CALIBRATION AND VERFICATION OF A-TWO PARAMETER MONTHLY WATER BALANCE MODEL AND ITS APPLICATION POTENTIAL FOR EVALUATION OF WATER RESOURCES -A CASE STUDY OF KALU AND MAHAWELI RIVERS OF SRI LANKA

Mohammad Bilal Sharifi

(148664M)

Degree of Master of Science in Water Resources Engineering and Management

Department of Civil Engineering

University of Moratuwa

Sri Lanka

October 2015

CALIBRATION AND VERFICATION OF A-TWO PARAMETER MONTHLY WATER BALANCE MODEL AND ITS APPLICATION POTENTIAL FOR EVALUATION OF WATER RESOURCES - A CASE STUDY OF KALU AND MAHAWELI RIVERS OF SRI LANKA

Mohammad Bilal Sharifi

(148664M)

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Water Resources Engineering and Management

Supervised by

Professor N.T.S.Wijesekera

Department of Civil Engineering

University of Moratuwa

Sri Lanka

October 2015

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person expect where the acknowledgment is made in text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

• • • • • • • • • • • • • • • • • • • •	••••••

Mohammad Bilal Sharifi

Date

The above candidate has carried out research for the Masters thesis under my supervision.

.....

.....

Professor N.T.S.Wijesekera

Date

ABSTRACT

Water balance is a method by which we can account for the hydrological cycle of a specific area, with the emphasis on plants and soil moisture. One of the main purposes of a water balance study is to evaluate the net available water resources, both on the surface and in the subsurface. Understanding the behavior of a catchment from a hydrological point of view is necessary when planning and activities needed to be done in the watershed.

A-two parameter monthly water balance model for two basins was calibrated and verified using 30 years monthly rainfall, observedflow and pan evaporation data. Kalu Ganga at Ellagawa and Mahaweli Ganga at Morape were selected to estimate the streamflow. The model was calibrated and verified and a good performance was shown for both catchments. The C coefficient for Kalu Ganga at Ellagawa and Mahaweli Ganga at Morape were found as 1 and 1.1 respectively while the SC parameter was found as 800 and 1200 respectively.

The MRAE value for calibration period for Kalu Ganga at Ellagawa and Mahaweli Ganga at Morape showed a very good fitting with value of 0.145 and 0.152 respectively. The same for verification period was also very good with value of 0.153 and 0.157 respectively. During the calibration and verification periods value of the Nash–Sutcliffe efficiency for Kalu Ganga at Ellagawa was found as a 93.6% and 92.4% respectively. 93.6% and 94.1% were the Nash–Sutcliffe values for Mahaweli Ganga at Morape respectively. The two parameter monthly water balance model produced a better fitting of MRAE in annual and seasonal values when compared with monthly time series.

The two-parameter monthly water balance model with the simple structure and two parameters proved as a very efficient model when simulating the monthly, seasonal and annual runoff. Due to its simplicity and high efficiency in performance, this twoparameter monthly water balance model can be easily and efficiently used for the water resources planning and management.

ACKNOWLEDGEMENTS

Prima facea, I am grateful to the God for the good health and wellbeing that were necessary to complete this thesis.

I would like to express my sincere gratitude to my advisor Professor N.T.S.Wijesekera for the continuous support of my Postgraduate studies and related research, for his patience, motivation, and immense knowledge. His guidance helped me all the time of research and writing of this thesis. I could not have imagined having a better advisor and a mentor for my Postgraduate studies.

My sincere thanks also goes to Dr.R.L.H Lalith Rajapakse for his support and guidance provided both in terms of academic and logistic welfare during my stay.

I take this opportunity to express gratitude to all of the faculty members of the department of Civil Engineering for their help and support.

I place on record, my sincere thank you to Madanjeet Singh for providing scholarship to pursue a Masters degree in Water Resources Engineering and Management.

I would like to thank Mr. H.W. Kumarasinghe for his kind assistance during my stay in Sri Lanka.

