Extending Self-configuration Algorithms of Energy Constraint Wireless Sensor Networks to Emergency Environment

Warahena Liyanage Ashanie De Alwis Gunathillake

138019H

Thesis submitted in partial fulfilment of the requirements for the degree Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

December 2015

Declaration

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 22/12/2015

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ dissertation under my supervision.

Signature of the supervisor:

Date:22/12/2015

Abstract

Wireless Sensor Networks have recently gained interest in building monitoring applications as a low cost and easy to install alternative. Some examples are smart/green buildings and emergency/rescue operations. These types of networks require that a large number of sensors be positioned easily and that they configure themselves to perform the tasks needed without human intervention. This raises the issue of self-organization of sensor nodes.

In the recent past, many researchers have investigated this topic. However, there is a lack of suitable self-organization algorithms which can be used in emergency monitoring applications in an indoor environment. This thesis proposes a self-organization algorithm for Wireless Sensor Networks suitable for an emergency detection and monitoring application by considering emergency environment issues.

A distributed unequal clustering algorithm with a suitable node dying pattern for an emergency monitoring application is proposed and simulated. The proposed algorithm optimizes the energy usage of the network and prolongs the network lifetime by multi-hop communication. The simulation result shows that the proposed algorithms prolong the network lifetime while maintaining the coverage of the building with existing nodes in a 2D environment. EDCR-LGRUC algorithm prolong the lifetime of the network by 1000 rounds more than the EDCR algorithm. Additional, SCAE algorithm delayed and reduced the CH failures compared to EDCR. Also, the communication failure occurred due to the CH failure is reduced by 10% compared to EDCR. Moreover, 500 data rounds are optimized in the proposed multi-hop algorithm compared to EDCR-MH algorithm.

From the application point of view, the proposed algorithm is simulated in a 3D environment. The result shows that, it achieves the same outcome as in 2D environments and that the algorithm is suitable for a wireless sensor network deployed in a multi-story building.

Acknowledgements

First and foremost, I would like to offer my deepest gratitude to my supervisors Eng. A. T. L. K. Samarasinghe for his continuous guidance, advice, support and encouragement during this challenging research.

I am too thankful to Prof. K. S. Walgama of University of Peradeniya for his unique approach in analyzing problems and finding novel solutions inspired me to widen my intellectual horizon. My life has been enriched professionally and personally by working closely with him.

I wish to extend my earnest gratitude to members of my project panel Prof. S.A.D Dias, Dr, E.C.Kulasekere, Dr. K.C.B.Wavegedara, and Dr.Dilum Bandara for their valuable comments on my research work.

I also thank my dear friends and colleagues in the department of Electronic and Telecommunication Engineering, University of Moratuwa for their assistance and encouragement.

Last but not least I would like to thank the National research Council, Sri Lanka for funding my research for the entire duration to make it a success.

Contents

1	Intr	oducti	on	1
	1.1	The R	esearch Problem	2
	1.2	Challe	nges in Emergency Response	3
	1.3	Organi	zation of the Thesis	4
2	\mathbf{Rel}	ated W	⁷ ork	5
	2.1	Cluste	ring	5
		2.1.1	Challenges	7
	2.2	Cluste	ring Algorithms Proposed for Wireless Sensor Networks	8
		2.2.1	LEACH: Low Energy Adaptive Clustering Hierarchy	8
		2.2.2	SEP: Stable Election Protocol	10
		2.2.3	HEED: Hybrid Energy Efficient Distributed Clustering	11
		2.2.4	An energy-efficient clustering algorithm for data gathering	
			and aggregation in sensor networks: ANTCLUST \ldots .	11
		2.2.5	EDAC: Energy Driven Adaptive Clustering	12
		2.2.6	EEUC: Energy Efficient Unequal Clustering	13
		2.2.7	EDUC: Energy-Driven Unequal Clustering	13
		2.2.8	ECRA: Energy-Aware Cluster Based Routing Algorithm .	14
		2.2.9	Energy Efficient Homogenous Clustering Algorithm for Wire-	
			less Sensor Networks	14
		2.2.10	EDCR: Energy Driven Cluster-Head Rotation	15
	2.3	Sensor	Network Model	15
		2.3.1	Assumptions	15
		2.3.2	Energy Consumption Model	16
		2.3.3	Lifetime of the Sensor Network	19
3	Pro	posed	Energy Efficient Unequal Clustering Algorithm	20
	3.1	Details	s of the Algorithm	20

