

ATTENTION MONITORING WITH

ELECTROENCEPHALOGRAPHY AND ARTIFICIAL

NEURAL NETWORK

 Uduwila Arachchi Charitha Senarathne

(139102N)

Degree of Master of Science in Artificial Intelligence

 Department of Computational Mathematics

University of Moratuwa

Sri Lanka

December 2015

ATTENTION MONITORING WITH

ELECTROENCEPHALOGRAPHY AND ARTIFICIAL

NEURAL NETWORK

Uduwila Arachchi Charitha Senarathne

(139102N)

Thesis submitted in partial fulfilment of the requirements for the

degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

December 2015

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material

previously submitted for a Degree or a Diploma in any University and to the best of my

knowledge and belief, it does not contain any material previously published or written by

another person or myself except where due reference is made in the text. I also hereby give

consent for my dissertation, if accepted, to be made available for photocopying and for

interlibrary loans, and for the title and summary to be made available to outside organization.

Name of Student Signature of Student

Charitha Senarathne Date:

Supervised by Signature of Supervisor

Prof. Asoka S. Karunananda Date:

 ii

Abstract

It’s a well-known fact that people lose attention without notice in many instances. Learning

is one of them. If we remain attentive in whole leaning process, it will certainly improve our

learning efficacy. If there is any possibility to identify whether we remain attentive during

learning process and remind us when we lose the attention, then we can certainly improve

our learning effect. In this research, monitoring EEG signals with ANN technology is used to

identify whether student remain attentive during learning process.

In normal classroom environment, observation is the main way to identify whether student is

attentive to the lecture. However, this needs huge effort from teacher to monitor the students.

Distance learning is popular among current society, in that case it is rather difficult to use

standard methods like observation to monitor the attention. Neurons in our brain are always

active and emit electric pulses all the time, hence we can use those to measure the level of

attention in above scenarios.

A research has been conducted to monitor attention in a particular task by a person and to

signal the person immediately so that he/she can get the mind back to the task. The solution

will collect the EEG data from subjects and transformed them in to frequency domain using

Fast Fourier Analysis (FFT). These data are used to train an Artificial Neural Network

(ANN) regarding known EEG wave patterns of attention and monitor the current EEG wave

forms in a prescribed time interval. Upon receiving the current wave pattern, it will be fed in

to the trained neural network and detect whether the person has lost the attention. Then it will

generate a vibration alert to the mobile phone if the attention has been lost.

The solution has been tested with in a classroom scenario with 20 students and results shows

that 75% of students were able to get back to the class in few seconds.

 iii

Contents

Page

Chapter 1 Introduction 1

1.1 Prolegomena 1

1.2 Aim and Objectives 1

1.3 Background and Motivation 2

1.4 Problem in Brief 3

1.5 Novel Approach to monitoring the attention 3

1.6 Structure of the thesis 3

1.7 Summary 4

Chapter 2 Emergence of Brain Machine Interfacing 5

2.1 Introduction 5

2.2 Related Research 5

2.2 EEG Appliances 6

2.3 Summary 8

Chapter 3 Electroencephalography (EEG) and Artificial Neural Network (ANN) 9

3.1 Introduction 9

3.2 Electroencephalography(EEG) 9

3.3 Artificial Neural Network (ANN) 13

3.4 Fourier Transformation (FFT) 16

3.5 Mobile Applications 17

3.6 Summary 17

Chapter 4 ANN Approach to Recognize the Degree of Human Attention 18

4.1 Introduction 18

 iv

4.2 Hypothesis 18

4.3 Inputs to System 18

4.4 Output from the System 18

4.5 Process 18

4.6 Features 19

4.7 Summary 19

Chapter 5 Design of FocusGain Application 20

5.1 Introduction 20

5.2 Data Acquisition with NeuroSky Mindwave Headset 21

5.3 Artifact Removal 22

5.4 Feature Extraction and Selection 22

5.5 Classification with Artificial Neural Network 23

5.6 Mobile Application Development with Android 24

5.7 Summary 25

Chapter 6 Implementation of FocusGain Application 26

6.1 Introduction 26

6.2 Data Acquisition 26

6.3 Data Pre Processing 27

6.4 Feature Extraction and Selection 28

6.5 Designing and Training Artificial Neural Network 29

6.6 Android Application Development 31

6.7 Summary 31

Chapter 7 Evaluation 32

7.1 Introduction 32

 v

7.2 Experimental Design 32

7.3 Experimental Results 33

7.4 Conclusions from the Experiment 34

7.5 Summary 34

Chapter 8 Conclusion 35

8.1 Introduction 35

8.2 Conclusions 35

8.3 Limitations and Further Work 36

8.4 Summary 37

References 38

Appendix A Data Acquisition using NeuroSky Headset 40

Appendix B FocusGain Application 46

Appendix C Code - FocusGain Application 49

 vi

List of Figures

Page

Figure 2.1: Emotive EPOC Headset 6

Figure 2.2: NeuroSky Mindwave Mobile Headset 7

Figure 2.3: Comparison of EEG Appliances (Source: Reference) 7

Figure 3.1: Brain functionality Map 10

Figure 3.2: Placement for a 64-electrode system using the International 10-20 standard 10

Figure 3.3: EEG wave (Voltage value against time) 11

Figure 4.1: Structure of a Simple Neuron 13

Figure 4.2: Artificial Neural Network with 3 layers 15

Figure 5.1: Top level architecture of Focus Gain application 20

Figure 5.2: Design of the Focus Gain application 21

Figure 5.3: EEG Frequency Ranges 23

Figure 5.4: Design of the Artificial Neural Network 24

Figure 6.1: EEG Data Collector Application 27

Figure 6.2: EEG Sample Data file 27

Figure 6.3: Application to train the ANN 30

 vii

List of Tables

Page

Table 7.1: Results from the Experiment 34

 1

 Chapter 1

Introduction

1.1 Prolegomena

With the increasing popularity of in AI, numerous intelligent techniques including Artificial

Neural Network [1], Genetic Algorithm [1], Expert Systems [1] are emerging in the software

industry. In particular the real world classification problems can be successfully solved by

using the AI techniques. This project has been conducted to develop a system to recognize

the student attention in classroom environment using the EEG signals and Artificial Neural

Network. Among other AI techniques Artificial Neural Network has provided effective

solution to problem solving where classification of large volume of data is presented.

Brainwave analyzing is an emerging field of computing where exciting applications have

been reported such as Mind controlled vehicles [2], Mind controlled games [3] and wheel

chairs [4], using brain waves for medical diagnosis [5].

In this connection, this chapter present aim and objectives, background and motivation,

problem in brief, novel approach to recognize the degree of attention of student in classroom

environment and structure of the overall thesis.

1.2 Aim and Objectives

The aim of this project is to develop a system for recognizing the student attention in

classroom environment. In order to reach this aim following objectives are identified.

1. To critically study the domain of brain computer interface field.

2. To critically analyze the current approaches to recognize the attention level in

different environments.

3. Recognizing the suitable brain wave monitoring appliances to recognize the attention

level in class room environment.

 2

4. Identify processing libraries and environments which can be utilized to analyze the

raw EEG signals.

5. Acquire raw brain wave data on attentive sessions from group of students.

6. Develop a mobile application to alert the student when he is not attentive in the

lecture.

1.3 Background and Motivation

It’s a well-known fact that people lose attention without notice in many instances. Learning

is one of them. If we remain attentive in whole leaning process, it will certainly improve our

learning efficacy. If there is any possibility to identify whether we remain attentive during

learning process and remind us when we lose the attention, then we can certainly improve

our learning effect. In this research, monitoring EEG signals with ANN technology is used to

identify whether student remain attentive during learning process.

In normal classroom environment, observation is the main way to identify whether student is

attentive to the lecture. However, this needs huge effort from teacher to monitor the students.

Distance learning is popular among current society, in that case it is rather difficult to use

standard methods like observation to monitor the attention. Neurons in our brain are always

active and emit electric pulses all the time, hence we can use those to measure the level of

attention in above scenarios.

There are numerous applications to support the meditation by providing the user with the

details on meditation session. Most of them are expensive and result of some advanced

research such as BrainBot. There are commercial BCI applications available in the market for

entertainment, medical diagnosis, meditation and etc.[5] . No one has yet tried to come up

with an application which support learning process of a student. Student tend to lose the

attention frequently in a lecture which drastically reduce her/his learning outcomes. Hence

developing an application to recognize the attention level of a student in classroom

environment would be a challenge in research perspective. This kind of solution would also

have a greater commercial value as well.

 3

1.4 Problem in Brief

It’s a well-known fact that people lose attention without notice in many instances. Learning

is one of them. If we remain attentive in whole leaning process, it will certainly improve our

learning efficacy. If there is any possibility to identify whether we remain attentive during

learning process and remind us when we lose the attention, then we can certainly improve

our learning effect. In this research, monitoring EEG signals with ANN technology is used to

identify whether student remain attentive during learning process. In normal classroom

environment, observation is the main way to identify whether student is attentive to the

lecture. However, this needs huge effort from teacher to monitor the students. Distance

learning is popular among current society, in that case it is rather difficult to use standard

methods like observation to monitor the attention. Neurons in our brain are always active and

emit electric pulses all the time, hence we can use those to measure the level of attention in

above scenarios. For this purpose we have to use EEG monitoring appliance, most of the

EEG monitoring appliances are expensive and not portable as well.

1.5 Novel Approach to monitoring the attention

This research has been conducted to monitor attention in a particular task by a person and to

signal the person immediately so that he/she can get the mind back to the task. The solution

will collect the EEG data from subjects and transformed them in to frequency domain using

Fast Fourier Analysis (FFT). These data are used to train an Artificial Neural Network

(ANN) regarding known EEG wave patterns of attention and monitor the current EEG wave

forms in a prescribed time interval. Upon receive of current wave pattern, it will be fed in to

the trained neural network and detect whether the person has lost the attention. Then it will

generate a vibration alert to the mobile phone if the attention has been lost.