Last but not the least; I would like to thank my family especially from my elder brother Engineer Abdullah Sharifi who acted as a father to me since childhood. He encouraged and supported me from school days to pursue a Postgraduate degree. CONTENTS

DECLARATIO	ON	i
	DGEMENTS	
	JRES	
	DUCTION	
1.1 Gene	eral	1
1.2 Obje	ective of the Study	5
1.2.1	Overall Objective	
1.2.2	Specific Objectives	6
2 LITERA	TURE REVIEW	7
2.1 Туре	es of Monthly Water Balance Models	7
2.1.1	Monthly Water Balance Models Using Different Parameters	7
2.1.2	Precipitation as Input	
2.1.3	Temperature as Input	
2.1.4	Rainfall & Potential Evapotranspiration as Input	
2.1.5	Monthly Water Balance Models Using Daily Data	10
2.2 Actu	al Evapotranspiration	
2.3 Mod	lel Evaluation and Parameter Optimization	
2.3.1	Model efficiency criteria	
2.3.2	Parameter Optimization and Selection of Objective function	
3 METHO	DOLOGY	
4 DATA A	ND DATA CHECKING	
4.1 Stud	y Area	
4.1.1	Kalu Ganga at Ellagawa	
4.1.2	Mahaweli at Morape	
4.2 Data		
4.2.1	Rainfall and Streamflow	
4.3 Data	Checking	
4.3.1	Consistency Checking	
4.3.2	Graphical Checking	
5 ANALYS	SIS AND RESULTS	
5.1 Thie	ssen Averaged Rainfall	
5.2 Class	sification of high intermediate and low flows	
5.3 Selec	cted monthly water balance model	

	1	5.3.1	Model structure and parameters	37
	5.4	Det	ermination of initial soil water content	39
	5.5	Sele	ection of Objective Function and Parameter Optimization	40
		5.5.1	Model Calibration and Model Verification	40
		5.5.2	Selection of Objective function	40
		5.5.3	Parameter Optimization	41
	5.6	Eva	luation of Calibration Results	43
		5.6.1	Kalu Ganga at Ellagawa	43
		5.6.2	Mahaweli at Morape	50
	5.7	Eva	luation of Verification results	56
		5.7.1	Kalu Ganga at Ellagawa	56
		5.7.2	Evaluation of Verification results for Mahaweli at Morape	63
6]	MODEI	L DEVELOPMENT AND ITS APPLICATION POTENTIAL	FOR
E	VAI	LUATIO	ON OF WATER RESOURCES	70
	6.1	Mo	del Development & Yield estimation for Kalu Ganga at Ellagwa	71
		6.1.1	Yield Estimation	72
	6.2	Mo	del Development & Yield estimation for Mahaweli at Morape	74
7]	DISCUS	SSION	78
	7.1	Mo	del selection	78
	7.2	Dat	a collection and checking	78
	7.3	Mo	del Development	81
	,	7.3.1	High Medium and Low flows	81
	,	7.3.2	Initial soil water content	81
	,	7.3.3	Objective functions and behaviour	81
	,	7.3.4	Evaluation of parameter optimization	82
	,	7.3.5	Calibration and verification	82
	,	7.3.6	Monthly water balance model for water resources	83
8		CONCL	USIONS	84
9]	RECOM	IMENDATIONS	85

REFERENCES	86
Appendix-A: Data checking	90
Appendix-B: Summary of Annual, Seasonal and Monthly data	105
Appendix-C: Parameter Optimization Results	126
Appendix-D: Calibration and Verification Results	139

