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Abstract 

 

Coronary cine-angiography is an invasive medical image modality, which is widely used in 
Interventional Cardiology for the detection of stenosis in Coronary arteries. Quantitative 
coronary analysis is one of the demanding areas in medical imaging and in this study a semi 
automated quantitative coronary analysis method has been proposed. Direct coronary cine-
angiogram frames are processed in order to obtain the features of lumen such as, vessel 
boundary, skeleton and luminal diameter along the vessels’ skeleton as the results. The 
proposed method consists of four main implementation phases namely, pre-processing, 
segmentation, vessel path tracking and quantitative analysis. The visual quality of the input 
frames is enhanced within the pre-processing phase. The proposed segmentation phase is 
implemented based on a spatial filtering and region growing approach. A clinically important 
vessel region is processed to detect the vessel boundary and skeleton, which is required as 
prior knowledge for quantitative analysis. Moreover, the vessel diameter is computed while 
tracking the vessel skeleton path starting from a given seed. The proposed segmentation 
method possesses 93.73% mean segmentation accuracy and 0.053 mean fallout rate. 
Moreover, the proposed quantitative analysis method has been validated for assessing its’ 
technical supportability using a clinically approved data set. As a result of that, this proposed 
method computes the vessel diameter along the vessel skeleton in single pixel gap and 
develops the ability to determine the diameter stenosis as the quantitative analysis results. 
Additionally, the clinical feasibility of the proposed method has been validated to emphasize 
the clinical usability. Moreover, this study can be further extended to make clinical decisions 
on stenosis through the functional significance of the vasculature by using proper medical 
image modality like biplane angiography.  

 

Key words: motion stabilization, vessel segmentation, vessel tracking, quantitative coronary 
analysis 
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CHAPTER 1  

INTRODUCTION 

Coronary Cine-angiogram (CCA) is one of the invasive medical image modalities 

used in interventional cardiology for the detection of luminal obstructions or stenosis 

in Coronary Artery (CA) vasculature. It provides excellent visualizations of the CA 

lumen and the clinical judgments based on angiography are subjective. Hence, it 

leads to overestimation and underestimation of the detected stenosis and causes 

negative effects to the patients’ quality of life. Angiography based quantitative 

coronary analysis is known as the way of assessing the detected stenosis in an 

objective manner and this research study is done for devising a novel method to 

objectively assess the severity  of stenosis recorded in CCAs. This thesis has been 

elaborated the introduction to the problem, research background, methodology, 

experimental methods, results and discussion of the study comprehensively in the 

following chapters. Moreover, the objective of this chapter is to discuss about the 

biological and medical background of the domain of this research study, which is the 

CA vasculature.  

The CAs are the blood vessels that supply Oxygen and nutrients to the heart muscles. 

Therefore, at the very outset, it is important to discuss about the anatomy of the 

human heart and the blood vessels to recognize the organization and interrelation 

ship among them. Hence, the first section of this chapter is allocated to discuss about 

the anatomy of human heart and the blood vessels broadly. Since this study is based 

on CAs, it is important to emphasize the anatomy of the CA vasculature 

comprehensively. Thus, the structure and localization of the main CAs on heart are 

discussed as the second section of this chapter. Further, the images of heart, CAs and 

arterial diseases are illustrated. A discussion about the common CA diseases is 

included in the next section of this chapter. Subsequently, the clinically relevant 

medical image modalities that are widely used in diagnosing the CA diseases have 

been elaborated with possible illustrations. The treatment options for the clinically 

diagnosed CA diseases are also in the fifth section of the chapter. The next section of 

this chapter briefly emphasizes the problems in coronary angiography. Moreover, the 
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objectives of this research study have been elaborated consequently. Finally, the 

chapter organization of this thesis is elaborated based on the chapter objectives and it 

makes easy for navigation to the interesting topics of this research study promptly.  

1.1 Heart anatomy and blood supply to the heart  

This section emphasizes the anatomy of the heart and the blood vessels to realize the 

organization and the functional relationship among them.  

1.1.1 Anatomy of human heart 

The heart is a hollow muscular organ, which placed in thoracic cavity in the 

mediastinum between the lungs [1]. It is about 10cm long and weights about 225g in 

women and about 310g in men. It lies towards the left side in human body. The base 

of the heart lays above and to the right and the apex lays below and to the left.   

There are various organs and vessels placed around the human heart. The apex of the 

heart positioned inferiorly on the central tendon of the diaphragm and the great blood 

vessels i.e. the aorta, superior vena cava, pulmonary artery and pulmonary veins are 

placed superiorly. The esophagus, trachea, left and right bronchus, descending aorta, 

inferior vena cava and thoracic vertebrae are positioned posteriorly to the human 

heart and the lungs are placed laterally. Further, left lung overlaps the left side of the 

heart. The sternum and ribs are positioned anteriorly to the heart. Figure 1.1 depicts 

the organs and vessels associated with heart clearly.  

 

Figure 1.1: Organs and vessels associated with heart [1]. 
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The heart is composed of three layers of tissues namely pericardium, myocardium 

and endocardium. Further, the heart consists of four chambers. Top left and right side 

chambers are known as left and right atrium respectively and bottom left and right 

chambers are known as left and right ventricle. The wall between the right and left 

side atrium and ventricle is known as septum.  The atrium and the ventricle of the 

same side are separated by an atrio-ventricular valve. These valves are made of 

cusps. The left atrio-ventricular valve has two cusps and it is called the mitral valves, 

while the right atrio-ventricular valve has three cusps and it is called the tri-cuspid 

valve. Figure 1.2 depicts the interior of the heart.    

