

Improving Image to Video Matching to Support Entity Resolution with
Motion Detection and Feature Extraction

H. S. Senevirathna

149232V
Faculty of Information Technology

University of Moratuwa
December 2017

i

Improving Image to Video Matching to Support Entity Resolution with
Motion Detection and Feature Extraction

H. S. Senevirathna

149232V
Dissertation submitted to the Faculty of Information Technology, University of Moratuwa,

Sri Lanka for the partial fulfilment of the requirements of the MSc in Information
Technology

December 2017

ii

Declaration
We declare that this thesis is our own work and has not been submitted in any form for another
degree or diploma at any university or other institution of tertiary education. Information
derived from the published or unpublished work of others has been acknowledged in the text
and a list of references is given.

Name of Student (s) Signature of Student (s)

Date:

Supervised by

Name of Supervisor(s) Signature of Supervisor(s)

Date:

iii

Dedication
To my parents.

iv

Acknowledgements
From the numerous people who helped me in this project, I must first thank my supervisor Mr.
Saminda Premarathne who suggested this research area to me and guided me throughout with
his advice, encouragement, expertise and wisdom. Then I must thank my parents, husband and
parents-in-law for encouraging me to extend effort and for supporting me through the numerous
difficulties I faced during the course of the project, with their wisdom. Last, but not the least I
must thank my fellow students, the course coordinator Mr. Sudantha B. H. and coordinating
assistant Achala Subhashini for their cooperation to make this project a reality.

v

Abstract
The need for image based video search is increasing rapidly as today with the expansion of big
data and the increasing power of hardware. But there are only a few highly successful
implementations in existence. In this project I have developed a search method combining
motion detection and Different Feature Detection algorithms, then evaluated the method’s
effectiveness and compared the two approaches of Real-time Video Search and searching
against a Database of feature data taken from videos. Key frames of videos are extracted using
motion detection, by the difference of consecutive key frames and the Otsu’s threshold.
Speeded Up Robust Features (SURF), Harris-Stephens corners with Fast Retina Keypoint
(FREAK) descriptor and color features are the feature detection/description methods used for
extracting features. The features extracted from key frames are matched with those of the given
image and M-estimator SAmple and Consensus (MSAC) algorithm is used to find ‘Affine
transformations’ from the matching points. Different thresholds are taken by combining the
feature extraction methods for filtering the results. Two prototypes were produced for
comparing searching normally and searching against a database of features. Images of cats are
being used to search videos where, some of which have cats throughout, some which have
intermediate intervals of cats and while others have no cats. After evaluating against sets of
images of incrementing size, the search method produced an intermediate level accuracy
(48.89%) of search results. Furthermore, comparing the two prototypes for 5 images and 3 sets
of videos, the stored summary prototype is seen slower than the real-time video search, and a
trivial difference in result statistics is found.

vi

Table of Contents
Dedication -- iii
Acknowledgements --- iv
Abstract -- v
Table of Contents --- vi
List of Figures -- vii
List of Tables --viii
Introduction --- 1
Developments and Challenges in Image Matching, Image Based Video Search and
Video Segmentation --- 4
Technologies Used For Improving Image to Video Matching ---------------------------------15
Method of Employing Motion Detection and Feature Matching in the Prototypes ------21
Designs of the Prototypes --25
Implementation --30
Evaluation --39
Conclusion and Further Enhancements ---48
References --52
Appendix A - Approach ---54
Appendix B - Design --55
Appendix C - Implementation--57
Appendix D - Evaluation --71
Glossary of Terms --76

vii

List of Figures
Figure 2.1 - Architecture of an early CBVR 13
Figure 3.1 - Video components 15
Figure 3.2 - Video segmentation hierarchy 16
Figure 4.1 - Level 1 DFD of Real-time searching prototype 22
Figure 4.2 - Level 1 DFD of Stored summary searching prototype 23
Figure 5.1 - Architecture of Real-time searching prototype 25
Figure 5.2 – Activity diagram of Real-time searching prototype 26
Figure 5.3 - Architecture of Stored summary searching prototype 27
Figure 5.4 - ER diagram 28
Figure 6.1 - Screenshot of the database design (relationships) 31
Figure 6.2 - List of code components 32
Figure 6.3 - Screenshot of execution of the run-time prototype 37
Figure 7.1 - Result of searching more than 90% appearance videos 43
Figure 7.2 - Result of searching Medium maching videos 44
Figure 7.3 - Result of searching 0% maching videos 44
Figure 7.4 - Total result of searching all maching videos 45
Figure 7.5 - Total result for video sets 45
Figure 7.6 - Comparison between prototypes’ runing times 46
Figure 7.7 - Comparison between prototypes’ percentages of results 46
Figure B.1 – Activity diagram of Stored summary searching prototype search senario
 55
Figure B.2 - Stored summary searching prototype’s Add Video scenario 56

viii

List of Tables
Table 2.1 - Comparison of researches 12
Table 6.1 - Detailed data dictionary 32
Table 7.1 - Matching results for sample images with all video sets using real-time
prototype 41
Table 7.2 - Matching results for different sets using real-time prototype 42
Table 7.3 - Comparison of search times for different sets using both prototypes 42
Table 7.4 - Comparison of matching video percentages for different video sets using
both prototypes 43
Table A.1 - DFD data dictionary 54
Table D.1 - Evaluation details of prototype comparison 72
Table D.2 – Evaluation details of video results for different image sets 74
Table D.3 – Evaluation details of video results for different video sets 75

1

Chapter 1
Introduction

1.1 Preamble
There is growing need for the development of accurate techniques in image based video
searching. This project proposes a new method for this purpose by employing motion detection
and exiting techniques, which is tested for real-time feature matching and matching with
features found in videos which were stored in a database. This chapter includes the background
and motivation information for this project, along with problem definition, hypothesis,
objectives, and a brief overview of the solution.
1.2 Background of Image based Video Retrieval
In today’s internet, there are vast amounts of data available and people are able to search this
content using search engines within a lesser duration of time. The production and distribution
of videos has achieved exponential expansion, with the advent of big data, increasing power of
hardware, high speed internet, digital video production, mobile video recording and social
networks. There exist large collections of videos owned by industries such as news and
entertainment as well as private collections. Therefore, the need for image based video retrieval
is most relevant today than ever before and the need arises for more user-friendly methods of
searching videos.
Content based video indexing and retrieval is a growing field of research in the world of
machine vision and data mining. Although image matching techniques are widely used today
(especially in search engines), image to video matching and retrieval is not being used in the
same level up to current time. But since the early days of the century, there have been
researches on image based video search (Araujo et al., 2014, pp. 723–724; Sav et al., 2006, pp.
1–10; Sivic et al., 2004; Sivic and Zisserman, 2004, 2003; Yang et al., 2011; Yildirim et al.,
2013). YouTube is well known for having implemented Convolutional Neural Networks
(CNN) for searching videos using feature information for user given textual input. Google can
search videos after having retrieved a textual description for a given image. Googling the same
textual query, results in the same set of videos. One of the greatest challenges here is how to
retrieve videos efficiently with a sufficient accuracy of results.

2

There are some existing applications and researches which address similar matters in different
ways which are very complex and try to find some specific type of visual information out of a
collection of videos (Hu et al., 2011; Jing et al., 2015; Patel and Meshram, 2012; Sivic and
Zisserman, 2003). Zisserman and others (2003) have attempted to implement such a solution
for searching videos against an image, based on bags of visual words. Hu and others (2011)
and Patel and Meshram (2012) have surveyed on strategies of context based video retrieval.
It is possible to search videos either on the run-time or by storing the features in a database
aiming for greater speeds. But one of the problems this presents is the high dimensionality of
feature vectors. Different compression techniques address this problem using quantization
(McGuinness et al., 2012) and Bags of Features (BOF) (Sivic and Zisserman, 2004) for storing
feature details.
There have been different clustering attempts using Hidden Markov Models and k-means.
Visual Bag of Words (VBOW) and Bag of Features use such theories (Eickeler et al., 2001).
Bayesian classification (Fergus et al., 2003) and multiclass SVM classification has been used
for classification (Elnemr, 2016) mostly for classifying images than videos.
Video segmentation to acquire key frames has been done in various ways in the literature: for
example, fixed time intervals between key frames and histogram based selection methods
(Rathod and Nikam, 2013).
1.3 Problem and Hypothesis
As stated above, there is currently only few implementations that successfully searches videos
by matching features against a user specified image. And the literature suggests that searching
a database of videos is relatively less efficient.
A new method of searching videos by an image which uses motion detection based video
segmentation by Otsu’s thresholding and SURF, Harris-Stephens and colour features has to be
evaluated. The efficiency in searching a stored database of video feature summaries can be
found by building two prototypes for each of real-time searching and database searching and
comparing them for speed and accuracy.

3

1.4 Objectives for the Project
1. To survey the literature related with image based video retrieval to select appropriate

algorithms.
2. To develop two prototypes and evaluate the two techniques of real-time searching and

stored video summaries.
3. To evaluate the technique of motion detection based image based video retrieval

1.5 Methodology of Image Based Video Searching
In this project, the proposed method of implementation has a number of stages: video
segmentation, feature extraction, feature matching, summarization of results and displaying the
results. This project proposes a motion based segmentation for video segmentation using Otsu’s
thresholding. SURF, Harris-Stephens and colour features are being matched between the image
and video key frames. Percentage matches are used to summarize and rate the results. The
video list is then displayed according to the rating. In the stored features method, image features
are compared with the key frame features for each video, which are stored in a database.
Query image path and the video path are the inputs needed. MATLAB is used in the
development. The yfcc100m dataset and Google were used to find the images and videos. The
domain of search is limited to images/videos of cats.
1.6 Structure of the Thesis
The rest of the thesis is organized as follows. Chapter 2 critically reviews the literature on
image based video search and image search and identify the research problems and algorithms.
Chapter 3 is about the algorithms and technology being used. Chapter 4 present our new
approach to image based video search and the comparison. Chapter 5 and Chapter 6 describe
the design and implementation respectively. Chapter 7 describe the evaluations of system and
the comparison. Chapter 8 notes on problems faced and further work.
1.7 Summary
This chapter gave an overall picture of the entire project presented in this thesis. As such we
described the background/motivation, problem definition, hypothesis, objectives, and a brief
overview of the solution. Next presents a critical review of the literature related.

4

Chapter 2
Developments and Challenges in Image Matching, Image

Based Video Search and Video Segmentation
2.1 Introduction
The chapter one gave an overall description of the project described in this thesis. In this
chapter we discuss different related researches that are related to image based video retrieval.
The review of past researches has been presented here in separate sections by surveys and other
researches which are separated into image matching, image based video search and video
segmentation. Many researchers have conducted research on content based video retrieval
methods and semantic content retrieval from videos (Sivic and Zisserman, 2003; Yildirim et
al., 2013) and some have conducted surveys on existing researches (Patel and Meshram, 2012;
Weiming Hu et al., 2011).
At the end, this chapter defines the research problem and identifies the technologies that can
be used to address the problem.
2.2 Extracts of literature
2.2.1 Surveys
A survey on Visual Content-Based Video Indexing and Retrieval is been done by Hu and others
(2011). The general strategies in visual content based video indexing and retrieval are explored
by them, including methods for video structure analysis, extraction of features, video data
mining, video annotation, video retrieval and video browsing (Weiming Hu et al., 2011).
Weiming Hu and others present a general overview of process of video indexing and retrieval.
The recent developments are discussed as components of video indexing and retrieval, and also
each task, sub process and the approaches involved are discussed by them. They further go on
to discuss in detail the possible future directions. This survey by Weiming Hu and others
comprehensively discuss contemporary Video Indexing and Retrieval research in detail. These
details are from the year 2011.
Existing content based retrieval systems are surveyed by Patel and Meshram (2012). They
survey the types of features that can be extracted for indexing and retrieval. They also survey

