DEVELOPING A ROOF SLAB INSULATION SYSTEM FOR TROPICAL CLIMATIC CONDITIONS

Kasun Nandapala

138044E

Degree of Doctor of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

November 2016

DEVELOPING A ROOF SLAB INSULATION SYSTEM FOR TROPICAL CLIMATIC CONDITIONS

Manamendra Patabendige Kasun Chinthaka Nandapala

138044E

Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Civil Engineering

University of Moratuwa

Sri Lanka

November 2016

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Eng. M.P.K.C. Nandapala, Department of Civil Engineering, University of Moratuwa, Sri Lanka.

The above candidate has carried out research for the PhD thesis under my supervision.

Supervisor,

Dr R. U. Halwatura, Department of Civil Engineering, University of Moratuwa, Sri Lanka.

Abstract

Global Warming is proven to be one of the biggest issues that the current world is facing. Greenhouse gas emission due to the extensive energy usage has been identified as the primary cause for that. Hence, the world is on its path to investigate ways and means of reducing energy consumption in the world.

On the other hand, due to the rapid urbanisation took place in recent history, land prices have escalated significantly. Hence, flat roof slabs become popular day-by-day due to the possibility of land recovery by that. Further, it has many additional advantages like cyclonic resistance, the possibility of future vertical extension and the possibility of utilising as an extra working space. However, a serious matter of concern is its thermal discomfort, for which air-conditioning the corresponding spaces is the most common remedy used. However, it has led to extensive use of energy, increasing the operational cost of the buildings and contributing to global warming, which is the issue that the world is attempting to mitigate. Hence, the current trend is to go for passive techniques. In this process, insulating roof slabs has been identified as a better passive way to make buildings thermally comfortable.

In this study, several existing roof slab insulation systems and their performances were investigated, and the most efficient system for tropical climates was identified. Since that system had an issue in durability as it had poor drainage arrangement, an optimised system with a structural arrangement of discontinuous strips was found out by computer simulations. A physical model developed to verify the results showed that the newly developed system could withstand a point load of 4MT at its most critical locations.

A comparison of thermal performance between the new system and the existing system was carried out by small-scale model testing. It resulted in finding that the newly designed system performs better than the most recent and efficient existing insulation system. An actual scale model testing was carried out to check its performance under real conditions. The results suggested that this newly developed system performs well in thermal aspects under actual conditions, and performs better than even a calicut tiled roof with a timber ceiling. Results suggested that this system can produce a peak cooling load reduction of about 20%.

The performance of an air gap as an insulator was checked in the process of trying to replace the insulation material and found out that air gap is marginally less effective than polystyrene. Further, it was proven that the thickness of the air gap does not have a significant effect on the thermal performance. Further, a confined air gap with bamboo strips was also proven to have a similar thermal performance. An added vegetation layer on these systems further enhanced the thermal conditions of the building.

A life cycle cost analysis suggested that the overlaid vegetation performs slightly better than the cases without vegetation in economic aspects. But the life cycle costing values lie in the same order, proving that all the systems considered are almost equally effective in terms of economic performance. However, due to the advantages like local and natural availability, bamboo, as an insulation material, is very favourable to be used in local context.

Keywords: Global Warming, Thermal Comfort, Energy Efficiency, Strength, Durability, Rooftop Vegetation

Acknowledgements

The author is immensely grateful to the research supervisor, Dr R. U. Halwatura of the Department of Civil Engineering for his invaluable guidance and support throughout the research period.

The Author wishes to extend his sincere gratitude to Senate Research Committee of the University of Moratuwa for funding the experimental programme throughout the research work.

Further, the Author wishes to acknowledge thankfully the excellent support given by Prof. A. A. D. A. J. Perera, Prof. Mrs C. Jayasinghe and Dr. L. L. Ekanayake of Department of Civil Engineering.

Sincere gratitude is also due for all those who participated in the questionnaire survey.

The support given by Prof. S. M. A. Nanayakkara and Prof. Saman Bandara (Heads, Department of Civil Engineering during the period of the research), and Prof. Saman Thilakasiri (Research Coordinator, Department of Civil Engineering) is acknowledged gratefully. All the other lectures and research students are thanked for the positive attitude they adopted in promoting research at Civil Engineering Department.

