CONDITION MONITORING AND ASSESSMENT OF POWER TRANSFORMERS USING SWEEP FREQUENCY RESPONSE ANALYSIS AND DISSOLVE GAS ANALYSIS.

Meellagahawatta Prathiba Madusri Fernando

(128760K)

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2017

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

Signature of the candidate (M.P.M. Fernando)

Date:

The above candidate has carried out research for the Masters dissertation under my supervision.

Signature of the supervisor (Prof. J.R. Lucas) Date:

.....

Signature of the supervisor (Dr. W.D.A.S. Rodrigo) Date:

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisors Prof. J.R. Lucas and Dr. W.A. Rodrigo for the continuous support given for the research, for the motivation, enthusiasm and immense knowledge.

Further, I would like to pay my gratitude to all the lecturers engaged in the MSc course sessions for making our vision broader and providing us with the opportunity to improve our knowledge in various fields.

My sincere thanks also should go to Employees of Ceylon Electricity Board, Mrs. Dhammika Tilakasena, former Deputy General Manager and Mr. W. Edussuriya, Deputy General Manager (Asset Management-Transmission), Mr. W.G.V. Priyantha, Chief Engineer (Asset Management-Transmission), my colleague Engineers who work with me in Asset Management-Transmission branch and all the office staff there who always gave their cooperation to conduct my research work.

Moreover, I would like to thank all the Engineers and technical staff in Operation and Maintenance branch, who have helped in collecting data related to my research work. It is also a great pleasure to remember the kind cooperation of all my colleagues who have helped me in this Post Graduate programme by extending their support during the research period.

My special thanks go to my wife Mrs. Sanali Kulasooriya, and my parents Mr. Patrick Fernando and Mrs. Murin Fernando for supporting me spiritually throughout my life and tolerating my engagement on this work.

M.P.M. Fernando

ABSTRACT

Power transformer can be considered as the key element in an electricity power system. Cost and the time of installation of a power transformer are significantly higher than the installation of other equipment. Applied electrical and thermal stresses due to various factors always deteriorate the condition of transformers. In this sense, it is important to monitor and assess the condition of Power Transformers to ensure longer operation as well as to maintain a reliable operation of a power system.

Sweep Frequency Response Analysis (SFRA) can be used to assess the mechanical integrity of transformers. The test measures the transfer function response of the active part of the transformer. The three frequency responses of three phases should be identical except to inherited variations, and therefore, it can be considered as a fingerprint for a transformer. If any physical changes occur within and between the elements of the transformer, it will affect the frequency response, which can be used to detect any abnormality. However, correct interpretation of the measured response in determining the transformer condition is a critical challenge, as interpretation of frequency response is still not fully established.

On the other hand, Dissolve Gas Analysis (DGA) can be used to assess the possible stresses that could have been applied on the oil immersed transformers based on the concentration of specific gases dissolved in oil. Several diagnosis tools recommended by international standards are available and they have been using by utilities over a period of time with reasonable reliability.

In this study, SFRA and DGA measurement data were collected from set of power transformers in operation, and analyzed those approaching to develop a methodology to assess the condition of power transformers, correlating outcomes from SFRA and DGA. For this, transformers taken for the study were categorized based on their SFRA data by analyzing behavior of the response of the three phases and their

similarity. Several indices were introduced to quantify the similarity. In the other hand, the selected transformers were categorized based on their DGA data considering the recommendations provided by available standards and diagnosis tools. Further, a Computing Tool was developed using MATLAB, for the easy evaluation of the SFRA and DGA measurements.

Finally, several case studies were carried out justifying the proposed methodology verifying the benchmarking of the introduced indices against several faulty and good transformers.