5

similarity measurement methods (Patel and Meshram, 2012). To search by the contents of
colours, shapes and textures, the steps used are video segmentation and feature extraction.
Features may be low level or high level. The high dimensionality of a feature-vector set causes
the curse of dimension problem. This is solved by dimension reduction techniques such as PCA
(Principle Component Analysis). Meta learning can be used to select or combine appropriate
features. The selection process can be assisted by an interactive user interface. Results of
feature extraction can be compared with actual human interest as well (Patel and Meshram,
2012). This survey only covers research until 2012.
2.2.2 Video Retrieval
2.2.2.1 Ontology-Based Fuzzy Video Semantic Content Extraction
The research by Yildirim and others (2013) has explored how objects, events and concepts can
be retrieved automatically. They use an ontology-based fuzzy video semantic content
extraction model that employs spatial/temporal relations in event and concept definitions
(Yildirim et al., 2013). This research has produced a framework which can be used in many
areas. Yildirim and others (2013) have proposed a generic model: VISCOM. This provides a
rule construction standard that can be used in a wide domain area and allows a user to create
ontology for a given domain. Additional rule definitions can be used to lower spatial relation
computation cost and define complex situations more effectively. They also show that semantic
representation and extraction can be improved by adding fuzziness to class, relation and rule
definitions. The developed system shows success, but further enhancements can be made by
considering the viewing angle of the camera, and motions in the depth dimension (Yildirim et
al., 2013).
2.2.2.2 Visual Vocabulary of Viewpoint Invariant Region Descriptor Vectors (Bag of
Visual Words) For Videos
Sivic and Zisserman (2003) adopted the analogy of text retrieval used by Google in searching
web documents to search for objects within videos. Viewpoint invariant region descriptor
vectors and nearest neighbor matching are used in this method. A set of viewpoint invariant
region descriptors is used in object representation and these vectors are quantized to perform
nearest neighbor matching. Temporal continuity within a shot is used to track the regions. An
inverted file has an entry for each visual word, which stores all the matches (Sivic and
Zisserman, 2003). While this method enables run-time object retrieval and opening the

6

possibilities of latent semantic indexing and automatic clustering, currently only two films are
used for illustrating the method. The visual vocabulary will have to be upgraded to include
different scene types (Sivic and Zisserman, 2003).
In 2004, a research was conducted by Sivic and Zisserman using data mining techniques on
configurations of viewpoint invariant regions. Here principal objects, characters and scenes are
extracted by measuring the frequency of occurrence of spatial configurations (Sivic and
Zisserman, 2004). The video is partitioned into shots using color histograms and motion
compensated cross-correlation. The images are segmented by using a sliding region. By
clustering spatial configurations, frequent co-occurring parts are identified earlier by Sivic and
Zisserman (2004), rather than first detecting objects and clustering them as in earlier research
(Schneiderman and Kanade, 2000; Eickeler et al., 2001; Agarwal and Roth, 2002; Fitzgibbon
and Zisserman, 2002; Fergus et al., 2003). The visual descriptors of object/face/scene are
invariant of (do not change with) size (scale) and affinity. The significance of a cluster is
measured by the number of shots and key-frames that it covers (Sivic and Zisserman, 2004).
By using this method, clustered configurations show sufficient quality. But this search is biased
towards textured regions and can be extended to more extensive spatial and temporal co-
occurrence searching.
Sivic and others (2004) have done a research on efficient object retrieval from videos, as fast,
accurate and in the same manner as similar to the Google text search (Sivic et al., 2004). By
using the visual analogy of words, videos are fetched incorporating the three component
methods of viewpoint invariant region descriptors, contiguous frames within a shot and vector
quantization. Irrespective of viewpoint, lighting and partial occlusion, are the objectives of the
type of weak segmentation used here. Rather than semantically segmenting the image it is
represented by a set of overlapping regions. Then the object is matched to the descriptor vectors
of regions. Later using local spatial coherence, disambiguation is done. The descriptor vectors
are quantized into visual words, so that matches can be pre-computed at run-time. Based on
independent 3D rigid motion constraints, regions are tracked and tracks are grouped. The
resulting matches contain no false negatives and the ranking of frames has good precision.
2.2.2.3 Video Indexing Using Neural Network Based Face Detector
A system for video indexing using face detection and face recognition methods has been
developed by Eickeler and others (Eickeler et al., 2001). Here, steps followed are detecting
faces, recognising them and analyzing their actions. Faces are scanned by a Neural Network

7

based face detector and extracted. Then using pseudo two-dimensional Hidden Markov Models
and the k-means clustering algorithm, faces are recognised and clustered. Then labeling and
evaluation of occurrence can be done. Face tracking simplifies the detection of the same person
in consecutive frames. And this approach indexes a video sequence without any prior
knowledge of the sequence. This only works for JPEG data currently and can be enhanced to
work directly on MPEG data. And also can be extended to detect main characters in movies.
Furthermore the functionality of face detection in compressed domain has to be done.
2.2.3 Image Retrieval
2.2.3.1 Recognition of Object Classes from Unlabeled and Un-Segmented Cluttered
Scenes by Scale Invariant Learning and Probabilistic Representation
Fergus and others have a method for recognition of object classes from unlabeled and un-
segmented cluttered scenes by scale-invariant learning (Fergus et al., 2003). Representation is
done for object categories (as constellations of parts) by a probabilistic way for the shape,
appearance, occlusion and relative scale; then detection and learning are done (Fergus et al.,
2003). An object category has appearance and position. This allows considering shape
variations, presence/absence of features and image clutter. Both appearance variability and
shape variability are taken into account. Appearance variability is learnt simultaneously with
shape. An interest operator detects regions and their scale. Also, efficiently new object
categories can be learnt automatically, and training sets have a large variation of the scale of
objects and clutter. Several object categories are also available in the datasets. Currently the
framework is very dependent on the feature detector. In the future more classes of feature can
be incorporated. The model structure can be generalized to have a multi-modal appearance
density with a single shape distribution. Full affine-invariance to cater for larger viewpoint
variation is also a possible extension (Fergus et al., 2003).
2.2.3.2 Bag of Visual Words Based Techniques
Elnemr (2016) has offered a new CBIR technique combining different algorithms. He has
combined SURF and MSER along with Color Features (color correlograms and ICCV
(Improved Color Coherence Vector)) and then Bag of Visual Words technique for quantizing
the features extracted. The K-means algorithm is used for clustering the words. Later a
multiclass SVM (support vector machine) is used to classify the query images. Corel-1000 and
COIL-100 datasets are used for both training and testing. Then Elnemr (2016) has compared it

8

with three alternative techniques: first using SURF descriptors, then a combination of SURF,
color correlograms and ICCV, and third a combination of MSER, color correlograms and
ICCV. This framework outperforms significantly other existing systems (Velmurugan and
Baboo, 2011), (Bahri and Zouaki, n.d.), (Kavitha and Sudhamani, 2013), (Kavya and
Shashirekha, 2014). The proposed method shows a great increase in the retrieval precision, but
takes slightly longer time than the other three alternative methods being discussed (Elnemr,
2016).
2.2.3.3 Comparison of Image SURF Feature Point Storage and Compression Methods,
and a New 8-Bit Quantization Method
An efficient method for image SURF feature point storage and compression has been presented
by (McGuinness et al., 2012). An entropy based 8-bit encoding of quantized feature vectors is
proposed by McGuinness and others, after comparing it with other existing methods. For
measuring storage consumption and disk-read efficiency, various methods for compression and
storage of SURF feature points have been compared. They have compared each scheme with a
baseline plain-text encoding scheme as used by many existing SURF implementations. The
final proposed scheme significantly reduces both the time required to load and decode feature
points, and the space required to store them on disk (McGuinness et al., 2012). Product
quantization which can give a further more compact representation can be combined with the
proposed approach to reduce the memory footprint (McGuinness et al., 2012), is not compared
with the other methods in their research.
2.2.3.4 Assessments of Feature Detectors and Descriptors
Madbouly and others (Madbouly et al., 2015) have assessed the performance of many feature
detectors and descriptors, by combining them, which were famous at that time period. Those
are SURF, FAST, BRISK, Harris and MinEigen as detectors, and FREAK, SURF and BRISK
as descriptors. They have been tested on images under rotate, scale constraints and distortion
such as illumination on different scenes (bedroom, industrial and CALsuburb datasets). The
best selected as for the detector in number of detected key-points when handling rotation, scale
and illumination and not affected with scene is MinEigen, for handling rotation and scale
constraint in different levels and scenes is SURF with SURF detector, and for illumination
distortion in different levels is FAST/SURF and Harris/FREAK.

9

Low level feature extraction algorithms have been compared by (El-gayar et al., 2013). The
widely used algorithms of FAST, SIFT, PCA-SIFT, F-SIFT and SURF have been compared
for matching against scale changes, rotation, blur, illumination changes and affine
transformations. Repeatability measurement and the number of correct matches were used as
evaluation measurements. SIFT is stable but slow. F-SIFT has the best overall performance.
El-gayar and others (2013) do not address single object detection.
(Khan et al., 2011) have investigated the performance of SIFT, Shorter SIFT descriptors of
64D and 96D SIFT and SURF against the datasets of David Nister, Indoor, Hongwen and
Caltech. 64D and 96D SIFT perform as well as traditional 128D SIFT at the much less
computational cost. SURF also gives good results (slower and less effective on scaling, large
blur and viewpoint invariance). 64D SIFT is superior for viewpoint invariance and has almost
three times faster image matching and half the memory requirements. 32D SIFT has
underperformed.
2.2.4 Video Segmentation
S.G. Anuradha and others (2013) have worked on change detection in videos. For this purpose
they provide an entropy based real-time adaptive non-parametric window thresholding
algorithm. The value of scatter of sections of change in a difference image is approximated,
and using entropy structure a threshold for every image block is calculated discriminatively,
and then all thresholds for image blocks of the frame are averaged to obtain the global
threshold. Calculation of the block threshold is done contrarily for regions of change and
background (Anuradha et al., 2013). Adaptive window selection is required to automatically
select window size in order to obtain an optimal result and Otsu’s thresholding scheme
gives threshold value for a particular window (Anuradha et al., 2013). This method outperforms
the other traditional methods. It is steadier and more efficient than the spatial properties based
methods (Anuradha et al., 2013).
2.3 Discussion of the Literature and Problem Definition
We can see from the above descriptions that, a number of research has been done on image
based video search using different technologies.

10

Research Purpose Technology/purpose Considerations on selecting
for this project

S.G.
Anuradha
and others
(2013)

Change
detection in
videos

An entropy based real-
time adaptive non-
parametric window
thresholding algorithm
using Otsu’s
thresholding scheme.

Change detection of this
method could be used for video
segmentation.

Madbouly
et al. (2015)

Assessed the
performance
of many
feature
detectors and
descriptors,
by combining
them

SURF, FAST, BRISK,
Harris and MinEigen as
detectors, and FREAK,
SURF and BRISK as
descriptors are tested on
images under rotate,
scale constraints and
distortion such as
illumination on different
scene.

A combination of SURF/SURF
and FAST/SURF are suitable for
our application due to the speed
and coverage of all aspects.

Elnemr
(2016)

A new CBIR
technique
combining
different
algorithms

Combined SURF and
MSER along with Color
Features (color
correlograms and ICCV)
and then Bag of Visual
Words technique

Great increase in the retrieval
precision, but takes slightly
longer time

Sivic and
Zisserman
(2003)

Analogy of
text retrieval
used by
Google in
searching web
documents to
search for
objects within
videos

A set of viewpoint
invariant region
descriptors for object
representation and then
quantization to perform
nearest neighbor
matching

The visual vocabulary will have
to be trained to include cat
figures. But it might be slightly
slower to retrieve results in the
implementation.

11

Sivic and
Zisserman
(2004)

Using data
mining
techniques on
configurations
of viewpoint
invariant
regions

Frequency of occurrence
of spatial configurations,
data mining techniques
of clustering spatial
configurations
(viewpoint invariant
regions)

Clustered configurations show
sufficient quality, and is biased
towards textured regions and
can be extended. But it also
might be slightly slower to
retrieve results.

Sivic and
others
(2004)

Efficient
object
retrieval from
videos

By using the visual
analogy of words, videos
are fetched incorporating
the three component
methods of viewpoint
invariant region
descriptors, contiguous
frames within a shot with
vector quantization.

Matches can be pre-computed
at run-time and has good
precision. Only object retrieval
is considered. The temporal
aspect searching within shots is
not required here.

Yildirim
and others
(2013)

How objects,
events and
concepts can
be retrieved
automatically

An ontology-based fuzzy
video semantic content
extraction model that
employs spatial/temporal
relations in event and
concept definitions

Yildirim and others propose
semantic content extraction
based on ontology (VISCOM),
which is beyond the scope of
this research. We only handle
visual/spatial aspects relating to
user given images.

Eickeler and
others
(2001)

Video
indexing
using face
detection and
face
recognition
methods

Neural network based
face detector, pseudo
two-dimensional hidden
Markov models and the
k-means clustering
algorithm

Face detection is not required
for this project, but two-
dimensional Hidden Markov
Models and the k-means
clustering may be used.

Fergus and
others
(2003)

Object class
recognition
from

A Bayesian based
probabilistic
representation of object

Efficiently new object
categories can be learnt
automatically. Clustering is

12

unlabeled and
un-segmented
cluttered
scenes

classes, which are
collections of parts with
appearance and a
position, detection and
learning.

itself a time consuming task.
Kadir-Brady detector used here
can be used to detect salient
features. There is no indication
of comparison with other
methods.

McGuinness
et al. (2012)

Efficient
method for
image SURF
feature point
storage and
compression

An entropy based 8-bit
encoding of quantized
feature vectors and
comparison with other
existing methods

This process significantly
reduces both the time required to
load and decode feature points.
But it is hard to replicate in code.