 

The main function of the heart is to maintain circulation of blood throughout the 

body. Deoxygenated blood (represents in blue color) from the body returns to the 

right atrium through superior and inferior vena cava. After the right atrium is filled 

with this deoxygenated blood, it contracts and tri-cuspid valve opens and blood is 

pumped in to the right ventricle in the heart. When the right ventricle is filled with 

blood, the tri-cuspid valve is closed so as to prevent blood from flowing back in to 

the atrium. Then, the right ventricle contracts and pulmonary valves, which are 

known as semilunar value opens and blood is pumped into the pulmonary artery and 

Figure 1.2: Interior of the heart [1]. 
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flows into the lungs. Afterwards, the semilunar valves are closed to prevent the blood 

from flowing back in to the ventricle. Oxygenated blood (represents in red color) 

from lungs returns to the left atrium of the heart via the pulmonary veins. After the 

left atrium is filled with oxygenated blood it contracts. Then the mitral valves open 

and blood is pumped in to the left ventricle. This occurs simultaneously as the right 

atrium pumps blood in to the right ventricle on the other side of the heart. After the 

left ventricle is filled with blood, the mitral valves close and aortic valves placed 

between the ventricle and the aorta are opened. The left ventricle contracts and 

oxygenated blood is pumped in to the aorta to be supplied to all parts of the body. 

This happens simultaneously as the right ventricle pumps blood in to the pulmonary 

artery on the other side of the heart. The aortic valves quickly close to prevent blood 

from flowing back to the heart. In the meantime, the atria are filled with blood and 

the cycle repeats itself. Figure 1.3 represents the directions of the blood flow through 

the heart.  

 

The cardiac cycle repeats itself to maintain the constant circulation of blood 

throughout the body. During a cardiac cycle the heart contracts (systole) and relaxes 

(diastole), at 60 to 80 times per minute. Moreover, it consists of three functions 

 

Figure 1.3: Blood flow through the heart [1].  
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namely; atrial systole (contraction of the atria), ventricular systole (contractions of 

the ventricles) and complete cardiac diastole (relaxation of the atria and ventricles) 

per cardiac cycle.  

1.1.2 Anatomy of blood vessels   

This section emphasizes some important facts about blood vessel anatomy and the 

different types of blood vessels that carry blood throughout the body. The heart 

pumps blood through vessels, which vary in size, structure and function. Thus, 

different types of vessels can be identified in the human vascular system namely; 

arteries, arterioles, capillaries, venules and veins. The formation of different types of 

blood vessels is clearly depicted in Figure 1.4 and in accordance with that figure, the 

blood vessels (artery and veins) have three layers of tissues namely inner layer 

(tunica intima), middle layer (tunica media) and outer layer (tunica adventitia). The 

middle layer also known as tunica media gradually smoothen when the artery 

branches off and reach capillary level and gradually congeal when it forms venules 

and veins.  

 

 

Figure 1.4: Different types of blood vessels [1]. 
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Arteries transport oxygenated blood away from the heart (except pulmonary artery) 

under high pressure. Arterioles are tiny branches of arteries that lead to capillaries 

and transport blood from arteries to capillaries. Capillaries are tiny blood vessels and 

formed as a network of capillaries in most of the organs and tissues of the body. 

Capillary walls are made out of single cell layer and permit the exchange of Oxygen 

and other substances between the tissues and blood. Oxygen and water are mainly 

absorbed by the tissues from blood and Carbon Dioxide and waste substances are 

released back into the blood. As the next step, venules are formed and drains blood 

from capillaries into veins. Finally, the veins are formed to complete the returning of 

deoxygenated blood (except pulmonary vein) to the heart. The walls (outer structure) 

of veins consist of three layers of tissues that are thinner and less elastic than the 

corresponding layers of arteries and include valves that aid the return of blood to the 

heart by preventing blood from flowing in the reverse direction.       .     

1.2 Blood supply to the heart  

The blood supply to the heart is known as coronary circulation. CAs are branched 

from the aorta immediately distal to the aortic valve. There are two main CAs formed 

from aorta namely; Left Coronary Artery (LCA) and Right Coronary Artery (RCA). 

Moreover, it has been reported that 4% of people have a third, the Posterior CA [2]. 

LCA supplies blood mainly to the left side of the myocardium (muscular tissues of 

the heart) and is divided into two branches, Left Anterior Descending Artery (LAD) 

and Circumflex Artery (CX). The LAD travels in the anterior inter-ventricular 

groove that separates the right and the left ventricles, in the front of the heart and the 

CX travels in the left atrio-ventricular groove that separates the left atrium from the 

left ventricle. Further, the CX moves away from the LAD and wraps around to the 

back of the heart. The RCA travels in the right atrio-ventricular groove between the 

right atrium and right ventricle, as it wraps around to the bottom or inferior portion 

of the heart. Figure 1.5 depicts the main CAs for further clarification of its 

positioning on the heart. These CAs receives about 5% of blood pumped from the 

heart and it flows through these main arteries [3]. Further, these main CAs send 

smaller branch arteries into the myocardium that are known as myocardial arteries 
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and these myocardial arteries further divide into arterioles and capillaries to supply 

the blood to the myocardium. This process is known as perfusion.  

 

Changes in aortic pressure and compression of myocardial vessels during systole and 

changes in Oxygen demand are considered as the most important factors that can be 

affected to myocardial blood flow. During the cardiac cycle, contracting and relaxing 

heart muscles influences its own blood supply by changing the pressure in the aorta, 

which affects the flow of blood in to CAs and alternately compressing and releasing 

the blood vessels in myocardium. During the systolic phase the pressure of the 

contracting cardiac muscle compresses the intra myocardial vessels. In addition, the 

increase pressure in the ventricles causes further compression of the coronary vessels 

thus reducing myocardial blood flow. The heart myocardium needs significant 

amount of Oxygen to do its’ work. The heart myocardium has auto regulatory 

mechanism that affects blood flow based on the amount that is needed. During 

periods of increased activity or stress the cardiac arteries are dilated and increase 

their flow of blood.   

 

 

Figure 1.5: CA vasculature [1]. 
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Next section contains the information about the anatomy of CAs because, this 

knowledge is important to understand this research study. As mentioned above in this 

section, LAD and CX arteries of LCA and RCA are considered as main CAs. The 

CA segments and nomenclature published by J. T. Dodge, B. G. Brown, E. L. 

Bolson, and H. T. Dodge is used in this study to characterize the anatomy of the three 

main CAs [4]. Figure 1.6 depicts Dodge’s nomenclature of CA segments for further 

clarifications.  