1.6 Structure of the thesis

Rest of the thesis is structure as follows. Chapter 2 critically review the domain of Brain

wave Interface by highlighting current solution, practices, technologies, limitations defining

the research problem. Chapter 3 described essentials of EEG signals and Artificial Neural

 4

Network showing its relevance to implement a solution to recognize the degree of human

attention. Chapter 4 present our ANN approach to recognize the level of student attention in

classroom environment. Chapter 5 is on the design of Focus Gain application to monitor the

student attention. Chapter 6 contains details of implementation of the system which

recognize degree of human attention using EEG signals and ANN. Chapter 7 reports on

evaluation of the new solution by explaining the evaluation strategy, participants, data

collection, data representation and data analysis. Chapter 8 concludes the outcome of the

research with the note on further work.

1.7 Summary

This chapter describe the full picture of the whole project showing research problem,

objectives, hypothesis and the novel solution. Next chapter will be on literature review of

Brain wave Interface domain practices, technologies and issues with a view to define the

research problem.

 5

 Chapter 2

Emergence of Brain Machine Interfacing

2.1 Introduction

This chapter explains the background for this project, and identifies the main research

questions and methods to bring clarity and define the projects focus, based on lessons learned

from earlier efforts and new anticipations.

2.2 Related Research

The EEG signal is a voltage signal that arises from synchronized neural activity, that is, the

coordinated firing of millions of neurons in the brain. It can be measured by non-invasively

placing an electrode on or near the scalp, and for greater accuracy, by implanting an

electrode in the skull [6].

The idea of detecting mental states using EEG is not new. In fact, a brain-computer interface

(BCI) system is specifically designed to detect the mental state of its user. In other words, a

BCI system allows the brain to communicate with the system directly through EEG signals.

The study of BCI as a field emerged from the desire for new assistive technology, targeted at

handicapped patients, especially those paralyzed [2].

The playstation project builds on work done by Andersen, Juvik, Kjellen, and Storstein, as

part of a multidisciplinary course at NTNU in cooperation with Stig Hollup at Department of

Psychology, their assignment was to steer a radio controlled helicopter using the principles of

neurofeedback. With their solution they were able to adjust the speed of the rotor using the

level of concentration in a test person, and lift it off the ground. They developed an

application that interfaced EEG software with the radio controller software of the helicopter.

Here are some research done recently and ongoing research on BCI.

 6

As published in Neuroscience Letters, Scherer developed a system [3] for classifying EEG

signals using Fisher’s linear discriminant analysis (FLDA) and a virtual keyboard for

spelling. This identifies left, right and down thoughts.

Yaomanee identified locations on the scalp that are suitable for detecting attention related

EEG signals. When subjects are attentive it is noted that β activity was greater.

 Li developed an emotional learning system. He uses two learning methods, k-nearest

neighbor (kNN) and naive Bayes.

2.2 EEG Appliances

There are numerous EEG appliances available in the current market. Analyze has been

conducted to identify the suitable EEG appliance for this project. Two headsets are identified

as they fulfill the requirements of this research.

2.2.1 Emotive EPOC

Emotive EPOC can be considered as research grade EEG headset. It provides 14 EEG

channels, wireless/Bluetooth connectivity. All the sensors are dry and it’s portable device. It

is compatible with Windows, Mac, Android and iOS. At the time of writing it cost around

$399 [10].

Figure 2.1: Emotive EPOC Headset

 7

2.2.2 NeuroSky Mindwave Mobile

The NeuroSky Mindwave is a low cost single-electrode EEG headset, and it has been proven

effective in detecting user’s mental states []. It has one dry sensor which is fixed to the

forehead area. It supports Bluetooth connectivity and able to provide raw EEG data. For the

development purpose it provide C#.NET API. At the time of writing it cost around $99.

Device is compatible with Windows, Mac, Android and iOS [10]

Figure 2.2: NeuroSky Mindwave Mobile Headset

2.2.3 Comparison of EEG Appliances

Here is a comparison of EEG appliances in the market.

Figure 2.3: Comparison of EEG Appliances (Source : Wikipedia)

 8

2.3 Summary

This chapter analyze the current trends in the field of Brain Computer Interface. It discusses

past and current researches in the field and approaches which are taken to solve the similar

sort of problems which is helpful for this research. It explains the EEG appliances available

in the market and their features as well.

 9

 Chapter 3

Electroencephalography (EEG) and Artificial Neural

Network (ANN)

3.1 Introduction

This chapter presents the major technologies associated with the research. EEG signals are

the main input to the system. EEG signals are processed by manipulating Fourier

Transformation and Independent Component Analysis (ICA). Artificial Neural Network is

used to classify the signals in to attentive or none attentive categories. Mobile Application is

used to alert the user. This chapter described those technologies in detail.

3.2 Electroencephalography (EEG)

The brain have always fascinated humans, and particularly a German scientist named Hans

Berger, who discover electroencephalography (EEG) about 80 years ago. EEG monitoring

can be divided in to two major groups. Invasive and non-invasive. An invasive approach

requires physical implants of electrodes in humans or animals, making it possible to measure

single neurons or very local field potentials. A non-invasive approach makes use of, for

instance, magnetic resonance imaging (MRI) and EEG technology to make measurements

[11].

 10

Figure 3.1: Brain functionality Map (Source:Wikipedia)

3.2.1 Placement of Electrodes

The positions for EEG electrodes should be chosen in a way that all cortex regions which

might exhibit interesting EEG patterns are covered. For most applications this is usually the

whole cortex. An internationally accepted standard for electrode placements is the 10-20

system [12].

Figure 3.2: Placement for a 64-electrode system using the International 10-20 standard.

 11

The 10–20 system or International 10–20 system is an internationally recognized method to

describe and apply the location of scalp electrodes in the context of an EEG test or

experiment. This method was developed to ensure standardized reproducibility so that a

subject's studies could be compared over time and subjects could be compared to each other.

This system is based on the relationship between the location of an electrode and the

underlying area of cerebral cortex. The "10" and "20" refer to the fact that the actual

distances between adjacent electrodes are either 10% or 20% of the total front–back or right–

left distance of the skull.

Each site has a letter to identify the lobe and a number to identify the hemisphere location.

The letters F, T, C, P and O stand for frontal, temporal, central, parietal, and occipital lobes,

respectively. Note that there exists no central lobe; the "C" letter is used only for

identification purposes. A "z" (zero) refers to an electrode placed on the midline. Even

numbers (2, 4, 6, 8) refer to electrode positions on the right hemisphere, whereas odd

numbers (1, 3, 5, 7) refer to those on the left hemisphere. In addition, the letter codes A, Pg

and Fp identify the earlobes, nasopharyngeal and frontal polar sites respectively.

3.2.2 EEG

EEG is none other than voltage value generated by neurons in the brain. EEG can be thought

a wave. as

Figure 3.3: EEG wave (Voltage value against time)

 12

Below are the five main EEG frequency bands and their basic information on them.[13]

 α band:

Frequency Range: 8 - 13 Hz in frequency,

Amplitude: 30 and 50 μV in amplitude.

Source: parietal and occipital regions of the brain

Emotions: consciousness, quiet, or at rest, thinking, blinking.

 β band:

Frequency Range: 14 - 30 Hz in frequency,

Amplitude: 5 and 20 μV in amplitude.

Source: frontal regions of the brain

Emotions: consciousness, alert, thinking.

 θ band:

Frequency Range: 4 - 7 Hz in frequency,

Amplitude: less than 30 μV in amplitude.

Source: parietal and temporal regions of the brain

Emotions: emotional pressure, interruptions of consciousness, or deep physical

relaxation.

 δ band:

Frequency Range: 0.5 - 3 Hz in frequency,

Amplitude: 100 - 200 μV in amplitude.

Source: parietal and temporal regions of the brain.

Emotions: deep sleep, unconscious, anesthetized

 γ band:

Frequency Range: 31 - 50 Hz in frequency,

Amplitude: 5 - 10 μV in amplitude.

Emotions: cognition and perceptual activity.

 13

3.3 Artificial Neural Network (ANN)

Artificial Neural Network is a very powerful technique which has information processing

paradigm very similar to the human brain. The ability of learning by examples and thereby

identifications of hidden and unknown patterns makes the Artificial Neural Network more

powerful. Artificial Neural Network (ANN) is an information processing paradigm that is

inspired by the way biological nervous systems, such as the brain, process information. The

key element of this paradigm is the novel structure of the information processing system. It is

composed of a large number of highly interconnected processing elements (neurons) working

in unison to solve specific problems. ANNs, like people, learn by example.

Figure 4.1: Structure of a Simple Neuron

The neuron has two modes of operation. That is the training mode and the using mode. In the

training mode, the neuron can be trained to fire (or not), for particular input patterns. In the

using mode, when a taught input pattern is detected at the input, its associated output

becomes the current output. If the input pattern does not belong in the taught list of input

patterns, the firing rule is used to determine whether to fire or not.

In ANN model that the inputs are 'weighted', the effect that each input has at decision making

is dependent on the weight of the particular input. Every neural network possesses

knowledge which is contained in the values of the connections weights. Modifying the

knowledge stored in the network as a function of experience implies a learning rule for

changing the values of the weights.

 14

The weight of an input is a number which when multiplied with the input gives the weighted

input. These weighted inputs are then added together and if they exceed a pre-set threshold

value, the neuron fires. In any other case the neuron does not fire. The function that defining

“Thresholding concept” is known as ‘Thresholding function’ or ‘Activation function’.[14]

In mathematical terms, the neuron fires if and only if;

X1W1 + X2W2 + X3W3 + ... > T

T = the pre-set threshold value

X = Input

W = Weight

ANN can be trained in two modes.

