UNIVERSITY OF MORATUWA

IMPROVEMENTS IN DESIGN AND CONSTRUCTION STANDARDS OF SURFACE DRESSINGS FOR NATIONAL ROADS IN SRI LANKA

BY

H.L.D.M.A. JUDITH

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SUPERVISED BY

DR. J.M.S.J. BANDARA

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

August 2003

LB/DON/94/03

5

UNIVERSITY OF MORATUWA IMPROVEMENTS IN DESIGN AND CONSTRUCTION STANDARDS OF SURFACE DRESSINGS FOR NATIONAL **ROADS IN SRI LANKA** NUMBERSON OF MERANUMA EIN H.L.D.M.A. JUDITH B.Sc. Eng., M.Eng., CEng., MIE(SL) THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HIGHWAY AND TRAFFIC ENGINEERING www.lib.mrt.ac.lk 624 °03" (25.25(302") **SUPERVISED BY** DR. J.M.S.J. BANDARA **DEPARTMENT OF CIVIL ENGINEERING** UNIVERSITY OF MORATUWA UM Thesis **SRI LANKA** 79190 August 2003 University of Moratuwa

To my husband, Nimal and daughter,Samali

Þ

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Surface dressing is a well-established, economical and effective method for maintaining the surface of roads. The object of surface treatment is to seal the existing road surface and to arrest disintegration of the road as well as to provide a comfortable surface to its users. In Sri Lanka most of the periodic maintenance of roads is done by using one of the surface dressings; sand sealing, single bitumen surface treatment (SBST) or double bitumen surface treatment (DBST).

However, premature failures in the form of stripping of aggregate, flushing of the surface, peeling off, patches, cracks and streaking along the surface are some of the problems that predominate in most of the local roads that are surfaced using SBST and DBST. As a result of these failures road maintenance cost increases and also cause inconveniences to the road users. Some attempts have been made over many years to minimize the above-mentioned defects and increase the life of surface dressings. However, economical and significant improvements have not been established.

This research concentrates on developing improved standards for surface dressings that includes selection of material, application rates and necessary quality controlling which should be done in the laboratory and in the construction sites. This study focused on identifying the specific factors that will contribute to the failure of SBST and DBST from the design stage up to the construction stage.

The properties of emulsions used for surface dressings were analysed using samples collected at the manufacturing units and construction sites. It was found that viscosity, of emulsion need to be improved and mix proportions need careful adjustments to achieve better results.

A locally available, less expensive modifier and adhesive promoter were identified to improve the quality of the emulsion used for surface dressings. This modifier can incorporate to emulsion easily without any additional effort even at the construction sites.

A formula to determine the rate of binder that suit the condition of the road surface and to the expected traffic level was derived depending on the percentage of bitumen in emulsion and the size of the aggregates used for different layers are known.

Some new testing equipment that is economical and could be locally produced was devised to monitor the material properties and rate of applications at the construction sites. Field performance study using test sections was also done in order measure the effectiveness of the research findings. Finally an economic evaluation was also carried out to identify the benefits of the improvements proposed.

ACKNOWLEDGEMENTS

The author would like to thank her supervisor Dr. J.M.S.J.Bandara, for all the help and encouragement given throughout the entire period of research and especially for the advice and direction during the preparation of this thesis. His friendship and willingness to offer balances counsel are greatly appreciated.

My deepest and sincere thanks to Professor M.Gunarathne for his advice, guidance and direction during carrying out research work.

The author wishes to record sincere thanks to staff of the Bitumen Laboratory of Road Development Authority not just their help to carryout research findings and results, but for the friendly and selfless support for this submission.

The author wishes to thank the management of RC&DC to provide funds & resources to carryout initial fieldwork on the roads of University of Moratuwa.

My sincere thanks to Mr.R.M. Amarasekara, Provincial Director (Uva Province) for assuming and providing funds to carryout fieldwork in his division and to knowledge imparted which he has gathered during his experience.

I am grateful to the Road Development Authority for sponsoring and granting me leave to follow up this degree course.

No acknowledgements list would be complete without a mention of those who understand most and complain least, the members of the family.