 

Figure 1.6: CA segments and branch nomenclature. (a) RCA dominant; (b) 

balanced system; (c) LCA dominant [4]. (CD -Posterior Descending Artery 

(PDA), CP - Posterior wall branch, CI – Inferior wall branch, C4 – Fourth 

segment, A1 – First Acute Marginal Branch , A2 – Second Acute Marginal 

Branch) 



9 
 

1.2.1 Left Anterior Descending Artery (LAD)    

According to the Figure 1.6(a), the LAD artery appears to be a direct continuation of 

the LCA. As described in [4], the LAD artery is separated into four segments defined 

by its origin from the LCA, the first septal perforator (S1), the third septal perforator 

(S3 ), the cardiac apex, and its terminal point on the inferior wall. S3 was not marked 

in Figure 1.6(a) and is commonly arises near the bend of the LAD in Right Anterior 

Oblique (RAO) views and often is near the origin of the second diagonal branch. 

LAD consists of three largest septal branches (S1-S3) and the three largest diagonal 

branches (D1-D3). As mentioned in [4], a Median Ramus (MR) branch was present 

in some cases as an anatomic variant arising at the trifurcation of the LCA.  

The first diagonal branch of the LAD runs diagonally away from the anterior inter-

ventricular groove and towards the anterior-lateral portion of the heart. Moreover the 

Septal Perforators (SP) run into the septum and provide blood to septum. Figure 1.7 

depicts the anatomy of the LCA for further clarifications.  

Figure 1.7: Anatomy of LCA [1]. 
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1.2.2 Circumflex Artery (CX)    

As shown in Figure 1.7, the CX travels in the left atrio-ventricular groove that 

separates the left atrium from the left ventricle. Hence, the CX artery moves away 

from the LAD and wraps around to the back of the heart. The Obtuse Marginal 

Branch (OMB) is the major branch that the CX artery has possessed. Rarely, the 

Posterior Descending Artery (PDA) can be branched from the distal part of the CX 

artery. However, it is reported that in 85% of cases, PDA branches in the distal part 

of the RCA [5]. Hence in most of the cases, CX terminates without having PDA 

branches in the distal location of it. This feature is known as a non-dominant LCA 

system. Further, it is also named as balanced system or right dominant system. 

Figure 1.6 (b) depicts this right dominant system and Figure 1.6 (c) depicts the left 

dominant LCA system to indicate the difference between the two views. Moreover, 

CX artery in non-dominant system can be divided into three parts (C1-C3) by the 

OMB and the second marginal branches.  

1.2.3 Right Coronary Artery (RCA)  

The RCA originates from the right coronary cusp in aorta and travels in the right 

atrio-ventricular groove, between the right atrium and the right ventricle. As shown 

in Figure 1.8, the conus and the sino-atrial node branch are given off by the proximal 

part of the RCA. Moreover, RCA gives rise to the Acute Marginal Branch (AMB) 

that travels along the anterior portion of the right ventricle. Afterwards, the RCA 

continues to travel in the right atrio-ventricular groove. About 85% of cases, the 

RCA is a dominant vessel and give rise to the PDA branch. According to the vessel 

segment nomenclature described in [4] and [5], the RCA, with a right dominant 

anatomy, is divided into four parts between its origin, the first AMB, the third AMB 

and the PDA. 

Over the time, the waxy substance called plaque builds up inside the CAs and cause 

some negative consequences to the coronary circulation. These plaques are also 

known as atheroma and are considered as the major source for the CA disease. 

Generally, 50% of all cardiac deaths result from CA diseases [6]. The subject of the 
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next section of this chapter is about the atheroma, which is the main pathology of the 

coronary vasculature.   

 

1.3 Atheroma and its consequences  

According to the WHO, CA disease is a major life-threatening disease in Europe and 

America and the rates of it increasing in African and Asian countries annually   

almost proportional to the rate of development of these countries [7]. Moreover, the 

deposit of atheroma within arteries is the main reason for incident of CA disease. 

This section contains the information about the formation of atheroma in the CAs 

and its consequences with visual illustrations to elaborate the severity of the disease.    

1.3.1 Development of plaque 

Atheroma is the deposit of fatty material within the artery wall. It develops under the 

tunica intima of large and medium-sized arteries (Figure 1.9(a)). As shown in Figure 

1.9(b), the initial changes of atheroma show a fatty streak in the artery wall. Mature 

Figure 1.8: Anatomy of RCA [1]. 
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plaque accumulates cholesterol and other lipids, excess smooth muscle and fat-filled 

monocytes (foam cells) as shown in Figure 1.9(c) [1]. Matured plaque is covered 

with a rough fibrous cap and spread further along the artery wall and protrudes into 

the lumen when it is grown and is thick. As a result, the vessel lumen narrows and 

restricts the blood flow to a certain extent. Moreover, the plaque may rupture as 

depicted in Figure 1.9 (d) and expose sub intimal materials to the blood. This may 

cause clotting of the blood in a part of the circulatory system (also known as 

thrombosis) and narrowing of blood vessels (also known as vasospasm) to restrict the 

blood flow within the vessels further. 

 

 

Figure 1.9: Stages in the development of atheromatous plaque [1]. 
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1.3.2 Consequences of atheroma  

Atheromatous plaque may cause partial or complete obstruction of an artery. 

Atheroma causes ischaemia due to the luminal narrowing. Further, it results in the 

reduction of blood flow to the heart muscles, which obtain the blood from the 

narrowed artery. As a result, these effected myocardial tissues may die due to 

reduction in the supply of Oxygen and nutrients required for its normal functioning. 

Chest pain, which is known as angina is the main symptom of the ischemia.  

The complete obstruction of a CA is considered as occlusion that causes through 

atherosclerosis. As depicted in Figure 1.10, atherosclerosis is a process in which 

blood, fats such as cholesterol, and other substances build up within the artery walls, 

this forming plaque over a period of time. Finally, this plaque blocks the arteries 

completely and later it could be ruptured. These ruptured plaque causes blood to clot 

within the artery. As a consequence, the myocardial infarction occurs, which is 

considered as a serious consequence that causes death.  

 

 

Figure 1.10: The effect of atheromatous plaques [1]. 
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WHO has reported that 7.2 million global deaths occurred in 2008 due to ischaemic 

heart disease and it was the highest number of deaths reported out of all deaths under 

various disease categories [7]. As CA disease is one of the major life threatening 

conditions all over the globe, it is better to discuss about the available diagnosis 

methods used to detect and measure the severity level of ischaemia. The next section 

of this chapter will elaborate some of the available diagnosis methods widely used by 

the clinicians.       