TABLE OF CONTENTS

DECLARA	ATION OF THE CANDIDATE AND SUPERVISORS	i
ACKNOW	/LEDGEMENTS	ii
ABSTRAC	CT	iii
LIST OF F	FIGURES	viii
LIST OF 1	ΓABLES	x
LIST OF A	ABBREVIATIONS	xi
LIST OF A	APPENDICES	xii
Chapter 1	- INTRODUCTION	
1.1 I	Background	1
1.2 I	Requirement of Methodology for Condition Monitoring	2
1.3 (Objective of the Study	2
1.4 I	Methodology	3
Chapter 2	2- LITERATURE REVIEW	
2.1 \$	Sweep Frequency Response Analysis (SFRA)	6
	2.1.1 SFRA theory	6
	2.1.2 Use of SFRA	8
	2.1.2.1 SFRA base line measurement	8
	2.1.2.2 SFRA diagnostic application	8
2	2.1.3 SFRA measurement method	9
2	2.1.4 Measurement types and test connections	10
	2.1.4.1 Open circuit measurement	10
	2.1.4.2 Short circuit measurement	10
	2.1.4.3 Inter winding measurement	10
2	2.1.5 Characteristics of SFRA plot	10
	2.1.5.1 Regions of the SFRA plot	10
	2.1.5.2 Behavior of the SFRA plot	12
	2.1.6 Classification of failure modes using SFRA	14
2.2 1	Dissolve Gas Analysis (DGA)	16
	2.2.1 Formation of gases	16

	2.2.1.1 Decomposition of oil in power transformers	16
	2.2.1.2 Decomposition of cellulosic insulation	16
	2.2.1.3 Other sources of gas	17
	2.2.2 Types of faults	17
	2.2.3 Diagnosis tools	18
	2.2.3.1 Key Gas analysis	19
	2.2.3.2 Dornenburg's analysis	20
	2.2.3.3 Rogers's Ratio analysis	21
	2.2.3.4 Duval's Triangle analysis	22
	2.2.4 Gas concentration levels	24
	2.2.4.1 Typical concentration values	24
	2.2.4.2 Calculating own 90% typical values for a network	25
Chapter	3- DATA ANALYSIS AND OUTPUTS	
3.1	SFRA Data Collection	26
	3.1.1 Measuring instrument	28
	3.1.2 Measurement data format	29
3.2	SFRA Data Analysis	29
	3.2.1 Comparison tools	30
	3.2.1.1 Absolute Sum of Logarithmic Error (ASLE)	30
	3.2.1.2 Cross correlation coefficient (CCF)	31
	3.2.1.3 Turning function and trace comparison	32
3.3	DGA Data Collection	34
	3.3.1 Oil sample collection and measurement of gases	34
3.4	DGA Data Analysis	36
3.5	Development of the Methodology for Condition Assessment	38
	3.5.1 SFRA approach	38
	3.5.2 DGA approach	41
	3.5.3 The method flow	43
	3.5.4 MATLAB Computing Tool	46
Chapter	4- CASE STUDIES	
4.1	Case Study 01	49

4.2	Case Study 02	53
4.3	Case Study 03	56
4.4	Case Study 04	62
Chapter	5- CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	68
5.2	Recommendations	71
	5.2.1 Future works	72
Reference	e List	73
Appendices		75

LIST OF FIGURES

Figure No.	Description	Page
Figure 2.1:	Two port network	6
Figure 2.2:	Typical SFRA plot	7
Figure 2.3:	Schematic of the frequency response measurement circuit	9
Figure 2.4:	Separation of the regions for the study purpose	11
Figure 2.5:	Parallel and series resonant point	13
Figure 2.6:	n-stage lumped network with mutual coupling	14
Figure 2.7:	Graphical representation of Duval's triangle	23
Figure 3.1:	Test connections for the measurements	27
Figure 3.2:	Overview of the OMICRON FRAnalizer	28
Figure 3.3:	Deviation in gain of two SFRA measurements	30
Figure 3.4:	Representation of the Turning Function of a SFRA measurement	33
Figure 3.5:	Glass syringe used to collect oil sample	34
Figure 3.6:	Adding air in to the syringe through a CO ₂ filter and shake for gas extraction	35
Figure 3.7:	Diagram of gas chromatograph	35
Figure 3.8:	Flow chart of the method for concision assessment using SFRA and DGA data	44
Figure 3.9:	Snapshot of the GUI of the computing tool	46
Figure 4.1:	AssessCon condition prediction for Kiribathkumbura TR01	50
Figure 4.2:	HV open SFRA measurement of Kiribathkumbura TR01	51
Figure 4.3:	Zoomed view of the deviated area shown in Figure 4.2	51
Figure 4.4:	AssessCon condition prediction for failed Ukuwela TR01	54
Figure 4.5:	SFRA plot of Ukuwela TR01 for HV open configuration	55
Figure 4.6:	SFRA plot of Ukuwela TR01 for HV short configuration	55
Figure 4.7:	SFRA plot of Ukuwela TR01 for LV open configuration	56
Figure 4.8:	AssessCon condition prediction for Veyangoda TR02	58
Figure 4.9:	LV open SFRA measurement of Veyangoda TR02	59
Figure 4.10:	Zoomed view of the deviated area shown in Figure 4.9	59
Figure 4.11:	HV short SFRA measurement of Veyangoda TR02	60
Figure 4.12:	Zoomed view of the deviated area shown in Figure 4.11	60
Figure 4.13:	AssessCon condition prediction for Kilinochchi TR03	63