TABLE OF CONTENTS

1.0		INTRO	DUCTION	1
	1.1		Back Ground	1
	1.2		Problem Statement	3
	1.3		Objectives	4
	1.4		Out Line of the Research	4
2.0		LITER	ATURE REVIEW	8
	2.1		Introduction to Surface Dressing	8
	2.2		Function of a Surface Dressing	9
		2.2.1	Road surface texture and skid resistance	9
	2.3		Types of Surface Dressing	10
		2.3.1	Single surface dressing	11
		2.3.2	Double surface dressing	11
		2.3.3	Racked in surface dressing	11
		2.3.4	Inverted double surface dressing	12
		2.3.5	Sand which surface dressing	12
		2.3.6	High friction systems	12
	2.4		Surface Dressing Operations	12
	2.5		Basic Parameters to be Considered In Design	
			of Surface Dressings	13
	2.6		Voids Consideration in Design of	
			Surface Dressings	15
	2.7		Selection of Type of Dressing	16
	2.8		Selection of Aggregate	17
	2.9		Types of Aggregate	18
		2.9.1	Uncoated aggregate	18
		2.9.2	Lightly coated aggregate	18
		2.9.3	Heated aggregate	18
		2.9.4	Size of aggregate	19
		2.9.5	Rate of spread of aggregate	19
	2.10		Binders Used in Surface Dressing	19
		2.10.1	Binder types	20
		2.10.2	Selection of binders	20

1

×

	2.11		Construction Equipment Used in Surface Treatmen	t 21
		2.11.1	Asphalt distributor	21
		2.11.2	Aggregate spreaders	22
		2.11.3	Rollers	22
		2.11.4	Auxiliary equipment	23
	2.12		Asphalt Surface Dressing Application Techniques	24
		2.12.1	Sequence of the application procedure	24
	2.13		Quality Control	25
	2.14		Evaluation of Pavement Surface Properties	25
	2.15		Noise and Wear	27
3.0		BITUN	MEN EMULSION	29
	3.1		Background of Bitumen Emulsion	29
	3.2		Components	29
	3.3		Continuous Aqueous phase	30
	3.4		Stabilisation of the Emulsion	31
	3.5		The Setting Process	31
		3.5.1	Breaking Moratuwa, Sri Lanka	31
		3.5.2	Setting Let k	32
		3.5.3	Curing	32
	3.6		Types of Bitumen Emulsion	32
	3.7		Emulsion Storage	33
	3.8		Storage Places	34
	3.9		Dilution of Emulsion	34
	3.10		Emulsion Transport	34
	3.11		Manufacture of Bitumen Emulsion	35
	3.12		The Emulsification process	35
	3.13		Function of Emulsifier	36
	3.14		Breaking of Emulsions	38
	3.15		Influence of the Droplet Size	40
	3.16		Influence of the Droplet Size on	
			Viscosity of Bitumen	40
4.0		IMPR	OVEMENT TO BITUMEN EMULSION	41
	4.1		Introduction	41
	4.2		Methodology	42

Þ

e'r

ł

	4.3		Analysis of the Data	42
		4.3.1	Storage stability	43
		4.3.2	Viscosity	44
		4.3.3	Manufacturing of Bitumen Emulsion	46
	4.4		Binder Content of the Samples of	
			Emulsions Analysed	46
	4.5		Effect of Properties of Bitumen on Emulsions	49
5.0		INVE	STIGATION FOR LOCAL MODIFIERS	58
	5.1		Introduction	58
	5.2		Local Modifiers	58
		5.2.1	Local modifier-1	58
		5.2.2	Local modifier-2	58
		5.2.3	Laboratory Research Work with Local	
			Modifiers-1 & 2	58
	5.3		Method of Incorporation of the Modifier-2	61
	5.4		Study of Doping Agent	62
6.0		ADHE	SION PROMOTERS	64
	6.1		Introduction and ac its constructions	64
		6.1.1	Adhesion	65
	6.2		Function of adhesion promoter	67
	6.3		The factors Affecting Bitumen-Aggregate Adhesio	on 67
	6.4		Objectives of the Adhesion Study	68
	6.5		Methodology	68
	6.6		Results and Findings	69
	6.7		Observations	73
	6.8		Method of Incorporation	74
	6.9		Discussion	75
	6.10		Conclusions	76
7 0	6.11	DEGU	Concluding Remarks	76
7.0		DESIG	GN OF SURFACE DRESSINGS	78
	7.1		Introduction	78
	7.2		Binder Considerations	78
	7.3	-	Cover Aggregate Consideration	79
		7.3.1	Shape of particles	79