El-gayar et
al. (2013)

Comparison
of low level
feature
extraction
algorithms

FAST, SIFT, PCA-SIFT,
F-SIFT and SURF have
been compared for
matching against scale
changes, rotation, blur,
illumination changes and
affine transformations.
Repeatability
measurement and the
number of correct
matches are used.

F-SIFT is a good choice for
feature matching since it has the
best overall performance.

Khan et al.
(2011)

Investigating
the
performance
of SIFT and
SURF
descriptors

Shorter SIFT descriptors
of reduced
dimensionality, 64D and
96D SIFT were
generated to compare
with normal 128D SIFT
and others.

64D SIFT implementation is
not readily available in Matlab,
but could be done with
additional libraries which need
to be thoroughly tested.

Table 2.1 - Comparison of researches

13

Figure 2.1 - Architecture of an early CBVR (Sav et al., 2006)

It is evident from the above summary that there is still a lot of space for new ideas. Video
segmentation as discussed in S.G. Anuradha and others (2013) is complex, and only a simpler
segmentation method will be used since searching a large number of videos which requires a
greater speed. Otsu’s thresholding scheme as used in S.G. Anuradha and others (2013) is good
for video segmenting but adaptive window thresholding use there takes more time.
 From the technologies used we can see that, viewpoint invariant region descriptors for building
a dictionary of bags of visual features is a useful technique (Sivic and Zisserman, 2003), but is
also a complex process. Ontology-based fuzzy video semantic content extraction model relates
to ontology (Yildirim et al., 2013), and thus not suitable for this project. Automatic clustering
and data mining is also appropriate (Sivic and Zisserman, 2004), if more than just textured
region matching can be performed. But that technique is time consuming. We can see that
indexing has been done by Sivic and Zisserman in 2004 and by Eickeler and others in 2001.
These attempts have been successful. Eickeler and others (2001) only used indexing for faces.
Temporal co-occurrence searching is not required here as done by Sivic and Zisserman in 2004.
From feature detectors/descriptors SIFT is found to be powerful (El-gayar et al., 2013), yet too
slow and thus not suitable for video retrieval. Some methods such as MinEigenValue

14

(Madbouly et al., 2015), SIFT, 64D SIFT (Khan et al., 2011), F-SIFT (El-gayar et al., 2013)
were not readily available in Matlab. Kadir and Brady is useful for salient object matching
(Fergus et al., 2003). SURF is popular, available and suitable for rotation invariant matching.
FAST/SURF is suitable for illumination changes matching (Madbouly et al., 2015). MSER is
a good as a region detector/descriptor (Elnemr, 2016).
We can find from these researches that the stored method is less efficient than real-time
retrieval, which is counter intuitive. Normally, database storage is used to increase the
searching speed. This theory needed to be further tested.
Therefore it was useful to compare both stored summary method and on-the-run retrieval. The
SIFT, Harris, color features, MSER feature matching and Otsu’s thresholding are suitable for
this project. Details of the technologies behind the solution will be discussed in Chapter 3.
2.4 Summary
This chapter presented a comprehensive literature review on the on image based video search
research and identified the research problem as comparing both indexing and on-the-run
retrieval. We also identified the Android technology to address the above problem. Next
chapter will discuss the technology used for our solution.

15

Chapter 3
Technologies Used for Key Frame Extraction by Motion

Detection and Feature Extraction/Matching
3.1 Introduction
Earlier we discussed the different kinds of research and in most researches, key frames are
extracted which are compared to the given image using feature comparison algorithms. Thus,
here we discuss different algorithms selected for use in the prototypes. First we discuss the
video segmentation method. Then SURF (Speeded Up Robust Features), Harris corners and
Color features extractor are discussed. The use of MSAC algorithm is also explained. The
reasons for using these technologies and their advantages/disadvantages will be described.
Afterwards the platform used for development, Matlab is presented in terms of pros and cons
and its use for this project.
3.2 Video Segmentation with Otsu’s Threshold Based on Motion Detection
It is important to select key frames since it is difficult to process all frames within a short time.
Videos can be considered to be consisting of components as suggested by Patel and Meshram
is shown below.

Figure 3.1 - Video components (Patel and Meshram, 2012)

Similar to the above classification, we are segmenting a video according to a hierarchy that
makes it faster to compute as the same time as being able to find representative key frames.

16

Figure 3.2 - Video segmentation hierarchy

We can consider a video to consist of shots. And a shot consists of groups of frames. A shot is
a similar set of frames. So we use difference between frames to find shots. The frames with
greatest difference from earlier frames become shot boundary frames. This is similar to
techniques used in motion detection.
Frames are separated into groups using a formula depending on No of frames. (NOF). Frames
are divided into groups of:

NOF/ {[floor(NOF/1000)] 2 + 2}
One frame is selected for each group, in this case, the final frame of each group.
A difference image or the difference between selected frames is used to calculate the Otsu’s
threshold. This is based on the method used by S.G. Anuradha et al. (2013) with simplification
for achieving a greater speed. Rather than calculating thresholds for foreground and
background locally, we use one global threshold for each key frame.
The frames with a difference above a threshold (super global) define a shot boundary. For
taking the super global threshold, out of a series of thresholds, a value is taken using the below
formula suggested by Rathod and Nikam (2013):

T = mean + a * standard_deviation (‘a’ is configurable where default value = 1)

Key Frame
Group
Shot

Video V
S1

G1
KF1

G2 G3
KF2

G4
S2
G5

KF3

17

Advantages:
The simplicity of the scheme makes it possible to segment the video within a sufficiently less
time and find the best representative frames of all the frames of a video.
Disadvantages:
When first selecting frames by grouping them, it is possible that some frames with significant
changes can be lost and some images can also be lost. The grouping equation is designed to
keep the number of selected frames within a manageable range. Thus lesser and lesser number
of frames are selected as the total number of frames increases. This means that only objects
that are shown for a significant portion of time can be matched. Since the key frame selection
algorithm selects key frames from the middle of shots, some blurred images can be selected.
3.3 SURF Feature Extraction Algorithm
SURF uses a blob detector based on the Hessian matrix for texture detection. In theory, SURF
is also known as approximate SIFT and employs integral images and efficient scale space
construction to generate key points and descriptors very efficiently. SURF uses two stages
namely key point detection and key point description. In the first stage, integral images allow
the fast computation of approximate Laplacian of Gaussian images using a box filter. Integral
image is an algorithm for quick and efficient generation of the sum of values in a rectangular
subset of a grid, where the value at any point (x, y) in the summed area table is just the sum of
all the pixels above and to the left of (x, y). Determinants of the Hessian matrix are then used
to detect the key points. So SURF builds its scale space by keeping the image size the same
and varies the filter size only.
Advantages:
This is a very efficient algorithm compared to SIFT, BRIEF and ORB. SURF is also accurate.
It is good for handling rotation changes and has scale independence (in matching two images).
SURF is Suitable for classification tasks. SURF is used in this project due to its speed,
accuracy, rotation invariance and texture detection capabilities.
Disadvantages:
But SURF is not preferred for handling large blur, illumination and viewpoint differences
(invariance) when matching two images. And it produces a less number of match points.

18

3.4 Harris-Corners (Harris-Stephens) Detection Algorithm with FREAK Descriptor
Algorithm
Harris-corners is one of the most used corner detectors and in Matlab Harris-corners produces
a BinaryFeatures object. In this project, FREAK descriptors are used after extracting Harris
corner points as FREAK is the default descriptor for Harris corners in MatLab. In theory, this
method directly considers the differential of the corner score with respect to direction, as an
improvement to improved Moravec’s Corner Detector. The surrounding area is averaged. If we
use a circular window then the response will be isotropic solving one of the problems of
Moravec’s approach. By analysing the magnitude of the eigenvalues of the Harris matrix, we
can find out if a concrete pixel has or not features of interest.
Advantages:
Harris-corners detects corners. And it is suitable for matching images with man-made
structures. It can match images with rotation changes and illumination distortion in different
levels.
Disadvantages:
Harris-corners is not scale independent. It is not suitable for classification tasks.
3.5 Color Features Extraction
Color feature matching can be done in various ways, and here we use a very simple method.
Step 1: Convert RGB images to the L*a*b* color space.
Step 2: Compute the "average" L*a*b* color within 16-by-16 pixel blocks.
Step 3: L2 normalize color features.
Step 4: Append the [x y] location.
Step 5: Normalize pixel coordinates.
Step 6: Concatenate the spatial locations and color features.
Step 7: Use color variance as feature metric.
* Return empty features for non-color images.

19

Simple square neighborhood method is used as the descriptor by the standard feature
description method of MatLab.
Advantages:
This method is very simple to implement, and can be used to match the similarity of images.
Disadvantages:
This method is slow to execute and it is not a standard method.
3.6 MSAC to Detect Inliers
MSAC is a modification of RANSAC which is popular in the field. It is a mathematical
technique and an iterative method to estimate parameters of a mathematical model from a set
of observed data that contains outliers, when outliers are to be accorded no influence on the
values of the estimates. It is used in computer vision to detect inliers (best matching points)
and remove outliers (least matching points) between two images.
Advantages:
MSAC gives a modest to hefty benefit to all robust estimations and with lesser computational
cost than MLESAC. MSAC outperforms RANSAC. For this project, this algorithm is used
since is it available in Matlab and is a simple and fast way to remove outliers. MSAC can detect
Affine Transformations (e.g.: translation, scale, shear and rotation).
In this research MSAC is used for finding the percentage of inliers against the total no of
features in the image. This is done for all 3 feature extraction algorithms. To rank the videos
these percentages and the number of key frames which give a sufficient match are used.
Disadvantages:
It can produce different results in different runs. This is due to the fact that MSAC uses random
samples of feature points for calculations. Thus there is a possibility of selecting a set of
features which are not inliers, while there may be some inliers among the ignored set of
features.
3.7 Matlab
Matlab is a good platform for experimenting new ideas of image processing rapidly.

20

Advantages:
 Flexibility: script writing or using the command window. As an interpreter language, it

acts as a very advanced calculator
 Mathematics: essential in computer vision
 Debugging: very convenient, calling stack, conditional breakpoints and the instant use

of the command line makes it really easy to find a bug.
 Plots: several built in plotting features which helps to visualize the steps/results of an

algorithm
 Ready to use CV/ML functions: large function library for many research areas. It is

particularly well equipped with computer vision (edge detection, color filtering, resize,
rotation, feature matching, histograms, etc.) and machine learning (support vector
machines, decision trees etc.)

Disadvantages:
 Parts of the syntax used in this language are different than the other languages like C,

Java etc. For example we use '{ }' braces to indicate the start and the ending of the ‘for’,
‘if’, ‘while’ statements usually, but in Matlab the word ‘end’ is used to indicate the
ending.

 There are lot of in-built commands in Matlab which can make coding easier but these
have to be learned.

 Matlab is probably not appropriate for production. Matlab is best suited for research
rather than implementations. Since we are building prototypes as a proof of the concept,
Matlab is adequate.

3.8 Summary
In this chapter we discussed the technologies used in the development of the prototypes, which
were video segmentation with Otsu’s thresholding, SURF, Harris-corners, MSAC and Matlab.
In the next chapter we shall elaborate on the approach taken to build the prototypes for
comparing the two image based video retrieval methods.

21

Chapter 4
Approach to Image To Video Matching in the Prototypes

4.1 Introduction
Here we describe our approach to image based video retrieval which is based on the algorithms
and technologies described in the earlier chapter. Two prototypes had to be built in order to
compare the two approaches of database and real-time based searching which use the same
algorithms. In this chapter the details of the approach will be described, such as the hypothesis,
inputs and outputs, the processes of the prototypes and the required features of the prototypes.
4.2 Hypothesis
The problem of building an image based video retrieval system can be solved by using motion
detection based feature vector matching. And comparing real-time searching and stored video
summaries searching can be done by building two prototypes and comparing their performance
and quality.
4.3 Inputs
As inputs, the query image path and the video folder path are given for the prototypes. The
prototypes will then match the image with all the videos in the given path. In the stored
summary prototype, the video path is given separately early on, so that the feature data can be
saved into the database.
The YFCC100M dataset and Google Image Search were used to find the images and videos
which are used as sample data. The search sample data is limited to images and videos of cats
for simplifying the evaluation. Cats have different types of color combinations, different types,
different sizes and slightly complex shapes. And furthermore, images and videos of cats are
very common and easily found in the YFCC100M dataset as well as in the Web.
4.4 Outputs
Each of the two prototypes produce a list of sorted videos as output. Also the execution times,
relative video rankings and matching percentages are obtained from the output.