		3.1.1	Cluster Head Candidacy Phase	21
		3.1.2	Cluster Formation Phase	22
		3.1.3	Creating Local Re-clustering Table Phase	23
		3.1.4	Data Gathering Phase	24
		3.1.5	CH Rotation Phase	24
	3.2	Algor	ithm Pseudo Code	25
	3.3	Accur	acy of the Algorithm	27
	3.4	Optin	nization of Control Parameters	28
		3.4.1	Optimum Maximum Communication Range of a CH $$	28
		3.4.2	Optimum Radius of the Partial Local Delegation Area $$	31
		3.4.3	Optimum Dynamic Re-clustering Threshold of each CH	31
	3.5	Simul	ation results	32
		3.5.1	Cluster Head Distribution of the Algorithm $\ldots \ldots \ldots$	33
		3.5.2	Stability of the Algorithm	34
		3.5.3	Energy Efficiency of the Algorithm	35
1	Solf	- Orga	nization of Wireless Sonsor Notworks Based on Soverity	
4	ofa	n Em	argency Environment	30
		Prolin		J 0
	1.1	4 1 1	Demoster-Shafer(DS) Theory	40 40
	4.2	Descr	intion of the Algorithm	41
	1.2	4 2 1	Estimating the Severity Level of an Emergency Phase	42
		4 2 2	Cluster Head Candidacy Phase	43
		4.2.3	Cluster Formation Phase	44
		4.2.4	Data Gathering Phase	44
		4.2.5	CH Rotation Phase	45
	4.3	Simul	ation Besults	45
		4.3.1	Simulation Setup	46
		4.3.2	Applying DS Information Filtering to Estimate the Severity	
			of the Fire	46
		4.3.3	Cluster Head Selection of the Algorithm	47
		4.3.4	Performance of the Algorithm in an emergency environment	50
		4.3.5	Energy Efficiency of the Algorithm	50
۲	G :	tabla T	Node Duing Dettom for Emergency Applications	٤v
Э	5 1	Node	Duing Pattern Suitable for Emergency Monitoring Applications	ีย <u>ผ</u> รถ
	ป.1 5 ว	Doger	bying rattern suitable for Emergency Monitoring Applications	57 2
	0.2	Descr		94

		5.2.1	Modified CH Rotation Phase
		5.2.2	Determination of Optimum Static Re-clustering Triggering
			Energy Level
	5.3	Simula	ation Results
		5.3.1	Sensor Distribution
		5.3.2	Energy Efficiency of the Algorithm
		5.3.3	Node Dying Pattern
6	The	e Prop	osed Algorithm in Multi-hop Network Setup
	6.1	Multi-	hop Network Setup
		6.1.1	Selecting Next-Hop CH Phase
		6.1.2	Determination of Optimum Parameters for the Algorithm .
	6.2	Simula	ation Results
		6.2.1	Sensor Distribution
		6.2.2	Energy Efficiency of the Algorithm
	6.3	Suitab	bility of the algorithm in 3D environment
		6.3.1	Sensor Distribution
		6.3.2	Energy Efficiency and Coverage Control of the Algorithm .
7	Cor	nclusio	n and Future Direction
	7.1	Future	e Directions
\mathbf{A}	Pro	posed	Sensor Network based Architecture
	A.1	Propo	sed Architecture
		A.1.1	Communication Layer
		A.1.2	Core Layer
		A.1.3	Presentation Layer
	A.2	Exam	ple of Use: Sensor Network Based Emergency Response and
		Navig	ation Support Architecture
		A.2.1	Navigation support layer
		A.2.2	Knowledge Manipulation layer
	A.3	Future	e Work

List of Figures

2.1	Single-hop clustering	6
2.2	Multi-hop clustering	6
2.3	Node Energy Model	16
3.1	Nodes for local re-clustering	23
3.2	CH distribution over the network $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	34
3.3	Cluster distribution in each round (Rounds vs Number of clusters)	36
3.4	Energy Efficiency - Case I	37
3.5	Energy Efficiency - Case II	37
3.6	Energy Efficiency - Case III	38
3.7	Energy Efficiency - Case IV	38
4.1	Simulation setup: Living room, Sensor nodes are deployed at the	
	ceiling	46
4.2	CH distribution over the network $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	47
4.3	Performance of the algorithm in an emergency	49
4.4	Energy efficiency of the algorithm	51
5.1	Number of Live Sensor Nodes at the End of Each Round \ldots .	53
5.2	Alive and Dead Nodes in the Environment	53
5.3	Simulation Environment	56
5.4	Energy Efficiency - Case I	57
5.5	Energy Efficiency - Case II	57
5.6	Energy Efficiency - Case III	58
5.7	Energy Efficiency - Case IV	58
5.8	Improvements in Node Dying Pattern - Case I	60
5.9	Improvements in Node Dying Pattern - Case II	61
5.10	Improvements in Node Dying Pattern - Case III	62
5.11	Improvements in Node Dying Pattern - Case IV	63