À

•

1

		7.3.2	Bulk specific gravity of aggregate	79
		7.3.3	Aggregate absorption	79
		7.3.4	Gradation	80
		7.3.5	Loose Unit weight of the cover aggregate	80
	7.4		Parameters to be Considered	81
		7.4.1	Selection of size of aggregate	81
		7.4.2	Selection of rate of aggregate	81
		7.4.3	Selection of rate of binder	82
	7.5		Determination of Percentage of Emulsion	83
	7.6		Determination of Rate of Aggregate	86
8.0	DEV	ELOPIN	IG OF EQUIPMENTS AND TEST METHODS	89
	8.1		Viscometer to Check the Insitu Viscosity of	
			Bitumen Emulsion at Construction Sites	89
		8.1.1	Introduction	89
		8.1.2	Apparatus	89
		8.1.3	Methodology	91
		8.1.4	Applicability of the apparatus	91
		8.1.5	Handling the apparatus	92
		8.1.6	Cleaning of the apparatus	92
		8.1.7	Calibration of the equipment with	
			the Saybolt Furol viscometer	92
		8.1.8	Discussion	94
	8.2		Method to Determine Residue percentage in	
			Regional Laboratories	99
		8.2.1	Introduction	99
		8.2.2	Methodology	99
		8.2.3	Procedure for determination of the Residue	
			Using the method "Residue by Evaporation	"100
		8.2.4	Alternative method	100
		8.2.5	Calculation	100
		8.2.6	Results and findings	101
		8.2.7	Statistical calculation	101
	8.3		Laboratory test to determine the rate of aggregate	
			at the site	103

		8.3.1	Introduction	103
		8.3.2	Methodology	104
		8.3.3	Apparatus	104
		8.3.4	Calculations	104
		8.3.5	Results of the test	104
9.0	PERF	ORMAN	NCE STUDY ON THE FIELD TRIALS	106
	9.1		Introduction	106
	9.2		Objectives of the Performance Study	106
	9.3		Method of Investigations	106
	9.4		Data Collection	107
	9.5		Rating Systems	107
	9.6		Analysis of the Data	107
	9.7		Variation of Parameter Charts	108
	9.8		Bleeding During Service Period UOM	110
	9.9		Stripping of Aggregate During Services	111
	9.10		Binder Spray Rates	112
	9.11		Binder Level	113
	9.12		Binder Ductility as A Dissertations	113
	9.13		Condition of the Aggregate	114
	9.14		Condition of the Seal	114
	9.15		Cracking	115
	9.16		Crack Widths	115
	9.17		Specimen Calculation	115
	9.18		Performance of the Sections Done at	
			Badulla-Mahiyanganaya Road	118
		9.18.1	Section-1	119
		9.18.2	Section-2	120
		9.18.3	Section-3	121
		9.18.4	Comparative study of section 1,2,3	123
		9.18.5	Section-4	123
		9.18.6	Section 5	125
		9.18.7	Section 6	126
		9.18.8	Comparison of section 4,5,6	126
	9.19		Field Work University of Moratuwa	126

Ś

×

		9.19.1	Section 1&2	127
		9.19.2	Section 3	127
		9.19.3	Section 4	127
		9.19.4	Section 5	127
		9.19.5	Section 6	128
		9.19.6	Specimen calculation for the rate of binder	128
		9.19.7	Section 6,7,8,9	131
		9.19.8	Section 10	131
		9.19.9	Section 11	131
		9.19.10	Formulation of emulsion with 60/70 bitume	n131
		9.19.11	Conclusion	132
	9.20	Summ	ary of the performance of the research trials	132
10.0	COST	EFFECTIVEN	VESS	133
	10.1	Introduction		133
	10.2	Cost Analysis		133
	10.3	Conclusion		134
11.0	CON	CLUSIONS	University of Moratuwa, Sri Lanka.	138
	REFE	RENCES 🕎	Electronic Theses & Dissertations www.lib.mrt.ac.lk	140
	APPE	NDIX-1		145
	APPE	NDIX-2		149
	APPE	NDIX-3		157
	APPE	NDIX-4		162
	APPE	NDIX-5		169
	APPE	NDIX-6		178
	APPE	NDIX-7		182
	APPE	NDIX-8		190
	APPE	NDIX-9		198
	APPE	NDIX-10		206