22

4.5 Process

Figure 4.1 - Level 1 DFD of Real-time searching prototype

The above figure 4.1 explains the process of the Real-Time Searching prototype in brief. The
user inserts the paths of a list of videos and an image into the prototype. The protoype then
preprocesses the image and finds the Harris, SURF and Color features of the image. Then the
prototypes extracts key frames from each video, and finds the Harris, SURF and Color features
of each key frame. The prototype matches these key frame features with the features of the
image to find which frames match and how well they match. Afterwards, the prototypes
calculates how well each video matches with the image and displays the results in the
descending order of matching rank.

23

Figure 4.2 - Level 1 DFD of Stored summary searching prototype

Similarly, the stored summary prototype, is given a video path by the user. The prototype then
extracts the key frames, finds the Harris, SURF and Color features of the key frames and stores
the resultant information in the database. Next the user inserts the path of the image into the
prototype. Similar to the earlier protoype, the image is preprocessed and its Harris, SURF and
Color features are extracted. Afterwards, the prototype retrieves the video information from
the database to match each key frame’s feaures with the features of the image. After matching
the features, the results are calculatd and displayed as was explained before.
4.6 Features
Required features of the prototypes:

 Efficiency of execution
 Accuracy of results (and of the measurements taken)

4.7 Users
Since the results of this research are prototypes of algorithm implementation, users can be
identified by the possible application areas. This algorithm can be applied in search engines
which are used by Web surfers. Multimedia applications which require searching videos can
cater multimedia application users with this functionality.

24

4.8 Summary
The approach chapter described how this project is going to be approached; the hypothesis,
input, output and processes. Also features have been described. The next chapter will explain
about the design of the prototypes in greater detail.

25

Chapter 5
Designs of the Prototypes

5.1 Introduction
Earlier we discussed the approach being used to improve he entity resolution of image based
video search. In this chapter we shall discuss the design for the prototypes we use to compare
the two methods of searching, and how to conduct the comparison. There are two prototypes,
each for a method of searching. In the real-time search, we extract the features and compare,
while in the stored summary method, we store the extracted features and later use them in our
search. We shall discuss these designs with architecture diagrams, activity diagram and
scenario descriptions further in this chapter. The database design is explained afterwards.
5.2 Real-Time Search Method Prototype

Figure 5.1 - Architecture of Real-time searching prototype

In this prototype, first a user inputs an image. Then the software takes the list of all videos and
then calculates the difference between each two frames for each video and the Otsu’s threshold.
This value is used to calculate the overall threshold. Then it determines which key frames are
best representative of the different shots. Afterwards the key frames can be searched, matching
against the given image (using feature vectors).

26

Figure 5.2 – Activity diagram of Real-time searching prototype

27

5.3 Stored Summary Method Prototype

Figure 5.3 - Architecture of Stored summary searching prototype

The stored method employs functions that are similar to the real-time method. When adding a
video, the prototype extracts the key frames. These key frames are used to extract the features
by executing the respective algorithms on the key frames. Afterwards the
features/signatures/summaries are saved into the database. When an image is given, these
features are retrieved and compared against the image.
For the Activity diagram of this prototype, please refer to the Appendix B.
Scenario descriptions of stored summary
Scenario 1

1. System takes each video in the collection.
2. Segment the video and extract key frames.
3. Descriptors are computed for features in each key-frame.
4. Save the video details in database.
5. Store feature descriptions and feature points of the key frames in the database.

Scenario 2
1. User enters the image.

28

2. Descriptors are computed for features in the image.
3. System extracts the stored features.
4. The descriptors are compared to descriptors of the image and the match percentage is

calculated for each key frame.
5. Metrics of comparison (average frame level match percentage, matching key frame

percentage and total match) are calculated.
6. Compare the video matches and build the final video search results list.

5.4 Database

Figure 5.4 - ER diagram

The database contains two tables: the video table and the key frames table. Key frames have
the properties of algorithm based features, extracted from the key frames.
5.5 User Interfaces
Simple command prompt can be used for inserting the video folder path and the image path
which is simple and straightforward.
5.6 Comparison
Run the two applications separately, using the same 3 sets of videos (size 22 each), input the
same image and run the search. The time to produce results will be calculated automatically.
This will be repeated for 3 sets of 5 images (90% cat, 89-1%cat, 0%cat). The comparison will
be further explained in the evaluation chapter.

29

5.7 Summary
In this chapter we discussed how the two prototypes for the two methods of searching are
designed. The designs were described with the aid of diagrams and scenario descriptions. These
include the architecture, activity flow and the design of the database. Afterwards, the method
of comparison for the prototypes was discussed. The next chapter shall discuss how to
implement the prototypes and related issues.

30

Chapter 6
Implementation

6.1 Introduction
This chapter provides the details of the prototype implementation. After describing the
decisions regarding the system in the previous chapter this is the chapter where the actual
implementation of those planned features is documented. Each component and module will be
explained in this chapter with the relevant implementation designs, decisions, tools,
screenshots and code samples.
6.2 Implementation Overview
The two implementations are similar except for the fact of using a database of key frame
signatures by one implementation. Both search prototypes are written using MatLab. MS
Access acts as the DBMS.
The codes of the prototypes are given in the Appendix C.
6.3 Database Implementation
6.3.1 MS Access 2013
As explained earlier, the storage of feature information needed to be saved in the stored
summary prototype is implemented using MS Access. MS Access was selected on the basis
that it is very easy to implement and the transaction of the system are fairly simple. But for a
business level application of this methodology of Image to Video Matching requires a more
powerful database implementation.
6.3.1 Physical Database Design
Accordingly a relational database design was needed for the data. An ER diagram was drawn
to design the relational database as shown in the previous chapter. The same is implemented
here as follows:

31

Figure 6.1 - Screenshot of the database design (relationships)

There are two tables as TblVideo for storing video names and TblKeyFrame for storing the
features of the Key Frames for each video. SurfFeatures column for SURF feature
detector/descriptor results, HarrisFeatures column for Harris detector with FREAK descriptor
and ColorFeatures column for color extractor algorithm with simple Square Neighborhood
descriptor results are used. And the locations of the feature points are saved in HarrisPoints
and SurfPoints columns.
The feature data had to be saved in the string format because it requires less space to store and
easy to convert from matrix format. But converting strings into matrices is a slow process.
6.3.3 Data Dictionary
Entity Name Video
Table Name TblVideo
Description Hold basic information on videos
Primary Key ID
Foreign Keys -
Reference tables -
Attributes Field Type Description

ID Number Primary key
VidName ShortText Name of the video file
FrameWidth Number Width of a frame

Entity Name Key Frame
Table Name TblKeyFrame
Description Hold information on key frames of videos

32

Primary Key ID
Foreign Keys VideoId
Reference tables TblVideo
Attributes Field Type Description

ID Number Primary key
VideoId Number Foreign key to TblVideo. Cascade rule

is applied for UPDATE and DELETE.
VidName ShortText Name of the video file
SurfFeatures LongText Features list derived by SURF

algorithm
HarrisFeatures LongText Features list derived by Harris

algorithm
ColorFeatures LongText Features list derived by color features

extraction algorithm
SurfPoints Long Text Locations of SURF points
HarrisPoints Long Text Locations of Harris corner points

Table 6.1 Detailed data dictionary
6.4 Component/Module Implementation
The components are implemented in MatLab. So rather than the detailed pixel level
implementation, the emphasis is given to the use of existing algorithms to support the prototype
designs.

Figure 6.2 - List of code components

33

6.4.1 Extract Key Frames
This component extracts key frames from a given video. For these prototypes, we consider
only videos of length up to 45 seconds. This will make the evaluation simpler.
What it does is, obtaining a threshold for each frame and then using it to extract the key frames.
First, selected frames are applied the Otsu’s Threshold to find the change in consecutive
selected frames. Thresholds are calculated for the grey image. This threshold is used to extract
key frames (see also Technology chapter).
Afterwards, the frame that correspond to the values of threshold greater than the average
threshold are extracted. To compromise for the states between each high threshold frames, the
median frame between two consecutive high threshold frames are also extracted.

Video > Shot > Group of frames > Key frame
The simplicity of the scheme makes it possible to segment the video within a sufficiently less
time. The following algorithm is used in this procedure. The code is given in the Appendix C.

READ VIDEO
CALCULATE NUMBER OF FRAMES
DECIDE THE FRAME EXTRACTION INTERVAL
GET THE FIRST FRAME
RESIZE FIRST FRAME
FOR EACH INTERVAL OF FRAMES
 GET THE NEXT FRAME AFTER INTERVAL
 RESIZE NEXT FRAME
 GET FRAME DIFFERENCE
 GET OTSU’S THRESHOLD
 KEEP OTSU’S THRESHOLD
END
GET MEAN AND STANDARD DEVIATION OF OTSU’S THRESHOLDS
GET THE GLOBAL THRESHOLD
FOR EACH SELECTED FRAME
 IF DIFFERENCE > THRESHOLD OR IS (LAST -1) TH SELECTED FRAME
 EXTRACT KEY-FRAME

34

But there are a lot of possible improvement to this codes, such as supporting video durations
greater than 45 seconds and even one hour. A generalized frame interval selection formula
could be used for his purpose. And a greater number of more accurate number of frames could
be selected if there is more processing power, using two global thresholds for the upper and
lower limits.
6.4.2 Get Colour Features
For getting the Harris features and SURF features, the methods given by MatLab Computer
Vision Toolkit are used. For the colour features, we use a simple extractor as described in the
Technology chapter.
6.4.3 Match Harris/ SURF/ Color Features
Here, the features of the image are matched with the features of the given frame. Then the
program calculates the percentage of matching features as well as percentage of inlier features
against the total number of features of the image. This value is thresholded separately for each
type of features (Harris/SURF/color). The average distance between Key Pairs is compared
with the image width to guess whether the Key Points are inliers or not. A partial match is
calculated for combining it with the results of other types of features later.
E.g. (from Harris feature matching):

 EXTRACT KEY-FRAME OF MEDIAN POSITION BETWEEN THIS KEY-FRAME AND THE LAST
ONE
 END
END

 if(size(I1,2) < size(I2,2)) Tdist = size(I2,2); else Tdist = size(I1,2); end averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs; if ((status ~= 0 && percentage >= 2 && (averageDist <= Tdist/2 * 0.9)) || ((sizeOfinliers1*100/numPairs) >= 2 && status == 0) || (percentage >= 6)) match = true; else match = false; end if(percentage >= 4) partial_match = true; end

35

6.4.3 Run-time prototype
6.4.3.1 Search Videos
This is the main component of the Run-time prototype. The full code is provided in the
Appendix C. Following is brief of this procedure:

The match metrics are designed to exclude trivial matches by thresholding. It uses the
percentage matching frames and average percentage match of matching frames to make this
selection. The thresholds and metrics are largely based on observational matching.

There are more statistically improved metrics, such as Confidence that can be used.

GET VIDEO FILE LIST AND IMAGE
RESIZE IMAGE
GET FEATURES OF THE IMAGE
FOR EACH VIDEO FILE
 EXTRACT KEY FRAMES
 FOR EACH KEY FRAME
 SEARCH ONE VID
 END
 CALCULATE MATCH METRICS
 IF METRICS ARE SIGNIFICANT
 KEEP VIDEO RESULT
 END
END
DISPLAY VIDEO LIST

((percMatch+avgFeatureMatch) >= 64.412 && avgFeatureMatch >= 5.92)

36

6.4.3.2 Search One Video
This component takes one video, takes each key frame and calls the matching components for
Harris, SURF and color features. Then it checks to see whether any of them return positive
results or if all match partially. Then it calculates the matching percentage and number of
matches and returns them.
6.4.4 Stored summary prototype
6.4.4.1 Add a Video to DB
This module helps to insert one video into the database. First, the video path is taken. And then
the video name information is saved into the database (TblVideo). Afterwards the key frames
are extracted by calling the relevant component (Extract Key Frames). Lastly, for each key
frame, features are obtained by calling the relevant components for Harris, SURF and colour
features, and these are converted to string by calling a MATLAB function and then saved to
the TblKeyFrame. The code is given in the Appendix C.
6.4.4.2 Search Videos from DB
Similar to the Search Videos component, this function searches each video for matching key
frames. The difference is that the set of video names is obtained from the database, and then
each key frame’s feature information is retrieved from the database. For each of these key
frames, the features are matched with the features of the given image by calling the relevant
component (Search One Image from DB).
6.4.4.3 Search One Image from DB
For each key frame from the database, the feature information string will be converted into
matrix form. Then those features will be matched using the matching modules for Harris, SURF
and color algorithms. Then the best match selection process goes in the same way as in the
Real-Time prototype.
6.4.4.4 Match Harris/ SURF/ Color Features from DB
This is similar to the function in the Real-time prototype but since the features of key frames
have been given, only the matching part is done.

