OPTIMUM REACTIVE POWER COMPENSATION METHODOLOGY TO MINIMIZE SYSTEM OVERVOLTAGE CONDITIONS

Colombage Kasun Sachithra Perera

(128777T)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2017

OPTIMUM REACTIVE POWER COMPENSATION METHODOLOGY TO MINIMIZE SYSTEM OVERVOLTAGE CONDITIONS

COLOMBAGE KASUN SACHITHRA PERERA

(128777T)

Science in Electrical Installations

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2017

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: (C. K. S Perera) 09th February 201 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters under my supervision.

Signature of the supervisor:

(Dr. Asanka Rodrigo)

09th February 2017

Abstract

Sri Lankan Power system has experienced power frequency over voltages at steady state conditions predominantly at New Anuradhapura, New Chilaw and Chunnakam Grid Sub Stations. New Anuradhapura being connected to the lengthiest 220kV transmission lines from Kothmale (163km) and New Chilaw being connected to the Lakvijaya Power Station, which accounts to the highest capacity of national generation contribution and Chunnakam having long distance radial connection are the root causes for the issue.

Currently the network overvoltages are mainly monitored at 220kV level due to sensitivity of the protection schemes implemented on the 220kV network equipment. Eg v/f, overvoltage protection, but all network equipments are vulnerable to overvoltage conditions despite their operation voltage level.

In 27th September 2015, the most destructive event in terms of overvoltage occurred in the Sri Lankan power system initiating with tripping of Lakvijaya Gen 03 and ultimately causing a blackout. Post failure studies concluded with stressing out lack of reactive power compensation for overvoltage scenarios in present network topology.

In power system, the reactive power compensation is important for system voltage profile. This is also helpful to power factor improvement and loss reduction.

This study illustrates effectiveness of dynamic stability with integration of variable shunt reactors and static var compensators to the existing network topology, further studies are carried out to assess the effectiveness of disconnecting selected circuits to minimize overvoltage problem.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Dedication

Thank you GOD

I dedicate this thesis to my beloved parents, the two pillars in my life who have guided and motivated me to reach for my best.

To my sister who has been the strength and joy for my whole life.

To my beloved wife, your love made everything possible.

Acknowledgements

First I pay my sincere gratitude to Dr. Asanka Rodrigo who encouraged and guided me to develop this model and on preparation of final thesis.

I take this opportunity to extend my sincere thanks to Eng. Eranga Kudahewa and all engineers of System Control Centre of Ceylon Electricity Board who supported and facilitated with necessary data and information.

It is a great pleasure to remember all my lecturers of University of Moratuwa and all friends in the post graduate program, for backing me from beginning to end of this course.

TABLE OF CONTENTS

Decla	ration of	f the car	ndidate and supervisor	i
Abstract			ii	
Dedic	ation			iii
Ackno	owledge	ments		iv
Table	of conte	ent		v
List o	f figures			viii
List o	f tables			xii
List o	f abbrev	iations		xiii
1.	1. Background			1
	1.1	Introd	uction	1
	1.2	Power	frequency over voltages	2
	1.3	Voltag	ge Criteria of Sri Lanka	2
	1.4	Overv	oltage Can Be Caused By Number of Reasons	2
	1.5	Reacti	ve Power and Voltage Control in Transmission Network	3
	1.6	Metho	ethods of Overvoltage Control Electronic Theses & Dissertations	
1.2		Motiv	tivation lib mrt ac lk	
	1.8	Object	tive of the Study	7
	1.9	Outco	mes of the study	7
	1.10	Scope	of the work	7
2.	Shunt	Reactor	rs and Static Var Compensators	8
	2.1	Shunt	Reactors	8
		2.1.1	Introduction to Shunt Reactors	8
		2.1.2	Variable Shunt Reactor (VSR)	9
		2.1.3	Transformer Type VSR	9
		2.1.4	Thyristor Controlled VSR (TCR)	11
	2.2	Static	Var Compensators	12
		2.2.1	Introduction to SVC	12
		2.2.2	Thyristor Switched Capacitor (TSC)	13
		2.2.3	Thyristor Controlled Reactor (TCR)	13
		2.2.4	TSC plus TCR	13