1.4 Diagnosing CA disease   

The diagnosis method in CA disease can be divided into two categories namely 

invasive techniques and non-invasive techniques [8]. The main difference between 

these two techniques is that the invasive techniques are  all catheter-based imaging 

techniques, which use contrast agents or imaging sensors carried to the desired 

location inside the vessel by a catheter and non-invasive techniques are not based on 

catheters[8].  X-ray angiography, Intra-vascular ultrasound (IVUS), Optical Coherent 

Tomography (OCT) and Fractional Flow Reserve (FFR) can be listed as invasive 

diagnosis methods. Moreover, stress echo-cardiography, Single Photon Emission 

Computed Tomography (SPECT), Positron Emission Tomography(PET), Cardiac 

Magnetic Resonance Imaging (CMRI), Multi Slice Computer Tomography (MSCT) 

are considered as non-invasive diagnostic techniques [9]. Following sub sections 

briefly explain about each of these diagnostic modalities under the aforementioned 

two categories for further clarifications.      

1.4.1 Non- invasive diagnostic methods 

This section briefly describes the non-invasive diagnostic techniques used in the 

cardiac clinical procedures namely Stress echo-cardiography, SPECT, PET, CMRI 

and MSCT. 

Stress echo-cardiography 

Stress echo-cardiography uses ultrasound imaging to determine how well the heart 

muscles are working to pump blood to the body [10].  During the test, a resting echo-

cardiogram (a test uses ultra sound waves to create moving pictures of the heart) is 
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done first. Afterwards, the patient is asked to exercise on a treadmill or stationary 

bike and while the patient is exercising the doctor monitors the blood pressure and 

heart rhythm. When the patients’ heart rate reaches peak levels, the doctor will take 

ultrasound images of the heart to determine whether the heart muscles are getting 

enough blood and Oxygen while exercising. These images represent the heart 

muscles, which do not work well when the heart rate is increasing. Moreover, it 

indicates that part of the heart may not be getting enough blood or Oxygen because 

of narrowed or blocked arteries [11]. Figure 1.11 depicts the different views of the 

stress echo-cardiography. The ventricles and atria are marked in each view depicted 

in this image to recognize the placement of them.    

 

Figure 1.11: Views of stress echo-cardiography. (RA- right atrium, RV- right 

ventricle, LA- left atrium, LV – left ventricle) 
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SPECT 

SPECT uses gamma rays for imaging and it is considered as a nuclear medicine 

topographic imaging technique. It produces three-dimension planar images using 

gamma cameras [12]. SPECT scans use radioactive material called tracers. These 

tracers are injected in to the blood circulation, which is taken up by living heart 

muscle. Then the gamma camera captures the signals from the tracer as it moves 

around the chest and these signals are converted into images by a computer [13].  

The underlying principle of SPECT is that under conditions of stress, the diseased 

myocardium receives less blood flow than normal myocardium. As shown in Figure 

1.12, this method was developed to evaluate myocardial perfusion and viability. It is  

applied both at rest and after exercise or pharmacologic stress to assess ischeamia 

[12].  

 

 

 

 

Figure 1.12: SPECT imaging [12]. (The upper row shows short-axis slices after 

stress condition and the lower row shows the same slices when the body is at rest. 

Arrows indicate an ischeamic region of the heart wall). 
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PET 

PET is also considered as a nuclear medicine topographic imaging technique and 

produces three-dimension image of functional processes in the body. In cardiac PET 

imaging, three positron-emitting radiotracers are used for assessing myocardial 

perfusion and evaluating myocardial glucose metabolism and viability [11]. These 

tracers are injected in to the blood circulation to take it up to living heart muscle. The 

tracer is chemically incorporated in to a biologically active molecule and has a 

waiting period while the active molecule becomes concentrated in tissues of interest. 

Afterwards, these injected radiotracers undergo positron emission decay and emits a 

positron. Encountering of positron with electron annihilates them both and produces 

gamma rays as a result. These gamma rays are detected by the gamma camera and 

converted them in to the images by a computer. 

Cardiac MRI (CMRI) 

The MRI uses radiofrequency and high intensity magnetic fields to generate three-

dimension tomographic images. CMRI images have high resolution and excellent 

tissue contrast [11]. MRI techniques were developed to localize the small amount of 

radio frequency energy generated from spinning hydrogen protons when a patient is 

placed in a strong magnetic field. The CMRI technique is as follows; the human 

body is mainly composed of water molecules, which each contain two hydrogen 

nuclei or protons and these protons align with the direction of the field when a 

patient goes inside the powerful magnetic field of the scanner. At this stage, a second 

radiofrequency electromagnetic field is turned on causing the protons to absorb some 

of its energy. Afterwards, this radiofrequency electromagnetic field is turned off. 

During this time, the protons release previously absorbed energy at a radiofrequency, 

which can be detected by the scanner. The position of protons in the body can be 

determined by applying additional magnetic fields during the scan, which allows an 

image of the body to be built up. Moreover, the CMRI test represents the visuals of 

heart’s structure including muscle, valves and chambers. Additionally, it determines 

how well blood flows through the heart and major vessels. Figure 1.13 depicts a 

CMRI recorded under the rest and stress condition to determine the perfusion.   
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MSCT   

Traditional X-ray gets internal image of a section of the body only from one angle. 

The MSCT provides multiple X-ray images of a body section from various angles. It 

gives high-resolution images of bones and soft tissues inside the body to help 

clinicians identify defects easily and accurately. MSCT captures series of cross 

sectional images of the body, which are put together to form complete three-

dimensional picture. Cardiac MSCT, could produce images of the beating heart, and 

visualize calcium and internal blockages in CAs. Moreover, the advent of the 

technically improved 16-row MSCT scanner, with higher spatial and temporal 

resolution, has permitted more reliable detection of coronary plaques and significant 

obstructive coronary lesions [14]. Figure 1.14 depicts the visual illustration of 

occlusion and RV branch in the mid part of the RCA produced as the output of 

MSCT.  