The technical officers of the Department of Civil Engineering, Ms M. M. Kanthi Menike, Mrs Cooray and all the supportive staff who helped in many ways to make this project owns a sincere gratitude as well.

Finally, the author wishes to thank all those who contributed to the completion of this project successfully.

Contents

De	eclara	tion		i
Al	bstrac	:t		ii
Ac	cknov	vledgem	ients	iii
Ta	ble of	f Contei	nts	iv
Li	st of]	Figures		viii
Li	st of '	Fables		xiv
1	Intr	oductio	n	1
	1.1	Genera	al	1
	1.2	Object	ives	2
	1.3	Metho	dology	3
	1.4	The M	ain Findings	4
	1.5	The A	rrangement of the Report	5
2	Lite	rature l	Review	6
	2.1	Genera	al	6
	2.2	Global	Warming and Its Effects	7
	2.3	Therm	al Comfort in Tropical Countries	9
		2.3.1	Climate in Tropical Countries	9
		2.3.2	Comfort Models Developed in the World	10
	2.4	Energy	Consumption and Thermal Comfort	14

		2.4.1 Energy Consumption in Tropical Countries
		2.4.2 Energy Consumption in Buildings
	2.5	Insulation as a Passive Technique
		2.5.1 Passive Techniques in General
		2.5.2 Insulation as a Passive Strategy 21
	2.6	Roof Insulation
		2.6.1 Different Roof Slab Insulation Systems
		2.6.2 Roof Insulation with a Vegetation Layer on Top
	2.7	Economic Feasibility of the Systems
		2.7.1 General
		2.7.2 Life Cycle Costing of Slab Insulation Systems
	2.8	Summary of the Literature Survey
3	Pub	lic Perception on Roof Slabs 40
	3.1	General
	3.2	The Selected Sample
	3.3	Results Obtained by the Questionnaire Survey
	3.4	Summary of the Questionnaire Survey
4	Stru	ictural Arrangement and Performance 53
	4.1	General
	4.2	Methodology
		4.2.1 General
		4.2.2 Finding the Moment Capacity
		4.2.3 The optimisation Process
	4.3	Results Obtained by Numerical Modelling 61
		4.3.1 Step 1: Removing Strips in One Direction 61
		4.3.2 Step 2: Discontinuing the Strips
		4.3.3 Step 3: Flat Slab Arrangement
	4.4	Selecting a Suitable Width
	4.5	Selecting the Optimum Arrangement

	4.6	Selecting a Suitable Concrete Mix	67
	4.7	Physical Model Testing	70
	4.8	Summary of Structural Arrangement and Performance	72
5	The	rmal Performance of the System	73
	5.1	General	73
	5.2	Theoretical Analysis of Thermal Performance	75
	5.3	Results of Physical Model Testing	77
		5.3.1 General	77
		5.3.2 Small Scale Physical Model Testing	78
		5.3.3 Actual Scale Physical Model Testing	84
	5.4	Computer Simulation	89
		5.4.1 Model Calibration	89
		5.4.2 Calculation of Cooling Loads	91
	5.5	Summary of the Thermal Performance	93
6	Deve	eloping a Natural Insulation Material	94
	6.1	General	94
	6.2	Air Gap as an Insulation material	95
		6.2.1 Effectiveness of the Thickness of Air Gap	95
		6.2.2 A Comparison with Polystyrene as an Insulator	97
	6.3	Bamboo Cut in Transverse Direction as an Insulation Material	99
		6.3.1 The Designed Experimental Setup	99
		6.3.2 Effectiveness of Bamboo as an Insulation Material 10	01
	6.4	Effectiveness of a Vegetation Layer on Top for the Insulation Properties 1	03
		6.4.1 The System with Air Gap and Vegetation	03
		6.4.2 The System with Bamboo and Vegetation	05
	6.5	Summary of the Effort on Developing a Natural Insulation Material . 10	06
7	Life	Cycle Cost Analysis 10	08
	7.1	General	08
	7.2	A Comparison with Traditional Roofing Materials	09