6.1	Next Hop selection - BS at the Center	67
6.2	Next Hop selection - BS Located Far Away	68
6.3	Energy Efficiency of the Algorithm	69
6.4	Building Environment	70
6.5	Sensor Bed A	70
6.6	Sensor Bed B	71
6.7	CH Distribution in a Single Floor	71
6.8	Next Hop Neighbour Selection - Sensor Bed A	72
6.9	Next Hop Neighbour Selection - Sensor Bed B $\ .\ .\ .\ .$	72
6.10	Energy Efficiency of the Algorithm	73
6.11	Grid Coverage Drop of the Algorithm	74
A.1	Proposed Architecture	82
A.2	Function of Localization Layer	83
A.3	Function of Perceiving Layer	83
A.4	Function of Self-organization Layer	85
A.5	Function of Data Filtering and Prediction Layer	86
A.6	Function of Severity Calculator Layer	86
A.7	Proposed Emergency Response and Navigation Support Architec-	
	ture	88

List of Tables

3.1	State Power and Transition Time of Strong ARM SA-1100 \ldots .	33
3.2	State Current and Transition Time of CC2420	33
3.3	State Transition Power and Work Voltage and Current of DS18B20	33
3.4	Simulation Parameters	34
3.5	CH COMMUNICATION RANGE VARIATION WITH ENERGY	35
11	SELECTED CH'S DESIDUAL ENDROY AND DELET VALUES	10
4.1	SELECTED OT 5 RESIDUAL ENERGY AND DELIEF VALUES	40

Nomenclature

Bel(i,t)	Severity of node i at time t
c_i	Dynamic re-clustering threshold
D_{ch-ch}	Average distance between two Cluster Heads
$dist_{i.j}$	Distance between node i and j
Δ	Re-clustering threshold
$e_{cpu-change}$	energy consumption of one time state transition
e_{off-on}	One time energy consumption of opening sensor operation
e_{on-off}	One time energy consumption of closing sensor operation
E_{const}	Constant Energy Level
E_{cpu}	Processor energy consumption
$E_{cpu-change}$	Sum of the state transition energy consumption
$E_{cpu-state}$	Sum of the state energy consumption
E_{DGR}	Total energy cost of data transmission in global re-clustering
E_{elec}	Energy at the transmitter or receiver circuitry
$E_{j,i,p}$	Residual energy of node p, at the beginning of node i
	Cluster Head period in the Epoch j
E_{OGR}	Total energy cost of transmitting overhead data in global
	re-clustering
E_{sensor}	Sensor energy consumption
E_{static}	Static re-clustering threshold
$E_{rel-max,i}$	Relative maximum energy of sensor i's neighborhood
$E_{res,i}$	Residual energy of sensor i
$E_{Rx,i}$	Energy consumption in receiving state of node i
E_{TLD-P}	Total energy cost in partial local delegation
$E_{Tx,i}$	Energy consumption in transmitting state of node i
ε_{amp}	Energy at the transmitter amplifier
h	Average hop count

Energy cost in a Cluster Head
Energy cost in a Cluster Member
Total data gathering cost of one data round
Random numbers
Length of a message
The radio propagation path loss exponent
Frequency of state transition
Number of nodes in partial local delegation
Set of nodes within the neighborhood of radius R_{max} around
node i
Power consumption in a CPU state
Power of end state
Power of initial state
Plausibility function
Maximum compatible radius of node i
Radius of partial local delegation
Maximum communication range od a sensor node
Minimum communication range od a sensor node
Limited time interval for CH candidacy
Cluster Head candidacy time of node i
Time interval in a state
Time interval for the state transition
Local Cluster Head candidacy time of sensor i
Weight parameters
number of data transmission rounds that node i serves as a
CH in the Epoch j
Number of data rounds that node i serves as a CH after
triggering static re-clustering