37

6.4.4.5 String to Matrix
Converting string to a matrix. Please refer to the Appendix C for the actual code.

6.5 Command Line Execution
MatLab allows to deploy programs as executable files. The executable files are actually slower
than executing in the MatLab environment. But this makes the programs easier to demonstrate.
It requires the MatLab Runtime to execute.

Figure 6.3 - Screenshot of execution of the run-time prototype

GET NUMBER OF ROWS AND NUMBER OF COLUMNS
CREATE MATRIX
GET NUMBER OF ROWS
FOR EACH ROW
 GET NUMBER OF VALUES
 FOR EACH VALUE
 GET VALUE START POSITION
 GET VALUE END POSITION
 GET VALUE AND ASSIGN TO MATRIX
 END
END

38

6.6 Summary
The implementation chapter describes the implementation, with it code in the Appendix C.
First we briefed the technologies used and then the database implementation. In the DB
implementation, the DBMS used, the physical design and the data dictionary were presented.
The components/modules were then explained in detail. In the next chapter we shall discuss
the evaluation of the prototypes.

39

Chapter 7
Evaluation

7.1 Introduction
After all the implementation details of the last chapter, this is the point at which the project and
the product will be evaluated. The project will be evaluated against the requirements and
objectives of the project. The prototypes have to be evaluated for comparing the stored
summary method vs. real-time method as well. The environment of evaluation, the plan, data
collection and data analysis will be expounded from here on.
7.2 Evaluation Environment
The fast execution and accurate results are expected from the algorithm being proposed. And
the comparison of speed of execution and accuracy of results between the two implementations
must be carried out as well. The evaluation plan needs to support these goals.
Thus a large number of videos need to be searched for a large number of images in order to
produce better results. There are also different types of images of different types of cats,
appearing in different postures, angles and appearing partially. But as clear as possible images
are needed that have distinct cat images since otherwise the background can affect the search
result. The videos have the same variation. Additionally, there may be videos with no cats and
different durations of cat appearance. All these factors need to be taken into account in order
to measure the accuracy and speed.
7.3 Evaluation Plan
Three sets of videos are used in the search. The first set of videos has the image of a cat/cats in
90% of duration, the second one has 89 to 1% and the third set has 0% cats.
The duration of videos is limited to maximum 45 seconds for faster searching. And the videos
saved in the database are limited in their file size to reduce the size of the Access database
(maximum 2GB total).

1. For measuring the accuracy of the video search technique, the 3 sets of 30 videos each
are used with groups of incrementally sized (incrementing by 5) image sets, i.e. 5, 10,
15 etc.

40

2. To compare the two applications are run separately, using the same 3 sets of videos
(size 22 each), input the same image and run the search. The time to produce results is
calculated manually using start time and end time given from the program. This is
repeated for the 3 sets of videos with 5 images as input.

Additionally, it is required to run the two search prototypes and Add Video module in batches
to conduct this test. A large number of image searches as well as databases insert operations
needs to be run. For this reason, Bulk Run programs were created for running the tests. The
evaluator inserts a folder path for all the images or videos which is used by the program to loop
over each and run a given Module consecutively until the end of the image/video list.
7.4 Automated Testing Implementation
Since the evaluation process is long and redundant, it had to be automated. Two small programs
were created to automate the evaluation of the implementations. And three databases were
created to carry out the comparison task, each for one type of videos based on the similarity
category. This was required especially since MS Access only allows to store 2GB in a database
at one time. Details are given in the Appendix D.

1. ‘bulkRunReal’ to run the real-time prototype on a folder of images
2. ‘bulkRun’ to run the stored summary prototype to save a folder of videos into the

database or search a folder of images against a database
3. ‘VidSearchFull’ to store information of videos with >= 90% of cat images
4. ‘VidSearchMid’ to store information of videos with < 90% and >0% of cat images
5. ‘VidSearchNone’ to store information of videos with 0% of cat images

7.5 Data Collection
Evaluation Number 1
The following results could be obtained by running the evaluation of real-time prototype. Table
7.1 gives a sample of the results obtained. Detailed test results are given in the Appendix D.

41

Image Results Top three video results

27 out of 90 videos

22 videos out of 90

7 out of 90 videos

23 out of 90 videos

23 out of 90 videos

23 out of 90 videos

Table 7.1 - Matching results for sample images with all video sets using real-time prototype

42

Video set Image set Total average of matching videos
More than 90% appearance 5 11.33%

10 15.67%
15 17.78%
20 19.50%

Medium % appearance 5 17.33%
10 33.67%
15 29.78%
20 25.67%

0 % appearance 5 9.33%
10 18.67%
15 20.67%
20 15.17%

Table 7.2 - Matching results for different sets using real-time prototype
Evaluation Number 2
For the comparison of the two prototypes, the following results were obtained. Further details
are given in the Appendix.

 Average time (h:m:s)

Real-time
More than 90% 0:21:09
Medium % match 0:27:48
0% match 0:14:31

Stored
summary

More than 90% 0:28:18
Medium % match 0:28:17
0% match 0:46:25

Table 7.3 - Comparison of search times for different video sets using both prototypes
Following numbers of matches could be observed from the two prototypes.

43

 Average percentage of matching videos

Real-time
More than 90% 8.67%
Medium % match 11.33%
0% match 6.67%

Stored
summary

More than 90% 2.00%
Medium % match 9.33%
0% match 6.67%

Table 7.4 - Comparison of matching video percentages for different video sets using both
prototypes

7.6 Data Analysis
Evaluation Number 1
The below graphs were produced using the results of evaluation number 1: the comparison of
percentages of matching videos.

Figure 7.1 - Result of searching more than 90% appearance videos

11.33%
15.67% 17.78%

19.50%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

5 1 0 1 5 2 0

MORE THAN 90% APPEARANCE

44

Figure 7.2 - Result of searching Medium maching videos

Figure 7.3 - Result of searching 0% maching videos

The summary graph of all the video sets:

17.33%

33.67%
29.78%

25.67%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

5 1 0 1 5 2 0

MEDIUM % APPEARANCE

9.33%

18.67% 20.67%

15.17%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%

5 1 0 1 5 2 0

0% APPEARANCE

45

Figure 7.4 - Total result of searching all maching videos

Figure 7.5 - Total result for video sets

Evaluation Number 2
Comparison of the running times of the two prototypes can be shown as follows:

12.67%

22.67% 22.74%
20.11%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

5 1 0 1 5 2 0

TOTAL MATCH

16.07%

26.61%

15.96%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%

0 % appearance Medium % appearance More than 90% appearance

AVERAGE MATCH IN VIDEO SETS

46

Figure 7.6 - Comparison between prototypes’ runing times

The change of value between the two prototypes from the comparison run can be shown as
below.

Figure 7.7 - Comparison between prototypes’ percentages of results

From the above results it can be seen that:
1. There can be observed generally a growth of number of matching videos as the number

of images are increased, except for the set of 20 images (0% and medium percentage
matching) and medium percent matching image set of 15.

2. From the video sets, medium matching videos show a greater match difference between
image sets and a greater match overall.

Real-time, 0:14:31

Real-time, 0:27:48
Real-time, 0:21:09

Stored summary, 0:46:25

Stored summary, 0:28:17 Stored summary, 0:28:18

0:00:00
0:07:12
0:14:24
0:21:36
0:28:48
0:36:00
0:43:12
0:50:24

0 % M A T C H M E D I U M % M A T C H M O R E T H A N 9 0 %

Real-time, 6.67

Real-time, 11.33

Real-time, 8.67

Stored summary, 6.67
Stored summary, 9.33

Stored summary, 2.00
0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 % M A T C H M E D I U M % M A T C H M O R E T H A N 9 0 %

47

3. The real-time based prototype is clearly the faster approach for closely-matching and
scarcely-matching videos. For medium level matching videos, it is only slightly faster
than the other method.

4. There is a difference in the number of results in the two prototypes. The Stored
summary prototype produces lesser number of results.

The summary based prototype has become slower than the runtime based prototype. This has
occurred because of the time spent on converting feature summary strings into matrix format,
despite the actual speed of searching having been increased.
7.7 Summary
This chapter portrayed the evaluation of the proposed method of image to video matching and
the comparison of the two prototypes proposed for this purpose. First of all the background of
the evaluation and the evaluation plan was described. Then the collected data were presented
and the analysis of the data was done. In the next chapter shall detail the conclusions finally
derived from implementation and evaluation.

48

Chapter 8
Conclusion and Further Enhancements

8.1 Introduction
Previous chapters have elaborated all the aspects of the project, ending with evaluation of the
proposed method of enhancing image based video searching. Following the evaluation, this is
the concluding chapter of the thesis, with the conclusions gained from evaluation. Here it
summarizes the entire project and discusses the quantitative conclusions gained through
evaluation and the achievements of the project against the initial objectives. There are
accomplishments, failures and the limitations faced in the project. We shall also see how the
final product can be improved through further extensions.
8.2 Project Summary
This MSc project was started with the aim of exploring the field of image to video matching
and proposing a possible solution. After surveying the related literature, existing
implementations and implementing sections of code, it was decided to implement a simple
solution using feature matching and video segmentation. The possibility of storing summary
data of the video was decided to be carried out as a comparison. Thus, different technologies
were selected for the final prototype implementation: SURF feature extraction, Harris corner
feature extraction, colour features extraction, Otsu’s thresholding for change detection and
string format to store feature information summary. The prototypes were later evaluated using
3 sets of 22 videos and 5 images. Then the real-time prototype was used to test the effectiveness
of the proposed method in iterations using 3 sets of 30 videos and 3 sets of images.
8.3 Quantitative Conclusions
As has been elaborated in the last chapter, the evaluation of the run-time based prototype shows
that the proposed method of image based video searching shows accuracy for expected results
or confidence for the 0% matching videos is 83.93%. The confidence for 90% matching videos
is 15.96%. For medium matching videos, a 46.78% confidence is shown (for an expected 50%).
Thus, the average accuracy is 48.89%. This shows little success. The number of matches varies
with the number of images and the occurrence of similar features. The videos with more than
90% cat appearance show less matches than videos with 0% cats in them. The reason is that
when searching for cat images, the system also finds image of animals and matches the

49

background colors and background textures. The videos with intermediate appearance of cats
show the highest match overall.
For the comparison between the prototypes, real-time searching is 23.74% faster than searching
feature summary database. This was the opposite of what was expected. And the result was
effected greatly by implementation decisions. There was a difference in the results in the two
prototypes. It has been observed as an average of 2.89% difference.
There has been observed a chance of around 8.75% of possible change in the resultant videos
when repeating the same search. This is due to the randomness of results of the MSAC
algorithm. But this has not been observed to have affected the final evaluation averages
obtained.
8.4 Objective-Wise Conclusions
In an academic project, skills and experience gained during its progress are as important as its
result. Nevertheless, the final outcome of the project needs to be discussed in terms of the initial
objectives of the project, one by one. Then we can explore whether these have been achieved
or not.

1. To survey the literature related with image based video retrieval to select
appropriate algorithms.

The survey of literature has been done up to reviewing 14 researches (as documented in the
literature survey) and referencing 28 total of sources. The 14 reviews have been further
discussed and compared to find the suitable technologies and methods. And likewise some
suitable technologies and methods have been found from these sources. Thus, we may say that
a sufficient amount of survey has been done, although it would have been better if it was
possible to produce reviews for the other 10 sources as well. Nevertheless it was possible to
learn a great lot about the field of image based video retrieval by doing this literature survey.

2. To develop two prototypes and evaluate the two techniques of real-time searching
and stored video summaries.

These two prototypes were developed and were compared for speed. The accuracy of both
prototypes was the same. The comparison was done using 3 sets of 22 videos which were search
for the same 5 images for each set (total 15 test runs). This comparison is described in detail in
the Evaluation chapter. Result was that the Real-time based prototype was faster than the

50

summary based prototype. Factor which effect the speed of the database is the conversion of
large feature data in a format suitable for the database into a format that can be processed by
the programing language.

3. To evaluate the technique of motion detection based image based video retrieval
The technique used in the implementation was tested using the real-time search prototype, 15
images and 90 videos as described in the Evaluation chapter. This evaluation showed that the
number of matches varies with the number of images and the occurrence of similar features
and an intermediate level of accuracy was observed.
 8.5 Problems Encountered, Limitations and Decisions Made
There had to be made a compromise between the accuracy of results and the speed of execution
in all aspects of the prototypes. For searching a large video set, the speed is the most important
factor. This effected the video segmentation and the selection of feature extractors. It has also
affected the final accuracy.
The ‘i5 processor’ for this algorithm takes a great length of execution time (around 30 minutes
for 30 videos with less than 45 second duration for each for the real-time based prototype),
after numerous optimizations of efficiency. But in an ideal implementation, the searching will
be done using a GPU and many high speed servers in data centers.
Many algorithms such as PCA-SIFT feature matching were dropped as good open source
implementations could not be found for such algorithms or long execution times etc.
A decision of compromise had to be made with regard to the DBMS (MS Access): its simplicity
of implementation against the lack of speed, power and tools. This was explained in earlier
chapters.
Also key frame feature data had to be saved in the string format because strings take less space
than XML. But strings are much slower to be converted to the matrix format.
Inlier detection method MSAC used in the prototype gives random results for inlier points,
which can cause the resultant number of video results to be randomized.
8.6 Further Enhancements
If faster processors, GPUs or dedicated servers could be used for the searching, it would
provide much greater speed than the current prototype implementations.