+

LIST OF TABLES

4.1	Standard specification for cationic emulsified asphalt	45
4.2	Effect of penetration of raw bitumen to the	51
	properties of bitumen emulsion	
4.3	particle size distribution of bitumen emulsion	52
4.4	Viscosities of the samples	52
4.5	Effect of type of emulsifier	53
4.6	Optimum formulation of emulsion used	
	as per manufacturers guide	53
4.7	Effect of emulsifier on emulsion	54
4.8	Effect of the solvent on the properties of emulsion	55
4.9	Effect of quantity of bitumen on the properties of emulsion	55
4.10	Effect of mill rpm on the properties of bitumen emulsion	56
7.1	Correction factor for traffic	84
7.2	Correction due to existing surface condition	85
7.3	Factor for percent embedment	85
8.1	Variation of insitu viscosity with temperature for	
	different samples	96
8.2	Calibration of insitu viscosity at temperature t ⁰ c to	
	Saybolt viscosity at standard temperature	97
8.3	Saybolt viscosity at different temperature	97
8.4	Representation of Saybolt and insitu viscosity at	
	same temperature	98
8.5	Variation of Saybolt furol with temperature	98
8.6	Rate of application of aggregate	105
9.1	Mosaic and Appearance from initial construction at UOM	108
9.2	Mosaic and Appearance from initial construction at Badulla	109
9.3	Bleeding during services, UOM, without tandem roller	109
9.4	Bleeding during services, Badulla, without tandem roller	110
9.5	Rate of stripping, UOM	111
9.6	Rate of stripping, Badulla	112
9.7	Condition of the seal UOM	112
9.8	Condition of the seal, Badulla	114

9.9	Surface texture measurement	114
9.10	Summary of the parameters, section 1, 2, 3	119
9.11	Summary of the parameters, sections 4,5,6	120
10.1	Cost comparison of DBST	133
10.2	Cost of aggregate	133
10.3	Effect of the additive of the emulsifier	134
10.4	Cost of plants used for DBST (present practice)	135
10.5	Cost of plants used for DBST (proposed method)	136
10.6	Cost for sand sealing	137
10.7	Cost of emulsion for DBST	137

P

*

į

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

.

٨

7

3.1	Basic types of emulsions	37
3.2	Different stages in storage tanks	37
4.1	Coagulation of bitumen particles in storage tanks	43
4.2	Representation of the analysis of the storage stability	44
4.3	Representation of the analysis of viscosity	44
4.4	Typical in line emulsion plant	46
4.5	Representation of binder content in the emulsion (plant)	47
4.6	Representation of Viscosity Vs Residue	47
4.7	Representation of average viscosity Vs binder %	48
4.8	Variation of penetration of 80/100 bitumen	50
4.9	Variation of penetration of of 60/70 bitumen	50
4.10	Variation of viscosity Vs mill rpm	57
5.1	Viscosity of modified CRS=2crsity of Moratuwa, Sri Lanka,	59
5.2	Penetration of the residues of modified CRS-2	60
5.3	Storage Stability of modified CRS-2	60
5.4	Ductility of modified CRS-2	61
5.5	Effect of doping agent with CRS-2	63
6.1	Loss of adhesion due to dust layer	66
6.2	Loss of adhesion due to water	66
6.3	% coating Vs temperature for varying minerals of aggregate,	
	CRS-2	69
6.4	% coating Vs temperature for varying minerals of aggregate	
	with 80/100 penetration grade bitumen	70
6.5	% coating Vs temperature for different sizes of aggregate	70
6.6	% coating Vs for varying grain size of the aggregate	71
6.7	% coating Vs temperature for CRS-2 and 80/100 bitumen	
	(Quick test results)	71
6.8	% coating Vs % adhesive promoter at 30 ⁰ C	72

6.9	% coating Vs % adhesive promoter at 40^{0} C	73
6.10	E ⁴ fect of the adhesive promoter	74
8.1	Separating funnel used for the viscometer	91
8.2	Graphical representation of insitu viscosity Vs Saybolt Furol	
	Viscosity	95
8.4	Board test Apparatus	104
9.1	Condition of the road surface after 1 year (Cold mix underneath)	120
9.2	Schematic diagram of a ad section	121
9.3	Condition of the road surface after 1 year (hump)	122

.>

+

1

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ک د