		2.2.5	Basic operation of SVC	14
3.	Existi	ng Tran	smission System of Sri Lanka	19
	3.1	Existing excess reactive power compensation methodology 19		
	3.2	Steady	v state over voltage on Sri Lankan transmission network	19
	3.3	Transi	ent over Voltage on Sri Lankan Transmission Network	25
4.	Overv	iew and	PSS®E model validation	26
	4.1	Overv	iew	26
		4.1.1	Overview of Sri Lankan Power System	26
		4.1.2	Study Case -Total System Failure Occurred On 27th	
			September 2015	26
		4.1.3	Sequence of tripping of events	27
		4.1.4	Generation status before the system failure	28
	4.2	Model	ing Sri Lankan power system in PSS®E and validation	33
		4.2.1	Steady state PSS/E simulation of Sri Lankan power system	
			prior to the total system failure	33
	lines	4.2.2	Dynamic simulation of Sri Lankan power system in PSS/E	33
	4.3	Analy	zing Results of Dynamic Simulation	34
5.	Simula	ation an	d analysis of SR/SVC selection	39
	5.1	Metho	dology	39
	5.2	Integra	ation of Shunt Reactor	40
		5.2.1	Test Case A1-Installation of 100Mvar reactor at New	
			Anuradhapura	40
		5.2.2	Test Case B1-Installation of 100Mvar reactor at	
			Lakvijaya PS	44
		5.2.3	Test Case C1-Installation of 100Mvar reactor at	
			New Chilaw GSS	48
		5.2.4	Shunt Reactor Integration Summery	52
		5.2.5	Validation of 100Mvar SR at New Anu. GSS	55
	5.3	Integra	ation of SVC	58
		5.3.1	Test Case A2-Installation of +100/-225 Mvar SVC at	
			Biyagama GSS	58

		5.3.2	Test Case B2-Installation of +100/-175 Mvar SVC at	
			Kotugoda GSS	61
		5.3.3	Test Case A2-Installation of +100/-175 Mvar SVC at	
			Pannipitiya GSS	64
		5.3.4	SVC Integration Summery	68
		5.3.5	Validation of +100/-175 Mvar SVC at Kotugoda GSS	70
	5.4	Taking	g selected transmission lines out of service	74
	5.5	Overa	ll Analysis	78
5.6 Steady State Analysis for recommended solution of integrat				
		100 M	lvar VSR at New Anu.	79
6.	Discus	ssion an	d Conclusions	80
	6.1	Discus	ssion	80
	6.2	Conclu	usion	81
Refere	Reference list			83

LIST OF FIGURES

Figure 2.1	The reactor consume the generated reactive power from the line	8
Figure 2.2	Thyristor controlled reactor three-phase assembly1	
Figure 2:3	Voltage and current waveforms of TCR	
Figure 2.4	Basic arrangement of SVC	
Figure 2.5	Graphical solution of SVC operating point for given system	15
Figure 2.6	SVC arrangements for 220kV BUS	17
Figure 2.7	SVC control diagram 1	
Figure 3.1	Weekly Diagram of voltage change in New Anu. and of	
	consumption in Sri Lanka	21
Figure 3.2	New Anu. 220kV voltage variation on 09/02/2015	22
Figure 3.3	220kV network voltage variations during the failure on 27/09/2016	25
Figure 3.4	132kV network voltage variations during the failure on 27/09/2016	25
Figure 4	Actual system frequency variation during the failure.	29
Figure 4.2	220kV network voltage variations during the failure.	
Figure 4.3	132kV network voltage variations during the failure.	31
Figure 4.4	Kelanitissa 220kV B/B voltage, system frequency variation,	
	KCCP active power and reactive power variation.	31
Figure 4.5	Kelanitissa 220kV B/B voltage, system frequency variation, AES active power and reactive power variation.	35
Figure 4.6	Actual and Simulated System Frequency fluctuations during the to	tal
	system failure	36
Figure 4.7	Voltage fluctuations of 220 kV System during the total system	
	failure	36
Figure 4.8	Voltage fluctuations of 132 kV System during the total system	
	failure	37
Figure 4.9	Active power variation during the total system failure	37
Figure 4.10	Reactive power variation during the total system failure	38

Figure 5.1	100Mvar reactor at New Anu. GSS 220kV BUS	40
Figure 5.2	220kV Voltage variation with and without 100Mvar Reactor at	
	New Anu.	41
Figure 5.3	132kV Voltage variation with and without 100Mvar Reactor at	
	New Anu.	41
Figure 5.4	Koth Gen 02 reactive power response with and without Reactor at	
	100Mvar New Anu	42
Figure 5.5	100Mvar New Anu. reactor at output variation.	43
Figure 5.6	100Mvar reactor at LVPS. 220kV BUS	44
Figure 5.7	220kV Voltage variation with and without Reactor at 100Mvar	
	LVPS.	45
Figure 5.8	132kV Voltage variation with and without Reactor at 100Mvar	
	LVPS.	45
Figure 5.9	Koth Gen 02 reactive power response with and without Reactor at	
	100Mvar LVPS	46
Figure 5.10	100Mvar New Anu. reactor at output variation	47
Figure 5.	100Mvar reactor at New Chilaw GSS 220kV BUS	48
Figure 5.12	220kV Voltage variation with and without Reactor at 100Mvar	
	New Chilaw	49
Figure 5.13	132kV Voltage variation with and without Reactor at 100Mvar Ne	W
	Chilaw	49
Figure 5.14	Koth Gen 02 reactive power response with and without Reactor at	
	100Mvar New Chilaw	50
Figure 5.15	100Mvar New Chilaw reactor at output variation	51
Figure 5.16	New Anuradhapura 220kV variation with and without reactor for	
	all test cases	52
Figure 5.17	Biyagama 132kV variation without and with reactor for all test	
	cases	53
Figure 5.18	Kothmale Gen 02 reactive power response without and with reactor	or
	for all test cases	54
Figure 5.19	Reactor response for all test cases	54