51

A faster method can be developed in future enhancements by techniques such as, quantization
of the feature matrices so that they take less space and are easier to store/retrieve or Bag of
Features methods which store only the relevance of features to cluster centers (clustering),
obtained through training.
A superior DBMS such as Microsoft SQL Server can provide better tools, integrity and power,
than Microsoft Access for the implementation.
A region detector such as MSER can be used in the feature detection and matching process.
Currently only the corners, textures and colours are being matched.
Salient object detection and object matching is an option that will improve the matching
accuracy greatly. Rather than matching a whole frame with the whole image, we may abstract
the salient objects in the given image and match those with the moving objects in the video’s
key frames.
Deep convolutional neural networks are currently being used in the user image based images
searching field. We may use his technique in image based video retrieval as well, after
simplifying it for increasing the speed.
8.7 Summary
This chapter being the last chapter of the thesis, provided an overview or summary of the
project. Next, a quantitative conclusion was given. Then it assessed the project against its initial
objectives and discussed whether these were met or not. It also contained the problems and
limitations, and the decisions taken regarding those in the project. Later, the enhancements or
improvements that can further extend the project were proposed. This concludes the thesis.
Additional information related to thesis chapters can be found in the Appendix.

52

References
Agarwal, S., Roth, D., 2002. Learning a sparse representation for object detection, in:

European Conference on Computer Vision. Springer, pp. 113–127.
Araujo, A., Chen, D., Vajda, P., Girod, B., 2014. Real-time query-by-image video search

system. ACM Press, pp. 723–724. doi:10.1145/2647868.2654867
Bahri, A., Zouaki, H., n.d. A Surf-Color Moments for Images Retrieval Based on Bag-of-

Features [WWW Document]. EA J. URL
http://www.eajournals.org/journals/european-journal-of-computer-science-and-
information-technology-ejcsit/vol-1-issue-1-june-2013/a-surf-color-moments-for-
images-retrieval-based-on-bag-of-features/ (accessed 4.23.17).

Eickeler, S., Wallhoff, F., Lurgel, U., Rigoll, G., 2001. Content based indexing of images and
video using face detection and recognition methods. IEEE, pp. 1505–1508.
doi:10.1109/ICASSP.2001.941217

El-gayar, M.M., Soliman, H., meky, N., 2013. A comparative study of image low level
feature extraction algorithms. Egypt. Inform. J. 14, 175–181.
doi:10.1016/j.eij.2013.06.003

Elnemr, H.A., 2016. Combining SURF and MSER along with Color Features for Image
Retrieval System Based on Bag of Visual Words. J. Comput. Sci. 12, 213–222.
doi:10.3844/jcssp.2016.213.222

Fergus, R., Perona, P., Zisserman, A., 2003. Object class recognition by unsupervised scale-
invariant learning, in: Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on. IEEE, pp. II–264.

Fitzgibbon, A., Zisserman, A., 2002. On Affine Invariant Clustering and Automatic Cast
Listing in Movies, in: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (Eds.),
Computer Vision — ECCV 2002, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 304–320.

Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S., 2011. A Survey on Visual Content-Based
Video Indexing and Retrieval. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41,
797–819. doi:10.1109/TSMCC.2011.2109710

Jing, Y., Liu, D., Kislyuk, D., Zhai, A., Xu, J., Donahue, J., Tavel, S., 2015. Visual Search at
Pinterest, in: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15. ACM, New York, NY, USA, pp.
1889–1898. doi:10.1145/2783258.2788621

Kavitha, H., Sudhamani, M.V., 2013. Object based Image Retrieval from Database using
Combined Features. Int. J. Comput. Appl. 76, 38–42.

Kavya, J., Shashirekha, H., 2014. A Novel Approach for Image Retrieval using Combination
of Features. Int. J. Comput. Technol. Appl. 6, 323–327.

Khan, N.Y., McCane, B., Wyvill, G., 2011. SIFT and SURF Performance Evaluation against
Various Image Deformations on Benchmark Dataset. IEEE, pp. 501–506.
doi:10.1109/DICTA.2011.90

Madbouly, A.M.M., Wafy, M., Mostafa, M.-S.M., 2015. Performance Assessment of Feature
Detector-Descriptor Combination. Int. J. Comput. Sci. Issues IJCSI 12, 87.

McGuinness, K., McCusker, K., O’Hare, N., O’Connor, N.E., 2012. Efficient storage and
decoding of SURF feature points, in: International Conference on Multimedia
Modeling. Springer, pp. 440–451.

Patel, B.V., Meshram, B.B., 2012. Content Based Video Retrieval Systems. Int. J. UbiComp
3, 13–30. doi:10.5121/iju.2012.3202

53

Rathod, G.I., Nikam, D.A., 2013. An algorithm for shot boundary detection and key frame
extraction using histogram difference. Int. J. Emerg. Technol. Adv. Eng. 3, 155–163.

Reverse image search - Search Help [WWW Document], n.d. URL
https://support.google.com/websearch/answer/1325808?hl=en (accessed 6.14.16).

Sav, S., Johns, G.G.F., Lee, H., 2006. , in: Image and Video Retrieval: 5th Internatinoal
Conference, CIVR 2006, Tempe, AZ, USA, July 13-15, 2006, Proceedings. Springer
Science & Business Media, pp. 1–10.

Schneiderman, H., Kanade, T., 2000. A statistical method for 3D object detection applied to
faces and cars, in: Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference on. IEEE, pp. 746–751.

S.G., A., Karibasappa, K., Eswar Reddy, B., 2013. Video Segmentation for Moving Object
Detection Using Local Change & Entropy Based Adaptive Window Thresholding.
Academy & Industry Research Collaboration Center (AIRCC), pp. 155–166.
doi:10.5121/csit.2013.3916

Sivic, J., Schaffalitzky, F., Zisserman, A., 2004. Efficient object retrieval from videos, in:
Signal Processing Conference, 2004 12th European. IEEE, pp. 1737–1740.

Sivic, J., Zisserman, A., 2004. Video data mining using configurations of viewpoint invariant
regions, in: Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on. IEEE, pp. I–488.

Sivic, J., Zisserman, A., 2003. Video Google: A Text Retrieval Approach to Object Matching
in Videos, in: Ninth IEEE International Conference on Computer Vision (ICCV
2003). Presented at the IEEE International Conference on Computer Vision (ICCV
2003), IEEE.

Velmurugan, K., Baboo, L.D.S.S., 2011. Content-based image retrieval using SURF and
colour moments. Glob. J. Comput. Sci. Technol. 11.

Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, Maybank, S., 2011. A Survey on Visual
Content-Based Video Indexing and Retrieval. IEEE Trans. Syst. Man Cybern. Part C
Appl. Rev. 41, 797–819. doi:10.1109/TSMCC.2011.2109710

Yang, L., Cai, Y., Hanjalic, A., Hua, X.-S., Li, S., 2011. Video-based image retrieval, in:
Proceedings of the 19th ACM International Conference on Multimedia. ACM, pp.
1001–1004.

Yildirim, Y., Yazici, A., Yilmaz, T., 2013. Automatic Semantic Content Extraction in Videos
Using a Fuzzy Ontology and Rule-Based Model. IEEE Trans. Knowl. Data Eng. 25,
47–61. doi:10.1109/TKDE.2011.189

54

Appendix A - Approach
A.1 DFD Data Dictionary

Data Member Name Type
Default
Value

Mandatory
?

Video folder path Character “” (empty) Yes
Image path Character “” (empty) Yes
Rated video analysis
results

Complex null No

Harris_features Complex null No
SURF_features Complex null No
color_features Complex null No
image Complex null Yes
Key frames list Complex null No
Video details Complex null Yes
Video list Complex null No

Table A.1 - DFD data dictionary

55

Appendix B - Design
B.1 Activity Diagrams

Figure B.1 – Activity diagram of Stored summary searching prototype search senario

56

Figure B.2 - Stored summary searching prototype’s Add Video scenario

57

Appendix C - Implementation
C. 1 Code Listing
C.1.1 Get Key Frames
function [Keyframes, NOKF] = keyfOtsu(V, keyFramesFolder) % Copyright (c) 2015, krishnapriya Subramanian % All rights reserved. % Modified by H. S. Senevirathna Copyright (c) 2017.
xyloObj = VideoReader(V); %Using video reader reading video %Extracting frames NOF = xyloObj.NumberOfFrames; % Calculating number of frames disp(strcat('Number of frames = ',num2str(NOF)));

% special lengths of video x = 1; if (xyloObj.Duration >= 15 && 45 > xyloObj.Duration) x = 2+((floor(NOF/1000)).^2); elseif(xyloObj.Duration > 45) % not used x = 3+((floor(NOF/1000)).^2); end x = floor(x); NOFhalf = floor(NOF/x);

Diffs = zeros(NOFhalf,1); Frames = cell(NOFhalf,1); %initialize Frames{1} = read(xyloObj,x); % Retrieve data from video and Add to cell array Frames{1} = resizeImage(Frames{1});

for g=1:NOFhalf if(g~= NOFhalf) y = (g + 1)* x; Frames{(g+1)} = read(xyloObj,(y)); Frames{(g+1)} = resizeImage(Frames{(g+1)}); diff = imabsdiff(Frames{g},Frames{g+1}); I=rgb2gray(diff); % Convert into gray scale level = graythresh(I); % Using Otsu's thresolding Diffs(g) = level; %To calculate histogram difference between two frames % end end %calculating mean and standard deviation and extracting key frames mean=mean2(Diffs); std = std2(Diffs); threshold= (mean + std); NOKF = 0; Keyframes{1} = cell(1); lastKFno = 0; for g=1: NOFhalf if(g~=NOFhalf) th=Diffs(g); if(g == (NOFhalf - 1) || th > threshold) % Greater than threshold select as a key frame

58

 NOKF = NOKF + 1; midKFno = ceil((lastKFno + g + 1)/2); if(midKFno ~= lastKFno && midKFno ~= g+1) Keyframes{NOKF} = Frames{midKFno}; NOKF = NOKF + 1; end lastKFno = g + 1; Keyframes{NOKF} = Frames{g+1}; % Add to cell array end end end end
C.1.2 Extract Color Features
function [features, metrics] = featuresColorExtractor(I) % Example color layout feature extractor. % Local color layout features are extracted from truecolor image, I and % returned in features. The strength of the features are returned in % metrics.

[~,~,P] = size(I);

isColorImage = P == 3;

if isColorImage

 % Convert RGB images to the L*a*b* colorspace. The L*a*b* colorspace % enables you to easily quantify the visual differences between colors. % Visually similar colors in the L*a*b* colorspace will have small % differences in their L*a*b* values. Ilab = rgb2lab(I);

 % Compute the "average" L*a*b* color within 16-by-16 pixel blocks. The % average value is used as the color portion of the image feature. An % efficient method to approximate this averaging procedure over % 16-by-16 pixel blocks is to reduce the size of the image by a factor % of 16 using IMRESIZE. Ilab = imresize(Ilab, 1/16);

 % Note, the average pixel value in a block can also be computed using % standard block processing or integral images.

 % Reshape L*a*b* image into "number of features"-by-3 matrix. [Mr,Nr,~] = size(Ilab); colorFeatures = reshape(Ilab, Mr*Nr, []);

 % L2 normalize color features rowNorm = sqrt(sum(colorFeatures.^2,2)); colorFeatures = bsxfun(@rdivide, colorFeatures, rowNorm + eps);

 % Augment the color feature by appending the [x y] location within the % image from which the color feature was extracted. This technique is % known as spatial augmentation. Spatial augmentation incorporates the % spatial layout of the features within an image as part of the % extracted feature vectors. Therefore, for two images to have similar % color features, the color and spatial distribution of color must be % similar.