 

 

 

Figure 1.13: Cardiac MRI. (a) recorded under rest, (b) recorded under stress 

(arrow head pointing to sub endo-cardial perfusion defect.) [11]. 
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1.4.2 Invasive diagnostic methods   

As mentioned at the beginning of this section, all these invasive diagnostic methods 

are catheter based imaging techniques with contrast agents or imaging substance 

carried to the desired location inside the vessel by a catheter [8]. This section briefly 

describes X-ray angiography, IVUS, OCT and FFR techniques, which are used as the 

invasive diagnostic methods in cardiac clinical procedures.  

X-ray angiography 

X-ray angiography or coronary angiography remains the main investigation for 

identifying CA narrowing related to CA disease and is a definitive, gold standard 

diagnostic procedure, which is a widely recommended as a preliminary diagnostic 

modality in cardiac clinical procedures [15]. It uses special dye (contrast agent) and 

X-rays to examine the CAs and provides the excellent two dimensional visualizations 

of the CA lumen. It is important to note that this research study is also based on the 

coronary angiography. Hence, this section discusses about the angiography 

procedure carried out in the cardiac catheterization lab (cath lab) and is also known 

as cardiac catheterization.  The comprehensive discussion and analysis of this image 

modality is included in Chapter 2.  

 

Figure 1.14: MSCT Imaging. (Arrow head points to an occlusion and arrow 

points to RV branch of the RCA.) (a) conventional angiography image; (b) 

corresponding volume rendered CT image; (c) CT of maximum intensity 

projection [14]. 
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According to the cardiac catheterization procedure, the instruments for diagnosis and 

intervention of the CAs can be introduced through several access points in the human 

body such as radial artery, brachial artery or femoral artery. Out of them, the femoral 

artery is often favored for its size, ease of insertion, and least tortuous path to the 

heart. As the initial step, the shaved and sterilized lateral groin of the patient is 

anesthetized with local anesthesia. Then the Cardiologist locates the insertion 

position in the femoral artery and inserts the seldinger needle into the femoral artery 

at an angel between 350 and 450. As the next step, a guide wire is inserted through 

the seldinger needle in to the femoral artery. After the successful insertion of the 

guide wire the seldinger needle is removed and an arterial sheath with dilator is 

inserted over the guide wire. After that, the guide wire and dilator are removed from 

the arterial sheath. Now, the sheath is in place to receive a catheter. Thereafter, a soft 

flexible catheter is pushed and threaded up to the heart and this procedure is 

monitored using a continuous X-ray imaging device called a fluoroscope. At this 

point the tip of the catheter is positioned just inside the CA (ostium of the CA) to be 

imaged. In order to visualize the CA lumen, a special dye (contrast agent) is injected 

into the CA through the catheter. The dye allows the fluoroscope to take X-ray 

images called angiograms of the arteries’ interior. Any blockages will be clearly 

identified by the arteries filled with the dye. Figure 1.15 depicts the visual 

illustrations of cardiac catheterization and a view of a coronary angiogram of CX 

artery.   

During coronary angiography, full-motion X-ray images are viewed and recorded 

with the use of a video camera, as contrast agent is manually injected into the CA. In 

the majority of modern cardiac catheterization suites, the images are recorded 

digitally. Many labs also film a cine-angiographic 35 mm copy for review and 

archiving purposes. Various views or projections of the coronary angiograms are 

obtained by rotating the X-ray video camera around the patient and Chapter 2 

broadly discusses about these angiogram views further.  
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IVUS 

IVUS test generates images of inside the blood vessels and is based on sound signals. 

It uses a catheter with a tiny ultrasound wand to the top of it [16]. During the IVUS 

procedure, this ultrasound catheter is inserted into an artery in patients’ groin area 

and moved up to the CA over the guide wire, so that it is placed distal to the lesion 

[17]. A computer measures the ultra sound waves reflect off blood vessels, and 

convert the ultra sound waves into images. Output provided by the IVUS can be used 

to analyze the CAs both qualitatively and qualitatively. Visualizing the inside of the 

normal CA, studying the morphology of atherosclerosis can be emphasized as major 

qualitative analysis based on IVUS. Further, measuring atheroma and vessel 

diameter are some of the instance for quantitative analysis that can be done using the 

IVUS. Moreover, IVUS can be used to determine changes in vascular dimensions 

during the development of atherosclerosis (arterial remodeling) [18].  Figure 1.16 

represents visual illustration of IVUS based plaque characterization and arrows in the 

sub images represent plaque deposits in CA wall [17].  

 

 

Figure 1.15: Angiogram procedure. (a) catheter placement; (b) placement of the 

tip of the catheter at the beginning of RCA; (c) coronary angiogram image [1]. 
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OCT   

OCT is another medical image modality, which is used to get the internal images of 

the blood vessels. The image source of OCT is Near-Infrared (NIR) light. Compared 

to IVUS, OCT delivers high resolution internal images of the blood vessels. 

Similarly as in IVUS, a beam of NIR light is directed at the CA during the cardiac 

OCT procedure. Then some of the NIR light reflects from inside the artery tissue and 

some of it is scattered. This scattered NIR light causes an effect called "glare" and 

using OCT, the glare can be filtered out. The reflected NIR light that is not scattered 

can be detected and used to form the OCT image of the CA. OCT clearly visualizes 

the plaque inside an artery. Moreover, it assists to find out the extent of fat or clot in 

inside an artery. Not only that, but also OCT assists during the cardiac stenting 

procedure for taking  precise measurements before and after placing stents in 

diseased arterial regions [19]. Figure 1.17 depicts two sub images of OCT of CA, 

which contained ruptured plaque with a thin fibrous cap at the site of an acute 

coronary syndrome culprit lesion [20]. 