LIST OF FIGURES

Figure 1-1: Catchment Area of Kalu Ganga at Ellagawa 4
Figure 1-2: Catchment Area of Mehaweli at Morape
Figure 3-1: Methodology Flow chart
Figure 4-1: Landuse Map of Kalu Ganga Watershed at Ellagawa
Figure 4-2: Land use Map of Mahaweli Watershed at Morape 19
Figure 4-3: Single Mass curve Analysis for Rainfall Stations in Kalu Ganga
Figure 4-4: Single Mass curve Analysis for Rainfall stations in Mahaweli Ganga 24
Figure:4-5: Thiessen Rainfall Corresponding to Observedflow in Kalu Ganga (a-b)
Figure:4-6: Thiessen Rainfall Corresponding to Observedflow in Kalu Ganga (a-c)
Figure:4-7: Thiessen Rainfall Corresponding to Observedflow in Kalu Ganga (c-e)
Figure 4-8: Thiessen Rainfall Corresponding to Observedflow in Kalu Ganga (f) 26
Figure 4-9: Variation of Thiessen Rainfall & Observedflow in Kalu Ganga (a-b) 26
Figure 4-10: Annual Rainfall Corresponding to Observedflow in Kalu Ganga
Figure 4-11: Thiessen Rainfall Corresponding to Observedflow in Mahaweli (a-b)
Figure 4-12: Thiessen Rainfall Corresponding to Observedflow in Mahaweli Ganga (c-e) . 28
Figure 4-13: Thiessen Rainfall Corresponding to Observedflow in Mahaweli Ganga
Figure 4-14: Variation of Thiessen Rainfall and Observedflow in Mahaweli Ganga (a-b) 29
Figure 4-15: Annual Rainfall Corresponding to Observedflow of Mahaweli Ganga
Figure 5-1: Annual flow Duration Curves in Kalu Ganga and Mahaweli Ganga (a-b)
Figure: 5-2: Annual Mean Flow Duration curve in Kalu Ganga at Ellagawa
Figure 5-3: Log Plot of Annual Mean Flow Duration Curve in Kalu Ganga
Figure 5-4: Flow Duration Curve of Mean and its log Plot in Mahaweli Ganga (a-b)
Figure 5-5: Monthly Flow Duration Curve for Kalu Ganga
Figure 5-6: Log Plot of Monthly Flow Duration Curve for Kalu Ganga
Figure 5-7: Monthly Flow Duration Curve with its Log Plot for Mahaweli Ganga (a-b) 36
Figure 5-8: Model Warm-up Period for Initial Soil Water Content in Kalu Ganga and
Mahaweli Ganga (a-b)
Figure 5-9: Calculated & Observed Monthly Flow hydrograph of Kalu Ganga at Ellagawa
(1983-1988)
Figure 5-10: Logarithmic scale of Monthly Flow hydrograph of Kalu Ganga (1983-1988). 45
Figure 5-11: Calculated & Observed Monthly Flow hydrograph of Kalu Ganga at Ellagawa
(1988-1993)
Figure 5-12: Logarithmic scale of Monthly Flow hydrograph of Kalu Ganga (1988-1993). 46

Figure 5-13: Calculated & Observed Monthly Flow hydrograph of Kalu Ganga at Ellagawa Figure 5-14: Logarithmic scale of Monthly Flow hydrograph of Kalu Ganga (1993-1998). 46 Figure 5-18: Annual Comparison of Estimated & Observedflow of Kalu Ganga 49 Figure 5-19: Seasonal Comparison of Estimated & Observed Flow of Kalu Ganga (a-b) 49 Figure 5-20: Calculated & Observed Monthly Flow hydrograph of Mahaweli Ganga 51 Figure 5-21: Logarithmic scale of Monthly Flow hydrograph of Mahaweli Ganga...... 51 Figure 5-22: Calculated & Observed Monthly Flow hydrograph of Mahaweli Ganga 51 Figure 5-26: Water Balance for Calibration period of Mahaweli Ganga...... 53 Figure 5-27: Normal and Log plot of Flow Duration curve of Mahaweli Ganga (a-b) 54 Figure 5-28: Monthly Comparison of Observed & Estimated flow of Mahaweli Ganga...... 54 Figure 5-29: Annual Comparison of Observed & Estimated Flow of Mahaweli Ganga 55 Figure 5-30: Seasonal Comparison of Observed & Estimated Flow of Mahaweli Ganga at Figure 5-31: Calculated & Observed Monthly Flow hydrograph for Kalu Ganga 57 Figure 5-33: Calculated & Observed Monthly Flow hydrograph for Kalu Ganga 57 Figure 5-37: Water Balance Estimations for Verification Period of Kalu Ganga...... 59 Figure 5-41: Seasonal Comparison of Observed & Estimated Flow of Kalu Ganga (a-b) 61 Figure 5-42: Estimated Error of Verification period for Kalu Ganga during each Month, each Figure 5-43: Calculated & Observed Monthly Flow hydrograph of Mahaweli Ganga 64 Figure 5-44: Logarithmic plot of Monthly Flow hydrograph of Mahaweli Ganga...... 64

