23	

	2.6	Estimation of Shear Wave Velocity	25
	2.6.1	Geologic Considerations	26
	2.6.2	Site classification	26
	2.6.3	Shallow velocity profiles and intermediate sites	27
	2.6.4	SPT N-value and Vs correlations for sands	. 28
	2.6.5	SPT N-value and Vs correlations for clays and silts	28
3.	METH	HODOLOGY	31
	3.1	General	31
	3.2	Obtaining Sections Through Boreholes	31
	3.3	Development of profiles	32
	3.3.1	Development of bottom most SM layer	33
	3.3.2	Sther Layers of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	37
	3.4	Estimation of Shean Wave Velocity Profiles	. 38
	3.4.1	Bottommost SM Layer	38
	3.4.2	Silt/Clay Layer	. 38
	3.4.3	Peat Layer	38
	3.4.4	Topmost SM/SP Layer	39
	3.5	Unit Weight of Soil (γwet)	39
	3.6	Computer Analysis with EduShake	40
	3.6.1	Input data	40
	3.6.2	Specification of input motion	44
	3.6.3	Analysis of data	46

3.6.4	Results of the analysis	47
2.0		• •

4.0	RESULTS OF THE STUDY 5			
05.	CONCLUSION AND RECOMMENDATIONS			
	5.1	Conclusion and Recommendations	65	
	5.2	Further Study	67	
	Refere	ence List	68	
	Annexure 1: A sample of borehole log `		70	
	Annexure 2: Summary of borehole log		75	
	Annex	cure 3: Earthquake data in and around Sri Lanka	79	
	Annex	4: Section through of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	83	
	Annex	ure 5: Input earthquake motion	92	

List of Figures

Figure 1.1 :Number of earthquakes per year	2
Figure 1.2 : Earthquakes in and around Sri Lanka	4
Figure 1.3 : Study area with borehole locations	7
Figure 2.1- Sample of an accelerograph	10
Figure 2.2 : Internal Structure of the Earth	14
Figure 2.3 :Convection currents in mantle	15
Figure 2.4- Deformations created by body waves	17
Figure 5-Deformationsicreated by surface ways i Lanka.	18
Figure 26 - Infinitely long linear elastic, constrained rod www.lib.mrt.ac.lk	20
Fig. 2.7 – Torque and rotation at ends of element of length dx	
and cross-sectional area	22
	24
Figure 2.8 : Particle displacement	27
Figure 2.8 : Particle displacement Figure 2.9 : Geologic time scale	24
Figure 2.8 : Particle displacement Figure 2.9 : Geologic time scale Figure 3.1 : Locations of sections	24 26 32
Figure 2.8 : Particle displacement Figure 2.9 : Geologic time scale Figure 3.1 : Locations of sections Figure 3.2 : Developed profiles	24 26 32 35
Figure 2.8 : Particle displacement Figure 2.9 : Geologic time scale Figure 3.1 : Locations of sections Figure 3.2 : Developed profiles Figure 3.3 : First screen of EduShake	24 26 32 35 41
 Figure 2.8 : Particle displacement Figure 2.9 : Geologic time scale Figure 3.1 : Locations of sections Figure 3.2 : Developed profiles Figure 3.3 : First screen of EduShake Figure 3.4 : Define of layer properties in EduShake 	24 26 32 35 41 42
 Figure 2.8 : Particle displacement Figure 2.9 : Geologic time scale Figure 3.1 : Locations of sections Figure 3.2 : Developed profiles Figure 3.3 : First screen of EduShake Figure 3.4 : Define of layer properties in EduShake Fugure3.5 : Define of layer properties in compact form 	 24 26 32 35 41 42 42