	7.3	Method	d of Comparing Different Insulation Options	110
		7.3.1	The Approach	110
		7.3.2	Factors Considered in the Analysis	112
	7.4	Results	s of the Life Cycle Cost Analysis	114
		7.4.1	Option 1: When the Operational Period is from 0800h -1700h	114
		7.4.2	Option 2: When the Building is always Operational	119
	7.5	Summa	ary of the Life Cycle Costing Analysis	123
8	Con	clusions	, Recommendations and Future Works	124
	8.1	Main C	Conclusions	124
	8.2	Recom	mendations	126
	8.3	Future	Works	126
A	The	Questio	nnaire Form Used	128
B	Mix	Design	Calculations Performed	138
С	Theo	oretical	Calculations of Thermal Conductivities of the Systems	144
D	Deta	ils of th	e Simulation Model Used to Calculated Cooling Loads	148
Re	References 1			

List of Figures

1.1	Isometric View of the Developed System	4
2.1	Global Mean Temperature Rise in Last 150 Years	8
2.2	The Climate Zones in the World	10
2.3	Comfort Models Developed in the World	11
2.4	A Typical Psychrometric Chart	15
2.5	Comfort Zone for a Building without HVAC for a Neutrality	
	Temperature of $26^{0}C$	16
2.6	Comfort Zone for a Building with Different Air Velocities for a	
	Neutrality Temperature of $26^{0}C$	17
2.7	A Summary of Passive Techniques Used in Buildings	20
2.8	Thermal Resistances of 5 cm Thickness of Common Building	
	Insulation Materials	30
3.1	The Distribution of the Existing Roofing Materials in Sri Lanka (2015)	42
3.2	The Distribution of the Field of Work of the Selected Sample	43
3.3	The Distribution of the Existing Roofing Materials of the Selected	
	Sample	43
3.4	The Satisfaction Levels of the Calicut Tile Users on their Roofing	
	Material	44
3.5	The Satisfaction Levels of the Asbestos Sheet Users on their Roofing	
	Material	45
3.6	The Satisfaction Levels of the Concrete Slab Users on their Roofing	

3.7	The Preferred Roofing Material of the Selected Sample	46
3.8	The Reasons Expressed to the Choice of Preferred Roofing Material .	46
3.9	Users of Asbestos Sheets: Reasons for not Choosing a Concrete Slab	
	as a Roof	47
3.10	Users of calicut Tiles: Reasons for not Choosing a Concrete Slab as a	
	Roof	47
3.11	Users of Concrete Slabs: Issues Associated with Roof Slabs	48
3.12	Actions for Thermal Discomfort of those who have calicut Tiles as the	
	Roofing Material	49
3.13	Actions for Thermal Discomfort of those who have Asbestos Sheets as	
	Roofing Materials	49
3.14	Actions for Thermal Discomfort of those who Concrete Roof Slabs	50
3.15	Durations that Fans are Used in Residences with Different Roofing	
	Materials	51
4.1	One of the Most Common Insulation Systems Used in Tropical Countries	54
4.2	The System with Continuous Concrete Strips	55
4.3	The Plan View of the Supporting Arrangement of the System with	
	Continuous Concrete Strips	56
4.4	A Typical Plan View of the Supporting Arrangement after Removing	
	strips in One Direction	59
4.5	Variables to be Considered in Optimising the Strips in Longitudinal	
	Direction	60
4.6	The Process Followed to Optimise the System	60
4.7	A Typical Bending Moment Diagram for an Arrangement of	
	Discontinuous Supports	61
4.8	A Typical Model Obtained by Computer Simulations with Strips Only	
	in One Direction	62
4.9	Actual Bending Moments and Moment Capacities of Different	
	Reinforcing Arrangements When the Strips in One Direction is	
	Removed	62