3.3.1 Supervised training

Supervised training we train the network by giving the decided output. In this we define

maximum error, in order to make sure the supervise training is more focus on desired output.

If the generated output less than the expected maximum error then we let the neural network

to be learn using the input X else we discard the training. Discard the training and initialize

new weight to the neural network is one of the major weaknesses of it. [15]

3.3.2 Unsupervised training

In unsupervised training we didn’t specify the expected output. These types of ANN mostly

use for group the data in to classes. In these types of networks, a neuron in the output layer

will generate and output, regarding to the input. The neuron that generates the maximum

output indicates the class where the input belongs. A neural network learns on-line if it learns

and operates at the same time. Usually, supervised learning is performed off-line, whereas

unsupervised learning is performed on-line.

 15

3.3.3 Multilayer Perceptron

Multilayer perceptron means that the neural network consists of an input layer, possibly and

minimum one hidden layer, and one output layer, as shown in figure.

Figure 4.2: Artificial Neural Network with 3 layers

3.3.4 Backprogagation Algorithm

To understand neural networks better, and how the backpropagation works, the algorithm is

given in pseudo code below.

Initialize the weights in the network

while stopping criterion has reached do

for all example e belongs to training set do

O = actual, output (network, e); propagate forward

T = wanted output for e

Calculate error (T - O) at each neuron in the output layer

Compute Mean Squared Error value; propagate backward

Compute delta weight update for all weights

 16

Update all the weights in the network such that the sum- squared value

of error is minimized.

end for

end while

There are several types of activation function commonly used, these are:

x = Input

y = Output

3.4 Fourier Transformation (FFT)

The Fourier Transformation and extraction of band powers is by far the most applied method

for signal processing and analysis (Lotte et al., 2007) [3]. The algorithm is based on discrete

Fourier transform (DFT) equation and by applying that to the EEG signal it makes it possible

to separate the EEG rhythms.

The performance of the DTF is O(N2), but there is a more efficient algorithm called fast

Fourier Transform (FFT), that can compute the same result in only O(Nlog2N). This is a

great improvement and one of the reasons why FFT is the favorable method of analyzing

EEG signals, and other waves like sound [3].

 17

3.5 Mobile Applications

Results of the attention monitoring sessions must be convey to the user via some medium.

We chose mobile application to convey the results to the student as it is much easier and

convenient to be notified via a mobile application. Android operating system powers

considerable number of mobile phones and t it provides rich set of API to develop the mobile

applications. Hence we will be developing mobile application using Android. We will

analyze the EEG in real time and process it and notify the user via mobile application if

attention has been lost.

3.6 Summary

Throughout this chapter we discussed technologies which are used to facilitate the measuring

of degree of human attention. EEG technology, ANN technology, Fourier Transformation

and Mobile Application field is discussed in this chapter.

 18

 Chapter 4

ANN Approach to Recognize the Degree of Human

Attention

4.1 Introduction

In the previous two chapters we define the research problem as the inefficiency in current

approaches to address the brain wave classification for attention. We discuss why ANN

technology could be a potential technology to develop novel solution for recognizing the

degree of human attention. This chapter presents our approach by describing the hypothesis,

input, output, process, features and users for novel solution for recognizing degree of human

attention using Artificial Neural Network. The solution has been named as FocusGain.

4.2 Hypothesis

Sustain attention can be monitored by analyzing EEG wave signals and Artificial Neural

Network.

4.3 Inputs to System

The system will receive EEG wave signals generated by the area of the brain responsible for

maintaining the attention. This is generated by the EEG headset with the signal node.

4.4 Output from the System

Determination of attention disturbance and informing to the user through an alert to the

mobile phone.

4.5 Process

System will use Fourier transformation to convert the time domain EEG signals to frequency

domain EEG signals and those data will be fed to the ANN to recognize level of attention.

In this process five frequency bands will be used as inputs to the ANN.

 19

These inputs are applied to an already trained neural network regarding maintenance of

attention in various sessions.

4.6 Features

The following features are a present in the system.

 Real time EEG wave analyzing and classification.

 Mobile device support to inform the user that he is not attentive

 Cheaper device, affordable.

 Bluetooth connectivity

 Dry sensor, hence portable, easy to use

4.7 Summary

In this chapter we discussed how we approach to solve the problem of measuring the degree

of human attention. System Inputs, outputs, hypothesis, process and features of the system

are explained in here.

 20

 Chapter 5

Design of FocusGain Application

5.1 Introduction

In this chapter we are going to discuss how we carried out the designing of this research. This

chapter provides a detailed explanation of all methods and classifiers used in the analyses and

experiments, as well as the reasons behind using those methods.

We divided our research work into data acquisition and data processing. In data acquisition,

we deal with the EEG device and acquiring data through several experiments. After that, we

dealt with converting all the acquired data. Artifact removal requires deep attention, since

most of the data are noisy. Features need to extracted to enable us eventually classify the

brain signals.

We named this application as “Focus Gain”. Below is the top level architecture of the system.

We will be discussing about each module detailed in this chapter.

Figure 5.1: Top level architecture of Focus Gain application

 21

Design of the Focus Gain application can be divided in to two sections.

 Data Acquisition

 Data Processing

Figure 5.2: Design of the Focus Gain application

We will be looking at each module separately in this section.

5.2 Data Acquisition with NeuroSky Mindwave Headset

To acquire the signals from the brain we are using NeuroSky Mindwave headset. It is cheap

and has only one dry sensor. The sensor is fit on to forehead. As the attentional related brain

signals are generated from right and left sides of the forehead, sensor location is perfect

location to conduct this research.

NeuroSky Mindwave headset output the preprocessed frequency band related data during

each second. Raw voltage values are output at frequency of 512. These details are sent via

Bluetooth. So we can capture these information using any programming language and make

use of them. For this research we are conducting 5 minute sessions where student has to fully

 22

concentrate on the lecture. We will be using 20 test subjects and 4 sessions from each. These

session details are collected as text files.

5.3 Artifact Removal

In EEG recordings, sensor is used to record the brain activity during attentive sessions. These

sensors not only recorded brain activity from neural activities but also other artifacts. These

artifacts overlap with the neural recordings. We are concentrating on removing eye-related

artifacts. Eye related artifacts have the highest impact on neural recordings.

For this purpose we are first applying a simple filtering based on signal strength. NeuroSky

Mindwave headset has signal strength levels defined based on the strength of the signal. The

signal strength level is a value between 0-200. Anything higher than 60 would be considered

as an acceptable signal. So in the first phase we are removing the unacceptable signals.

Independent Component Analysis (ICA) is another way to filter the unwanted signals. The

purpose of ICA is to decompose these overlapping recorded activities into independent

component. The main concern of ICA is to separate between several sources of signals. For

this purpose we are going to use Java ICA related libraries.

5.4 Feature Extraction and Selection

Feature extraction is the process of extracting useful information from the signal. Features

are characteristics of a signal that are able to distinguish between different emotions. The

following features that will be used in the study.

 Delta

 Theta

 LowAlpha

 HighAlpha

 LowBeta

 HighBeta

 23

 LowGamma

 HighGamma

Figure 5.3: EEG Frequency Ranges

EEG data were recorded at a sampling rate of 512. Filtering is applied on EEG data with cut-

off frequency of 50 Hz. Then we convert these time domain signals in to frequency domain

by using FFT. These five band values and another 3 intermediate band values are later used

in ANN as input parameters. There are Java libraries that we can utilize for this purpose.

5.5 Classification with Artificial Neural Network

Figure 5.3 shows the architecture of the neural network. The input string to the network was

the five power bands of a sample: delta, theta, alpha, beta and gamma. These were obtained

by conducting FFT on the raw EEG data, and then dividing them into buckets according to

their frequency range. Each band value is scaled with respect to the highest frequency in each

individual sample, ensuring that all values are in the interval between 0 and 1.

 24

Figure 5.3: Design of the Artificial Neural Network

Training is carried out using Backpropagation algorithm. After training all the samples we

are going to serialize the Artificial Neural Network, so it can be easily ported to any other

application or programming language.

As per the classification method we use ANN as it can be easily trained if we have adequate

sample data. The application needs to be operated in real time. So using an ANN really helps

to achieve performance.

5.6 Mobile Application Development with Android

After successful training of the ANN, we now have trained ANN yet to be tested with real

scenario. We ae developing android application to measure the attention of a student.

Android application receives brain wave data from NeuroSky Mindwave. Android

application uses previously mentioned trained Neural Network. As this is a real time

 25

application, data are coming rapidly to the application. So based on this data, Focus Gain

measure the attentiveness of the application.

5.7 Summary

In this chapter we have discussed how brain wave data are collected and remove the

unnecessary artifacts from them. Then we apply FFT on brain wave data and convert them in

to frequency domain. These domain related data are then used to train an ANN. Trained

ANN is used within Android application to detect the attentiveness of a person. If person is

not attentive then vibration alert is given.

 26

 Chapter 6

Implementation of FocusGain Application

6.1 Introduction

In this chapter we are going to discuss how we implement FocusGain application. This

chapter discuss each module in detail. Chapter 5 provides design perspective of the

application. In this chapter we are going to discuss how each module is developed and

technologies, methods, algorithms used to develop the application.

In the design phase we have divided the application in to Data acquisition and Data

processing parts. We will be discussing the implementation of each part detailed here.

6.2 Data Acquisition

First phase of the application development is to collect the EEG data from students when

they are in attentive to the lecture. For this purpose we use 20 students (10 male and 10

female). Each student is given four 5 minute sessions. Each student is instructed to focus on

the lecture and EEG data from NeuroSky headset are stored for each session.