 

 

Figure 1.16: IVUS plaque characterization. (a) concentric soft plaque (white 

arrows); (b) fibrous plaque (white arrows); (c) fibro calcified plaque with a 360° 

arch of Calcium (White arrows) [17]. 
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FFR 

FFR is a guide wire-based procedure that can accurately measure blood pressure and 

flow through a specific part of the CA. FFR measurement is defined as the ratio 

between the maximum achievable blood flow in a diseased CA and the theoretical 

maximum flow in a normal CA. Hence, the FFR value 1.0 is widely accepted as 

normal condition and the FFR value lower than 0.75-0.80 is generally considered to 

indication of myocardial ischeamia. In accordance with this measurement, it is clear 

that the FFR is a quantitative technique for evaluating the physiologic significance of 

a coronary stenosis and it can be measured during routine coronary angiography 

procedure.  During the FFR test, the ratio between coronary pressure distal to a CA 

stenosis and aortic pressure under conditions of maximum myocardial hyperemia is 

calculated by using a specific pressure wire. This ratio represents the potential 

decrease in coronary flow distal to the coronary stenosis [21][22]. Figure 1.18 

depicts the two FFR cases extracted from [23] for further clarification. Two 

angiography detected stenosis areas are marked in the two sub images represent in 

Figure 1.18 (arrow) and respective FFR readings are also included in those images 

for comparing the severity of the stenosis. Moreover, Appendix A enlists the strength 

and limitations of the cardiac medical image modalities discussed in this section. 

Figure 1.17: OCT imaging. (Arrows represent ruptured plaque with a thin fibrous 

cap at the site of an acute coronary syndrome culprit lesion.) [20]. 
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1.5 Treatments for CA disease  

Although CA disease cannot be cured, treatment can help manage the symptoms and 

reduce the risk of further problems. Hence, the objective of this section is to 

highlight the available treatment methods recommended by the Cardiologists for 

managing the CA disease. It is noted that the CA disease can be managed effectively 

with a combination of lifestyle changes, medicine and, in some cases, surgery. 

Nonetheless for most patients, treatment methods are recommended based on the 

diagnosis results provided by the cardiac image modalities mentioned in the section 

1.4 above.    

Positive lifestyle changes or CA disease preventing practices help patients to mitigate 

the risk of causing CA disease. The main objective of these practices is to reduce the 

risk of developing CA disease by maintaining the blood pressure and cholesterol 

levels are under control. Having a healthy balanced diet, being more physically 

active, keeping to a healthy weight according to the body mass index, giving up 

smoking and alcohol consumption, keeping diabetes level under control and taking 

any medication prescribed can be listed as the CA disease prevention practices. 

Figure 1.18: FFR results. (a) represents 0.71 FFR value for the marked stenosis 

area (arrow); (b) represents 0.57 FFR value for the marked stenosis area (arrow) 

[23]. 
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CA disease can be controlled by medical management as well. Many different 

medicines are used to treat CA disease and the aim of these medicines is to either 

prevent narrowing of CA that reduce the risk of blood clot formation or widen the 

arteries. Antiplatelets, statins, beta-blockers, nitrates, ACE (Angiotensin-Converting 

Enzyme) inhibitors, angiotensin II receptor antagonists and Calcium channel 

blockers are the types of medicines prescribed for the CA disease.  

If the blood vessels are narrowed as the result of a build-up of atheroma or if the 

symptoms cannot be controlled using medication, interventional procedures or 

surgery may be recommended by the Cardiologists. Coronary angioplasty and CA 

bypass graft are the main procedures used to treat blocked arteries.  

A coronary angioplasty is invasive procedure used to widen blocked or narrowed 

CAs to improve blood flow to the heart muscle. It is also known as Percutaneous 

Coronary Intervention (PCI). Before the procedure is done; it is required to detect the 

location and extent of the blockages in CAs using a coronary angiogram. There are 

two types of coronary angioplasty procedures available namely; plain balloon 

angioplasty and angioplastry stenting. In balloon angioplasty, a small balloon-tipped 

catheter (balloon catheter) is guided to the site of blockage from the incision made in 

either groin or wrist, following the administration of local anesthesia. As depicted in 

Figure 1.19, once the catheter is correctly placed at the location of the blockage, the 

balloon is inflated to compress the plaque. As a result of that, the arterial lumen is 

widened and increases the blood flow within the treated CA. Subsequently, the 

balloon is deflated and removed along with the catheter.  

The angioplasty stenting procedure is also similar to balloon angioplasty, but 

involves the use of small, expandable metallic scaffolding called “stent”, along with 

the balloon. Further, this stent is placed around the balloon in as a compressed form. 

As depicted in Figure 1.20, when the balloon is inflated, the stent expands and 

compresses the plaque. Finally, the balloon is deflated and removed, leaving the stent 

within the treated CA. Moreover, this stent acts as a support to keep the artery open.  
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CA bypass grafting or bypass surgery is performed in patients whose arteries become 

narrowed or blocked completely. The Cardiologists recommend this surgery after 

analyzing the coronary angiogram of the patient. During the surgery, a blood vessel 

is inserted (grafted) between the aorta and a part of the CA beyond the narrowed or 

 

Figure 1.19: Steps of the balloon angioplasty [24]. 

 

 

Figure 1.20: Steps of the stent angioplasty [24]. 
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blocked area. As a result of that, the blood bypasses the narrowed sections of CA and 

supplies the Oxygen and nutrients to the effected myocardium.    

1.6 Problem in brief 

According to the literature evidence and empirical studies, two main factors, which 

make negative consequences for angiography based stenosis assessment has been 

identified. Those are subjective stenosis assessment and visual degradations in 

angiograms. The results of the recent research study have been published that the 

subjective stenosis assessment leads to overestimations and underestimations of the 

detected stenosis [23][25]. Further, it is proven by Tonino in his latest investigation 

of finding the relationship between angiography and functional severity of coronary 

artery stenosis in the Fractional Flow Reserve Versus Angiography in Multivessel 

Evaluation (FAME) study [23]. Further, it is apparent that this subjective stenosis 

assessment effects to the patient’s quality of life adversely. 

Noise, poor opacification, non-uniform illumination, motion and superimposition of 

vessels with other organs like heart, ribs and spine are considered as the factors, 

which cause visual degradations in angiograms[25-29]. These factors create some 

disturbances in subjective diagnosis procedures. Moreover, recent research attempts 

have reported that these visual degradation factors cause some hindrances when 

formulating objective stenosis diagnosis approaches based on coronary angiography 

[25-29].  These negative consequences of angiogram image modality have been 

clearly elaborated in Chapter 2 and Chapter 3 with the literature evidences. 