4.10 Bending Moments and Moment Capacities of the Protective Concrete	
Layer for a Discontinued Strip Arrangement with a Strip Spacing of	
500mm	63
4.11 Bending Moments and Moment Capacities of the Protective Concrete	
Layer for a Discontinued Strip Arrangement with a Strip Spacing of	
500mm for Different Support Lengths when the Clear Spacing	
between them is $100mm$	64
4.12 Bending Moments and Moment Capacities of the Protective Screed	
with a $50mm \times 50mm$ Gauge 12 Mesh for a Flat Slab Arrangement	
with Different Support Spacings	65
4.13 Isometric View of the Selected System	67
4.14 Experimental Setup of the Actual Scale Testing	71
4.15 The Graph of Load Vs. Deflection Obtained by Actual Scale Testing .	71
5.1 The System with Continuous Concrete Strips	74
5.2 Isometric View of the Newly Developed System	74
5.3 The Cross-Section of a Typical Insulation System	76
5.4 GL820 Midi Data Logger	78
5.5 Experimental Setup of the Small Scale Physical Models to Compare	
Thermal Performances	79
5.6 Experimental Setup of the System with Continuous Supporting Strips	
to Compare Thermal Performance	80
5.7 Experimental Setup of the Small Scale Physical Model of the Newly	
Designed System to Compare Thermal Performance	80
5.8 Slab Top and Slab Soffit Temperatures of the Control Experiment over	
a Period of 24 Hours	81
5.9 Slab Top and Slab Soffit Temperatures of the System with	
continuous-strip supports over a Period of 24 Hours	81
5.10 Slab Top and Slab Soffit Temperatures of the System without	
supporting strips over a Period of 24 Hours	82

5.11	Slab Top and Slab Soffit Temperatures of the Newly Developed System	
	over a Period of 24 Hours	82
5.12	Slab Soffit Temperatures of Different Arrangements Considered	84
5.13	The Actual Scale Physical Model Used to Compare Thermal	
	Performances	85
5.14	Slab Top and Slab Soffit Temperatures of the Uninsulated Slab of	
	Actual Model Testing over a Period of 24 Hours	86
5.15	Slab Top and Slab Soffit Temperatures of the Insulated Slab of Actual	
	Model Testing over a Period of 24 Hours	87
5.16	Top and Bottom Surface Temperatures of the calicut Tiled Roof of	
	Actual Model Testing over a Period of 24 Hours	88
5.17	Top Surface Temperatures of the Insulated Slab, Uninsulated Slab and	
	calicut Tiled Roof over a Period of 24 Hours	88
5.18	Bottom Surface Temperatures of the Insulated Slab, Uninsulated Slab	
	and calicut Tiled Roof over a Period of 24 Hours	89
5.19	Results After Calibration for Slab Top Temperatures of the Small Scale	
	Model	90
5.20	Results After Calibration for Slab Soffit Temperatures for the Small	
	Scale Model	90
5.21	The Computer Model Used for Computer Simulations	91
5.22	Predicted Cooling Energy Required for Insulated and Uninsulated	
	Slabs over a Period of 24 Hours	92
6.1	The Physical Model Used to Test Air Gap as an Insulator	95
6.2	Observed Slab Top and Slab Soffit Temperatures of the System with	
	25mm Air Gap	96
6.3	Observed Slab Top and Slab Soffit Temperatures of the Systems with	
	25mm and 75mm Air Gaps	97
6.4	Observed Slab Top and Slab Soffit Temperatures of the Systems with	
	25mm Polystyrene Layer and an Air Gap	98
6.5	Planned arrangement in the Construction of Bamboo Insulation Laver	