NeuroSky provide rich application development framework to retrieve the data from the

headset. They provide .NET API to retrieve the data from headset. But in this research we are

developing application using Java. So we have followed alternate method to retrieve the data

from NeuroSky headset [Appendix A].

We develop Java application to collect the data from NeuroSky headset. NeuroSky headset

provide several ways to retrieve the data. Data Collector application is responsible for

acquiring all the data from the headset and storing them as text files.

 27

Figure 6.1: EEG Data Collector Application

Figure 6.2: EEG Sample Data file

6.3 Data Pre Processing

After collecting the samples from the students, next step is to process the data. At this point

we have 80 samples of data files each containing 5 minutes of data. Before using this data,

we need to preprocess them.

 28

6.3.1 Artifact Removal

In EEG recordings, sensor is used to record the brain activity during attentive session. These

sensors not only recorded brain activity from neural activities but also artifacts. These

artifacts overlap with the neural recordings. We are concentrating on removing eye-related

artifacts. First and foremost because it contaminates constantly and has the largest impact on

the EEG data.

For this purpose we are first applying a simple filtering based on signal strength. NeuroSky

Mindwave headset has signal strength levels defined based on the strength of the signal. The

signal strength level is a value between 0-200. Anything higher than 60 would be considered

as an acceptable signal. So in the first phase we are removing the unacceptable signals.

Independent Component Analysis (ICA) is another way to filter the unwanted signals. The

purpose of ICA is to decompose these overlapping recorded activities into independent

component. The main concern of ICA is to separate between several sources of signals. For

this purpose we are going to use Java ICA related libraries.

6.4 Feature Extraction and Selection

Feature extraction is the process of extracting useful information from the signal. Features

are characteristics of a signal that are able to distinguish between different emotions. We get

time domain signal from NeuroSky headset, so we need to convert this in to frequency

domain. Fast Fourier Transformation is used for this. Fast Fourier Transformation is much

effective in this context than normal Fourier Transformation. After applying FFT we get

following bands from the EEG signal. NeuroSky headset internally does this processing and

output the band details once per second.

 Delta

 Theta

 LowAlpha

 HighAlpha

 29

 LowBeta

 HighBeta

 LowGamma

 HighGamma

EEG data were recorded at a sampling rate of 512. Filtering is applied on EEG data with cut-

off frequency of 50 Hz. Then we convert these time domain signals in to frequency domain

by using FFT. These five band values and another 3 intermediate band values are later used

in ANN as input parameters.These five band values are later used in ANN as input

parameters.

6.5 Designing and Training Artificial Neural Network

Next phase of the development is to design the Artificial Neural Network. This is the most

vital part of the project. Careful design of ANN and successful training will eventually lead

the project to success. In earlier section, we have identified the features of EEG signal, so

now we can use them as inputs to the ANN. Following bands which have integer values

(comparison purposes) are used as input parameters to the ANN. Output layer contains only

one neuron. After conducting experiments we have identified number of neurons to be used

as hidden neuron count.

After doing exhaustive experiments with training sessions, suitable values to be used for

momentum and learning rate are identified as follows.

Input Layer - 8 neurons

Hidden Layer – 10 Neurons

Output Layer - 1 neuron

Momentum - 0.1

Learning rate - 0.2

 30

Algorithm - Backpropagation

Each sample data file is fed in to the ANN and supervised training session has been

conducted. We have 80 training sessions. It took approximately 1 hour to train the data set in

to ANN. After training weight set is written in to separate file which we will be using in our

desktop and android application.

We use Java to develop a separate application to train the data in to ANN. Although there are

Visual tools available for training, they do not provide the functionalities that match our

specific requirements.

Figure 6.3: Application to train the ANN

 31

Encog AI framework is used to develop ANN part of the application.

6.6 Android Application Development

After successful training of the ANN, we now have trained ANN yet to be tested with real

scenario. We ae developing android application to measure the attention of a student.

Android application receives brain wave data from NeuroSky Mindwave. Android

application uses previously mentioned trained Neural Network. As this is a real time

application, data are coming rapidly to the application. So based on this data, Focus Gain

measure the attentiveness of the application. Application provide following facilities.

 View of raw EEG data

 Measure the attention Level

 Provide Visual indictor to show the attention changes

 Vibrate alert to notify when attention is lost

ThinkGear dll and Android framework are used for development of the mobile application

[Appendix B].

6.7 Summary

In this chapter we have discussed how EEG data are collected and remove the unnecessary

artifacts from them. Then we apply FFT on brain wave data and convert them in to frequency

domain. These domain related data are then used to train an ANN. Trained ANN is used

within Android application to detect the attentiveness of a person. If person is not attentive

then vibration alert is given.

 32

 Chapter 7

Evaluation

7.1 Introduction

In this chapter we are going to design an experiment to evaluate the software that we have

designed. Here we discussed whether the objectives mentioned in earlier chapters are met

and to what extent.

7.2 Experimental Design

This study used 20 test subjects (10 men and 10 women), with an average age of 23 years

(the subjects’ age ranged between 20 and 25 years).No EEG related training has been

provided to the subjects.

To clearly identify the state of attentive EEG signals when students are learning, standard

IELTS listening exam lecture material was used as the experiment material for this study.

The experiment involved the test subjects listening to a segment of conversations and then

answering related questions to ensure that the test subjects could concentrate during the

experiment.

There are two scenarios involved in this experiment. Answering the questions with

interference and without interference. During the data collection experiment, 40 sessions of

unprocessed entries of EEG row data were collected. The length of each session was 5minute

s. The test subjects’ conditions were manually determined

Now for each person we have calculated mean attention level using the system. For each

person we have two sessions which are predetermined as attentive session and non-attentive

session. For both sessions we calculate mean attentive level using the system.

 33

7.3 Experimental Results

Following table shows the mean attention level of subjects in attentive and non-attentive

sessions.

Subject Mean Attentive Level

(Attentive session)

Mean Attentive Level (Non -

Attentive session)

Subject 1 75 20

Subject 2 77 18

Subject 3 88 9

Subject 4 61 5

Subject 5 42 56

Subject 6 22 87

Subject 7 16 33

Subject 8 91 21

Subject 9 60 14

Subject 10 44 17

Subject 11 55 29

Subject 12 78 41

Subject 13 80 34

Subject 14 61 16

Subject 15 42 25

 34

Subject 16 77 21

Subject 17 92 55

Subject 18 85 18

Subject 19 53 24

Subject 20 17 30

Table 7.1: Results from the experiment

7.4 Conclusions from the Experiment

From the above results we can notice that 75% (15/20) success rate in attentive session and

regarding the non- attentive session’s success rate is 85% (17/20). Focus Gain application is

successful in identifying attentive and non-attentive sessions correctly in most cases. These

results are gender independent. We have same number of male and female subjects in the test

pool. So the experiment results are more generalized. The accuracy can be further improved

if we can train the ANN using larger data set.

If you analyze the results closely, you can see some anomalies in the results (Subject 5, 6 and

20). Reason for this may be due to background interference or system is not able to classify

the individual’s data correctly. So we need to use more sophisticated artifact removal

methods and more training to the ANN in order to overcome these kind of anomalies.

7.5 Summary

In this chapter we have evaluated the software solution using proper experiment mechanism.

We have designed and conducted experiment to measure the success of the application and

presented the results.

 35

 Chapter 8

Conclusion

8.1 Introduction

This report presents results that shows that is it possible to build a Brain-Computer Interface

system that allow users to measure attention using EEG headset. This have been

accomplished by using the NeuroSky mindset EEG equipment featuring only one electrode

on the forehead. EEG signals from the user are sent to the android application via bluetooth.

The signal is then processed and the wave’s band power is calculated. This information is

used as input to a neural network that is trained to classify whether student is attentive or not.

Then this classification is used to notify the student when the attention has been lost.

8.2 Conclusions

Using ANN to achieve this purpose is hugely successful as after training the ANN, it can

process data in real time provide feedback within very short time. Analyzing the

experimental results we can notice the success of the project. We could have achieved this

using statistical methods, but real time processing is vital to make this project a success. So

implementing ANN to monitor the student attention in classroom environment is justified

with the test results. Experiment shows 75% of success rate in identifying the attentive

sessions and 85% success in identifying non-attentive sessions.

Following objectives mentioned early in the thesis are met successfully during the execution

of the research.

The aim of this project is to develop a system for recognizing the student attention in

classroom environment. So the aim of the project is successfully achieved.

 36

 In order to reach this aim following objectives are identified.

1. To critically study the domain of brain computer interface field.

2. To critically analyze the current approaches to recognize the attention level in

different environments.

3. Recognizing the suitable brain wave monitoring appliances to recognize the attention

level in class room environment.

4. Identify processing libraries and environments which can be utilized to analyze the

raw EEG signals.

5. Acquire raw brain wave data on attentive sessions from group of students.

6. Develop a mobile application to alert the student when he is not attentive in the

lecture.

All the objectives are met during the execution of the project.

8.3 Limitations and Further Work

This application is only developed to monitor the attention level in class room environment.

As per further work one can extend this research to monitor the overall attention not just in

the classroom environment. We are only using one dry sensor for our purpose. With more

sensors we can achieve more accuracy in the future. Mobile application can be further

enhanced to record the attention details, so later users can analyze the details and made

actions to sustain the attention level.

This can also be used as commercial application where parents can use this as a tool to

measure the attention of their children. It is very hard to say whether a student is focusing on

the lecture or not. But with this kind of application, we can easily get to know the real

utilization of a student. Hence we can advise student on how to focus on a lecture if he has

constantly losing the attention.

 37

8.4 Summary

In this chapter we have discussed the conclusions that we can finally derived from the

research. We consider all the aspects of the project, design, implementation, evaluation.