59

 % Normalize pixel coordinates to handle different image sizes. xnorm = linspace(-0.5, 0.5, Nr); ynorm = linspace(-0.5, 0.5, Mr); [x, y] = meshgrid(xnorm, ynorm);

 % Concatenate the spatial locations and color features. features = [colorFeatures y(:) x(:)];

 % Use color variance as feature metric. metrics = var(colorFeatures(:,1:3),0,2); else

 % Return empty features for non-color images. These features are % ignored by the color feature matching. features = zeros(0,5); metrics = zeros(0,1); end

C.1.3 Match SURF Features
function [match, percentage, partial_match] = matchSurfFeatures(I1,I2,features1, features2, valid_points1, valid_points2, colour_percentage) partial_match = false; indexPairs = matchFeatures(features1,features2);

totalFeatures = length(features1); %baseline number of features numPairs = size(indexPairs,1); %the number of pairs if(totalFeatures ~= 0 && numPairs ~= 0) status = 1; sizeOfinliers1 = 0; matchedPoints1 = valid_points1(indexPairs(:,1),:); matchedPoints2 = valid_points2(indexPairs(:,2),:); if(numPairs > 2) % disp(size(indexPairs,1)); [~, inliers1, ~, status] = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'affine'); if(status == 0) sizeOfinliers1 = size(inliers1,1); end end percentage = (numPairs * 100)/totalFeatures; else percentage =0; sizeOfinliers1=0; end

% disp('Surf : '); if (numPairs == 0) % disp('We do not have this'); % disp(percentage); match = false; else if(size(I1,2) < size(I2,2)) Tdist = size(I2,2); else Tdist = size(I1,2); end

60

 averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs; percAffine = (sizeOfinliers1*100/numPairs); if ((status ~= 0 && percentage >= 8 && (averageDist <= (Tdist/2) * 2.5))... || (percAffine >= 8 && status == 0) || percentage >= 10)

 match = true; else % disp('We do not have this'); % disp(percentage); match = false; end if(percentage >= 8) partial_match = true; end end

end

C.1.4 Match Harris Features
function [match, percentage, partial_match] = matchHarrisFeatures(I1size,I2size,features1, features2, valid_points1, valid_points2, colour_percentage)

partial_match = false; indexPairs = matchFeatures(features1,features2);

totalFeatures = features1.NumFeatures; %baseline number of features numPairs = size(indexPairs,1); %the number of pairs if(totalFeatures ~= 0 && numPairs ~= 0) status = 1; sizeOfinliers1 = 0; matchedPoints1 = valid_points1(indexPairs(:,1),:); matchedPoints2 = valid_points2(indexPairs(:,2),:); if(numPairs > 2) [tform, inliers1, inliers2, status] = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'affine'); if(status == 0) sizeOfinliers1 = size(inliers1,1); end end percentage = (numPairs * 100)/totalFeatures; else percentage =0; sizeOfinliers1=0; end

% disp('Harris : '); if (numPairs == 0) % disp('We do not have this'); % disp(percentage); match = false; else if(I1size < I2size) Tdist = I2size; else Tdist = I1size; end averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs;

61

 percAffine = (sizeOfinliers1*100/numPairs); % disp(strcat('max=',num2str(max(indexPairs(:,end))))); if ((status ~= 0 && percentage >= 2 && averageDist <= (Tdist/2) * 0.9) ... || (percAffine >= 2 && status == 0) || percentage >= 6) % disp('We have this'); % disp(percentage);disp(averageDist);disp(size(features1.Features, 2)); match = true; else % disp('We do not have this'); % disp(percentage); match = false; end if(percentage >= 4) partial_match = true; end end end

C.1.5 Match Color Features
function [percentage, match, partial_match] = matchColorFeatures(I1,I2,features1, features2)

partial_match = false; indexPairs = matchFeatures(features1,features2);

totalFeatures = length(features1); %baseline number of features numPairs = length(indexPairs); %the number of pairs if(totalFeatures ~= 0) percentage = (numPairs * 100)/totalFeatures; else percentage =0; end

% disp('Color : '); if (numPairs == 0) % disp('We do not have this'); % disp(percentage); match = false; else if(size(I1,2) < size(I2,2)) Tdist = size(I2,2); else Tdist = size(I1,2); end averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs; if (percentage >= 3.9 && (averageDist <= Tdist/2 * 2.5)) || percentage >= 50 % disp('We have this'); % disp(percentage);disp(averageDist);disp(size(features1, 2)); match = true; else % disp('We do not have this'); % disp(percentage); match = false; end

62

 if(percentage >= 15) partial_match = true; end end end
C.1.6 Resize Image
function image = resizeImage(image) if(size(image,2) > 640) p1 = imresize(image(:,:,1), [NaN 640]); [m,n,~]=size(p1); image=zeros(m,n,3); image(:,:,1) = p1; image(:,:,2) = imresize(image(:,:,2), [m 640]); image(:,:,3) = imresize(image(:,:,3), [m 640]); elseif(size(image,1) > 480) p1 = imresize(image(:,:,1), [480 NaN]); [m,n,~]=size(p1); image=zeros(m,n,3); image(:,:,1) = p1; image(:,:,2) = imresize(image(:,:,2), [480 n]); image(:,:,3) = imresize(image(:,:,3), [480 n]); end end

C.1.7 Connect to Database
function conn = ConnectToDB() dbpath = ['D:\MSc\Project\SurfSearchVid\VidSearchNone.accdb']; url = [['jdbc:odbc:Driver={Microsoft Access Driver (*.mdb, *.accdb)};DSN='''';DBQ='] dbpath]; conn = database('','','','sun.jdbc.odbc.JdbcOdbcDriver',url); end

C.1.8 Search Videos
function searchVids(imgPath,vidFolder) disp(datetime('now')); keyFramesFolder = 'Evaluation\Keyframes'; image = imread(imgPath); k = dir(strcat(vidFolder,'*.mp4')); filenames = {k.name}'; % get video files noOfVids = length(filenames); if (noOfVids == 0) disp('The folder location of videos is not found or empty.'); end image = resizeImage(image);

% Get features of the image image_features_Surf = GetSurfFeatures(image); image_features_Harris = GetHarrisFeatures(image); [image_features_Color, metrics] = featuresColorExtractor(image);

numOfResults=0;

63

% searcing each vid for g=1: size(filenames) video = filenames(g); path = strcat(vidFolder,video); disp(video); pathSring = char(path);

 [keyfArr, NOKF] = keyfOtsu(pathSring, keyFramesFolder); disp(strcat('Number of keyframes = ',num2str(NOKF)));

 if (NOKF > 0) [sumOfPerc, numMatches] = searchOneVid(image, keyfArr, keyFramesFolder, image_features_Surf, image_features_Harris, image_features_Color, video); end disp(strcat(video, ' Number of results = ',num2str(numMatches))); if(NOKF ~= 0 && numMatches ~= 0) averageMatch = numMatches/NOKF; percMatch = averageMatch * 100; avgFeatureMatch = sumOfPerc/(3*numMatches); else avgFeatureMatch = 0; percMatch = 0; end disp(strcat(video, ' Matching ratio = ',num2str(avgFeatureMatch))); if(percMatch >= 10 && avgFeatureMatch >= 12.028) % thresholded prcentage of matching key frames - empirically derived numOfResults = numOfResults+1; VideoList{numOfResults,1} = char(video); VideoList{numOfResults,2} = avgFeatureMatch; VideoList{numOfResults,3} = percMatch; VideoList{numOfResults,4} = percMatch+avgFeatureMatch;

 end end

% Display video list if(numOfResults>0) VideoList = sortrows(VideoList, -4); disp(VideoList); end

disp(strcat('No of matching videos : ',num2str(numOfResults))); disp(datetime('now')); end

C.1.9 Search One Video
function [sumOfPerc, numMatches] = searchOneVid(image,keyfArr, keyFramesFolder, image_features_Surf, image_features_Harris, valid_points_Surf, valid_points_Harris, image_features_Color, video) numMatches = 0; sumOfPerc = 0; n = length(keyfArr); for g=1: n % disp(strcat(num2str(g),' of ',num2str(n))); [KF_features_color,metrics] = featuresColorExtractor(keyfArr{(g)});

64

 [colour_percentage, match3, partial1] = matchColorFeatures(image,keyfArr{(g)},image_features_Color, KF_features_color);

 I1 = rgb2gray(keyfArr{(g)}); points1 = detectSURFFeatures(I1); [KF_features_Surf,KF_valid_points_Surf] = extractFeatures(I1,points1); points2 = detectHarrisFeatures(I1); [KF_features_Harris,KF_valid_points_Harris] = extractFeatures(I1,points2);

 [match1, percentage1, partial2] = matchSurfFeatures(size(image,2),size(keyfArr{(g)},2),image_features_Surf, KF_features_Surf, valid_points_Surf, KF_valid_points_Surf, colour_percentage); [match2, percentage2, partial3] = matchHarrisFeatures(size(image,2),size(keyfArr{(g)},2),image_features_Harris, KF_features_Harris, valid_points_Harris, KF_valid_points_Harris, colour_percentage);

 if ((match1 == true || match2 == true || match3 == true) || (partial1 && partial2 && partial3)) numMatches = numMatches + 1; sumOfPerc = sumOfPerc + percentage1 + percentage2 + colour_percentage; end end

end

C.1.10 Add video to database
function AddVidToDB(path) %insert keyframe features into DB disp(datetime('now'));

conn = ConnectToDB(); keyFramesFolder = 'Evaluation\Keyframes'; slash_place = strfind(path,'\'); video = path(slash_place(length(slash_place))+1:end); if exist(path, 'file') ~= 2 disp(strcat('The file ',video,' does not exist in the path ',path(1:hash_place(1)-1))); end

[keyfArr, NOKF] = keyfOtsu(path, keyFramesFolder); % extract key frames % disp(size(keyfArr,2)); disp(strcat('Number of keyframes = ',num2str(NOKF)));

if(NOKF >0) KFsize = size(keyfArr{1},2); else KFsize = 0; end colnames = {'VidName', 'FrameWidth'}; data = {video, KFsize}; tablename = 'TblVideo';

65

datainsert(conn,tablename,colnames,data); result = exec(conn,'SELECT Distinct @@Identity FROM TblVideo'); result = fetch(result); ID = result.Data{1};

colnames2 = {'VideoId', 'SurfFeatures', 'HarrisFeatures', 'ColorFeatures', 'SurfPoints', 'HarrisPoints'}; tablename2 = 'TblKeyFrame';

featuresSet = cell(NOKF,1); for g=1: NOKF featuresC = featuresColorExtractor(keyfArr{(g)}); I1 = rgb2gray(keyfArr{(g)}); points1 = detectSURFFeatures(I1); [featuresS,KF_valid_points_Surf] = extractFeatures(I1,points1); points2 = detectHarrisFeatures(I1); [featuresH,KF_valid_points_Harris] = extractFeatures(I1,points2);

 strfS = strcat(int2str(size(featuresS,2)),'#',mat2str(featuresS)); strfH = strcat(int2str(size(featuresH.Features,2)),'#',mat2str(featuresH.Features)); strfC = strcat(int2str(size(featuresC,2)),'#',mat2str(featuresC)); strVPS = strcat(int2str(size(KF_valid_points_Surf.Location,1)),'#',mat2str(KF_valid_points_Surf.Location)); strVPH = strcat(int2str(size(KF_valid_points_Harris.Location,1)),'#',mat2str(KF_valid_points_Harris.Location));

 featuresSet{g} = {ID strfS strfH strfC strVPS strVPH}; % disp(g); end disp('features extracted'); for g=1: NOKF data3 = featuresSet{g}; datainsert(conn,tablename2,colnames2,data3); % disp('KF inserted.'); disp(g); end disp('End.');

close(result); close(conn); disp(datetime('now')); end

C.1.11 Search Videos from Database
function searchVidsFromDB(imgPath) disp(datetime('now'));

keyFramesFolder = 'Evaluation\Keyframes'; image = imread(imgPath); image = resizeImage(image);

% Get features of the image

66

I1 = rgb2gray(image); points1 = detectSURFFeatures(I1); [image_features_Surf,valid_points_Surf] = extractFeatures(I1,points1); points2 = detectHarrisFeatures(I1); [image_features_Harris,valid_points_Harris] = extractFeatures(I1,points2); [image_features_Color, metrics] = featuresColorExtractor(image);

conn = ConnectToDB(); result = exec(conn,'SELECT VidName, ID, FrameWidth FROM TblVideo'); setdbprefs('DataReturnFormat','cellarray'); result = fetch(result,30); videos = result.Data; keyfArr = cell(5); dims = size(videos);

% searcing each vid numOfResults=0; if (dims(1) > 0 && dims(2) > 0)

 for g=1: dims(1) numMatches = 0; video = videos(g,:); vidId = uint32(video{2}); frameWidth = uint32(video{3}); disp(video{1}); query = strcat('SELECT SurfFeatures, HarrisFeatures, ColorFeatures, SurfPoints, HarrisPoints FROM TblKeyFrame WHERE VideoId = ',num2str(vidId)); resultVid = exec(conn,query); setdbprefs('DataReturnFormat','cellarray'); resultVid = fetch(resultVid); images = resultVid.Data; dims2 = size(images); sumOfPerc = 0; noOfKFs = dims2(1); disp(strcat('Number of keyframes = ',num2str(noOfKFs)));

 %Get key frames featuresSet = cell(noOfKFs,1); for i=1: noOfKFs vid_image = images(i,:); featuresS = single(str2matrix(vid_image{1},1)); featureVectH = uint8(str2matrix(vid_image{2},1)); featuresH = binaryFeatures(featureVectH); featuresC = str2matrix(vid_image{3},1); pointsMatS = single(str2matrix(vid_image{4},3)); pointsS = SURFPoints(pointsMatS); pointsMatH = single(str2matrix(vid_image{5},3)); pointsH = cornerPoints(pointsMatH); featuresSet{i} = {featuresS featuresH featuresC pointsS pointsH}; end

 %searching each image for i=1: noOfKFs % disp(strcat(num2str(i),' of ',num2str(noOfKFs))); [sumOfPerc, numMatches] = searchOneImageFromDB(numMatches, sumOfPerc, image, keyfArr, keyFramesFolder,...