Figure 5-45: Calculated & Observed Monthly Flow hydrograph of Mahaweli Ganga 64
Figure 5-46: Logarithmic plot of Monthly Flow hydrograph in Mahaweli Ganga
Figure 5-47: Calculated & Observed Monthly Flow hydrograph of Mahaweli Ganga 65
Figure 5-48: Logarithmic scale of Monthly Flow hydrograph of Mahaweli Ganga
Figure 5-49: Water Balance for Verification Period of Mahaweli Ganga
Figure 5-50: Normal and Log plot of Monthly Flow Duration curve in Mahaweli Ganga at
Morape (a-b)
Figure 5-51: Monthly Comparison of Observed & Estimated flow for Mahaweli Ganga 67
Figure 5-52: Annual Comparison of Observed & Estimated flow for Mahaweli Ganga 68
Figure 5-53: Seasonal Comparison of Observed & Estimated flow for Mahaweli Ganga 68
Figure 5-54: Estimated Error of Verification Period for Mahaweli Ganga during each Month,
each Year (a-b)
Figure 6-1: Estimated flow using 75% Rainfall for Kalu Ganga at Ellagawa
Figure 6-2: Estimated Yield in Maha Season for Kalu Ganga at Ellagawa
Figure 6-3: Estimated Yield for Yala Season for Kalu Ganga at Ellagawa74
Figure 6-4: Estimated flow using 75% Rainfall for Mahaweli Ganga at Morape75
Figure 6-5: Estimated yield in Maha Season for Mahaweli at Morape76
Figure 6-6: Estimated yield in Yala Season for Mahaweli Ganga at Morape77

LIST OF TABLE

Table 4-1: Land use Distribution of Kalu Ganga Watershed at Ellagawa 1	7
Table 4-2: Land use Distribution of Mahaweli Watershed at Morape 1	8
Table 4-3: Data source and Data availability of Kalu Ganga at Ellagawa	20
Table 4-4: Data source and Data availability of Mahaweli Ganga at Morape 2	20
Table 4-5: Gauging Station Details of Kalu Ganga at Ellagawa	21
Table 4-6: Gauging Station Details of Mahaweli Ganga at Morape 2	21
Table 4-7: Distribution of Gauging Stations in Kalu Ganga at Ellagawa 2	22
Table 4-8: Distribution of Mahaweli Ganga at Morape 2	22
Table 5-1: Thiessen Areas and Weights of Rainfall Stations in Kalu Ganga 3	31
Table 5-2: Thiessen Areas and Weights of Rainfall Stations in Mahaweli Ganga 3	31
Table 5-3: Parameter Optimization Results for Kalu Ganga at Ellagawa	12
Table 5-4: Parameter Optimization Results for Mahaweli Ganga at Morape 4	13
Table 5-5: Estimated Parameters & Errors for Calibration period of Kalu Ganga	14
Table 5-6: Water Balance Estimation for Calibration Period of Kalu Ganga	17
Table 5-7: Estimated Parameters & Errors for Calibration period of Mahaweli Ganga	50
Table 5-8: Water Balance Estimation for Calibration Period of Mahaweli Ganga	53
Table 5-9: Estimated Parameters & Errors for Verification Period of Kalu Ganga	56
Table 5-10: Water Balance Estimations for Verification Period of Kalu Ganga	;9
Table 5-11: Estimated Parameters & Errors for Verification period of Mahaweli 6	53
Table 5-12: Water Balance Estimations for Verification Period of Mahaweli Ganga	56
Table 6-1: Estimated Flow using 75% Rainfall for Kalu Ganga at Ellagawa	/1
Table 6-2: Estimated Yield for Maha Season using 75% Rainfall for Kalu Ganga	12
Table 6-3: Estimated Yield for Yala Season for Kalu Ganga at Ellagawa 7	13
Table 6-4: Estimated Flow using 75% Rainfall for Mahaweli Ganga at Morape 7	15
Table 6-5: Estimated Yield for Maha Season for Mahaweli at Morape 7	/6
Table 6-6: Estimated yield in Yala Season for Mahaweli at Morape 7	17
Table 7-1: Max, Mean & Min of Monthly Data of Kalu Ganga at Ellagawa	19
Table 7-2: Max, Mean & Min Monthly Data of Mahaweli Ganga at Morape	30