Based on all the facts, we made some final conclusions here. Problems encountered,

limitations of the solution and further work are also discussed here.

 38

References

[1] M. H. Alomari, A. AbuBaker, A. Turani, A. M. Baniyounes, and A. Manasreh, “EEG

Mouse: A Machine Learning-Based Brain Computer Interface,” Int. J. Adv. Comput. Sci.

Appl., vol. 5, no. 4, 2014.

[2] T. Publication{“id”:3775225, first_name“:”TJPRC, last_name“:”Publication,

page_name“:”TJPRCPublication, domain_name“:”independent, “display_name”:"TJPRC

Publication", url“:”http://independent.academia.edu/TJPRCPublication,

“is_analytics_public”:false, photo“:”/images/s65_no_pic_borderless.gif,

“interests”:{“top”:[], and “count”:0}}, “BRAIN CONTROLLED WHEELCHAIR FOR

DISABLED.” [Online]. Available:

https://www.academia.edu/6986487/BRAIN_CONTROLLED_WHEELCHAIR_FOR_D

ISABLED. [Accessed: 12-Aug-2014].

[3] R. Bogacz, U. Markowska-Kaczmar, and A. Kozik, “Blinking artefact recognition in

EEG signal using artificial neural network,” in Proc. of 4 th Conference on Neural

Networks and Their Applications, Zakopane (Poland), 1999.

[4] “Community: The Mastermind Project-MIND CONTROLLED ROBOTS USING EEG -

National Instruments.” [Online]. Available: https://decibel.ni.com/content/docs/DOC-

24767. [Accessed: 12-Aug-2014].

[5] F. Ebrahimi, M. Mikaeili, E. Estrada, and H. Nazeran, “Automatic sleep stage

classification based on EEG signals by using neural networks and wavelet packet

coefficients,” in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th

Annual International Conference of the IEEE, 2008, pp. 1151–1154.

[6] C.-K. A. Lim and W. C. Chia, “Analysis of Single-Electrode EEG Rhythms Using

MATLAB to Elicit Correlation with Cognitive Stress.”

[7] E. Niedermeyer and F. H. Lopes da Silva, Electroencephalography: basic principles,

clinical applications, and related fields. Philadelphia: Lippincott Williams & Wilkins,

2005.

[8] G. V. Sridhar and P. M. Rao, “A Neural Network Approach for EEG Classification in

BCI.”

[9] R. Singla and N. Sharma, “Function Classification of EEG Signals Based on ANN.”

 39

[10] W. SA\LABUN, “Processing and spectral analysis of the raw EEG signal from the

MindWave,” Przeglad Elektrotechniczny, vol. 90, pp. 169–174, 2014.

[11] G. Navalyal and R. D. Gavas, “A Dynamic Approach to Foster Cognitive Computing

using the Laws of Thought.”

[12] S. Rodrak and Y. Wongsawat, “Dept. of Biomed. Eng., Mahidol Univ., Bangkok,

Thailand,” in Signal & Information Processing Association Annual Summit and

Conference (APSIPA ASC), 2012 Asia-Pacific, 2012, pp. 1–4.

[13] N.-H. Liu, C.-Y. Chiang, and H.-C. Chu, “Recognizing the Degree of Human

Attention Using EEG Signals from Mobile Sensors,” Sensors, vol. 13, no. 8, pp. 10273–

10286, Aug. 2013.

[14] “855-classification-of-electroencephalogram-using-artificial-neural-networks.pdf.” .

[15] E. A. Larsen, “Classification of EEG Signals in a Brain-Computer Interface System,”

2011.

[16] https://en.wikipedia.org/wiki/10-20_system_(EEG)

 40

 Appendix A

Data Acquisition using NeuroSky Headset

A.1 Introduction

It all start with acquiring data from NeuroSky headset. We need to find a way to get the EEG

data from NeuroSky headset. We need to understand the formats and conventions used by

NeuroSky headset first.

A.2 NeuroSky Mobile Mindwave Headset

ThinkGear is the technology inside every NeuroSky product or partner product that enables

the device to interface with the wearers’ brainwaves. It includes:

 The sensor that touches the forehead,

 The contact and reference points located on the ear pad, and

 The onboard chip that processes all of the data.

 Both the raw brainwaves and the eSense Meters are calculated on the ThinkGear™

chip. The calculated values are output by the ThinkGear chip, through the headset, to

a PC.

Types of data output from ThinkGear chips:

 Raw sampled wave values (128Hz or 512Hz, depending on hardware)

 Signal poor quality metrics

 EEG band power values for delta, theta, alpha, beta, and gamma

 41

Figure A.1: NeuroSky Headset

To power on the MindWave Mobile headset, slide the switch to the ON (middle) position.

When held past the ON position for 3 seconds and then released, the headset will enter

Bluetooth pairing mode. If instead the switch is held past the ON position for 6 seconds, the

headset's pairing memory will be cleared. While the MindWave Mobile headset is powered

on, the LED light on the side of the headset will be turned on. If the MindWave has a low

battery, the LED light will flash to indicate low battery status. To turn the MindWave Mobile

off, slide the switch back to the OFF position.

 42

A.3 Fitting NeuroSky Mobile Mindwave Headset

 Orient the MindWave with the forehead Sensor Arm on your left hand side. Rotate the

Sensor Arm from its base by about 90 degrees. It can be rotated slightly more if necessary

to get proper fit and comfort.

 The overhead band of the MindWave is adjustable and can be extended to fit various sizes.

Put on the MindWave. If the sensor does not make contact with the forehead or if the fit is

not comfortable, remove the MindWave to readjust the overhead band and the forehead

Sensor Arm.

 Make sure the two metal contacts on the inside of both sides of the ear clip make skin

contact with your earlobe or ear. Move any hair or obstructions (such as jewelry) out of

the way. Readjust the ear clip as necessary to make proper contact with the skin of your

ear. You may need to squeeze the ear clip against your ear for a few seconds.

A.4 ThinkGear Technology

The electrical signals emitted by neurons generating in the brain. These patterns and

frequencies of these electrical signals can be measured by placing a sensor on the scalp. The

Mind Tools line of headset products contain NeuroSky ThinkGear™ technology, which

measures the analog electrical signals, commonly referred to as brainwaves, and processes

them into digital signals. The ThinkGear technology then makes those measurements and

signals available to games and applications. The table below gives a general synopsis of

 43

some of the commonly-recognized frequencies that tend to be generated by different types of

activity in the brain:

Figure A.2: Brainwave Types, frequencies and mental conditions map

ThinkGear Data Types

POOR_SIGNAL/SENSOR_STATUS

This is integer value provides an indication of how good or how poor the bio-signal is at the

sensor. This value is typically output by all ThinkGear hardware devices once per second.

This is an extremely important value for any app using ThinkGear sensor hardware to always

read, understand, and handle. Depending on the use cases for your app and users, your app

may need to alter the way it uses other data values depending on the current value of

POOR_SIGNAL/SIGNAL_STATUS.

For example, if this value is indicating that the bio-sensor is not currently contacting the

subject, then any received RAW_DATA or EEG_POWER values during that time should be

treated as noise not from a human subject, and possibly discarded based on the needs of the

app.

Poor signal may be caused by a number of different things. In order of severity, they are:

• Sensor, ground, or reference electrodes not being on a person's head/body

• Poor contact of the sensor, ground, or reference electrodes to a person's skin

• Excessive motion of the wearer

 44

• Excessive environmental electrostatic noise (some environments have strong electric

signals or static electricity buildup in the person wearing the sensor).

• Excessive biometric noise (i.e. unwanted EMG, EKG/ECG, EOG, EEG, etc. signals)

RAW_DATA

This data type supplies the raw sample values acquired at the bio-sensor. The sampling rate

(and therefore output rate), possible range of values, and interpretations of those values

(conversion from raw units to volt) for this data type are dependent on the hardware

characteristics of the ThinkGear hardware device performing the sampling. You must refer to

the documented development specs of each type of ThinkGear hardware that your app will

support for details.

, with a possible value

range of -32768 to 32767.

As another example, to convert TGAT-based EEG sensor values (such as TGAT, TGAM,

MindWave Mobile, MindWave, MindSet) to voltage values, use the following conversion:

(rawValue * (1.8/4096)) / 2000

EEG_POWER

This Data Value represents the current magnitude of 8 commonly-recognized types of EEG

frequency bands.

The eight EEG powers are: delta (0.5 - 2.75Hz), theta (3.5 - 6.75Hz), low-alpha (7.5 -

9.25Hz), high-alpha (10 - 11.75Hz), low-beta (13 - 16.75Hz), high-beta (18 - 29.75Hz), low-

gamma (31 - 39.75Hz), and mid-gamma (41 - 49.75Hz).

These values have no units and are only meaningful for comparison to the values for the

other frequency bands within a sample. By default, output of this Data Value is enabled, and

it is output approximately once a second.

 45

A.5 ThinkGear Communication Driver

As per this research we are using ThinkGear Communication Driver shipped with NeuroSky

Headset. It does not have fancy API like the .NET version. So we have listen to a port where

the data are transferred and manipulate the data.

A.6 Android Application Development with NeuroSky MindWave Mobile

 Open the Settings app on the Android device

 Navigate to Wireless and network and enable Bluetooth if not already enabled

 Go to Bluetooth settings

 Power on the MindWave Mobile

 MindWave Mobile will show up in the list of devices

 Touch MindWave Mobile and pairing will complete automatically

 46

 Appendix B

FocusGain Application

B.1 Introduction

This will walk you through the procedure involve with developing Android application for

the NeuroSky headset. This is the final output of the project, we named the application as

“FocusGain”

B.2 FocusGain Android Application Design

Figure B.1: FocusGain Android Application

 47

Figure B.2: FocusGain Android Application – Connect Pane

 Figure B.3: FocusGain Android Application – Raw Data Pane

 48

 Figure B.4: FocusGain Android Application – Attention Monitoring

 49

 Appendix C

Code - FocusGain Application

C.1 Introduction

This section will include code used to develop this application.