67

 image_features_Surf, image_features_Harris, image_features_Color, featuresSet{i}, frameWidth, valid_points_Surf, valid_points_Harris); end disp(strcat(video{1}, ' Number of results = ',num2str(numMatches))); if(noOfKFs ~= 0 && numMatches ~= 0) averageMatch = numMatches/noOfKFs; percMatch = averageMatch * 100; avgFeatureMatch = sumOfPerc/(3*numMatches); else avgFeatureMatch = 0; percMatch = 0; end disp(strcat(video{1}, ' Matching ratio = ',num2str(avgFeatureMatch))); if(percMatch >= 10 && avgFeatureMatch >= 12) % thresholded prcentage of matching key frames numOfResults = numOfResults+1; VideoList{numOfResults,1} = video{1}; VideoList{numOfResults,2} = avgFeatureMatch; VideoList{numOfResults,3} = percMatch; VideoList{numOfResults,4} = percMatch+avgFeatureMatch; end % end end

 % Display video list if(numOfResults > 0) VideoList = sortrows(VideoList, -4); disp(VideoList); end end disp(strcat('No of matching videos : ',num2str(numOfResults))); disp(datetime('now')); end

C.1.12 Convert String to Matrix
function M = str2matrix(fulltext, mode)%,x,y % creates a matrix document for the string

if (mode == 1) % if(fulltext ~= '') hash_place = strfind(fulltext,'#'); if(numel(hash_place)~=0) y = str2double(fulltext(1:hash_place(1)-1)); %get cols if(fulltext(hash_place(1)+1:hash_place(1)+5) ~= char('zeros')) text = fulltext(hash_place(1)+2:end-1); % remove #s and [] row_end = strfind(text,';'); x = length(row_end)+1; M = zeros(x,y);

 % extract row contents if x>0 for i=1:x if i ~= 1 a = row_end(i-1)+1;

68

 else a = 1; end if i ~= x b = row_end(i)-1; else b = length(text); end row = text(a:b); ele_end = strfind(row,' '); if y>0 for j=1:y if j ~= 1 c = ele_end(j-1)+1; else c = 1; end if(numel(ele_end)==0) disp('end'); end if j ~= y d = ele_end(j)-1; else d = length(row); end M(i,j) = str2double(row(c:d)); %get element contents end end end end else M = zeros(0,y); end else M = zeros(0,1); end elseif (mode == 2) hash_place = strfind(fulltext,'#'); if(numel(hash_place)~=0) if(fulltext(hash_place(1)+1:hash_place(1)+5) ~= char('zeros')) text = fulltext(hash_place(1)+2:end-1); % remove #s and [] rows = strsplit(text,';'); n = length(rows); M = zeros(n,1); % extract element contents if n>0 for i=1:n M(i,1) = str2double(rows{i}); end end else M = zeros(0,y); end else M = zeros(0,1); end elseif (mode == 3) % 2 column array hash_place = strfind(fulltext,'#'); if(numel(hash_place)~=0) if(fulltext(hash_place(1)+1:hash_place(1)+5) ~= char('zeros'))

69

 text = fulltext(hash_place(1)+2:end-1); % remove #s and [] row_end = strfind(text,';'); x = length(row_end)+1; M = zeros(x,2);

 % extract row contents if x>0 for i=1:x if i ~= 1 a = row_end(i-1)+1; else a = 1; end if i ~= x b = row_end(i)-1; else b = length(text); end row = text(a:b); ele_end = strfind(row,' '); c = 1; d = ele_end(1)-1; M(i,1) = str2double(row(c:d)); c = ele_end(1)+1; d = length(row); M(i,2) = str2double(row(c:d)); end end else M = zeros(0,2); end else M = zeros(0,2); end end

C.1.13 Search an Image from Database
function [sumOfPerc, numMatches] = searchOneImageFromDB(numMatches, sumOfPerc, image, keyfArr, keyFramesFolder, image_features_Surf, image_features_Harris,... image_features_Color, key_frame, frameWidth, valid_points_Surf, valid_points_Harris) % perform matching

imageWidth = size(image,2); [colour_percentage, match3, partial1] = matchColorFeatures(imageWidth, frameWidth, image_features_Color, key_frame{3}); [match1, percentage1, partial2] = matchSurfFeatures(imageWidth,frameWidth,image_features_Surf, key_frame{1}, valid_points_Surf, key_frame{4}, colour_percentage); [match2, percentage2, partial3] = matchHarrisFeatures(imageWidth,frameWidth,image_features_Harris, key_frame{2}, valid_points_Harris, key_frame{5}, colour_percentage);

if ((match1 == true || match2 == true || match3 == true) || (partial1 && partial2 && partial3)) sumOfPerc = sumOfPerc + percentage1 + percentage2 + colour_percentage;

70

end end

71

Appendix D - Evaluation
D.1 bulkRunReal
function bulkRunReal(imgFolderPath,vidFolder1,vidFolder2,vidFolder3) diary('diaryReal.txt'); k = dir(strcat(imgFolderPath,'*.jpg')); filenames = {k.name}'; % get img files % matching each img disp(vidFolder1); for g=1: size(filenames) disp(filenames{g}); imgPath = strcat(imgFolderPath, filenames{g}); searchVids(imgPath,vidFolder1); end disp(vidFolder2); for g=1: size(filenames) disp(filenames{g}); imgPath = strcat(imgFolderPath, filenames{g}); searchVids(imgPath,vidFolder2); end disp(vidFolder3); for g=1: size(filenames) disp(filenames{g}); imgPath = strcat(imgFolderPath, filenames{g}); searchVids(imgPath,vidFolder3); end diary off; end

D.2 bulkRun
function bulkRun(FolderPath,mode) diary('DB_prot_log2.txt'); if(mode==2) k = dir(strcat(FolderPath,'*.mp4')); filenames = {k.name}'; % get files % each video for g=1: size(filenames) disp(filenames{g}); vidPath = strcat(FolderPath, filenames{g}); AddVidToDB(vidPath); end elseif(mode==3) k = dir(strcat(FolderPath,'*.jpg')); filenames = {k.name}'; % get img files % matching each img for g=1: size(filenames) disp(filenames{g}); imgPath = strcat(FolderPath, filenames{g}); searchVidsFromDB(imgPath); end end diary off; end

72

D.3 Detailed Evaluation Data
D.3.1 Comparison of Speeds of the Two Prototypes

 Image Start time End time Time difference

Stored summary

Good match

1 19:22:22 19:49:58 0:27:36
2 19:49:58 20:18:01 0:28:03
3 20:18:01 20:47:00 0:28:59
4 20:47:00 21:15:20 0:28:20
5 21:15:20 21:43:51 0:28:31

Moderate match

1 21:45:13 22:13:34 0:28:21
2 22:13:34 22:42:08 0:28:34
3 22:42:08 23:10:28 0:28:20
4 23:10:29 23:38:33 0:28:04
5 11:38:33 12:06:41 0:28:08

No match
1 0:35:23 1:21:38 0:46:15
2 1:21:38 2:07:57 0:46:19
3 2:07:57 2:54:06 0:46:09
4 2:54:07 3:40:13 0:46:06
5 3:40:13 4:27:28 0:47:15

Real-time

Good match

1 5:31:08 5:52:08 0:21:00
2 5:52:08 6:13:16 0:21:08
3 6:13:16 6:34:40 0:21:24
4 6:34:40 6:55:48 0:21:08
5 18:55:48 19:16:55 0:21:07

Moderate match

1 7:16:55 7:44:58 0:28:03
2 7:44:59 8:12:28 0:27:29
3 8:12:28 8:40:31 0:28:03
4 8:40:32 9:08:21 0:27:49
5 9:08:22 9:36:00 0:27:38

No match
1 9:36:01 9:50:32 0:14:31
2 9:50:32 10:05:02 0:14:30
3 10:05:02 10:19:42 0:14:40
4 10:19:42 10:34:09 0:14:27
5 10:34:09 10:48:34 0:14:25

Table D.1 - Evaluation details of prototype comparison

73

D.3.2 Search Results For Different Image Sets
Image No 0% set mid% set >90% set
 Matches % Matches % Matches %
5 images

1 1 3.333333333 2 6.666667 0 0
2 5 16.66666667 11 36.66667 6 20
3 5 16.66666667 11 36.66667 6 20
4 1 3.333333333 1 3.333333 1 3.333333
5 5 16.66666667 1 3.333333 1 3.333333

 11.33333333 17.33333 9.333333
10 images

1 5 16.66666667 11 36.66667 6 20
2 5 16.66666667 11 36.66667 6 20
3 5 16.66666667 11 36.66667 6 20
4 5 16.66666667 11 36.66667 6 20
5 0 0 2 6.666667 2 6.666667
6 5 16.66666667 11 36.66667 6 20
7 6 20 11 36.66667 6 20
8 5 16.66666667 11 36.66667 6 20
9 5 16.66666667 11 36.66667 6 20

10 6 20 11 36.66667 6 20
 15.66666667 33.66667 18.66667
15 images

1 5 16.66666667 11 36.66667 6 20
2 5 16.66666667 11 36.66667 6 20
3 5 16.66666667 11 36.66667 6 20
4 5 16.66666667 11 36.66667 6 20
5 1 3.333333333 1 3.333333 5 16.66667
6 5 16.66666667 11 36.66667 6 20
7 5 16.66666667 11 36.66667 6 20
8 2 6.666666667 2 6.666667 3 10
9 5 16.66666667 11 36.66667 6 20

10 5 16.66666667 11 36.66667 6 20
11 5 16.66666667 11 36.66667 6 20
12 6 20 11 36.66667 6 20
13 9 30 5 16.66667 9 30
14 5 16.66666667 11 36.66667 6 20
15 12 40 5 16.66667 10 33.33333

 17.77777778 29.77778 20.66667
20 images

1 0 0 1 3.333333 0 0
2 4 13.33333333 1 3.333333 1 3.333333
3 5 16.66666667 2 6.666667 0 0
4 4 13.33333333 3 10 2 6.666667

74

6 6 20 11 36.66667 5 16.66667
6 6 20 11 36.66667 5 16.66667
7 6 20 11 36.66667 5 16.66667
8 6 20 11 36.66667 5 16.66667
9 6 20 11 36.66667 5 16.66667

10 6 20 11 36.66667 5 16.66667
11 6 20 11 36.66667 5 16.66667
12 6 20 11 36.66667 5 16.66667
13 6 20 11 36.66667 5 16.66667
14 6 20 11 36.66667 5 16.66667
15 6 20 11 36.66667 5 16.66667
16 12 40 6 20 11 36.66667
17 6 20 11 36.66667 5 16.66667
18 3 10 1 3.333333 4 13.33333
19 7 23.33333333 2 6.666667 2 6.666667
20 10 33.33333333 6 20 11 36.66667

 19.5 25.66667 15.16667

Table D.2 – Evaluation details of video results for different image sets

75

D.3.2 Comparison of Results of the Two Prototypes
 Image Matches

Stored summary

Good match
1 0
2 1
3 1
4 0
5 1

Moderate match

1 0
2 7
3 7
4 0
5 0

No match
1 0
2 5
3 5
4 0
5 0

Real-time

Good match
1 1
2 3
3 3
4 1
5 5

Moderate match

1 1
2 8
3 8
4 0
5 0

No match
1 0
2 5
3 5
4 0
5 0

Table D.3 – Evaluation details of video results for different video sets

76

Glossary of Terms
 BRISK: Binary Robust Invariant Scalable Key-points
 CBVR: Content based video retrieval
 FAST: Features from Accelerated Segment Test
 FREAK: Fast Retina Keypoint
 F-SIFT: Fast-SIFT
 GPU: Graphics Processing Unit
 LSI: Latent semantic analysis
 MSAC: M-estimator SAmple Consensus
 MSER: Maximally Stable Extremal Regions
 PCA: Principal Component Analysis
 SIFT: Scale-invariant feature transform
 SURF: Speeded Up Robust Features
 SVM: Support Vector Machine