Figure 3.7 : 'Output Location' window	44		
Figure 3.8 : Define of ground motion4			
Figure 3.9 : Input horizontal acceleration of motion 1	45		
Figure 3.10 :Spectral acceleration of 'Motion 1'	46		
Figure 3.11 : Required data for output file	47		
Figure 3.12 : Ground response spectra for six earthquakes			
and mean value	48		
Figure 4.1 : RSRL and RSLSE for profile A-A	59		
Figure 4.2: RSRL and RSLSE for profile B-B	59		
Figure 4.3 :RSRLand RSLSE for profile C-C	59		
Figure RSRL and RSESE for profile D-D Electronic Theses & Dissertations	60		
Figure 4.5 : RSREvand RSESE for profile 1-1	60		
Figure 4.6 : RSRL and RSLSE for profile 2-2	60		
Figure 4.7 : RSRL and RSLSE for profile 3-3	61		
Figure 4.8 : RSRL and RSLSE for profile 4-4	61		
Figure 4.9 : RSRL and RSLSL for mean value of all profiles	64		
Figure 4.10 : Sa and RSLSL with time	64		
Figure 5.1: Generalized soil profile for Colombo city area	65		
Figure 5.2: RSRL (Uduweriya et.al (2013)) with RSLSE for			
Colombo city area	66		

List of Tables

Table 2.1 : Effect of increase of various factors on G_{max} and V_s .	25
Table 2.2 : Caltrans/NEHRP soil profile types	36
Table 2.3 : Regression co-efficient	28
Table 2.4 : SPT – Vs correlation equations for sands	29
Table2.5 : SPT – Vs correlation for clays and silts	30
Table 3-1 Calculation of average SPT-N value for bottommost SM layer	35
Table 3-02 Calculation of average depth of the bottommost SM layer	37
Table 3.3 – Variation of unit weight with SPT-N value	39
Table 4.1 : Mean acceleration of RSRL and RSLSE motions	
Table Metalacceleration of Moratuwa, Sri Lanka. Metalacceleration of RSRL and RSESE thiotions www.lib.mrt.ac.lk for profile B-B	51 52
Table 4.3 : Mean acceleration of RSRL and RSLSE motions	
for profile C-C	53
Table 4.4 : Mean acceleration of RSRL and RSLSE motions	
for profile D-D	54
Table 4.5 : Mean acceleration of RSRL and RSLSE motions	
for profile 1-1	55
Table 4.6 : Mean acceleration of RSRL and RSLSE motions	
for profile 2-2	56
Table 4.7 : Mean acceleration of RSRL and RSLSE motions	
1 for profile 3-3	57

Table 4.8 : Mean acceleration of RSRL and RSLSE motions

for profile 4-458

Table 4.9 :RSRL and RSLSE motion for mean value of all profile	62
Table 4.10 : Sa, d and RSLSE with time	63

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Notations

-	Crosssectional area
-	Young's modules
-	Arbitrary functions
-	Shear modulus
-	Polar moment of inertia of the rod about its axis
-	Wave number
-	Stiffness of the object
-	Constrained modulus
-	Mass of the object
-	Peak ground acceleration
-	peak horizontal acceleration
-	Peak horizontal acceleration
-	Response spectrum at rock level
-	Response spectrum with localisite effect Sri Lanka.
- (3	Standard Penterania Teleses & Dissertations
_ (Standard Cone Penetration Test
-	Spectral acceleration
-	Time
-	Period, torque
-	Natural period of object
-	Period of the applied loading
-	Distance
-	Particle displacement in x,y and z directions respectively
-	Longitudinal wave propagation velocity
-	Torsional wave propagation velocity
-	Steady state harmonic stress
-	Wave length, Lame constant
-	Lame constant
-	Circular frequency
-	Poisson ration

ρ	-	Density of element
ξ	-	Damping ratio
$\sigma_x, \sigma_y, \sigma_y$	σ _z -	Normal stress in x, y and z-direction respectively
σ_0	-	Stress wave amplitude
$\varepsilon_{x,} \varepsilon_{y,} \varepsilon_{z}$	-	Strain in x, y and z-direction respectively
$\bar{\mathcal{E}}$	-	Dilatation
Φ,Ψ	-	Potential functions

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk