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Abstract 
The need for image based video search is increasing rapidly as today with the expansion of big 
data and the increasing power of hardware. But there are only a few highly successful 
implementations in existence. In this project I have developed a search method combining 
motion detection and Different Feature Detection algorithms, then evaluated the method’s 
effectiveness and compared the two approaches of Real-time Video Search and searching 
against a Database of feature data taken from videos. Key frames of videos are extracted using 
motion detection, by the difference of consecutive key frames and the Otsu’s threshold. 
Speeded Up Robust Features (SURF), Harris-Stephens corners with Fast Retina Keypoint 
(FREAK) descriptor and color features are the feature detection/description methods used for 
extracting features. The features extracted from key frames are matched with those of the given 
image and M-estimator SAmple and Consensus (MSAC) algorithm is used to find ‘Affine 
transformations’ from the matching points. Different thresholds are taken by combining the 
feature extraction methods for filtering the results. Two prototypes were produced for 
comparing searching normally and searching against a database of features. Images of cats are 
being used to search videos where, some of which have cats throughout, some which have 
intermediate intervals of cats and while others have no cats. After evaluating against sets of 
images of incrementing size, the search method produced an intermediate level accuracy 
(48.89%) of search results. Furthermore, comparing the two prototypes for 5 images and 3 sets 
of videos, the stored summary prototype is seen slower than the real-time video search, and a 
trivial difference in result statistics is found. 
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Chapter 1 
Introduction 

1.1 Preamble 
There is growing need for the development of accurate techniques in image based video 
searching. This project proposes a new method for this purpose by employing motion detection 
and exiting techniques, which is tested for real-time feature matching and matching with 
features found in videos which were stored in a database. This chapter includes the background 
and motivation information for this project, along with problem definition, hypothesis, 
objectives, and a brief overview of the solution. 
1.2 Background of Image based Video Retrieval 
In today’s internet, there are vast amounts of data available and people are able to search this 
content using search engines within a lesser duration of time. The production and distribution 
of videos has achieved exponential expansion, with the advent of big data, increasing power of 
hardware, high speed internet, digital video production, mobile video recording and social 
networks. There exist large collections of videos owned by industries such as news and 
entertainment as well as private collections. Therefore, the need for image based video retrieval 
is most relevant today than ever before and the need arises for more user-friendly methods of 
searching videos.  
Content based video indexing and retrieval is a growing field of research in the world of 
machine vision and data mining. Although image matching techniques are widely used today 
(especially in search engines), image to video matching and retrieval is not being used in the 
same level up to current time. But since the early days of the century, there have been 
researches on image based video search (Araujo et al., 2014, pp. 723–724; Sav et al., 2006, pp. 
1–10; Sivic et al., 2004; Sivic and Zisserman, 2004, 2003; Yang et al., 2011; Yildirim et al., 
2013). YouTube is well known for having implemented Convolutional Neural Networks 
(CNN) for searching videos using feature information for user given textual input. Google can 
search videos after having retrieved a textual description for a given image. Googling the same 
textual query, results in the same set of videos. One of the greatest challenges here is how to 
retrieve videos efficiently with a sufficient accuracy of results. 
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There are some existing applications and researches which address similar matters in different 
ways which are very complex and try to find some specific type of visual information out of a 
collection of videos (Hu et al., 2011; Jing et al., 2015; Patel and Meshram, 2012; Sivic and 
Zisserman, 2003). Zisserman and others (2003) have attempted to implement such a solution 
for searching videos against an image, based on bags of visual words. Hu and others (2011) 
and Patel and Meshram (2012) have surveyed on strategies of context based video retrieval.   
It is possible to search videos either on the run-time or by storing the features in a database 
aiming for greater speeds. But one of the problems this presents is the high dimensionality of 
feature vectors. Different compression techniques address this problem using quantization 
(McGuinness et al., 2012) and Bags of Features (BOF) (Sivic and Zisserman, 2004) for storing 
feature details.  
There have been different clustering attempts using Hidden Markov Models and k-means. 
Visual Bag of Words (VBOW) and Bag of Features use such theories (Eickeler et al., 2001).  
Bayesian classification (Fergus et al., 2003) and multiclass SVM classification has been used 
for classification (Elnemr, 2016) mostly for classifying images than videos. 
Video segmentation to acquire key frames has been done in various ways in the literature: for 
example, fixed time intervals between key frames and histogram based selection methods 
(Rathod and Nikam, 2013).  
1.3 Problem and Hypothesis  
As stated above, there is currently only few implementations that successfully searches videos 
by matching features against a user specified image. And the literature suggests that searching 
a database of videos is relatively less efficient.   
A new method of searching videos by an image which uses motion detection based video 
segmentation by Otsu’s thresholding and SURF, Harris-Stephens and colour features has to be 
evaluated. The efficiency in searching a stored database of video feature summaries can be 
found by building two prototypes for each of real-time searching and database searching and 
comparing them for speed and accuracy.  
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1.4 Objectives for the Project 
1. To survey the literature related with image based video retrieval to select appropriate 

algorithms. 
2. To develop two prototypes and evaluate the two techniques of real-time searching and 

stored video summaries. 
3. To evaluate the technique of motion detection based image based video retrieval 

1.5 Methodology of Image Based Video Searching 
In this project, the proposed method of implementation has a number of stages: video 
segmentation, feature extraction, feature matching, summarization of results and displaying the 
results. This project proposes a motion based segmentation for video segmentation using Otsu’s 
thresholding. SURF, Harris-Stephens and colour features are being matched between the image 
and video key frames. Percentage matches are used to summarize and rate the results. The 
video list is then displayed according to the rating. In the stored features method, image features 
are compared with the key frame features for each video, which are stored in a database.  
Query image path and the video path are the inputs needed. MATLAB is used in the 
development. The yfcc100m dataset and Google were used to find the images and videos. The 
domain of search is limited to images/videos of cats.  
1.6 Structure of the Thesis 
The rest of the thesis is organized as follows. Chapter 2 critically reviews the literature on 
image based video search and image search and identify the research problems and algorithms. 
Chapter 3 is about the algorithms and technology being used. Chapter 4 present our new 
approach to image based video search and the comparison. Chapter 5 and Chapter 6 describe 
the design and implementation respectively. Chapter 7 describe the evaluations of system and 
the comparison. Chapter 8 notes on problems faced and further work. 
1.7 Summary 
This chapter gave an overall picture of the entire project presented in this thesis. As such we 
described the background/motivation, problem definition, hypothesis, objectives, and a brief 
overview of the solution. Next presents a critical review of the literature related. 
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Chapter 2 
Developments and Challenges in Image Matching, Image 

Based Video Search and Video Segmentation 
2.1 Introduction 
The chapter one gave an overall description of the project described in this thesis. In this 
chapter we discuss different related researches that are related to image based video retrieval. 
The review of past researches has been presented here in separate sections by surveys and other 
researches which are separated into image matching, image based video search and video 
segmentation. Many researchers have conducted research on content based video retrieval 
methods and semantic content retrieval from videos (Sivic and Zisserman, 2003; Yildirim et 
al., 2013) and some have conducted surveys on existing researches (Patel and Meshram, 2012; 
Weiming Hu et al., 2011).  
At the end, this chapter defines the research problem and identifies the technologies that can 
be used to address the problem. 
2.2 Extracts of literature 
2.2.1 Surveys 
A survey on Visual Content-Based Video Indexing and Retrieval is been done by Hu and others 
(2011). The general strategies in visual content based video indexing and retrieval are explored 
by them, including methods for video structure analysis, extraction of features, video data 
mining, video annotation, video retrieval and video browsing (Weiming Hu et al., 2011). 
Weiming Hu and others present a general overview of process of video indexing and retrieval. 
The recent developments are discussed as components of video indexing and retrieval, and also 
each task, sub process and the approaches involved are discussed by them. They further go on 
to discuss in detail the possible future directions. This survey by Weiming Hu and others 
comprehensively discuss contemporary Video Indexing and Retrieval research in detail. These 
details are from the year 2011.  
Existing content based retrieval systems are surveyed by Patel and Meshram (2012). They 
survey the types of features that can be extracted for indexing and retrieval. They also survey 
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similarity measurement methods (Patel and Meshram, 2012). To search by the contents of 
colours, shapes and textures, the steps used are video segmentation and feature extraction. 
Features may be low level or high level. The high dimensionality of a feature-vector set causes 
the curse of dimension problem. This is solved by dimension reduction techniques such as PCA 
(Principle Component Analysis). Meta learning can be used to select or combine appropriate 
features. The selection process can be assisted by an interactive user interface. Results of 
feature extraction can be compared with actual human interest as well (Patel and Meshram, 
2012). This survey only covers research until 2012.  
2.2.2 Video Retrieval  
2.2.2.1 Ontology-Based Fuzzy Video Semantic Content Extraction  
The research by Yildirim and others (2013) has explored how objects, events and concepts can 
be retrieved automatically. They use an ontology-based fuzzy video semantic content 
extraction model that employs spatial/temporal relations in event and concept definitions 
(Yildirim et al., 2013). This research has produced a framework which can be used in many 
areas. Yildirim and others (2013) have proposed a generic model: VISCOM. This provides a 
rule construction standard that can be used in a wide domain area and allows a user to create 
ontology for a given domain. Additional rule definitions can be used to lower spatial relation 
computation cost and define complex situations more effectively. They also show that semantic 
representation and extraction can be improved by adding fuzziness to class, relation and rule 
definitions. The developed system shows success, but further enhancements can be made by 
considering the viewing angle of the camera, and motions in the depth dimension (Yildirim et 
al., 2013).  
2.2.2.2 Visual Vocabulary of Viewpoint Invariant Region Descriptor Vectors (Bag of 
Visual Words) For Videos 
Sivic and Zisserman (2003) adopted the analogy of text retrieval used by Google in searching 
web documents to search for objects within videos. Viewpoint invariant region descriptor 
vectors and nearest neighbor matching are used in this method. A set of viewpoint invariant 
region descriptors is used in object representation and these vectors are quantized to perform 
nearest neighbor matching. Temporal continuity within a shot is used to track the regions. An 
inverted file has an entry for each visual word, which stores all the matches (Sivic and 
Zisserman, 2003). While this method enables run-time object retrieval and opening the 
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possibilities of latent semantic indexing and automatic clustering, currently only two films are 
used for illustrating the method. The visual vocabulary will have to be upgraded to include 
different scene types (Sivic and Zisserman, 2003). 
In 2004, a research was conducted by Sivic and Zisserman using data mining techniques on 
configurations of viewpoint invariant regions. Here principal objects, characters and scenes are 
extracted by measuring the frequency of occurrence of spatial configurations (Sivic and 
Zisserman, 2004). The video is partitioned into shots using color histograms and motion 
compensated cross-correlation. The images are segmented by using a sliding region. By 
clustering spatial configurations, frequent co-occurring parts are identified earlier by Sivic and 
Zisserman (2004), rather than first detecting objects and clustering them as in earlier research 
(Schneiderman and Kanade, 2000; Eickeler et al., 2001; Agarwal and Roth, 2002; Fitzgibbon 
and Zisserman, 2002; Fergus et al., 2003). The visual descriptors of object/face/scene are 
invariant of (do not change with) size (scale) and affinity. The significance of a cluster is 
measured by the number of shots and key-frames that it covers (Sivic and Zisserman, 2004). 
By using this method, clustered configurations show sufficient quality. But this search is biased 
towards textured regions and can be extended to more extensive spatial and temporal co-
occurrence searching.  
Sivic and others (2004) have done a research on efficient object retrieval from videos, as fast, 
accurate and in the same manner as similar to the Google text search (Sivic et al., 2004). By 
using the visual analogy of words, videos are fetched incorporating the three component 
methods of viewpoint invariant region descriptors, contiguous frames within a shot and vector 
quantization. Irrespective of viewpoint, lighting and partial occlusion, are the objectives of the 
type of weak segmentation used here. Rather than semantically segmenting the image it is 
represented by a set of overlapping regions. Then the object is matched to the descriptor vectors 
of regions. Later using local spatial coherence, disambiguation is done. The descriptor vectors 
are quantized into visual words, so that matches can be pre-computed at run-time. Based on 
independent 3D rigid motion constraints, regions are tracked and tracks are grouped. The 
resulting matches contain no false negatives and the ranking of frames has good precision.  
2.2.2.3 Video Indexing Using Neural Network Based Face Detector 
A system for video indexing using face detection and face recognition methods has been 
developed by Eickeler and others (Eickeler et al., 2001). Here, steps followed are detecting 
faces, recognising them and analyzing their actions. Faces are scanned by a Neural Network 
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based face detector and extracted. Then using pseudo two-dimensional Hidden Markov Models 
and the k-means clustering algorithm, faces are recognised and clustered. Then labeling and 
evaluation of occurrence can be done. Face tracking simplifies the detection of the same person 
in consecutive frames. And this approach indexes a video sequence without any prior 
knowledge of the sequence. This only works for JPEG data currently and can be enhanced to 
work directly on MPEG data. And also can be extended to detect main characters in movies. 
Furthermore the functionality of face detection in compressed domain has to be done. 
2.2.3 Image Retrieval  
2.2.3.1 Recognition of Object Classes from Unlabeled and Un-Segmented Cluttered 
Scenes by Scale Invariant Learning and Probabilistic Representation 
Fergus and others have a method for recognition of object classes from unlabeled and un-
segmented cluttered scenes by scale-invariant learning (Fergus et al., 2003). Representation is 
done for object categories (as constellations of parts) by a probabilistic way for the shape, 
appearance, occlusion and relative scale; then detection and learning are done (Fergus et al., 
2003). An object category has appearance and position. This allows considering shape 
variations, presence/absence of features and image clutter. Both appearance variability and 
shape variability are taken into account. Appearance variability is learnt simultaneously with 
shape. An interest operator detects regions and their scale. Also, efficiently new object 
categories can be learnt automatically, and training sets have a large variation of the scale of 
objects and clutter. Several object categories are also available in the datasets. Currently the 
framework is very dependent on the feature detector. In the future more classes of feature can 
be incorporated. The model structure can be generalized to have a multi-modal appearance 
density with a single shape distribution. Full affine-invariance to cater for larger viewpoint 
variation is also a possible extension (Fergus et al., 2003). 
2.2.3.2 Bag of Visual Words Based Techniques 
Elnemr (2016) has offered a new CBIR technique combining different algorithms. He has 
combined SURF and MSER along with Color Features (color correlograms and ICCV 
(Improved Color Coherence Vector)) and then Bag of Visual Words technique for quantizing 
the features extracted. The K-means algorithm is used for clustering the words. Later a 
multiclass SVM (support vector machine) is used to classify the query images. Corel-1000 and 
COIL-100 datasets are used for both training and testing. Then Elnemr (2016) has compared it 
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with three alternative techniques: first using SURF descriptors, then a combination of SURF, 
color correlograms and ICCV, and third a combination of MSER, color correlograms and 
ICCV. This framework outperforms significantly other existing systems (Velmurugan and 
Baboo, 2011), (Bahri and Zouaki, n.d.), (Kavitha and Sudhamani, 2013), (Kavya and 
Shashirekha, 2014). The proposed method shows a great increase in the retrieval precision, but 
takes slightly longer time than the other three alternative methods being discussed (Elnemr, 
2016).  
2.2.3.3 Comparison of Image SURF Feature Point Storage and Compression Methods, 
and a New 8-Bit Quantization Method 
An efficient method for image SURF feature point storage and compression has been presented 
by (McGuinness et al., 2012). An entropy based 8-bit encoding of quantized feature vectors is 
proposed by McGuinness and others, after comparing it with other existing methods. For 
measuring storage consumption and disk-read efficiency, various methods for compression and 
storage of SURF feature points have been compared. They have compared each scheme with a 
baseline plain-text encoding scheme as used by many existing SURF implementations. The 
final proposed scheme significantly reduces both the time required to load and decode feature 
points, and the space required to store them on disk (McGuinness et al., 2012). Product 
quantization which can give a further more compact representation can be combined with the 
proposed approach to reduce the memory footprint (McGuinness et al., 2012), is not compared 
with the other methods in their research.  
2.2.3.4 Assessments of Feature Detectors and Descriptors  
Madbouly and others (Madbouly et al., 2015) have assessed the performance of many feature 
detectors and descriptors, by combining them, which were famous at that time period. Those 
are SURF, FAST, BRISK, Harris and MinEigen as detectors, and FREAK, SURF and BRISK 
as descriptors. They have been tested on images under rotate, scale constraints and distortion 
such as illumination on different scenes (bedroom, industrial and CALsuburb datasets). The 
best selected as for the detector in number of detected key-points when handling rotation, scale 
and illumination and not affected with scene is MinEigen, for handling rotation and scale 
constraint in different levels and scenes is SURF with SURF detector, and for illumination 
distortion in different levels is FAST/SURF and Harris/FREAK.  
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Low level feature extraction algorithms have been compared by (El-gayar et al., 2013). The 
widely used algorithms of FAST, SIFT, PCA-SIFT, F-SIFT and SURF have been compared 
for matching against scale changes, rotation, blur, illumination changes and affine 
transformations. Repeatability measurement and the number of correct matches were used as 
evaluation measurements. SIFT is stable but slow. F-SIFT has the best overall performance. 
El-gayar and others (2013) do not address single object detection.  
(Khan et al., 2011) have investigated the performance of SIFT, Shorter SIFT descriptors of 
64D and 96D SIFT and SURF against the datasets of David Nister, Indoor, Hongwen and 
Caltech. 64D and 96D SIFT perform as well as traditional 128D SIFT at the much less 
computational cost. SURF also gives good results (slower and less effective on scaling, large 
blur and viewpoint invariance). 64D SIFT is superior for viewpoint invariance and has almost 
three times faster image matching and half the memory requirements. 32D SIFT has 
underperformed.  
2.2.4 Video Segmentation 
S.G. Anuradha and others (2013) have worked on change detection in videos. For this purpose 
they provide an entropy based real-time adaptive non-parametric window thresholding 
algorithm. The value of scatter of sections of change in a difference image is approximated, 
and using entropy structure a threshold for every image block is calculated discriminatively, 
and then all thresholds for image blocks of the frame are averaged to obtain the global 
threshold. Calculation of the block threshold is done contrarily for regions of change and 
background (Anuradha et al., 2013). Adaptive window selection is required to automatically 
select window size in order to obtain an optimal result and Otsu’s thresholding scheme 
gives threshold value for a particular window (Anuradha et al., 2013). This method outperforms 
the other traditional methods. It is steadier and more efficient than the spatial properties based 
methods (Anuradha et al., 2013). 
2.3 Discussion of the Literature and Problem Definition 
We can see from the above descriptions that, a number of research has been done on image 
based video search using different technologies.  
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Research Purpose Technology/purpose Considerations on selecting 
for this project 

S.G. 
Anuradha 
and others 
(2013) 

Change 
detection in 
videos 

An entropy based real-
time adaptive non-
parametric window 
thresholding algorithm 
using Otsu’s 
thresholding scheme. 

Change detection of this 
method could be used for video 
segmentation. 

Madbouly 
et al. (2015) 

Assessed the 
performance 
of many 
feature 
detectors and 
descriptors, 
by combining 
them 

SURF, FAST, BRISK, 
Harris and MinEigen as 
detectors, and FREAK, 
SURF and BRISK as 
descriptors are tested on 
images under rotate, 
scale constraints and 
distortion such as 
illumination on different 
scene.  

A combination of SURF/SURF 
and FAST/SURF are suitable for 
our application due to the speed 
and coverage of all aspects.  

Elnemr 
(2016) 

A new CBIR 
technique 
combining 
different 
algorithms 

Combined SURF and 
MSER along with Color 
Features (color 
correlograms and ICCV) 
and then Bag of Visual 
Words technique 

Great increase in the retrieval 
precision, but takes slightly 
longer time 

Sivic and 
Zisserman 
(2003) 

Analogy of 
text retrieval 
used by 
Google in 
searching web 
documents to 
search for 
objects within 
videos 

A set of viewpoint 
invariant region 
descriptors for object 
representation and then  
quantization to perform 
nearest neighbor 
matching 

The visual vocabulary will have 
to be trained to include cat 
figures. But it might be slightly 
slower to retrieve results in the 
implementation. 
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Sivic and 
Zisserman 
(2004) 

Using data 
mining 
techniques on 
configurations 
of viewpoint 
invariant 
regions 

Frequency of occurrence 
of spatial configurations, 
data mining techniques 
of clustering spatial 
configurations 
(viewpoint invariant 
regions) 

Clustered configurations show 
sufficient quality, and is biased 
towards textured regions and 
can be extended. But it also 
might be slightly slower to 
retrieve results. 

Sivic and 
others 
(2004) 

Efficient 
object 
retrieval from 
videos 

By using the visual 
analogy of words, videos 
are fetched incorporating 
the three component 
methods of viewpoint 
invariant region 
descriptors, contiguous 
frames within a shot with 
vector quantization. 

Matches can be pre-computed 
at run-time and has good 
precision. Only object retrieval 
is considered. The temporal 
aspect searching within shots is 
not required here. 
 

Yildirim 
and others 
(2013)  

How objects, 
events and 
concepts can 
be retrieved 
automatically 

An ontology-based fuzzy 
video semantic content 
extraction model that 
employs spatial/temporal 
relations in event and 
concept definitions 

Yildirim and others propose 
semantic content extraction 
based on ontology (VISCOM), 
which is beyond the scope of 
this research. We only handle 
visual/spatial aspects relating to 
user given images. 

Eickeler and 
others 
(2001) 

Video 
indexing 
using face 
detection and 
face 
recognition 
methods 

Neural network based 
face detector, pseudo 
two-dimensional hidden 
Markov models and the 
k-means clustering 
algorithm 

Face detection is not required 
for this project, but two-
dimensional Hidden Markov 
Models and the k-means 
clustering may be used. 

Fergus and 
others 
(2003) 

Object class 
recognition 
from 

A Bayesian based 
probabilistic 
representation of object 

Efficiently new object 
categories can be learnt 
automatically. Clustering is 
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unlabeled and 
un-segmented 
cluttered 
scenes 

classes, which are 
collections of parts with 
appearance and a 
position, detection and 
learning.  

itself a time consuming task. 
Kadir-Brady detector used here 
can be used to detect salient 
features. There is no indication 
of comparison with other 
methods. 

McGuinness 
et al. (2012) 

Efficient 
method for 
image SURF 
feature point 
storage and 
compression 

An entropy based 8-bit 
encoding of quantized 
feature vectors and 
comparison with other 
existing methods 

This process significantly 
reduces both the time required to 
load and decode feature points. 
But it is hard to replicate in code. 

El-gayar et 
al. (2013) 

Comparison 
of low level 
feature 
extraction 
algorithms  

FAST, SIFT, PCA-SIFT, 
F-SIFT and SURF have 
been compared for 
matching against scale 
changes, rotation, blur, 
illumination changes and 
affine transformations. 
Repeatability 
measurement and the 
number of correct 
matches are used. 

F-SIFT is a good choice for 
feature matching since it has the 
best overall performance. 

Khan et al. 
(2011) 

Investigating 
the 
performance 
of SIFT and 
SURF 
descriptors 

Shorter SIFT descriptors 
of reduced 
dimensionality, 64D and 
96D SIFT were 
generated to compare 
with normal 128D SIFT 
and others.  

64D SIFT implementation is 
not readily available in Matlab, 
but could be done with 
additional libraries which need 
to be thoroughly tested.  

 

Table 2.1 - Comparison of researches 
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Figure 2.1 - Architecture of an early CBVR (Sav et al., 2006) 

It is evident from the above summary that there is still a lot of space for new ideas. Video 
segmentation as discussed in S.G. Anuradha and others (2013) is complex, and only a simpler 
segmentation method will be used since searching a large number of videos which requires a 
greater speed. Otsu’s thresholding scheme as used in S.G. Anuradha and others (2013) is good 
for video segmenting but adaptive window thresholding use there takes more time. 
 From the technologies used we can see that, viewpoint invariant region descriptors for building 
a dictionary of bags of visual features is a useful technique (Sivic and Zisserman, 2003), but is 
also a complex process. Ontology-based fuzzy video semantic content extraction model relates 
to ontology (Yildirim et al., 2013), and thus not suitable for this project. Automatic clustering 
and data mining is also appropriate (Sivic and Zisserman, 2004), if more than just textured 
region matching can be performed. But that technique is time consuming. We can see that 
indexing has been done by Sivic and Zisserman in 2004 and by Eickeler and others in 2001. 
These attempts have been successful. Eickeler and others (2001) only used indexing for faces. 
Temporal co-occurrence searching is not required here as done by Sivic and Zisserman in 2004.  
From feature detectors/descriptors SIFT is found to be powerful (El-gayar et al., 2013), yet too 
slow and thus not suitable for video retrieval. Some methods such as MinEigenValue 
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(Madbouly et al., 2015), SIFT, 64D SIFT (Khan et al., 2011), F-SIFT (El-gayar et al., 2013) 
were not readily available in Matlab. Kadir  and Brady  is useful for salient object matching 
(Fergus et al., 2003). SURF is popular, available and suitable for rotation invariant matching. 
FAST/SURF is suitable for illumination changes matching (Madbouly et al., 2015). MSER is 
a good as a region detector/descriptor (Elnemr, 2016).  
We can find from these researches that the stored method is less efficient than real-time 
retrieval, which is counter intuitive. Normally, database storage is used to increase the 
searching speed. This theory needed to be further tested.   
Therefore it was useful to compare both stored summary method and on-the-run retrieval. The 
SIFT, Harris, color features, MSER feature matching and Otsu’s thresholding are suitable for 
this project. Details of the technologies behind the solution will be discussed in Chapter 3.  
2.4 Summary 
This chapter presented a comprehensive literature review on the on image based video search 
research and identified the research problem as comparing both indexing and on-the-run 
retrieval. We also identified the Android technology to address the above problem. Next 
chapter will discuss the technology used for our solution.  
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Chapter 3 
Technologies Used for Key Frame Extraction by Motion 

Detection and Feature Extraction/Matching 
3.1 Introduction 
Earlier we discussed the different kinds of research and in most researches, key frames are 
extracted which are compared to the given image using feature comparison algorithms. Thus, 
here we discuss different algorithms selected for use in the prototypes. First we discuss the 
video segmentation method. Then SURF (Speeded Up Robust Features), Harris corners and 
Color features extractor are discussed. The use of MSAC algorithm is also explained. The 
reasons for using these technologies and their advantages/disadvantages will be described. 
Afterwards the platform used for development, Matlab is presented in terms of pros and cons 
and its use for this project.  
3.2 Video Segmentation with Otsu’s Threshold Based on Motion Detection 
It is important to select key frames since it is difficult to process all frames within a short time. 
Videos can be considered to be consisting of components as suggested by Patel and Meshram 
is shown below.  

 
Figure 3.1 - Video components (Patel and Meshram, 2012) 

Similar to the above classification, we are segmenting a video according to a hierarchy that 
makes it faster to compute as the same time as being able to find representative key frames. 
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Figure 3.2 - Video segmentation hierarchy 

We can consider a video to consist of shots. And a shot consists of groups of frames. A shot is 
a similar set of frames. So we use difference between frames to find shots. The frames with 
greatest difference from earlier frames become shot boundary frames. This is similar to 
techniques used in motion detection. 
Frames are separated into groups using a formula depending on No of frames. (NOF). Frames 
are divided into groups of: 

NOF/ {[floor(NOF/1000)] 2 + 2} 
One frame is selected for each group, in this case, the final frame of each group. 
A difference image or the difference between selected frames is used to calculate the Otsu’s 
threshold. This is based on the method used by S.G. Anuradha et al. (2013) with simplification 
for achieving a greater speed. Rather than calculating thresholds for foreground and 
background locally, we use one global threshold for each key frame. 
The frames with a difference above a threshold (super global) define a shot boundary. For 
taking the super global threshold, out of a series of thresholds, a value is taken using the below 
formula suggested by Rathod and Nikam (2013): 

T = mean + a * standard_deviation (‘a’ is configurable where default value = 1) 

Key Frame
Group
Shot

Video V
S1

G1
KF1

G2 G3
KF2

G4
S2
G5

KF3
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Advantages: 
The simplicity of the scheme makes it possible to segment the video within a sufficiently less 
time and find the best representative frames of all the frames of a video.  
Disadvantages: 
When first selecting frames by grouping them, it is possible that some frames with significant 
changes can be lost and some images can also be lost. The grouping equation is designed to 
keep the number of selected frames within a manageable range. Thus lesser and lesser number 
of frames are selected as the total number of frames increases. This means that only objects 
that are shown for a significant portion of time can be matched. Since the key frame selection 
algorithm selects key frames from the middle of shots, some blurred images can be selected. 
3.3 SURF Feature Extraction Algorithm 
SURF uses a blob detector based on the Hessian matrix for texture detection. In theory, SURF 
is also known as approximate SIFT and employs integral images and efficient scale space 
construction to generate key points and descriptors very efficiently. SURF uses two stages 
namely key point detection and key point description. In the first stage, integral images allow 
the fast computation of approximate Laplacian of Gaussian images using a box filter. Integral 
image is an algorithm for quick and efficient generation of the sum of values in a rectangular 
subset of a grid, where the value at any point (x, y) in the summed area table is just the sum of 
all the pixels above and to the left of (x, y). Determinants of the Hessian matrix are then used 
to detect the key points. So SURF builds its scale space by keeping the image size the same 
and varies the filter size only.  
Advantages: 
This is a very efficient algorithm compared to SIFT, BRIEF and ORB. SURF is also accurate. 
It is good for handling rotation changes and has scale independence (in matching two images). 
SURF is Suitable for classification tasks. SURF is used in this project due to its speed, 
accuracy, rotation invariance and texture detection capabilities. 
Disadvantages: 
But SURF is not preferred for handling large blur, illumination and viewpoint differences 
(invariance) when matching two images. And it produces a less number of match points. 
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3.4 Harris-Corners (Harris-Stephens) Detection Algorithm with FREAK Descriptor 
Algorithm 
Harris-corners is one of the most used corner detectors and in Matlab Harris-corners produces 
a BinaryFeatures object. In this project, FREAK descriptors are used after extracting Harris 
corner points as FREAK is the default descriptor for Harris corners in MatLab. In theory, this 
method directly considers the differential of the corner score with respect to direction, as an 
improvement to improved Moravec’s Corner Detector. The surrounding area is averaged. If we 
use a circular window then the response will be isotropic solving one of the problems of 
Moravec’s approach. By analysing the magnitude of the eigenvalues of the Harris matrix, we 
can find out if a concrete pixel has or not features of interest.  
Advantages: 
Harris-corners detects corners. And it is suitable for matching images with man-made 
structures. It can match images with rotation changes and illumination distortion in different 
levels.  
Disadvantages: 
Harris-corners is not scale independent. It is not suitable for classification tasks. 
3.5 Color Features Extraction  
Color feature matching can be done in various ways, and here we use a very simple method. 
Step 1: Convert RGB images to the L*a*b* color space. 
Step 2: Compute the "average" L*a*b* color within 16-by-16 pixel blocks. 
Step 3: L2 normalize color features. 
Step 4: Append the [x y] location. 
Step 5: Normalize pixel coordinates. 
Step 6: Concatenate the spatial locations and color features. 
Step 7: Use color variance as feature metric. 
* Return empty features for non-color images. 
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Simple square neighborhood method is used as the descriptor by the standard feature 
description method of MatLab. 
Advantages: 
This method is very simple to implement, and can be used to match the similarity of images.  
Disadvantages: 
This method is slow to execute and it is not a standard method.  
3.6 MSAC to Detect Inliers 
MSAC is a modification of RANSAC which is popular in the field. It is a mathematical 
technique and an iterative method to estimate parameters of a mathematical model from a set 
of observed data that contains outliers, when outliers are to be accorded no influence on the 
values of the estimates. It is used in computer vision to detect inliers (best matching points) 
and remove outliers (least matching points) between two images.  
Advantages: 
MSAC gives a modest to hefty benefit to all robust estimations and with lesser computational 
cost than MLESAC. MSAC outperforms RANSAC. For this project, this algorithm is used 
since is it available in Matlab and is a simple and fast way to remove outliers. MSAC can detect 
Affine Transformations (e.g.: translation, scale, shear and rotation). 
In this research MSAC is used for finding the percentage of inliers against the total no of 
features in the image. This is done for all 3 feature extraction algorithms. To rank the videos 
these percentages and the number of key frames which give a sufficient match are used. 
Disadvantages: 
It can produce different results in different runs. This is due to the fact that MSAC uses random 
samples of feature points for calculations. Thus there is a possibility of selecting a set of 
features which are not inliers, while there may be some inliers among the ignored set of 
features.  
3.7 Matlab 
Matlab is a good platform for experimenting new ideas of image processing rapidly.  
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Advantages: 
 Flexibility: script writing or using the command window. As an interpreter language, it 

acts as a very advanced calculator 
 Mathematics: essential in computer vision 
 Debugging: very convenient, calling stack, conditional breakpoints and the instant use 

of the command line makes it really easy to find a bug. 
 Plots: several built in plotting features which helps to visualize the steps/results of an 

algorithm 
 Ready to use CV/ML functions: large function library for many research areas. It is 

particularly well equipped with computer vision (edge detection, color filtering, resize, 
rotation, feature matching, histograms, etc.) and machine learning (support vector 
machines, decision trees etc.) 

Disadvantages: 
 Parts of the syntax used in this language are different than the other languages like C, 

Java etc. For example we use '{ }' braces to indicate the start and the ending of the ‘for’, 
‘if’, ‘while’ statements usually, but in Matlab the word ‘end’ is used to indicate the 
ending. 

 There are lot of in-built commands in Matlab which can make coding easier but these 
have to be learned.  

 Matlab is probably not appropriate for production. Matlab is best suited for research 
rather than implementations. Since we are building prototypes as a proof of the concept, 
Matlab is adequate. 

3.8 Summary  
In this chapter we discussed the technologies used in the development of the prototypes, which 
were video segmentation with Otsu’s thresholding, SURF, Harris-corners, MSAC and Matlab. 
In the next chapter we shall elaborate on the approach taken to build the prototypes for 
comparing the two image based video retrieval methods. 
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Chapter 4 
Approach to Image To Video Matching in the Prototypes 

4.1 Introduction 
Here we describe our approach to image based video retrieval which is based on the algorithms 
and technologies described in the earlier chapter. Two prototypes had to be built in order to 
compare the two approaches of database and real-time based searching which use the same 
algorithms. In this chapter the details of the approach will be described, such as the hypothesis, 
inputs and outputs, the processes of the prototypes and the required features of the prototypes.   
4.2 Hypothesis 
The problem of building an image based video retrieval system can be solved by using motion 
detection based feature vector matching. And comparing real-time searching and stored video 
summaries searching can be done by building two prototypes and comparing their performance 
and quality.  
4.3 Inputs 
As inputs, the query image path and the video folder path are given for the prototypes. The 
prototypes will then match the image with all the videos in the given path. In the stored 
summary prototype, the video path is given separately early on, so that the feature data can be 
saved into the database. 
The YFCC100M dataset and Google Image Search were used to find the images and videos 
which are used as sample data. The search sample data is limited to images and videos of cats 
for simplifying the evaluation. Cats have different types of color combinations, different types, 
different sizes and slightly complex shapes. And furthermore, images and videos of cats are 
very common and easily found in the YFCC100M dataset as well as in the Web. 
4.4 Outputs 
Each of the two prototypes produce a list of sorted videos as output. Also the execution times, 
relative video rankings and matching percentages are obtained from the output.   
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4.5 Process

 
Figure 4.1 - Level 1 DFD of Real-time searching prototype  

The above figure 4.1 explains the process of the Real-Time Searching prototype in brief. The 
user inserts the paths of a list of videos and an image into the prototype. The protoype then 
preprocesses the image and finds the Harris, SURF and Color features of the image. Then the 
prototypes extracts key frames from each video, and finds the Harris, SURF and Color features 
of each key frame. The prototype matches these key frame features with the features of the 
image to find which frames match and how well they match. Afterwards, the prototypes 
calculates how well each video matches with the image and displays the results in the 
descending order of matching rank. 
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Figure 4.2 - Level 1 DFD of Stored summary searching prototype  

Similarly, the stored summary prototype, is given a video path by the user. The prototype then 
extracts the key frames, finds the Harris, SURF and Color features of the key frames and stores 
the resultant information in the database. Next the user inserts the path of the image into the 
prototype. Similar to the earlier protoype, the image is preprocessed and its Harris, SURF and 
Color features are extracted. Afterwards, the prototype retrieves the video information from 
the database to match each key frame’s feaures with the features of the image. After matching 
the features, the results are calculatd and displayed as was explained before.  
4.6 Features 
Required features of the prototypes:  

 Efficiency of execution 
 Accuracy of results (and of the measurements taken) 

4.7 Users 
Since the results of this research are prototypes of algorithm implementation, users can be 
identified by the possible application areas. This algorithm can be applied in search engines 
which are used by Web surfers. Multimedia applications which require searching videos can 
cater multimedia application users with this functionality. 
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4.8 Summary 
The approach chapter described how this project is going to be approached; the hypothesis, 
input, output and processes. Also features have been described. The next chapter will explain 
about the design of the prototypes in greater detail.    
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Chapter 5 
Designs of the Prototypes 

5.1 Introduction 
Earlier we discussed the approach being used to improve he entity resolution of image based 
video search. In this chapter we shall discuss the design for the prototypes we use to compare 
the two methods of searching, and how to conduct the comparison. There are two prototypes, 
each for a method of searching. In the real-time search, we extract the features and compare, 
while in the stored summary method, we store the extracted features and later use them in our 
search. We shall discuss these designs with architecture diagrams, activity diagram and 
scenario descriptions further in this chapter. The database design is explained afterwards. 
5.2 Real-Time Search Method Prototype 

 
Figure 5.1 - Architecture of Real-time searching prototype 

In this prototype, first a user inputs an image. Then the software takes the list of all videos and 
then calculates the difference between each two frames for each video and the Otsu’s threshold. 
This value is used to calculate the overall threshold. Then it determines which key frames are 
best representative of the different shots. Afterwards the key frames can be searched, matching 
against the given image (using feature vectors).  
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Figure 5.2 – Activity diagram of Real-time searching prototype 
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5.3 Stored Summary Method Prototype 

 
Figure 5.3 - Architecture of Stored summary searching prototype 

The stored method employs functions that are similar to the real-time method. When adding a 
video, the prototype extracts the key frames. These key frames are used to extract the features 
by executing the respective algorithms on the key frames. Afterwards the 
features/signatures/summaries are saved into the database. When an image is given, these 
features are retrieved and compared against the image.  
For the Activity diagram of this prototype, please refer to the Appendix B. 
Scenario descriptions of stored summary 
Scenario 1 

1. System takes each video in the collection. 
2. Segment the video and extract key frames.  
3. Descriptors are computed for features in each key-frame.  
4. Save the video details in database. 
5. Store feature descriptions and feature points of the key frames in the database. 

Scenario 2 
1. User enters the image. 
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2. Descriptors are computed for features in the image. 
3. System extracts the stored features. 
4. The descriptors are compared to descriptors of the image and the match percentage is 

calculated for each key frame. 
5. Metrics of comparison (average frame level match percentage, matching key frame 

percentage and total match) are calculated.  
6. Compare the video matches and build the final video search results list.  

5.4 Database 

 
Figure 5.4 - ER diagram 

The database contains two tables: the video table and the key frames table. Key frames have 
the properties of algorithm based features, extracted from the key frames.  
5.5 User Interfaces 
Simple command prompt can be used for inserting the video folder path and the image path 
which is simple and straightforward.  
5.6 Comparison 
Run the two applications separately, using the same 3 sets of videos (size 22 each), input the 
same image and run the search. The time to produce results will be calculated automatically. 
This will be repeated for 3 sets of 5 images (90% cat, 89-1%cat, 0%cat). The comparison will 
be further explained in the evaluation chapter. 
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5.7 Summary 
In this chapter we discussed how the two prototypes for the two methods of searching are 
designed. The designs were described with the aid of diagrams and scenario descriptions. These 
include the architecture, activity flow and the design of the database. Afterwards, the method 
of comparison for the prototypes was discussed. The next chapter shall discuss how to 
implement the prototypes and related issues.  
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Chapter 6 
Implementation 

6.1 Introduction 
This chapter provides the details of the prototype implementation. After describing the 
decisions regarding the system in the previous chapter this is the chapter where the actual 
implementation of those planned features is documented. Each component and module will be 
explained in this chapter with the relevant implementation designs, decisions, tools, 
screenshots and code samples. 
6.2 Implementation Overview 
The two implementations are similar except for the fact of using a database of key frame 
signatures by one implementation. Both search prototypes are written using MatLab. MS 
Access acts as the DBMS. 
The codes of the prototypes are given in the Appendix C. 
6.3 Database Implementation 
6.3.1 MS Access 2013 
As explained earlier, the storage of feature information needed to be saved in the stored 
summary prototype is implemented using MS Access. MS Access was selected on the basis 
that it is very easy to implement and the transaction of the system are fairly simple. But for a 
business level application of this methodology of Image to Video Matching requires a more 
powerful database implementation.  
6.3.1 Physical Database Design  
Accordingly a relational database design was needed for the data. An ER diagram was drawn 
to design the relational database as shown in the previous chapter. The same is implemented 
here as follows: 
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Figure 6.1 - Screenshot of the database design (relationships) 

There are two tables as TblVideo for storing video names and TblKeyFrame for storing the 
features of the Key Frames for each video. SurfFeatures column for SURF feature 
detector/descriptor results, HarrisFeatures column for Harris detector with FREAK descriptor 
and ColorFeatures column for color extractor algorithm with simple Square Neighborhood 
descriptor results are used. And the locations of the feature points are saved in HarrisPoints 
and SurfPoints columns. 
The feature data had to be saved in the string format because it requires less space to store and 
easy to convert from matrix format. But converting strings into matrices is a slow process. 
6.3.3 Data Dictionary 
Entity Name  Video 
Table Name  TblVideo 
Description  Hold basic information on videos 
Primary Key  ID 
Foreign Keys  - 
Reference tables  - 
Attributes Field Type Description 

ID Number Primary key 
VidName ShortText Name of the video file 
FrameWidth Number Width of a frame 

   
Entity Name  Key Frame 
Table Name  TblKeyFrame 
Description  Hold information on key frames of videos 
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Primary Key  ID 
Foreign Keys  VideoId 
Reference tables  TblVideo 
Attributes Field Type Description 

ID Number Primary key 
VideoId Number Foreign key to TblVideo. Cascade rule 

is applied for UPDATE and DELETE. 
VidName ShortText Name of the video file 
SurfFeatures LongText Features list derived by SURF 

algorithm 
HarrisFeatures LongText Features list derived by Harris 

algorithm 
ColorFeatures LongText Features list derived by color features 

extraction algorithm 
SurfPoints Long Text Locations of SURF points 
HarrisPoints Long Text Locations of Harris corner points 

  

Table 6.1 Detailed data dictionary 
6.4 Component/Module Implementation 
The components are implemented in MatLab. So rather than the detailed pixel level 
implementation, the emphasis is given to the use of existing algorithms to support the prototype 
designs.  

  
Figure 6.2 - List of code components 
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6.4.1 Extract Key Frames 
This component extracts key frames from a given video. For these prototypes, we consider 
only videos of length up to 45 seconds. This will make the evaluation simpler.  
What it does is, obtaining a threshold for each frame and then using it to extract the key frames. 
First, selected frames are applied the Otsu’s Threshold to find the change in consecutive 
selected frames. Thresholds are calculated for the grey image. This threshold is used to extract 
key frames (see also Technology chapter). 
Afterwards, the frame that correspond to the values of threshold greater than the average 
threshold are extracted. To compromise for the states between each high threshold frames, the 
median frame between two consecutive high threshold frames are also extracted.  

Video > Shot > Group of frames > Key frame 
The simplicity of the scheme makes it possible to segment the video within a sufficiently less 
time. The following algorithm is used in this procedure. The code is given in the Appendix C. 

 

READ VIDEO 
CALCULATE NUMBER OF FRAMES 
DECIDE THE FRAME EXTRACTION INTERVAL 
GET THE FIRST FRAME 
RESIZE FIRST FRAME 
FOR EACH INTERVAL OF FRAMES 
        GET THE NEXT FRAME AFTER INTERVAL 
        RESIZE NEXT FRAME 
        GET FRAME DIFFERENCE 
        GET OTSU’S THRESHOLD 
        KEEP OTSU’S THRESHOLD 
END 
GET MEAN AND STANDARD DEVIATION OF OTSU’S THRESHOLDS 
GET THE GLOBAL THRESHOLD 
FOR EACH SELECTED FRAME 
        IF DIFFERENCE > THRESHOLD OR IS (LAST -1) TH SELECTED FRAME 
 EXTRACT KEY-FRAME 
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But there are a lot of possible improvement to this codes, such as supporting video durations 
greater than 45 seconds and even one hour. A generalized frame interval selection formula 
could be used for his purpose. And a greater number of more accurate number of frames could 
be selected if there is more processing power, using two global thresholds for the upper and 
lower limits.  
6.4.2 Get Colour Features 
For getting the Harris features and SURF features, the methods given by MatLab Computer 
Vision Toolkit are used. For the colour features, we use a simple extractor as described in the 
Technology chapter.  
6.4.3 Match Harris/ SURF/ Color Features 
Here, the features of the image are matched with the features of the given frame. Then the 
program calculates the percentage of matching features as well as percentage of inlier features 
against the total number of features of the image. This value is thresholded separately for each 
type of features (Harris/SURF/color). The average distance between Key Pairs is compared 
with the image width to guess whether the Key Points are inliers or not. A partial match is 
calculated for combining it with the results of other types of features later.  
E.g. (from Harris feature matching): 

 

 EXTRACT KEY-FRAME OF MEDIAN POSITION BETWEEN THIS KEY-FRAME AND THE LAST 
ONE 
        END 
END 

    if(size(I1,2) < size(I2,2))         Tdist = size(I2,2);     else         Tdist = size(I1,2);     end     averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs;     if ((status ~= 0 && percentage >= 2  && (averageDist <= Tdist/2 * 0.9)) || ((sizeOfinliers1*100/numPairs) >= 2 && status == 0) || (percentage >= 6))         match = true;     else         match = false;     end     if(percentage >= 4)         partial_match = true;     end 
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6.4.3 Run-time prototype 
6.4.3.1 Search Videos 
This is the main component of the Run-time prototype. The full code is provided in the 
Appendix C. Following is brief of this procedure:  

 
The match metrics are designed to exclude trivial matches by thresholding. It uses the 
percentage matching frames and average percentage match of matching frames to make this 
selection. The thresholds and metrics are largely based on observational matching.  
 
There are more statistically improved metrics, such as Confidence that can be used. 
 
 

GET VIDEO FILE LIST AND IMAGE 
RESIZE IMAGE 
GET FEATURES OF THE IMAGE 
FOR EACH VIDEO FILE 
 EXTRACT KEY FRAMES 
 FOR EACH KEY FRAME 
  SEARCH ONE VID 
 END 
 CALCULATE MATCH METRICS 
 IF METRICS ARE SIGNIFICANT 
  KEEP VIDEO RESULT 
 END 
END 
DISPLAY VIDEO LIST 

((percMatch+avgFeatureMatch) >= 64.412 && avgFeatureMatch >= 5.92) 
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6.4.3.2 Search One Video 
This component takes one video, takes each key frame and calls the matching components for 
Harris, SURF and color features. Then it checks to see whether any of them return positive 
results or if all match partially. Then it calculates the matching percentage and number of 
matches and returns them. 
6.4.4 Stored summary prototype 
6.4.4.1 Add a Video to DB 
This module helps to insert one video into the database. First, the video path is taken. And then 
the video name information is saved into the database (TblVideo). Afterwards the key frames 
are extracted by calling the relevant component (Extract Key Frames). Lastly, for each key 
frame, features are obtained by calling the relevant components for Harris, SURF and colour 
features, and these are converted to string by calling a MATLAB function and then saved to 
the TblKeyFrame. The code is given in the Appendix C. 
6.4.4.2 Search Videos from DB 
Similar to the Search Videos component, this function searches each video for matching key 
frames. The difference is that the set of video names is obtained from the database, and then 
each key frame’s feature information is retrieved from the database. For each of these key 
frames, the features are matched with the features of the given image by calling the relevant 
component (Search One Image from DB).  
6.4.4.3 Search One Image from DB 
For each key frame from the database, the feature information string will be converted into 
matrix form. Then those features will be matched using the matching modules for Harris, SURF 
and color algorithms.  Then the best match selection process goes in the same way as in the 
Real-Time prototype. 
6.4.4.4 Match Harris/ SURF/ Color Features from DB 
This is similar to the function in the Real-time prototype but since the features of key frames 
have been given, only the matching part is done. 
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6.4.4.5 String to Matrix  
Converting string to a matrix. Please refer to the Appendix C for the actual code. 

 
6.5 Command Line Execution 
MatLab allows to deploy programs as executable files. The executable files are actually slower 
than executing in the MatLab environment. But this makes the programs easier to demonstrate. 
It requires the MatLab Runtime to execute. 

 
Figure 6.3 - Screenshot of execution of the run-time prototype 

 
 

GET NUMBER OF ROWS AND NUMBER OF COLUMNS  
CREATE MATRIX 
GET NUMBER OF ROWS 
FOR EACH ROW 
 GET NUMBER OF VALUES 
 FOR EACH VALUE 
  GET VALUE START POSITION 
  GET VALUE END POSITION 
  GET VALUE AND ASSIGN TO MATRIX 
 END 
END 
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6.6 Summary 
The implementation chapter describes the implementation, with it code in the Appendix C. 
First we briefed the technologies used and then the database implementation. In the DB 
implementation, the DBMS used, the physical design and the data dictionary were presented. 
The components/modules were then explained in detail. In the next chapter we shall discuss 
the evaluation of the prototypes.  
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Chapter 7 
Evaluation 

7.1 Introduction 
After all the implementation details of the last chapter, this is the point at which the project and 
the product will be evaluated. The project will be evaluated against the requirements and 
objectives of the project. The prototypes have to be evaluated for comparing the stored 
summary method vs. real-time method as well. The environment of evaluation, the plan, data 
collection and data analysis will be expounded from here on. 
7.2 Evaluation Environment 
The fast execution and accurate results are expected from the algorithm being proposed. And 
the comparison of speed of execution and accuracy of results between the two implementations 
must be carried out as well. The evaluation plan needs to support these goals.  
Thus a large number of videos need to be searched for a large number of images in order to 
produce better results. There are also different types of images of different types of cats, 
appearing in different postures, angles and appearing partially. But as clear as possible images 
are needed that have distinct cat images since otherwise the background can affect the search 
result.  The videos have the same variation. Additionally, there may be videos with no cats and 
different durations of cat appearance. All these factors need to be taken into account in order 
to measure the accuracy and speed. 
7.3 Evaluation Plan 
Three sets of videos are used in the search. The first set of videos has the image of a cat/cats in 
90% of duration, the second one has 89 to 1% and the third set has 0% cats. 
The duration of videos is limited to maximum 45 seconds for faster searching. And the videos 
saved in the database are limited in their file size to reduce the size of the Access database 
(maximum 2GB total). 

1. For measuring the accuracy of the video search technique, the 3 sets of 30 videos each 
are used with groups of incrementally sized (incrementing by 5) image sets, i.e. 5, 10, 
15 etc.  
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2. To compare the two applications are run separately, using the same 3 sets of videos 
(size 22 each), input the same image and run the search. The time to produce results is 
calculated manually using start time and end time given from the program. This is 
repeated for the 3 sets of videos with 5 images as input.  

Additionally, it is required to run the two search prototypes and Add Video module in batches 
to conduct this test. A large number of image searches as well as databases insert operations 
needs to be run. For this reason, Bulk Run programs were created for running the tests. The 
evaluator inserts a folder path for all the images or videos which is used by the program to loop 
over each and run a given Module consecutively until the end of the image/video list.  
7.4 Automated Testing Implementation 
Since the evaluation process is long and redundant, it had to be automated. Two small programs 
were created to automate the evaluation of the implementations. And three databases were 
created to carry out the comparison task, each for one type of videos based on the similarity 
category. This was required especially since MS Access only allows to store 2GB in a database 
at one time. Details are given in the Appendix D. 

1. ‘bulkRunReal’ to run the real-time prototype on a folder of images 
2. ‘bulkRun’ to run the stored summary prototype to save a folder of videos into the 

database or search a folder of images against a database 
3. ‘VidSearchFull’ to store information of videos with >= 90% of cat images 
4. ‘VidSearchMid’ to store information of videos with < 90% and >0% of cat images 
5. ‘VidSearchNone’ to store information of videos with 0% of cat images 

7.5 Data Collection 
Evaluation Number 1 
The following results could be obtained by running the evaluation of real-time prototype. Table 
7.1 gives a sample of the results obtained. Detailed test results are given in the Appendix D. 
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Image Results Top three video results 

 

27 out of 90 videos 

 

 

22 videos out of 90 

 

 

7 out of 90 videos 

 

 

23 out of 90 videos 

 

 

23 out of 90 videos 

 

 

23 out of 90 videos 

 
 

Table 7.1 - Matching results for sample images with all video sets using real-time prototype 
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Video set Image set Total average of matching videos 
More than 90% appearance 5 11.33% 

10 15.67% 
15 17.78% 
20 19.50% 

Medium % appearance 5 17.33% 
10 33.67% 
15 29.78% 
20 25.67% 

0 % appearance 5 9.33% 
10 18.67% 
15 20.67% 
20 15.17% 

 

Table 7.2 - Matching results for different sets using real-time prototype 
Evaluation Number 2 
For the comparison of the two prototypes, the following results were obtained. Further details 
are given in the Appendix. 

  Average time (h:m:s) 

Real-time 
More than 90% 0:21:09 
Medium % match 0:27:48 
0% match 0:14:31 

Stored 
summary 

More than 90% 0:28:18 
Medium % match 0:28:17 
0% match 0:46:25 

 

Table 7.3 - Comparison of search times for different video sets using both prototypes 
Following numbers of matches could be observed from the two prototypes. 
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  Average percentage of matching videos  

Real-time 
More than 90% 8.67% 
Medium % match 11.33% 
0% match 6.67% 

Stored 
summary 

More than 90% 2.00% 
Medium % match 9.33% 
0% match 6.67% 

 

Table 7.4 - Comparison of matching video percentages for different video sets using both 
prototypes 

7.6 Data Analysis 
Evaluation Number 1 
The below graphs were produced using the results of evaluation number 1: the comparison of 
percentages of matching videos. 

 
Figure 7.1 - Result of searching more than 90% appearance videos 
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5.00%
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Figure 7.2 - Result of searching Medium maching videos 

 
Figure 7.3 - Result of searching 0% maching videos 

The summary graph of all the video sets: 
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Figure 7.4 - Total result of searching all maching videos 

 
Figure 7.5 - Total result for video sets 

Evaluation Number 2 
Comparison of the running times of the two prototypes can be shown as follows: 
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Figure 7.6 - Comparison between prototypes’ runing times 

The change of value between the two prototypes from the comparison run can be shown as 
below. 

 
Figure 7.7 - Comparison between prototypes’ percentages of results 

From the above results it can be seen that: 
1. There can be observed generally a growth of number of matching videos as the number 

of images are increased, except for the set of 20 images (0% and medium percentage 
matching) and medium percent matching image set of 15. 

2. From the video sets, medium matching videos show a greater match difference between 
image sets and a greater match overall. 
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3. The real-time based prototype is clearly the faster approach for closely-matching and 
scarcely-matching videos. For medium level matching videos, it is only slightly faster 
than the other method. 

4. There is a difference in the number of results in the two prototypes. The Stored 
summary prototype produces lesser number of results. 

The summary based prototype has become slower than the runtime based prototype. This has 
occurred because of the time spent on converting feature summary strings into matrix format, 
despite the actual speed of searching having been increased. 
7.7 Summary 
This chapter portrayed the evaluation of the proposed method of image to video matching and 
the comparison of the two prototypes proposed for this purpose. First of all the background of 
the evaluation and the evaluation plan was described. Then the collected data were presented 
and the analysis of the data was done. In the next chapter shall detail the conclusions finally 
derived from implementation and evaluation.   
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Chapter 8 
Conclusion and Further Enhancements  

8.1 Introduction 
Previous chapters have elaborated all the aspects of the project, ending with evaluation of the 
proposed method of enhancing image based video searching. Following the evaluation, this is 
the concluding chapter of the thesis, with the conclusions gained from evaluation. Here it 
summarizes the entire project and discusses the quantitative conclusions gained through 
evaluation and the achievements of the project against the initial objectives. There are 
accomplishments, failures and the limitations faced in the project. We shall also see how the 
final product can be improved through further extensions.  
8.2 Project Summary 
This MSc project was started with the aim of exploring the field of image to video matching 
and proposing a possible solution. After surveying the related literature, existing 
implementations and implementing sections of code, it was decided to implement a simple 
solution using feature matching and video segmentation. The possibility of storing summary 
data of the video was decided to be carried out as a comparison.  Thus, different technologies 
were selected for the final prototype implementation: SURF feature extraction, Harris corner 
feature extraction, colour features extraction, Otsu’s thresholding for change detection and 
string format to store feature information summary. The prototypes were later evaluated using 
3 sets of 22 videos and 5 images. Then the real-time prototype was used to test the effectiveness 
of the proposed method in iterations using 3 sets of 30 videos and 3 sets of images. 
8.3 Quantitative Conclusions  
As has been elaborated in the last chapter, the evaluation of the run-time based prototype shows 
that the proposed method of image based video searching shows accuracy for expected results 
or confidence for the 0% matching videos is 83.93%. The confidence for 90% matching videos 
is 15.96%. For medium matching videos, a 46.78% confidence is shown (for an expected 50%). 
Thus, the average accuracy is 48.89%. This shows little success. The number of matches varies 
with the number of images and the occurrence of similar features. The videos with more than 
90% cat appearance show less matches than videos with 0% cats in them. The reason is that 
when searching for cat images, the system also finds image of animals and matches the 
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background colors and background textures. The videos with intermediate appearance of cats 
show the highest match overall. 
For the comparison between the prototypes, real-time searching is 23.74% faster than searching 
feature summary database. This was the opposite of what was expected. And the result was 
effected greatly by implementation decisions. There was a difference in the results in the two 
prototypes. It has been observed as an average of 2.89% difference.  
There has been observed a chance of around 8.75% of possible change in the resultant videos 
when repeating the same search. This is due to the randomness of results of the MSAC 
algorithm. But this has not been observed to have affected the final evaluation averages 
obtained.  
8.4 Objective-Wise Conclusions  
In an academic project, skills and experience gained during its progress are as important as its 
result. Nevertheless, the final outcome of the project needs to be discussed in terms of the initial 
objectives of the project, one by one. Then we can explore whether these have been achieved 
or not. 

1. To survey the literature related with image based video retrieval to select 
appropriate algorithms. 

The survey of literature has been done up to reviewing 14 researches (as documented in the 
literature survey) and referencing 28 total of sources. The 14 reviews have been further 
discussed and compared to find the suitable technologies and methods. And likewise some 
suitable technologies and methods have been found from these sources. Thus, we may say that 
a sufficient amount of survey has been done, although it would have been better if it was 
possible to produce reviews for the other 10 sources as well. Nevertheless it was possible to 
learn a great lot about the field of image based video retrieval by doing this literature survey.  

2. To develop two prototypes and evaluate the two techniques of real-time searching 
and stored video summaries. 

These two prototypes were developed and were compared for speed. The accuracy of both 
prototypes was the same. The comparison was done using 3 sets of 22 videos which were search 
for the same 5 images for each set (total 15 test runs). This comparison is described in detail in 
the Evaluation chapter. Result was that the Real-time based prototype was faster than the 
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summary based prototype. Factor which effect the speed of the database is the conversion of 
large feature data in a format suitable for the database into a format that can be processed by 
the programing language. 

3. To evaluate the technique of motion detection based image based video retrieval 
The technique used in the implementation was tested using the real-time search prototype, 15 
images and 90 videos as described in the Evaluation chapter. This evaluation showed that the 
number of matches varies with the number of images and the occurrence of similar features 
and an intermediate level of accuracy was observed. 
 8.5 Problems Encountered, Limitations and Decisions Made  
There had to be made a compromise between the accuracy of results and the speed of execution 
in all aspects of the prototypes. For searching a large video set, the speed is the most important 
factor. This effected the video segmentation and the selection of feature extractors. It has also 
affected the final accuracy. 
The ‘i5 processor’ for this algorithm takes a great length of execution time (around 30 minutes 
for 30 videos with less than 45 second duration for each for the real-time based prototype), 
after numerous optimizations of efficiency. But in an ideal implementation, the searching will 
be done using a GPU and many high speed servers in data centers.  
Many algorithms such as PCA-SIFT feature matching were dropped as good open source 
implementations could not be found for such algorithms or long execution times etc.  
A decision of compromise had to be made with regard to the DBMS (MS Access): its simplicity 
of implementation against the lack of speed, power and tools. This was explained in earlier 
chapters.  
Also key frame feature data had to be saved in the string format because strings take less space 
than XML. But strings are much slower to be converted to the matrix format.  
Inlier detection method MSAC used in the prototype gives random results for inlier points, 
which can cause the resultant number of video results to be randomized. 
8.6 Further Enhancements  
If faster processors, GPUs or dedicated servers could be used for the searching, it would 
provide much greater speed than the current prototype implementations.  
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A faster method can be developed in future enhancements by techniques such as, quantization 
of the feature matrices so that they take less space and are easier to store/retrieve or Bag of 
Features methods which store only the relevance of features to cluster centers (clustering), 
obtained through training. 
A superior DBMS such as Microsoft SQL Server can provide better tools, integrity and power, 
than Microsoft Access for the implementation.  
A region detector such as MSER can be used in the feature detection and matching process. 
Currently only the corners, textures and colours are being matched.  
Salient object detection and object matching is an option that will improve the matching 
accuracy greatly. Rather than matching a whole frame with the whole image, we may abstract 
the salient objects in the given image and match those with the moving objects in the video’s 
key frames.  
Deep convolutional neural networks are currently being used in the user image based images 
searching field. We may use his technique in image based video retrieval as well, after 
simplifying it for increasing the speed.  
8.7 Summary  
This chapter being the last chapter of the thesis, provided an overview or summary of the 
project. Next, a quantitative conclusion was given. Then it assessed the project against its initial 
objectives and discussed whether these were met or not. It also contained the problems and 
limitations, and the decisions taken regarding those in the project. Later, the enhancements or 
improvements that can further extend the project were proposed. This concludes the thesis. 
Additional information related to thesis chapters can be found in the Appendix.  
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Appendix A - Approach 
A.1 DFD Data Dictionary 

Data Member Name Type 
Default 
Value 

Mandatory
? 

Video folder path Character “” (empty) Yes 
Image path Character “” (empty) Yes 
Rated video analysis 
results 

Complex null No 

Harris_features Complex null No 
SURF_features Complex null No 
color_features Complex null No 
image Complex null Yes 
Key frames list Complex null No 
Video details Complex null Yes 
Video list Complex null No 

 

Table A.1 - DFD data dictionary 
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Appendix B - Design 
B.1 Activity Diagrams 

 
Figure B.1 – Activity diagram of Stored summary searching prototype search senario 
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Figure B.2 - Stored summary searching prototype’s Add Video scenario 
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Appendix C - Implementation 
C. 1 Code Listing 
C.1.1 Get Key Frames 
function [Keyframes, NOKF] = keyfOtsu(V, keyFramesFolder)  % Copyright (c) 2015, krishnapriya Subramanian % All rights reserved. % Modified by H. S. Senevirathna Copyright (c) 2017.   
xyloObj = VideoReader(V);   %Using video reader reading video %Extracting frames NOF = xyloObj.NumberOfFrames;    % Calculating number of frames disp(strcat('Number of frames = ',num2str(NOF))); 
  
% special lengths of video x = 1; if (xyloObj.Duration >= 15 && 45 > xyloObj.Duration )         x = 2+((floor(NOF/1000)).^2); elseif(xyloObj.Duration > 45) % not used         x = 3+((floor(NOF/1000)).^2); end x = floor(x); NOFhalf = floor(NOF/x); 
  
Diffs =  zeros(NOFhalf,1); Frames = cell(NOFhalf,1); %initialize Frames{1} = read( xyloObj,x);   % Retrieve data from video and Add to cell array Frames{1} = resizeImage(Frames{1}); 
  
for g=1:NOFhalf     if(g~=  NOFhalf)         y = (g + 1)* x;         Frames{(g+1)} = read( xyloObj,(y));         Frames{(g+1)} = resizeImage(Frames{(g+1)});         diff = imabsdiff(Frames{g},Frames{g+1});         I=rgb2gray(diff);  % Convert into gray scale         level = graythresh(I); % Using Otsu's thresolding         Diffs(g) = level;          %To calculate histogram difference between two frames         %     end end  %calculating mean and standard deviation and extracting key frames mean=mean2(Diffs); std = std2(Diffs); threshold= (mean + std); NOKF = 0; Keyframes{1} = cell(1); lastKFno = 0; for g=1: NOFhalf     if(g~=NOFhalf)         th=Diffs(g);         if(g == (NOFhalf - 1) || th > threshold)    % Greater than threshold select as a key frame 
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            NOKF = NOKF + 1;             midKFno = ceil((lastKFno + g + 1)/2);             if(midKFno ~= lastKFno && midKFno ~= g+1)                 Keyframes{NOKF} = Frames{midKFno};                 NOKF = NOKF + 1;             end             lastKFno = g + 1;             Keyframes{NOKF} = Frames{g+1}; % Add to cell array         end     end end end  
C.1.2 Extract Color Features 
function [features, metrics] = featuresColorExtractor(I)  % Example color layout feature extractor.  % Local color layout features are extracted from truecolor image, I and % returned in features. The strength of the features are returned in % metrics. 
  
[~,~,P] = size(I); 
  
isColorImage = P == 3;  
  
if isColorImage 
     
    % Convert RGB images to the L*a*b* colorspace. The L*a*b* colorspace     % enables you to easily quantify the visual differences between colors.     % Visually similar colors in the L*a*b* colorspace will have small     % differences in their L*a*b* values.     Ilab = rgb2lab(I);                                                                             
       
    % Compute the "average" L*a*b* color within 16-by-16 pixel blocks. The     % average value is used as the color portion of the image feature. An     % efficient method to approximate this averaging procedure over     % 16-by-16 pixel blocks is to reduce the size of the image by a factor     % of 16 using IMRESIZE.      Ilab = imresize(Ilab, 1/16); 
     
    % Note, the average pixel value in a block can also be computed using     % standard block processing or integral images. 
     
    % Reshape L*a*b* image into "number of features"-by-3 matrix.     [Mr,Nr,~] = size(Ilab);         colorFeatures = reshape(Ilab, Mr*Nr, []);  
            
    % L2 normalize color features     rowNorm = sqrt(sum(colorFeatures.^2,2));     colorFeatures = bsxfun(@rdivide, colorFeatures, rowNorm + eps); 
         
    % Augment the color feature by appending the [x y] location within the     % image from which the color feature was extracted. This technique is     % known as spatial augmentation. Spatial augmentation incorporates the     % spatial layout of the features within an image as part of the     % extracted feature vectors. Therefore, for two images to have similar     % color features, the color and spatial distribution of color must be     % similar. 
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    % Normalize pixel coordinates to handle different image sizes.     xnorm = linspace(-0.5, 0.5, Nr);           ynorm = linspace(-0.5, 0.5, Mr);         [x, y] = meshgrid(xnorm, ynorm); 
     
    % Concatenate the spatial locations and color features.     features = [colorFeatures y(:) x(:)]; 
     
    % Use color variance as feature metric.     metrics  = var(colorFeatures(:,1:3),0,2); else 
     
    % Return empty features for non-color images. These features are     % ignored by the color feature matching.     features = zeros(0,5);     metrics  = zeros(0,1);      end 
 
C.1.3 Match SURF Features 
function  [match, percentage, partial_match] = matchSurfFeatures(I1,I2,features1, features2, valid_points1, valid_points2, colour_percentage) partial_match = false; indexPairs = matchFeatures(features1,features2); 
  
totalFeatures = length(features1); %baseline number of features numPairs = size(indexPairs,1); %the number of pairs if(totalFeatures ~= 0 && numPairs ~= 0)     status = 1; sizeOfinliers1 = 0;     matchedPoints1 = valid_points1(indexPairs(:,1),:);     matchedPoints2 = valid_points2(indexPairs(:,2),:);     if(numPairs > 2)         %         disp(size(indexPairs,1));         [~, inliers1, ~, status] = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'affine');         if(status == 0)             sizeOfinliers1 = size(inliers1,1);         end     end     percentage  = (numPairs * 100)/totalFeatures; else     percentage =0; sizeOfinliers1=0; end 
  
% disp('Surf : '); if (numPairs == 0)     %     disp('We do not have this');     %     disp(percentage);     match = false; else     if(size(I1,2) < size(I2,2))         Tdist = size(I2,2);     else         Tdist = size(I1,2);     end 
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    averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs;     percAffine = (sizeOfinliers1*100/numPairs);     if ((status ~= 0 && percentage >= 8 && (averageDist <= (Tdist/2) * 2.5) )...             || (percAffine >= 8 && status == 0) || percentage >= 10) 
                 
        match = true;     else         %         disp('We do not have this');         %         disp(percentage);         match = false;     end     if(percentage >= 8)         partial_match = true;     end end 
  
end 
 
C.1.4 Match Harris Features 
function  [match, percentage, partial_match] = matchHarrisFeatures(I1size,I2size,features1, features2, valid_points1, valid_points2, colour_percentage) 
  
partial_match = false; indexPairs = matchFeatures(features1,features2); 
  
totalFeatures = features1.NumFeatures; %baseline number of features numPairs = size(indexPairs,1); %the number of pairs if(totalFeatures ~= 0 && numPairs ~= 0)     status = 1; sizeOfinliers1 = 0;     matchedPoints1 = valid_points1(indexPairs(:,1),:);     matchedPoints2 = valid_points2(indexPairs(:,2),:);     if(numPairs > 2)         [tform, inliers1, inliers2, status] = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'affine');                 if(status == 0)             sizeOfinliers1 = size(inliers1,1);         end     end     percentage  = (numPairs * 100)/totalFeatures; else     percentage =0; sizeOfinliers1=0; end 
  
% disp('Harris : '); if (numPairs == 0)     %     disp('We do not have this');     %     disp(percentage);     match = false; else     if(I1size < I2size)         Tdist = I2size;     else         Tdist = I1size;     end     averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs; 
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    percAffine = (sizeOfinliers1*100/numPairs);     % disp(strcat('max=',num2str(max(indexPairs(:,end)))));     if ((status ~= 0 && percentage >= 2  && averageDist <= (Tdist/2) * 0.9) ...             || (percAffine >= 2 && status == 0) || percentage >= 6)          %         disp('We have this');         %         disp(percentage);disp(averageDist);disp(size(features1.Features, 2));         match = true;     else         %         disp('We do not have this');         %         disp(percentage);         match = false;     end     if(percentage >= 4)         partial_match = true;     end end end 
 
C.1.5 Match Color Features 
function  [percentage, match, partial_match] = matchColorFeatures(I1,I2,features1, features2) 
  
partial_match = false; indexPairs = matchFeatures(features1,features2); 
  
totalFeatures = length(features1); %baseline number of features numPairs = length(indexPairs); %the number of pairs if(totalFeatures ~= 0)     percentage  = (numPairs * 100)/totalFeatures; else     percentage =0; end 
  
% disp('Color : '); if (numPairs == 0) %     disp('We do not have this'); %     disp(percentage);     match = false; else     if(size(I1,2) < size(I2,2))         Tdist = size(I2,2);     else          Tdist = size(I1,2);     end     averageDist = sum(indexPairs(:,2)-indexPairs(:,1))/numPairs;     if (percentage >= 3.9 && (averageDist <= Tdist/2 * 2.5)) || percentage >= 50   %         disp('We have this'); %         disp(percentage);disp(averageDist);disp(size(features1, 2));         match = true;     else %         disp('We do not have this'); %         disp(percentage);         match = false;     end 
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    if(percentage >= 15)         partial_match = true;     end end end  
C.1.6 Resize Image 
function image = resizeImage( image ) if(size(image,2)  > 640)     p1 = imresize(image(:,:,1), [NaN 640]);     [m,n,~]=size(p1);     image=zeros(m,n,3);     image(:,:,1) = p1;     image(:,:,2) = imresize(image(:,:,2), [m 640]);     image(:,:,3) = imresize(image(:,:,3), [m 640]); elseif(size(image,1)  > 480)     p1 = imresize(image(:,:,1), [480 NaN]);     [m,n,~]=size(p1);     image=zeros(m,n,3);     image(:,:,1) = p1;     image(:,:,2) = imresize(image(:,:,2), [480 n]);     image(:,:,3) = imresize(image(:,:,3), [480 n]); end end 
 
C.1.7 Connect to Database 
function conn = ConnectToDB() dbpath = ['D:\MSc\Project\SurfSearchVid\VidSearchNone.accdb']; url = [['jdbc:odbc:Driver={Microsoft Access Driver (*.mdb, *.accdb)};DSN='''';DBQ='] dbpath]; conn = database('','','','sun.jdbc.odbc.JdbcOdbcDriver',url); end 
 
C.1.8 Search Videos 
function searchVids(imgPath,vidFolder) disp(datetime('now')); keyFramesFolder = 'Evaluation\Keyframes'; image = imread(imgPath); k = dir(strcat(vidFolder,'*.mp4')); filenames = {k.name}'; % get video files noOfVids = length(filenames); if (noOfVids == 0)     disp('The folder location of videos is not found or empty.'); end image = resizeImage(image); 
  
% Get features of the image image_features_Surf = GetSurfFeatures(image); image_features_Harris = GetHarrisFeatures(image); [image_features_Color, metrics] = featuresColorExtractor(image); 
  
numOfResults=0; 
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% searcing each vid for g=1: size(filenames)     video = filenames(g);     path = strcat(vidFolder,video);     disp(video);     pathSring = char(path); 
     
    [keyfArr, NOKF] = keyfOtsu(pathSring, keyFramesFolder);     disp(strcat('Number of keyframes = ',num2str(NOKF))); 
     
    if (NOKF > 0)         [sumOfPerc, numMatches] = searchOneVid(image, keyfArr, keyFramesFolder, image_features_Surf, image_features_Harris, image_features_Color, video);     end     disp(strcat(video, ' Number of results = ',num2str(numMatches)));     if(NOKF ~= 0 && numMatches ~= 0)         averageMatch = numMatches/NOKF;         percMatch = averageMatch * 100;         avgFeatureMatch = sumOfPerc/(3*numMatches);     else         avgFeatureMatch = 0;         percMatch = 0;     end     disp(strcat(video, ' Matching ratio = ',num2str(avgFeatureMatch)));     if(percMatch >= 10 && avgFeatureMatch >= 12.028) % thresholded prcentage of matching key frames - empirically derived         numOfResults = numOfResults+1;         VideoList{numOfResults,1} = char(video);         VideoList{numOfResults,2} = avgFeatureMatch;         VideoList{numOfResults,3} = percMatch;         VideoList{numOfResults,4} = percMatch+avgFeatureMatch; 
         
    end end 
  
% Display video list if(numOfResults>0)     VideoList = sortrows(VideoList, -4);     disp(VideoList); end 
  
disp(strcat('No of matching videos : ',num2str(numOfResults))); disp(datetime('now')); end 
 
C.1.9 Search One Video 
function [sumOfPerc, numMatches] = searchOneVid(image,keyfArr, keyFramesFolder, image_features_Surf, image_features_Harris, valid_points_Surf, valid_points_Harris, image_features_Color, video) numMatches = 0; sumOfPerc = 0; n = length(keyfArr); for g=1: n     %     disp(strcat(num2str(g),' of ',num2str(n)));         [KF_features_color,metrics] = featuresColorExtractor(keyfArr{(g)}); 
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    [colour_percentage, match3, partial1] = matchColorFeatures(image,keyfArr{(g)},image_features_Color, KF_features_color); 
     
    I1 = rgb2gray(keyfArr{(g)});     points1 = detectSURFFeatures(I1);     [KF_features_Surf,KF_valid_points_Surf] = extractFeatures(I1,points1);     points2 = detectHarrisFeatures(I1);     [KF_features_Harris,KF_valid_points_Harris] = extractFeatures(I1,points2); 
     
    [match1, percentage1, partial2] = matchSurfFeatures(size(image,2),size(keyfArr{(g)},2),image_features_Surf, KF_features_Surf, valid_points_Surf, KF_valid_points_Surf, colour_percentage);     [match2, percentage2, partial3] = matchHarrisFeatures(size(image,2),size(keyfArr{(g)},2),image_features_Harris, KF_features_Harris, valid_points_Harris, KF_valid_points_Harris, colour_percentage); 
     
    if ((match1 == true || match2 == true || match3 == true) || (partial1 && partial2 && partial3))         numMatches = numMatches + 1;         sumOfPerc = sumOfPerc + percentage1 + percentage2 + colour_percentage;     end end 
  
end 
 
C.1.10 Add video to database 
function AddVidToDB( path ) %insert keyframe features into DB disp(datetime('now')); 
  
conn = ConnectToDB();  keyFramesFolder = 'Evaluation\Keyframes'; slash_place = strfind(path,'\'); video = path(slash_place(length(slash_place))+1:end); if exist(path, 'file') ~= 2     disp(strcat('The file ',video,' does not exist in the path ',path(1:hash_place(1)-1))); end 
  
[keyfArr, NOKF]  = keyfOtsu(path, keyFramesFolder); % extract key frames % disp(size(keyfArr,2)); disp(strcat('Number of keyframes = ',num2str(NOKF))); 
  
if(NOKF >0)     KFsize = size(keyfArr{1},2); else      KFsize = 0; end colnames = {'VidName', 'FrameWidth'}; data = {video, KFsize}; tablename = 'TblVideo'; 
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datainsert(conn,tablename,colnames,data); result = exec(conn,'SELECT Distinct @@Identity FROM TblVideo'); result = fetch(result); ID = result.Data{1}; 
  
colnames2 = {'VideoId', 'SurfFeatures', 'HarrisFeatures', 'ColorFeatures', 'SurfPoints', 'HarrisPoints'}; tablename2 = 'TblKeyFrame'; 
  
featuresSet = cell(NOKF,1); for g=1: NOKF     featuresC = featuresColorExtractor(keyfArr{(g)});     I1 = rgb2gray(keyfArr{(g)});     points1 = detectSURFFeatures(I1);     [featuresS,KF_valid_points_Surf] = extractFeatures(I1,points1);     points2 = detectHarrisFeatures(I1);     [featuresH,KF_valid_points_Harris] = extractFeatures(I1,points2); 
         
    strfS = strcat(int2str(size(featuresS,2)),'#',mat2str(featuresS));     strfH = strcat(int2str(size(featuresH.Features,2)),'#',mat2str(featuresH.Features));     strfC = strcat(int2str(size(featuresC,2)),'#',mat2str(featuresC));     strVPS = strcat(int2str(size(KF_valid_points_Surf.Location,1)),'#',mat2str(KF_valid_points_Surf.Location));     strVPH = strcat(int2str(size(KF_valid_points_Harris.Location,1)),'#',mat2str(KF_valid_points_Harris.Location)); 
         
    featuresSet{g} = {ID strfS strfH strfC strVPS strVPH}; %     disp(g); end disp('features extracted'); for g=1: NOKF     data3 = featuresSet{g};     datainsert(conn,tablename2,colnames2,data3); %     disp('KF inserted.');     disp(g); end disp('End.'); 
  
close(result); close(conn); disp(datetime('now')); end 
 
C.1.11 Search Videos from Database 
function searchVidsFromDB(imgPath) disp(datetime('now')); 
  
keyFramesFolder = 'Evaluation\Keyframes'; image = imread(imgPath); image = resizeImage(image); 
  
% Get features of the image 
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I1 = rgb2gray(image); points1 = detectSURFFeatures(I1); [image_features_Surf,valid_points_Surf] = extractFeatures(I1,points1); points2 = detectHarrisFeatures(I1); [image_features_Harris,valid_points_Harris] = extractFeatures(I1,points2); [image_features_Color, metrics] = featuresColorExtractor(image); 
  
conn = ConnectToDB(); result = exec(conn,'SELECT VidName, ID, FrameWidth FROM TblVideo'); setdbprefs('DataReturnFormat','cellarray'); result = fetch(result,30); videos = result.Data; keyfArr = cell(5); dims = size(videos); 
  
% searcing each vid numOfResults=0; if (dims(1) > 0 && dims(2) > 0) 
     
    for g=1: dims(1)         numMatches = 0;         video = videos(g,:);         vidId = uint32(video{2});         frameWidth = uint32(video{3});         disp(video{1});         query = strcat('SELECT SurfFeatures, HarrisFeatures, ColorFeatures, SurfPoints, HarrisPoints FROM TblKeyFrame WHERE VideoId = ',num2str(vidId));         resultVid = exec(conn,query);         setdbprefs('DataReturnFormat','cellarray');         resultVid = fetch(resultVid);         images = resultVid.Data;         dims2 = size(images);         sumOfPerc = 0;         noOfKFs = dims2(1);         disp(strcat('Number of keyframes = ',num2str(noOfKFs))); 
         
        %Get key frames         featuresSet = cell(noOfKFs,1);         for i=1: noOfKFs vid_image = images(i,:);             featuresS = single(str2matrix(vid_image{1},1));             featureVectH = uint8(str2matrix(vid_image{2},1));             featuresH = binaryFeatures(featureVectH);             featuresC = str2matrix(vid_image{3},1);             pointsMatS = single(str2matrix(vid_image{4},3));             pointsS = SURFPoints(pointsMatS);             pointsMatH = single(str2matrix(vid_image{5},3));             pointsH = cornerPoints(pointsMatH);             featuresSet{i} = {featuresS featuresH featuresC pointsS pointsH};         end 
         
        %searching each image         for i=1: noOfKFs %             disp(strcat(num2str(i),' of ',num2str(noOfKFs)));             [sumOfPerc, numMatches] = searchOneImageFromDB(numMatches, sumOfPerc, image, keyfArr, keyFramesFolder,... 
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                image_features_Surf, image_features_Harris, image_features_Color, featuresSet{i}, frameWidth, valid_points_Surf, valid_points_Harris);         end         disp(strcat(video{1}, ' Number of results = ',num2str(numMatches)));         if(noOfKFs ~= 0 && numMatches ~= 0)             averageMatch = numMatches/noOfKFs;             percMatch = averageMatch * 100;             avgFeatureMatch = sumOfPerc/(3*numMatches);         else             avgFeatureMatch = 0;             percMatch = 0;         end         disp(strcat(video{1}, ' Matching ratio = ',num2str(avgFeatureMatch)));         if(percMatch >= 10 && avgFeatureMatch >= 12) % thresholded prcentage of matching key frames             numOfResults = numOfResults+1;             VideoList{numOfResults,1} = video{1};             VideoList{numOfResults,2} = avgFeatureMatch;             VideoList{numOfResults,3} = percMatch;             VideoList{numOfResults,4} = percMatch+avgFeatureMatch;         end %         end     end 
     
    % Display video list     if(numOfResults > 0)         VideoList = sortrows(VideoList, -4);         disp(VideoList);     end end disp(strcat('No of matching videos : ',num2str(numOfResults))); disp(datetime('now')); end 
 
C.1.12 Convert String to Matrix 
function M = str2matrix( fulltext, mode )%,x,y % creates a matrix document for the string 
  
if (mode == 1)     %     if(fulltext ~= '')     hash_place = strfind(fulltext,'#');     if(numel(hash_place)~=0)         y = str2double(fulltext(1:hash_place(1)-1)); %get cols         if(fulltext(hash_place(1)+1:hash_place(1)+5) ~= char('zeros'))             text = fulltext(hash_place(1)+2:end-1); % remove #s and []             row_end = strfind(text,';');             x = length(row_end)+1;             M = zeros(x,y); 
             
            % extract row contents             if x>0                 for i=1:x                     if i ~= 1                         a = row_end(i-1)+1; 
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                    else                         a = 1;                     end                     if i ~= x                         b = row_end(i)-1;                     else                         b = length(text);                     end                     row = text(a:b);                     ele_end = strfind(row,' ');                     if y>0                         for j=1:y                             if j ~= 1                                 c = ele_end(j-1)+1;                             else                                 c = 1;                             end                             if(numel(ele_end)==0)                                 disp('end');                             end                             if j ~= y                                 d = ele_end(j)-1;                             else                                 d = length(row);                             end                             M(i,j) = str2double(row(c:d));  %get element contents                         end                     end                 end             end         else             M = zeros(0,y);         end     else         M = zeros(0,1);     end elseif (mode == 2)     hash_place = strfind(fulltext,'#');     if(numel(hash_place)~=0)         if(fulltext(hash_place(1)+1:hash_place(1)+5) ~= char('zeros'))             text = fulltext(hash_place(1)+2:end-1); % remove #s and []             rows = strsplit(text,';');             n = length(rows);             M = zeros(n,1);             % extract element contents             if n>0                 for i=1:n                     M(i,1) = str2double(rows{i});                 end             end         else             M = zeros(0,y);         end     else         M = zeros(0,1);     end elseif (mode == 3) % 2 column array     hash_place = strfind(fulltext,'#');     if(numel(hash_place)~=0)         if(fulltext(hash_place(1)+1:hash_place(1)+5) ~= char('zeros')) 
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            text = fulltext(hash_place(1)+2:end-1); % remove #s and []             row_end = strfind(text,';');             x = length(row_end)+1;             M = zeros(x,2); 
             
            % extract row contents             if x>0                 for i=1:x                     if i ~= 1                         a = row_end(i-1)+1;                     else                         a = 1;                     end                     if i ~= x                         b = row_end(i)-1;                     else                         b = length(text);                     end                     row = text(a:b);                     ele_end = strfind(row,' ');                     c = 1;                     d = ele_end(1)-1;                     M(i,1) = str2double(row(c:d));                     c = ele_end(1)+1;                     d = length(row);                     M(i,2) = str2double(row(c:d));                 end             end         else             M = zeros(0,2);         end     else         M = zeros(0,2);     end end 
 
C.1.13 Search an Image from Database 
function [sumOfPerc, numMatches] = searchOneImageFromDB(numMatches, sumOfPerc, image, keyfArr, keyFramesFolder, image_features_Surf, image_features_Harris,...     image_features_Color, key_frame, frameWidth, valid_points_Surf, valid_points_Harris) % perform matching 
  
imageWidth = size(image,2); [colour_percentage, match3, partial1] = matchColorFeatures(imageWidth, frameWidth, image_features_Color, key_frame{3}); [match1, percentage1, partial2] = matchSurfFeatures(imageWidth,frameWidth,image_features_Surf, key_frame{1}, valid_points_Surf, key_frame{4}, colour_percentage); [match2, percentage2, partial3] = matchHarrisFeatures(imageWidth,frameWidth,image_features_Harris, key_frame{2}, valid_points_Harris, key_frame{5}, colour_percentage); 
     
if ((match1 == true || match2 == true || match3 == true) || (partial1 && partial2 && partial3))      sumOfPerc = sumOfPerc + percentage1 + percentage2 + colour_percentage; 
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end end  
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Appendix D - Evaluation 
D.1 bulkRunReal 
function bulkRunReal(imgFolderPath,vidFolder1,vidFolder2,vidFolder3) diary('diaryReal.txt');     k = dir(strcat(imgFolderPath,'*.jpg'));     filenames = {k.name}'; % get img files %     matching each img disp(vidFolder1);     for g=1: size(filenames)         disp(filenames{g});         imgPath = strcat(imgFolderPath, filenames{g});         searchVids(imgPath,vidFolder1);     end disp(vidFolder2);     for g=1: size(filenames)         disp(filenames{g});         imgPath = strcat(imgFolderPath, filenames{g});         searchVids(imgPath,vidFolder2);     end disp(vidFolder3);     for g=1: size(filenames)         disp(filenames{g});         imgPath = strcat(imgFolderPath, filenames{g});         searchVids(imgPath,vidFolder3);     end diary off; end 
 
D.2 bulkRun 
function bulkRun(FolderPath,mode) diary('DB_prot_log2.txt'); if(mode==2)     k = dir(strcat(FolderPath,'*.mp4'));     filenames = {k.name}'; % get files     %  each video     for g=1: size(filenames)         disp(filenames{g});         vidPath = strcat(FolderPath, filenames{g});         AddVidToDB(vidPath);     end elseif(mode==3)     k = dir(strcat(FolderPath,'*.jpg'));     filenames = {k.name}'; % get img files     % matching each img     for g=1: size(filenames)         disp(filenames{g});         imgPath = strcat(FolderPath, filenames{g});         searchVidsFromDB(imgPath);     end end diary off; end 
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D.3 Detailed Evaluation Data 
D.3.1 Comparison of Speeds of the Two Prototypes 

  Image Start time End time Time difference 

Stored summary 

Good match 

1 19:22:22 19:49:58 0:27:36 
2 19:49:58 20:18:01 0:28:03 
3 20:18:01 20:47:00 0:28:59 
4 20:47:00 21:15:20 0:28:20 
5 21:15:20 21:43:51 0:28:31 

Moderate match 

1 21:45:13 22:13:34 0:28:21 
2 22:13:34 22:42:08 0:28:34 
3 22:42:08 23:10:28 0:28:20 
4 23:10:29 23:38:33 0:28:04 
5 11:38:33 12:06:41 0:28:08 

No match 
1 0:35:23 1:21:38 0:46:15 
2 1:21:38 2:07:57 0:46:19 
3 2:07:57 2:54:06 0:46:09 
4 2:54:07 3:40:13 0:46:06 
5 3:40:13 4:27:28 0:47:15 

Real-time 

Good match 

1 5:31:08 5:52:08 0:21:00 
2 5:52:08 6:13:16 0:21:08 
3 6:13:16 6:34:40 0:21:24 
4 6:34:40 6:55:48 0:21:08 
5 18:55:48 19:16:55 0:21:07 

Moderate match 

1 7:16:55 7:44:58 0:28:03 
2 7:44:59 8:12:28 0:27:29 
3 8:12:28 8:40:31 0:28:03 
4 8:40:32 9:08:21 0:27:49 
5 9:08:22 9:36:00 0:27:38 

No match 
1 9:36:01 9:50:32 0:14:31 
2 9:50:32 10:05:02 0:14:30 
3 10:05:02 10:19:42 0:14:40 
4 10:19:42 10:34:09 0:14:27 
5 10:34:09 10:48:34 0:14:25 

 

Table D.1 - Evaluation details of prototype comparison 
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D.3.2 Search Results For Different Image Sets 
Image No 0% set mid% set >90% set 
  Matches % Matches % Matches % 
5 images             

1 1 3.333333333 2 6.666667 0 0 
2 5 16.66666667 11 36.66667 6 20 
3 5 16.66666667 11 36.66667 6 20 
4 1 3.333333333 1 3.333333 1 3.333333 
5 5 16.66666667 1 3.333333 1 3.333333 

    11.33333333   17.33333   9.333333 
10 images             

1 5 16.66666667 11 36.66667 6 20 
2 5 16.66666667 11 36.66667 6 20 
3 5 16.66666667 11 36.66667 6 20 
4 5 16.66666667 11 36.66667 6 20 
5 0 0 2 6.666667 2 6.666667 
6 5 16.66666667 11 36.66667 6 20 
7 6 20 11 36.66667 6 20 
8 5 16.66666667 11 36.66667 6 20 
9 5 16.66666667 11 36.66667 6 20 

10 6 20 11 36.66667 6 20 
    15.66666667   33.66667   18.66667 
15 images             

1 5 16.66666667 11 36.66667 6 20 
2 5 16.66666667 11 36.66667 6 20 
3 5 16.66666667 11 36.66667 6 20 
4 5 16.66666667 11 36.66667 6 20 
5 1 3.333333333 1 3.333333 5 16.66667 
6 5 16.66666667 11 36.66667 6 20 
7 5 16.66666667 11 36.66667 6 20 
8 2 6.666666667 2 6.666667 3 10 
9 5 16.66666667 11 36.66667 6 20 

10 5 16.66666667 11 36.66667 6 20 
11 5 16.66666667 11 36.66667 6 20 
12 6 20 11 36.66667 6 20 
13 9 30 5 16.66667 9 30 
14 5 16.66666667 11 36.66667 6 20 
15 12 40 5 16.66667 10 33.33333 

    17.77777778   29.77778   20.66667 
20 images             

1 0 0 1 3.333333 0 0 
2 4 13.33333333 1 3.333333 1 3.333333 
3 5 16.66666667 2 6.666667 0 0 
4 4 13.33333333 3 10 2 6.666667 
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6 6 20 11 36.66667 5 16.66667 
6 6 20 11 36.66667 5 16.66667 
7 6 20 11 36.66667 5 16.66667 
8 6 20 11 36.66667 5 16.66667 
9 6 20 11 36.66667 5 16.66667 

10 6 20 11 36.66667 5 16.66667 
11 6 20 11 36.66667 5 16.66667 
12 6 20 11 36.66667 5 16.66667 
13 6 20 11 36.66667 5 16.66667 
14 6 20 11 36.66667 5 16.66667 
15 6 20 11 36.66667 5 16.66667 
16 12 40 6 20 11 36.66667 
17 6 20 11 36.66667 5 16.66667 
18 3 10 1 3.333333 4 13.33333 
19 7 23.33333333 2 6.666667 2 6.666667 
20 10 33.33333333 6 20 11 36.66667 

    19.5   25.66667   15.16667 
 

Table D.2 – Evaluation details of video results for different image sets 
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D.3.2 Comparison of Results of the Two Prototypes 
  Image Matches 

Stored summary 

Good match 
1 0 
2 1 
3 1 
4 0 
5 1 

Moderate match 

1 0 
2 7 
3 7 
4 0 
5 0 

No match 
1 0 
2 5 
3 5 
4 0 
5 0 

Real-time 

Good match 
1 1 
2 3 
3 3 
4 1 
5 5 

Moderate match 

1 1 
2 8 
3 8 
4 0 
5 0 

No match 
1 0 
2 5 
3 5 
4 0 
5 0 

 

Table D.3 – Evaluation details of video results for different video sets 
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Glossary of Terms 
 BRISK: Binary Robust Invariant Scalable Key-points 
 CBVR: Content based video retrieval  
 FAST: Features from Accelerated Segment Test 
 FREAK: Fast Retina Keypoint 
 F-SIFT: Fast-SIFT 
 GPU: Graphics Processing Unit 
 LSI: Latent semantic analysis 
 MSAC: M-estimator SAmple Consensus 
 MSER: Maximally Stable Extremal Regions 
 PCA: Principal Component Analysis 
 SIFT: Scale-invariant feature transform 
 SURF: Speeded Up Robust Features 
 SVM: Support Vector Machine 

 