6.6	Panel Units Used in the Construction of Bamboo Insulation Layer	100
6.7	Construction of the System with 25mm Bamboo Insulation	101
6.8	Observed Slab Top and Slab Soffit Temperatures of the System with a	
	25mm bamboo strip Layer as an Insulator	101
6.9	Observed Slab Top and Slab Soffit Temperatures of the System with a	
	25mm Polystyrene Layer and a 25mm Bamboo Layer	102
6.10	Construction of the System with 25mm Bamboo Insulation	103
6.11	Observed Slab Top and Slab Soffit Temperatures of the System with a	
	25mm Polystyrene layer and a 25mm-Air Gap with a 50mm Vegetation	
	Layer on Top	104
6.12	Observed Slab Top and Slab Soffit Temperatures of the System with a	
	Bamboo Strip Layer as an Insulator and a 50mm-Vegetation Layer on	
	Тор	105
6.13	Observed Slab Top and Slab Soffit Temperatures of the System with a	
	25mm Polystyrene Layer and a 25mm Bamboo Layer with a	
	50mm-Vegetation Layer on Top	106
7.1	The Model Used to Compare life cycle Costs	112
7.2	Cumulative Heat Gains other than Roof Solar Gains in the Building	
	when the Building is Operational from 0800h-1700h	115
7.3	Sensible Cooling Loads for each of the Options Considered for Insulation	n115
7.4	Total Cooling Loads for each of the Options Considered for Insulation	116
7.5	Case 1- Life Cycle Costing Analysis for Different Insulation Systems	
	Considered for a Lifespan of 10 years when the Office is Operational	
	from 0800h-1700h	117
7.6	Case 2- Life Cycle Costing Analysis for Different Insulation Systems	
	Considered for a Lifespan of 20 years when the Office is Operational	
	from 0800h-1700h	118
7.7	Case 3- Life Cycle Costing Analysis for Different Insulation Systems	
	Considered for a Lifespan of 50 years when the Office is Operational	
	from 0800h-1700h	118

7.8	Cumulative Heat Gains other than Roof Solar Gains in the Building	
	when the Building is always Operational	120
7.9	Total Cooling Loads for each of the Options Considered for Insulation	
	when the Building is always Operational	120
7.10	Case 1- Life Cycle Costing Analysis for Different Insulation Systems	
	Considered for a Lifespan of 10 years when the Office is always	
	Operational	121
7.11	Case 2- Life Cycle Costing Analysis for Different Insulation Systems	
	Considered for a Lifespan of 20 years when the Office is always	
	Operational	121
7.12	Case 3- Life Cycle Costing Analysis for Different Insulation Systems	
	Considered for a Lifespan of 50 years when the Office is always	
	Operational	122

List of Tables

2.1	Insulation Techniques Tested throughout the World	23
2.2	A Summary of Literature on Heat Gain Reduction of Rooftop Vegetation	25
2.3	Economic Benefits and Barriers to be Considered in Life Cycle Cost	
	Analysis	27
2.4	Properties of Different Insulation Materials	32
2.5	Properties of Natural Insulation Materials	37
4.1	The Optimum Arrangements for Each Strip-Spacing Considered	64
4.2	Calculations for Finding Minimum Width of Strips	66
4.3	Calculations for Finding Minimum Width of Strips	68
4.4	Weights of Each Material as per the Mix Design Calculations	
	Performed for Different Water-Cement Ratios for $1m^3$ of Concrete	69
4.5	Mix Design Options Tested by Varying Water-Cement Ratio	69
4.6	Volume Proportions of the Different Mixes Tested in Table 4.4	70
5.1	Theoretical Analysis on the Thermal Performance of the Systems	
	Mentioned in Section 5.1	77
5.2	Peak Temperatures and Their Times of Occurrences for Each System .	83
5.3	Time Lags and Decrement Factors of Four Types of Insulation Systems	83
6.1	Time Lags and Decrement Factors of Four Types of Insulation Systems	97
6.2	Summary of the Results Obtained of the Systems Tested to Replace	
	Insulation Material	107

B .1	The Mix Design Calculation Performed to Obtain a Strength of	
	$15N/mm^2$ with Chip-Concrete with Water-Cement Ratio of 0.78	139
B.2	The Mix Design Calculation Performed to Obtain a Strength of	
	$15N/mm^2$ with Chip-Concrete with Water-Cement Ratio of 0.75	140
B.3	The Mix Design Calculation Performed to Obtain a Strength of	
	$15N/mm^2$ with Chip-Concrete with Water-Cement Ratio of 0.70	141
B.4	The Mix Design Calculation Performed to Obtain a Strength of	
	$15N/mm^2$ with Chip-Concrete with Water-Cement Ratio of 0.65	142
B.5	The Mix Design Calculation Performed to Obtain a Strength of	
	$15N/mm^2$ with Chip-Concrete with Water-Cement Ratio of 0.60	143
~ .		
C .1	Thermal Conductivities of the Materials used	144
C.2	Surface Resistances of Roof Slab	145