Figure 4.14:	Deviation in the low frequency range of HV open SFRA	
	measurement	64
Figure 4.15:	Deviation in the low frequency range of LV open SFRA	
	measurement	64
Figure 4.16:	AssessCon condition prediction for Kilinochchi TR03 after core	
	demagnetization	66
Figure 4.17:	Frequency response of HV open after demagnetizing	66
Figure 4.18:	Frequency response of LV open after demagnetizing	67

LIST OF TABLES

Table No.	Description	Page
Table 1.1:	Assessment of Transformer Health Condition	03
Table 2.1:	Frequency sub band sensitivity	15
Table 2.2:	Key gas analysis	19
Table 2.3:	Status information	19
Table 2.4:	Key gas fault diagnosis	20
Table 2.5:	Dornenburg's limits for individual gases	21
Table 2.6:	Dornenburg's diagnosis	21
Table 2.7:	Fault gas ratios	22
Table 2.8:	Roger's ratio diagnosis	22
Table 2.9:	Duval's triangle fault zones	23
Table 2.10:	Typical gas levels of Power Transformers (ppm)	24
Table 3.1:	Calculated 90% gas concentration values	37
Table 3.2:	Ranges of 90% typical concentration values observed in power	
	transformers given in IEC guidelines	37
Table 3.3:	Categorization limits for SFRAI	41
Table 3.4:	Weights and scores allocated for the each gas based on their level of	
	presence	42
Table 3.5:	Categorization of transformers according to the level of gases	43
Table 3.6:	Overall condition prediction	46
Table 3.7:	Algorithm for the overall condition prediction	48
Table 4.1:	Gas concentrations recorded in Kiribathkumbura TR01	49
Table 4.2:	Gas concentrations recorded in Ukuwela TR01	50
Table 4.3:	Gas concentrations recorded in Veyangoda TR02	53
Table 4.4:	Test results of magnetic balance test of Kilinochchi TR03	54
Table 4.5:	Calculated indexes based on SFRA measurement data for	
	Kiribathkumbura TR01	57
Table 4.6:	Gas concentrations recorded in Kiribathkumbura TR01	57
Table 4.7:	Calculated indexes based on SFRA measurement data for Ukuwela	
	TR01	62
Table 4.8:	Gas concentrations recorded in Ukuwela TR01	62
Table 4.9:	Calculated indexes based on SFRA measurement data for Veyangoda	
	TR02	65

LIST OF ABBREVIATIONS

Abbreviation	Description
CCF	Cross Correlation Coefficient
CEB	Ceylon Electricity Board
DGA	Dissolve Gas Analysis
DGAI	Dissolve Gas Analysis Index
GS	Grid Substation
HV	High Voltage
LV	Low Voltage
SFRA	Sweep Frequency Response Analysis
TDCG	Total Dissolved Combustible Gas

LIST OF APPENDICES

Appendix	Description	Page
Appendix-A:	Sample set of data of a SFRA measurement	75
Appendix-B:	Calculated average deviations in dB	76
Appendix-C:	Calculated CCF values	80
Appendix-D:	Calculated distance values correspond to turning functions of SFRA	
	measurement	84
Appendix-E:	Weights and scores derived for the calculation of each index, for	
	four regions	88
Appendix-F:	Calculated values for ASLE, CCFI and DisTF for four regions	100
Appendix-G:	The SFRAI values for the four regions	103
Appendix-H:	A sample test report of dissolved gas concentration measurement	104
Appendix-I:	Concentration levels of dissolved gases and the different	
	diagnoses based on the concentration	105
Appendix-J:	DGAI and categorization of transformers	108
Appendix-K:	MATLAB coding of the computing tool	111