Even though angiography has limitations in quantitative assessment and effects of  

visual degradations, it is still the most common modality for clinicians to assess the 

severity of stenosis during PCI[26]. One of the main reasons for that is, it provides 

excellent visualizations of arterial lumen, which can be used for stenosis diagnosis 

and treatment planning. Moreover, it is a low cost invasive image modality compared 

to IVUS, FFR and OCT and the equipment is readily available in most hospitals, 

even in less-developed countries. In addition to that, all cardiologists are familiar 

with the equipment, and have experience in interpreting the resulting images. 
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Further, the angiography is a relatively short imaging procedure, which facilitates 

effective clinical planning [30].  

1.7 Study aim and objectives  

The above brief problem discussion, has revealed the necessity of formulating an 

automated mechanism for precisely diagnosing CA disease quantitatively by 

processing the coronary angiograms [31]. Therefore, the potential to improve the 

angiography for objectively assessing the severity of the detected stenosis in CAs has 

been recognized. 

During the cardiac catheterization, CCAs are also produced under different views. A 

CCA consists of a sequence of frames that visualize the flooding of contrast agent 

within the CA vasculature. This feature has been identified as a good indicator to 

formalize a mechanism to reveal the functional significance of the vessels using the 

angiography image modality. As a functional feature, it has been considered to 

compute the flow velocity of vessels along the frame sequence of the CCA. 

However, from the literature, it has been revealed that very few research studies have 

been carried out in this area over the past decade. Hence, it has been decided to start 

this research study to improve the angiography medical image modality in order to 

detect and quantify the stenosis through CCA processing. 

Therefore, the prime aim of this research study is to device a novel method to 

improve the CCAs for quantitative coronary analysis by using a computer vision 

technique.  

The following study objectives have been derived in order to achieve the above aim;   

 Enhancing the CCA for better visualization of the CA vasculature: 

In this study objective, it is intended to reduce the observed and reported visual 

degradation factors such as non-uniform illumination, noise and global motion from 

the direct CCA to be processed. Uniformly illuminated, noise reduced and global 

motion stabilized framed of the processed CCA will be produced after 

implementation of this objective.  
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 Segmentation of the CA for extracting the luminal information: 

Prior to formalizing a mechanism for quantitative coronary analysis, it is mandatory 

to isolate the main arterial region, which is also known as foreground from each 

individual frame of the CCA to be processed. This will be the main reason for 

proposing an accurate segmentation method in this research study. Segmented 

vessel’s edge points and the medial axis points have been recognized as the 

important luminal information for this study.  

 Developing an algorithm for detecting uniformly deposited atherosclerotic 

plaque within a predefined region of the CA captured from the CCAs: 

In this study, in order to detect the uniformly deposited atherosclerotic plaque 

regions, a clinically important main CA region is isolated from the segmented CA 

tree visualized in each and every frame of the processed CCA. Moreover, this plaque 

located in the pre-defined segmented CA region can be detected by analyzing the 

rapid variations, which have occurred among the extracted luminal information. In 

order to achieve that, it is necessary to compute the diameter of the pre-defined 

segmented CA region by using possible algorithms. Hence, it is easy to locate the 

vessel diameter drops to determine the plaque regions.   

 Visualizing the severity level of the detected plaque as a supportive tool for 

making treatment decisions: 

The main target of this objective is to visualize the computed luminal information 

and vessel diameter along the selected vessel region depicted in the processed CCA. 

Moreover, it is intended to model a separate diameter distribution graph in the same 

view of the application to be developed as a supportive indicator for making 

diagnostic decisions.     

1.8 Organization of the thesis 

This thesis is organized into eight chapters to specify the significant aspects and 

outcomes of this research study. Some of the important aspects of coronary 

angiography for the CA disease diagnosis have been discussed in Chapter 2. The 
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hardware organization of the catheterization laboratory, fluoroscopy function, 

angiography views are broadly discussed in this chapter. Moreover, the stenosis 

grading methods and the problems of this image modality has been elaborated using 

literature evidence. Finally, the recent research attempts done for enhancement of 

angiograms, vessel segmentation and quantitative coronary analysis have been 

elaborated as the literature review.    

Chapter 3 emphasizes the overall research design and the pre-processing work 

carried out for enhancing the visual quality of the direct CCAs. Hence, this chapter 

discusses the proposed methodology for frame enhancement followed by the analysis 

of negative artifacts, which degrade the visual quality of the CCAs.  

It is indeed important to extract the CA tree from the CCA frame, which is being 

processed to objectively assess the severity of detected stenosis. Thus, the objective 

of Chapter 4 is to emphasize on a scientific approach to segment the CAs from the 

processed CCAs. .  

Chapter 5 elaborates on the experimental approaches implemented for extracting the 

clinically important luminal information such as vessel boundary, skeleton and vessel 

diameter. Moreover, a novel vessel path tracking algorithm and diameter detection 

algorithms have been presented in this chapter. 

Chapter 6 explains the validation methods and evaluation results of this research 

study. The critical discussion on the proposed method and the validation results are 

included in Chapter 7.  Finally, the recommendations and future extensions of this 

study have been clearly elaborated in Chapter 8.   

1.9 Summary   

This chapter provides comprehensive overview of the medical background of the 

domain of this research study. Firstly, it covers the anatomy of human heart and the 

blood vessels to emphasize the organization of these organs. Moreover, this chapter 

provides the detailed information about the anatomy of the main CAs namely; LAD, 

CX and RCA because those are the main blood supply channels to the heart muscles. 

CA disease and its consequences are discussed as the third section of the chapter. 
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After that, various non-invasive and invasive CA disease diagnosis techniques are 

presented with visual illustrations. In addition to that, a brief introduction about the 

main treatment methods recommended for CA disease is also presented clearly. 