C.2 Code for ThinkGear Connection

ThinkGearSocketClient.java

package focusgain.eeg.thinkgear;

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.CharBuffer;

import java.nio.channels.SocketChannel;

import java.nio.charset.Charset;

import java.nio.charset.CharsetEncoder;

import java.util.Scanner;

import javax.swing.JOptionPane;

import org.apache.log4j.Logger;

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

/**

 *

 * @author Charitha Senarathne

 */

public class ThinkGearSocketClient

{

 /**

 * Logger for this class

 */

 private static final Logger logger = Logger.getLogger(ThinkGearSocketClient.class);

 public static final String DEFAULT_HOST = "127.0.0.1";

 public static final int DEFAULT_PORT = 13854;

 50

 private static ThinkGearSocketClient INSTANCE = null;

 private String host;

 private int port;

 private boolean connected;

 SocketChannel channel;

 Scanner in;

 /**

 * Default constructor using Thinkgear default host/port

 */

 private ThinkGearSocketClient()

 {

 this.host = DEFAULT_HOST;

 this.port = DEFAULT_PORT;

 this.connected = false;

 }

 /**

 * Constructor

 *

 * @param host

 * @param port

 */

 public ThinkGearSocketClient(String host, int port)

 {

 this.host = host;

 this.port = port;

 this.connected = false;

 }

 public static ThinkGearSocketClient getInstance()

 {

 if(INSTANCE == null)

 {

 INSTANCE = new ThinkGearSocketClient();

 }

 return INSTANCE;

 }

 51

 public String getHost()

 {

 return host;

 }

 public void setHost(String host)

 {

 this.host = host;

 }

 public int getPort()

 {

 return port;

 }

 public void setPort(int port)

 {

 this.port = port;

 }

 public boolean isConnected()

 {

 return this.connected;

 }

 public void connect(boolean enableRawData) throws IOException

 {

 if (!this.connected)

 {

 logger.debug("connect() - Starting new connection...");

 this.channel = SocketChannel.open(new InetSocketAddress(this.host, this.port));

 CharsetEncoder enc = Charset.forName("US-ASCII").newEncoder();

 //String jsonCommand = "{\"timestamp\":true,\"enableRawOutput\":" +

Boolean.toString(enableRawData) + ", \"format\": \"Json\"}\n";

 String jsonCommand = "{\"timestamp\":true,\"enableRawOutput\": false, \"format\":

\"Json\"}\n";

 this.channel.write(enc.encode(CharBuffer.wrap(jsonCommand)));

 this.in = new Scanner(channel);

 this.connected = true;

 System.out.println("Connected");

 } else

 52

 {

 logger.debug("connect() - Already connected...");

 System.out.println("Already connected");

 }

 }

 public void startRecording() throws IOException

 {

 if (this.connected)

 {

 CharsetEncoder enc = Charset.forName("US-ASCII").newEncoder();

 String jsonCommand =

"{\"startRecording\":{\"rawEeg\":true,\"poorSignalLevel\":true,\"eSense\":true,\"eegPower\":

true,\"blinkStrength\":true},\"applicationName\":\"ExampleApp\"}\n";

 this.channel.write(enc.encode(CharBuffer.wrap(jsonCommand)));

 JOptionPane.showMessageDialog(null, "Start Recording");

 } else

 {

 logger.debug("startRecording() - Not connected...");

 }

 }

 public void stopRecording() throws IOException

 {

 if (this.connected)

 {

 CharsetEncoder enc = Charset.forName("US-ASCII").newEncoder();

 String jsonCommand = "{\"stopRecording\":\"ExampleApp\"}\n";

 this.channel.write(enc.encode(CharBuffer.wrap(jsonCommand)));

 JOptionPane.showMessageDialog(null, "Stop Recording");

 } else

 {

 logger.debug("stopRecording() - Not connected...");

 }

 }

 public void cancelRecording() throws IOException

 {

 53

 if (this.connected)

 {

 CharsetEncoder enc = Charset.forName("US-ASCII").newEncoder();

 String jsonCommand = "{\"cancelRecording\":\"ExampleApp\"}\n";

 this.channel.write(enc.encode(CharBuffer.wrap(jsonCommand)));

 } else

 {

 logger.debug("cancelRecording() - Not connected...");

 }

 }

 public boolean isDataAvailable()

 {

 if (this.connected)

 {

 return this.in.hasNextLine();

 } else

 {

 return false;

 }

 }

 public String getData()

 {

 return this.in.nextLine();

 }

 public void close() throws IOException

 {

 if (this.connected)

 {

 logger.debug("close() - Closing connection...");

 this.in.close();

 this.channel.close();

 this.connected = false;

 }

 }

}

 54

C.3 Code for EEG Data Collector

EEGDataCollector.java

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package focusgain.eeg.read;

import focusgain.eeg.thinkgear.ThinkGearSocketClient;

import focusgain.eeg.ui.EEGDataCollectorUI;

import focusgain.eeg.ui.EEGVisualizer;

import static focusgain.eeg.ui.FocusGainUI.eegDataTxtArea;

import focusgain.eeg.utilities.TimerUtil;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.JOptionPane;

/**

 *

 * @author Chartha Senarathne

 */

public class EEGDataCollector

{

 public static void initialiazeConnection()

 {

 new Thread(new Runnable()

 {

 @Override

 public void run()

 {

 while (!(EEGDataCollector.initialize()))

 {

 try

 {

 55

 Thread.sleep(10 * 1000);

 } catch (InterruptedException ex)

 {

Logger.getLogger(EEGDataCollectorUI.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 }

 }).start();

 }

 private static boolean initialize()

 {

 ThinkGearSocketClient client = ThinkGearSocketClient.getInstance();

 try

 {

 client.connect(EEGDataCollectorUI.rawDataCheckBox.isSelected());

 } catch (IOException ex)

 {

 return false;

 }

 return true;

 }

 public static void startSession()

 {

 TimerUtil.startTimer();

 EEGDataCollectorUI.eegDataTxtArea.append("Starting Session\n");

 writeToFile("EEG Sample Data for Attention");

 ThinkGearSocketClient client = ThinkGearSocketClient.getInstance();

 if (client != null)

 {

 while (client.isDataAvailable())

 {

 writeToFile(client.getData());

 String currentEEGReading = client.getData();

 if (currentEEGReading.contains("eSense"))

 {

 56

EEGDataCollectorUI.eegDataTxtArea.append(currentEEGReading.substring(currentEEGRe

ading.indexOf("eegPower")) + "\n");

EEGDataCollectorUI.eegDataTxtArea.setCaretPosition(EEGDataCollectorUI.eegDataTxtAr

ea.getText().length());

 }

 else

 {

 EEGDataCollectorUI.eegDataTxtArea.append(client.getData() + "\n");

EEGDataCollectorUI.eegDataTxtArea.setCaretPosition(EEGDataCollectorUI.eegDataTxtAr

ea.getText().length());

 }

 }

 }

 }

 public static void stopSession()

 {

 if (ThinkGearSocketClient.getInstance() != null)

 {

 EEGDataCollectorUI.eegDataTxtArea.append("Stoping Session\n");

 TimerUtil.stopTimer();

 try

 {

 ThinkGearSocketClient.getInstance().close();

 } catch (IOException ex)

 {

 Logger.getLogger(EEGDataCollector.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 }

 private static void writeToFile(String data)

 {

 FileWriter fileWriter = null;

 try

 {

 String fileName = EEGDataCollectorUI.sampleCaptionTxt.getText();

 57

 if (fileName.equalsIgnoreCase(""))

 {

 DateFormat dateFormat = new SimpleDateFormat("yyyy_MM_dd_HH_mm_ss");

 Date date = new Date();

 fileName = dateFormat.format(date);

 EEGDataCollectorUI.sampleCaptionTxt.setText(fileName);

 }

 fileName = fileName + ".txt";

 File file = new File(fileName);

 //if file doesnt exists, then create it

 if (!file.exists())

 {

 file.createNewFile();

 }

 //true = append file

 fileWriter = new FileWriter(file.getName(), true);

 BufferedWriter bufferWriter = new BufferedWriter(fileWriter);

 String writeData = data + "\n";

 bufferWriter.write(writeData);

 bufferWriter.close();

 } catch (IOException ex)

 {

 Logger.getLogger(EEGDataCollector.class.getName()).log(Level.SEVERE, null, ex);

 } finally

 {

 try

 {

 fileWriter.close();

 } catch (IOException ex)

 {

 Logger.getLogger(EEGDataCollector.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 }

}

 58

C.4 Code for ANN Trainer

AttentionClassificationNeuralNetwork.java

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package focusgain.eeg.ann;

import focusgain.eeg.ui.ANNTrainerUI;

import java.awt.Color;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import javax.swing.JOptionPane;

import org.encog.engine.network.activation.ActivationSigmoid;

import org.encog.neural.data.NeuralData;

import org.encog.neural.data.NeuralDataSet;

import org.encog.neural.data.basic.BasicNeuralData;

import org.encog.neural.data.basic.BasicNeuralDataSet;

import org.encog.neural.networks.BasicNetwork;

import org.encog.neural.networks.layers.BasicLayer;

import org.encog.neural.networks.layers.Layer;

import org.encog.neural.networks.synapse.Synapse;

import org.encog.neural.networks.synapse.WeightedSynapse;

import org.encog.neural.networks.training.Train;

import org.encog.neural.networks.training.propagation.back.Backpropagation;

import org.encog.neural.networks.training.propagation.resilient.ResilientPropagation;