Figure 5.20	New Anu. 220kV variation for Pannipitiya both T/F fault56		
Figure 5.21	New Anu. 132kV variation for Pannipitiya both T/F fault 56		
Figure 5.22	Koth Gen 02 reactive power response for Pannipitiya both T/F fault57		
Figure 5.23	New Anu. 100Mvar reactor response for Pannipitiya both T/F fault 57		
Figure 5.24	+100/-225 Mvar SVC at Biyagama 220kV bus	58	
Figure 5.25	220kV variation with +100/-225 Mvar SVC at Biyagama	59	
Figure 5.26	132kV variation with +100/-225 Mvar SVC at Biyagama	59	
Figure 5.27	Koth Gen 02 reactive power response with and without SVC at		
	Biyagama	60	
Figure 5.28	+100/-225 Mvar SVC at Biyagama, reactor at output variation	61	
Figure 5.29	+100/-175 Mvar SVC at Kotugoda 220kV bus	61	
Figure 5.30	220kV variation with +100/-175 Mvar SVC at Kotugoda	62	
Figure 5.31	132kV variation with +100/-175 Mvar SVC at Kotugoda	62	
Figure 5.32	Koth Gen 02 reactive power responce with and without SVC at		
	Kotugoda	63	
Figure 5.33	+100/-175 Mvar SVC at Kotugoda, reactor at output variation	64	
Figure 5.34	+100/-225 Mvar SVC at Pannipitiya 220kV bus	64	
Figure 5.35	220kV variation with +100/-175 Mvar SVC at Pannipitiya	65	
Figure 5.36	132kV variation with +100/-175 Mvar SVC at Pannipitiya	65	
Figure 5.37	Koth Gen 02 reactive power response with and without SVC at		
	Kotugoda	66	
Figure 5.38	+100/-175 Mvar SVC at Kotugoda, reactor at output variation	67	
Figure 5.39	Kothmale Gen $02\ reactive\ power\ response\ without\ and\ with\ SVC$		
	for all test cases	68	
Figure 5.40	SVC response for all test cases	69	
Figure 5.41	Biya 220kV(p.u) for BB fault at Biya – Hydro max.	71	
Figure 5.42	Kotugoda SVC response for BB fault at Biya – Hydro max.	71	
Figure 5.43	Biya 220kV(p.u) for BB fault at Biya – Thermal max.	72	
Figure 5.44	Kotugoda SVC response for BB fault at Biya – Thermal max.	73	
Figure 5.45	Out of service transmission lines	75	
Figure 5.46	New Anu. 220kV variation with and without out of service		
	transmission lines	76	

Figure 5.47	New Anu. 220kV variation with and without out of service	
	transmission lines	76
Figure 5.48	Koth Gen 02 reactive power response with and without out of	
	service transmission lines	77

LIST OF TABLES

Table 1.1	Allowable voltage variation 2		
Table 3.1	Recorded maximum overvoltage values in 2015		
Table 3.2	Chunnakum transmission cct shedding data for Jan 2016	23	
Table 3.3	New Anu. Transmission cct shedding data for Jan 2016		
Table 4.1	Total Failure sequence according to the BEN records and SCADA		
	records	27	
Table 4.2	Generation pattern used in the study	28	
Table 4.3	Failure event sequence with PSS/E simulated time		
Table 5.1	Study Scenarios 3		
Table 5.2	Shunt reactor integration summery table 5		
Table 5.3	Summery Table	78	
Table 5.4	Steady State Voltages of with and without New Anu. 100Mvar University of Moratuwa, Sri Lanka. Reactor Electronic Theses & Dissertations	79	
	www.lib.mrt.ac.lk New Anu. 100Mvar reactor	79	

LIST OF ABBREVIATIONS

Abbreviation	Description
CEB	Ceylon Electricity Board
GSS	Grid Sub Station
LVPS	Lakvijaya Power Station
PSS/E	Power System Simulator for Engineers
SVC	Static Var Compensator
VSR	Variable Shunt Reactor
SCC	System Control Centre
PS	Power Station
BSC	Breaker Switch Capacitor
BB	Bus Bar