/**

 *

 * @author charitha.s

 */

public class AttentionClassificationNeuralNetwork

{

 private BasicNetwork network;

 59

 private int inputNeuronCount = 8;

 private int hiddenNeuronCount = 10;

 private int outputNeuronCount = 1;

 private double learnRate = 0.7;

 private double momentum = 0.8;

 private double error = 0.2;

 private static final int trainingSetSize = 60 * 60;

 private static final String sampleDataPath = "/Sample_EEG_DATA";

 private static final double attentiveBit = 1;

 private static final double notAttentiveBit = 0;

 private static final double ACCEPTED_SIGNAL_LEVEL = 150;

 public double INPUT[][] = new double[trainingSetSize][inputNeuronCount];

 public double IDEAL[][] = new double[trainingSetSize][outputNeuronCount];

 public void createNetwork()

 {

 setNetwork(new BasicNetwork());

 Layer outputLayer = new BasicLayer(new ActivationSigmoid(), true,

outputNeuronCount);

 Layer hiddenLayer = new BasicLayer(new ActivationSigmoid(), true,

hiddenNeuronCount);

 Layer inputLayer = new BasicLayer(new ActivationSigmoid(), false,

inputNeuronCount);

 Synapse synapseHiddenToOutput = new WeightedSynapse(hiddenLayer, outputLayer);

 Synapse synapseInputToHidden = new WeightedSynapse(inputLayer, hiddenLayer);

 hiddenLayer.addSynapse(synapseHiddenToOutput);

 inputLayer.addSynapse(synapseInputToHidden);

 getNetwork().tagLayer("INPUT", inputLayer);

 getNetwork().tagLayer("OUTPUT", outputLayer);

 getNetwork().getStructure().finalizeStructure();

 getNetwork().reset();

 }

 public boolean train()

 {

 boolean trainingStatus = false;

 final String sampleDataPathDir = "Sample_EEG_DATA";

 File sampleEEGDataPath = new File(sampleDataPathDir);

 if (sampleEEGDataPath.listFiles() != null)

 60

 {

 for (final File fileEntry : sampleEEGDataPath.listFiles())

 {

 ANNTrainerUI.trainingDataSetList.setSelectedValue(fileEntry.getName(), true);

 ANNTrainerUI.trainingDataSetList.setSelectionForeground(Color.GREEN);

 if (fileEntry.isDirectory())

 {

 continue;

 } else

 {

 NeuralDataSet trainingSet = getTrainingSet(fileEntry.getAbsolutePath());

 if (trainingSet != null)

 {

 if (!ANNTrainerUI.learningRateText.getText().equals(""))

 {

 learnRate =

Double.parseDouble(ANNTrainerUI.learningRateText.getText());

 }

 if (!ANNTrainerUI.momentumText.getText().equals(""))

 {

 momentum =

Double.parseDouble(ANNTrainerUI.momentumText.getText());

 }

 if (!ANNTrainerUI.errorText.getText().equals(""))

 {

 error = Double.parseDouble(ANNTrainerUI.errorText.getText());

 }

 trainingStatus = trainDataSet(trainingSet);

 } else

 {

 trainingStatus = false;

 }

 }

 }

 }

 return trainingStatus;

 }

 private boolean trainDataSet(NeuralDataSet trainingSet)

 {

 final Train train = new Backpropagation(getNetwork(), trainingSet, learnRate,

momentum);

 61

 //final Train train = new ResilientPropagation(getNetwork(), trainingSet);

 int epoch = 0;

 do

 {

 //method is called over and over; each time the network is slightly adjusted for a

better error rate.

 //The following loop will loop and train the neural network until the error rate has

fallen below one percent.

 train.iteration();

 String resultLine = "Epoch #" + epoch + " Error:" + train.getError();

 ANNTrainerUI.resultTextArea.append(resultLine + "\n");

ANNTrainerUI.resultTextArea.setCaretPosition(ANNTrainerUI.resultTextArea.getText().len

gth());

 System.out.println(resultLine);

 epoch++;

 System.out.println("serializing the network");

 try

 {

 FileOutputStream fout = new

FileOutputStream("attention_classification_network.dat");

 ObjectOutputStream oos = new ObjectOutputStream(fout);

 oos.writeObject(getNetwork());

 oos.close();

 } catch (IOException e)

 {

 JOptionPane.showMessageDialog(null, e.getMessage());

 }

 System.gc();

 } while (train.getError() > error);

 System.gc();

 return true;

 }

 private NeuralDataSet getTrainingSet(String sampleDataFilePath)

 {

 NeuralDataSet neuralDataSet = null;

 BufferedReader br = null;

 try

 {

 62

 br = new BufferedReader(new FileReader(sampleDataFilePath));

 int i = 0;

 String sCurrentLine;

 while ((sCurrentLine = br.readLine()) != null && i <= trainingSetSize)

 {

 if (sCurrentLine.contains("\"eSense\""))

 {

 double attention = 0, meditation = 0, delta = 0, theta = 0, lowAlpha = 0,

highAlpha = 0, lowBeta = 0, highBeta = 0, lowGamma = 0, highGamma = 0,

poorSignalLevel = 0;

 sCurrentLine = sCurrentLine.replace("\"", "");

 sCurrentLine = sCurrentLine.replace("{", "");

 sCurrentLine = sCurrentLine.replace("}", "");

 sCurrentLine = sCurrentLine.replace("eSense:", "");

 sCurrentLine = sCurrentLine.replace("eegPower:", "");

 String[] eegValues = sCurrentLine.split(",");

 for (String eegVal : eegValues)

 {

 String[] eegReadings = eegVal.split(":");

 double tempReading = Double.parseDouble(eegReadings[1]);

 switch (eegReadings[0])

 {

 case "attention":

 attention = tempReading;

 break;

 case "meditation":

 meditation = tempReading;

 break;

 case "delta":

 delta = tempReading;

 break;

 case "theta":

 theta = tempReading;

 break;

 case "lowAlpha":

 lowAlpha = tempReading;

 break;

 case "highAlpha":

 highAlpha = tempReading;

 break;

 case "lowBeta":

 lowBeta = tempReading;

 break;

 case "highBeta":

 63

 highBeta = tempReading;

 break;

 case "lowGamma":

 lowGamma = tempReading;

 break;

 case "highGamma":

 highGamma = tempReading;

 break;

 case "poorSignalLevel":

 poorSignalLevel = tempReading;

 break;

 default:

 break;

 }

 }

 if (poorSignalLevel < ACCEPTED_SIGNAL_LEVEL)

 {

 INPUT[i][0] = delta;

 INPUT[i][1] = theta;

 INPUT[i][2] = lowAlpha;

 INPUT[i][3] = highAlpha;

 INPUT[i][4] = lowBeta;

 INPUT[i][5] = highBeta;

 INPUT[i][6] = lowGamma;

 INPUT[i][7] = highGamma;

 for (int j = 0; j < outputNeuronCount; j++)

 {

 IDEAL[i][j] = attentiveBit;

 }

 ++i;

 }

 } else

 {

 }

 }

 neuralDataSet = new BasicNeuralDataSet(INPUT, IDEAL);

 br.close();

 } catch (IOException ex)

 {

 JOptionPane.showMessageDialog(null, ex.getMessage());

 64

 ANNTrainerUI.progressBar.setIndeterminate(false);

 ANNTrainerUI.trainBtn.setEnabled(true);

 }

 return neuralDataSet;

 }

 public boolean resumeTraining()

 {

 boolean trainingStatus = false;

 setNetwork(new BasicNetwork());

 System.out.println("deserializing the network");

 try

 {

 FileInputStream fin = new FileInputStream("attention_classification_network.dat");

 ObjectInputStream ois = new ObjectInputStream(fin);

 setNetwork((BasicNetwork) ois.readObject());

 ois.close();

 } catch (IOException | ClassNotFoundException e)

 {

 JOptionPane.showMessageDialog(null, e.getMessage());

 }

 System.out.println(getNetwork().toString());

 final String sampleDataPathDir = "Sample_EEG_DATA";

 File sampleEEGDataPath = new File(sampleDataPathDir);

 if (sampleEEGDataPath.listFiles() != null)

 {

 for (final File fileEntry : sampleEEGDataPath.listFiles())

 {

 ANNTrainerUI.trainingDataSetList.setSelectedValue(fileEntry.getName(), true);

 ANNTrainerUI.trainingDataSetList.setSelectionForeground(Color.GREEN);

 if (fileEntry.isDirectory())

 {

 continue;

 } else

 {

 NeuralDataSet trainingSet = getTrainingSet(fileEntry.getAbsolutePath());

 if (trainingSet != null)

 {

 65

 if (!ANNTrainerUI.learningRateText.getText().equals(""))

 {

 learnRate =

Double.parseDouble(ANNTrainerUI.learningRateText.getText());

 }

 if (!ANNTrainerUI.momentumText.getText().equals(""))

 {

 momentum =

Double.parseDouble(ANNTrainerUI.momentumText.getText());

 }

 if (!ANNTrainerUI.errorText.getText().equals(""))

 {

 error = Double.parseDouble(ANNTrainerUI.errorText.getText());

 }

 trainingStatus = trainDataSet(trainingSet);

 } else

 {

 trainingStatus = false;

 }

 }

 }

 }

 return trainingStatus;

 }

 public NeuralData computeOutput(double[] INPUT)

 {

 setNetwork(new BasicNetwork());

 System.out.println("deserializing the network");

 try

 {

 FileInputStream fin = new FileInputStream("attention_classification_network.dat");

 ObjectInputStream ois = new ObjectInputStream(fin);

 setNetwork((BasicNetwork) ois.readObject());

 ois.close();

 } catch (IOException | ClassNotFoundException e)

 {

 JOptionPane.showMessageDialog(null, e.getMessage());

 }

 NeuralData output = getNetwork().compute(new BasicNeuralData(INPUT));

 66

 return output;

 }

 /**

 * @return the network

 */

 public BasicNetwork getNetwork()

 {

 return network;

 }

 /**

 * @param network the network to set

 */

 public void setNetwork(BasicNetwork network)

 {

 this.network = network;

 }

}

C.5 Code for FocusGain Mobile Application

ConnectFragment.java

package mobile.focusgain.focusgainmobile.fragments;

import android.bluetooth.BluetoothAdapter;

import android.content.Context;

import android.content.Intent;

import android.graphics.Color;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.os.Vibrator;

import android.support.annotation.Nullable;

import android.support.v4.app.Fragment;

import android.text.method.ScrollingMovementMethod;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.TextView;

 67

import android.widget.Toast;

import com.neurosky.thinkgear.TGDevice;

import com.neurosky.thinkgear.TGEegPower;

import java.text.SimpleDateFormat;

import java.util.Date;

import mobile.focusgain.focusgainmobile.R;

import mobile.focusgain.focusgainmobile.thinkgear.ThinkGearConnector;

/**

 * Created by Charitha Senarathne on 5/4/2015.

 */

public class ConnectFragment extends Fragment implements View.OnClickListener {

 BluetoothAdapter bluetoothAdapter;

 TextView tv;

 Button b;

 TGDevice tgDevice;

 public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container,

@Nullable Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.connect, container, false);

 tv = (TextView) view.findViewById(R.id.textView);

 tv.setMovementMethod(new ScrollingMovementMethod());

 tv.setText("");

 tv.append("Android version: " + Integer.valueOf(android.os.Build.VERSION.SDK) +

"\n");

 b = (Button) view.findViewById(R.id.button);

 b.setOnClickListener(this);

 // Check if Bluetooth is available on the Android device

 bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

 if (bluetoothAdapter == null) {

 // Alert user that Bluetooth is not available

 Toast.makeText(getActivity().getBaseContext(), "Bluetooth not available",

Toast.LENGTH_LONG).show();

 //finish();

 } else {

 68

 // create the TGDevice

 tgDevice = new TGDevice(bluetoothAdapter, handler);

 ThinkGearConnector.setTgDevice(tgDevice);

 tv.append("NeuroSky: " + tgDevice.getVersion());

 tv.append("\n");

 }

 return view;

 }

 public void doStuff(View view) {

 if (ThinkGearConnector.getTGDevice() != null) {

 if (ThinkGearConnector.getTGDevice().getState() !=

TGDevice.STATE_CONNECTING && ThinkGearConnector.getTGDevice().getState() !=

TGDevice.STATE_CONNECTED) {

 ThinkGearConnector.getTGDevice().connect(rawEnabled);

 }

 } else {

 Toast.makeText(getActivity().getBaseContext(), "Bluetooth not available",

Toast.LENGTH_LONG).show();

 }

 }

 final boolean rawEnabled = false;

 int focusLostCount = 0;

 final Handler handler = new Handler() {

 @Override

 public void handleMessage(Message msg) {

// SimpleDateFormat dateFormat = new SimpleDateFormat("dd-MMM-yy hh.mm.ss

aa");

// Date date = new Date();

// String formattedDate = dateFormat.format(date.toString());

 switch (msg.what) {

 case TGDevice.MSG_STATE_CHANGE:

 switch (msg.arg1) {

 case TGDevice.STATE_IDLE:

 69

 break;

 case TGDevice.STATE_CONNECTING:

 tv.append("Connecting...\n");

 break;

 case TGDevice.STATE_CONNECTED:

 tv.append("Connected.\n");

 ThinkGearConnector.getTGDevice().start();

 break;

 case TGDevice.STATE_NOT_FOUND:

 tv.append("Could not connect any of the paired BT devices.\n");

 break;

 case TGDevice.STATE_NOT_PAIRED:

 tv.append("No Bluetooth devices paired.\n");

 break;

 case TGDevice.STATE_DISCONNECTED:

 tv.append("Disconnected.\n");

 } /* end switch on msg.arg1 */

 break;

 case TGDevice.MSG_POOR_SIGNAL:

 tv.append("PoorSignal: " + msg.arg1 + "\n");

 break;

 case TGDevice.MSG_HEART_RATE:

 tv.append("Heart rate: " + msg.arg1 + "\n");

 break;

 case TGDevice.MSG_RAW_DATA:

 int rawValue = msg.arg1;

 tv.append("Raw Data: " + rawValue + "\n");

 break;

 case TGDevice.MSG_MEDITATION:

 tv.append("Meditation: " + msg.arg1 + "\n");

 break;

 case TGDevice.MSG_BLINK:

 tv.append("Blink: " + msg.arg1 + "\n");

 break;

 case TGDevice.MSG_RAW_COUNT:

 //tv.append("Raw Count: " + msg.arg1 + "\n");

 break;

 case TGDevice.MSG_LOW_BATTERY:

 70

 Toast.makeText(getActivity().getApplicationContext(), "Low battery!",

Toast.LENGTH_SHORT).show();

 break;

 case TGDevice.MSG_EEG_POWER:

 TGEegPower ep = (TGEegPower) msg.obj;

 tv.append("\n"+

 "Delta : " + ep.delta + "\n" +

 "HighAlpha : " + ep.highAlpha + "\n" +

 "HighBeta : " + ep.highBeta + "\n" +

 "LowAlpha : " + ep.lowAlpha + "\n" +

 "LowBeta : " + ep.lowBeta + "\n" +

 "LowGamma : " + ep.lowGamma + "\n" +

 "MidGamma : " + ep.midGamma + "\n" +

 "Theta : " + ep.theta + "\n");

 Intent dataIntent = new Intent();

dataIntent.setAction("mobie.focusgain.focusgainmobile.EEG_POWER_BANDS");

 dataIntent.putExtra("formattedDate", formattedDate);

 dataIntent.putExtra("hours", date.getHours());

 dataIntent.putExtra("minutes", date.getMinutes());

 dataIntent.putExtra("seconds", date.getSeconds());

 dataIntent.putExtra("Delta", Integer.toString(ep.delta));

 dataIntent.putExtra("HighAlpha", Integer.toString(ep.highAlpha));

 dataIntent.putExtra("HighBeta", Integer.toString(ep.highBeta));

 dataIntent.putExtra("LowAlpha", Integer.toString(ep.lowAlpha));

 dataIntent.putExtra("LowBeta", Integer.toString(ep.lowBeta));

 dataIntent.putExtra("LowGamma", Integer.toString(ep.lowGamma));

 dataIntent.putExtra("MidGamma", Integer.toString(ep.midGamma));

 dataIntent.putExtra("Theta", Integer.toString(ep.theta));

 getActivity().sendBroadcast(dataIntent);

 boolean attentive = new

ANNClassifier().recognizeAttention(getApplicationContext(),ep);

 Vibrator vibrator = (Vibrator)

getSystemService(Context.VIBRATOR_SERVICE);

 if(!attentive)

 {

 ++focusLostCount;

 }

 if(focusLostCount == 20)

 {

 71

 tv.setBackgroundColor(Color.RED);

 // Vibrate for 500 milliseconds

 vibrator.vibrate(2000);

 }

 if(focusLostCount == 22)

 {

 tv.setBackgroundColor(Color.WHITE);

 vibrator.cancel();

 focusLostCount = 0;

 }

 default:

 break;

 } /* end switch on msg.what */

 } /* end handleMessage() */

 }; /* end Handler */

 @Override

 public void onClick(View v) {

 doStuff(v);

 }

}

ANNClassifier.java

package mobile.focusgain.focusgainmobile.ann;

import android.app.Activity;

import android.content.Context;

import com.neurosky.thinkgear.TGEegPower;

import org.encog.neural.data.NeuralData;

import org.encog.neural.data.basic.BasicNeuralData;

import org.encog.neural.networks.BasicNetwork;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

 72

/**

 * Created by Charitha Senarathne on 4/28/2015.

 */

public class ANNClassifier {

 private BasicNetwork trainedANN;

 public boolean recognizeAttention(Context context, TGEegPower powerBands) {

 boolean attentiveStatus = false;

 if (getTrainedNetwork() != null) {

 loadTrianedANN(context);

 }

 double[] INPUT = new double[8];

 INPUT[0] = powerBands.delta;

 INPUT[1] = powerBands.theta;

 INPUT[2] = powerBands.lowAlpha;

 INPUT[3] = powerBands.highAlpha;

 INPUT[4] = powerBands.lowBeta;

 INPUT[5] = powerBands.highBeta;

 INPUT[6] = powerBands.lowGamma;

 INPUT[7] = powerBands.midGamma;

 NeuralData output = computeOutput(INPUT);

 double[] allData = output.getData();

 double outputReading = (double) Math.round(allData[0]);

 if (outputReading > 0.5) {

 attentiveStatus = true;

 } else {

 attentiveStatus = false;

 }

 return attentiveStatus;

 }

 public void loadTrianedANN(Context context) {

 setTrainedNetwork(new BasicNetwork());

 try {

 73

 FileInputStream fin = (FileInputStream)

context.getAssets().open("attention_classification_network.dat");

 ObjectInputStream ois = new ObjectInputStream(fin);

 setTrainedNetwork((BasicNetwork) ois.readObject());

 ois.close();

 } catch (IOException | ClassNotFoundException e) {

 }

 }

 public NeuralData computeOutput(double[] INPUT) {

 NeuralData output = getTrainedNetwork().compute(new BasicNeuralData(INPUT));

 return output;

 }

 public BasicNetwork getTrainedNetwork() {

 return trainedANN;

 }

 public void setTrainedNetwork(BasicNetwork trainedANN) {

 this.trainedANN = trainedANN;

 }

}

 74