Research problems, suggestions for improving this image modality and research 

objectives have been mentioned subsequently. Finally, the organization of this thesis 

according to its chapter contents is introduced to easily navigate to the relevant 

information of this study.       
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CHAPTER 2  

CORONARY ANGIOGRAPHY AS A DIAGNOSTIC MODALITY   

Coronary angiography is a definitive, gold standard and low cost diagnostic 

procedure for determining the presence and severity of CA disease. The introduction 

to this image modality and the catheterization procedure was already discussed in 

section 1.4.2. Hence, the main focus of this chapter is to elaborate some of the 

significant aspects of coronary angiography for CA disease diagnosis. The first 

section of this chapter introduces about the hardware organization of the 

catheterization laboratory (cath lab), fluoroscopy function and the aspects of contrast 

agent used for the catheterization comprehensively. Typically, the coronary 

angiograms are taken in different views to emphasize the various CA segments in 

order to clearly detect the diseased areas. The next section of the chapter contains 

information about these angiographic views with sufficient visual illustrations to 

easily recognize them separately. The angiography based stenosis grading methods 

have been presented as the third section of this chapter. In the subsequent section, the 

problems of this image modality have been elaborated with the literature evidence. 

Finally, this chapter is concluded by mentioning the recent research attempts carried 

out to improve the angiography image modality under three different areas namely; 

the enhancement of angiograms, vessel segmentation and quantitative coronary 

analysis.      

2.1 Principles and functions of catheterization hardware and equipment   

The objective of this section is to elaborate how the cardiac catheterization hardware 

components function together to produce the CCA for medical diagnosis. Therefore, 

initially, some important facts about the catheterization laboratory setup, main 

hardware components and the installation of them have been emphasized. After that, 

the attention is given to discuss about the fluoroscopy imaging system, which is the 

X-ray image modality used in the cardiac cath labs to generate the CCAs. Finally, 

this section explains about the features of the contrast material used to opacify the 

vessel structures during the angiography procedure.   
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2.1.1 Catheterization laboratory and setup  

The cath lab is setup with digital imaging equipment and computers for fluoroscopy 

and CCA, which is used for assessment of CA disease. Fluoroscopy is an imaging 

technique used to obtain real-time moving images of internal structures of the human 

body [32]. The fluoroscope is the device used to obtain such medical images. It 

shows a continuous X-ray image on a monitor, which is akin to an X-ray movie [33]. 

In cardiac catheterization, the fluoroscopy assists the doctor in guiding the catheter 

into a specific location in the heart. Moreover, it produces CCAs, which are the 

fluoroscopic motion-picture, recording of a blood vessel or of a portion of the 

cardiovascular system obtained after injecting a patient with a non-toxic radio 

opaque medium (contrast agent) [34]. The cine X-ray camera attached with the 

fluoroscope records these CCAs.  

Cath lab is a combined system of several major parts. Figure 2.1 depicts a schematic 

of the typical cath lab equipment and important parts of it are numbered as follows; 

1 C- arm  2 X-ray source tube 

3 Detector  4 Catheterization table 

5 X-ray generator  6 Monitors 

7 Control handle  8 Pedals  

9 Control room with diagnostic applications    

Following sections briefly explain about the major parts of the cath lab;  

The c-arm is the largest part of the cath lab system. It is installed either as a floor- 

mounted or ceiling suspended arc and consists of the X-ray source tube and the 

detector (Figure 2.1 label 1). According to Figure 2.1, it is clear that the X-ray source 

tube (label 2) is placed at the bottom of the c-arm and detector (label 3) is placed on 

top of it. As shown in Figure 2.2, the patient is laid on the cardiac catheterization 

table by positioning the detector of the c-arm above the patients’ chest and the X-ray 

source tube below the patients’ table (Figure 2.1 label 2). Moreover, the c-arm could 
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be rotated to the left or the right of the patient. These are known as the Left Anterior 

Oblique (LAO) and RAO views respectively. In addition to that, the c-arm can be 

rotate towards (cranial) and away (caudal) from the patients head. All these 

movements are achieved with the help of a control handle (Figure 2.1 label 7) that is 

situated near the hand of the operator. In addition to the c-arm movements, controls 

are also available to raise and lower the patients’ table, raise and lower the camera 

attached with the detector, change the magnification and to increase and decrease the 

size of the shutters.    

 

The two pedals that activate fluoroscopy and cine filming lie on the floor, near the 

operator's feet and each mode is turned on by stepping on it (Figure 2.1 label 8). For 

example, the operator will first step on the fluoroscope pedal and confirm a position 

(during test injection of a small amount of contrast agent) and then switch over and 

press the cine pedal during the contrast agent injection.  

 

 

Figure 2.1: Parts of the cath lab [35]. 
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The X-ray tube attached with the c-arm generates powerful X-ray pulses during the 

catheterization procedure. It should be a heavy-duty tube with high-heat capacity and 

improved heat dissipation. The X-ray generator, which is attached to the cath lab 

system energizes the X-ray tube by delivering the full current capacity of the X-ray 

tube in cine mode (Figure 2.1 label 5). The detector detects the X-rays, which pass 

through the patients’ body in order to form the X-ray images. In older cath lab 

systems an X-ray image intensifier and a video camera are placed in the detector and 

in latest models a flat panel detector replaces the X-ray image intensifier. 

The camera attached with the detector records the fluoroscopy images and those 

recorded images are visualized through the monitors, which are placed in the cath lab 

(Figure 2.1 label 6). A computer unit, which is installed with specialized digital 

image processing programs is located in the control room of the cath lab and is useful 

to diagnose and make decisions about the severity of the detected lesions (Figure 2.1 

label 9).   

As mentioned in this section, the CCAs are the fluoroscopic images that are used for 

making diagnostic decisions regarding the CA disease. Hence, it is important to 

Figure 2.2: Patient placement between the c-arm [35]. 
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discuss about the fluoroscopy imaging system further, to identify its’ X-ray image 

formation process and the next section of this chapter will elaborate it 

comprehensively.   

2.1.2 Fluoroscopy imaging system 

Fluoroscopy imaging system basically consists of the components that include an X-

ray tube, spectral shaping filters, a field restriction device (collimator), an image 

receptor, an image processing computer and a display device. The schematic of a 

fluoroscopic system using an X-ray image intensifier and a video camera is depicted 

in Figure 2.3.  

 

Figure 2.3: Schematic of a fluoroscopic system. (a) cross section; (b) 3-D view of 

angiography system [36]. 
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The X-ray source tube of the fluoroscope consists of an X-ray generator, X-ray tube, 

collimator and filter. The high-voltage generator and X-ray tube are used in most 

fluoroscopy systems to generate X-ray pulses in order to record the anatomical 

structures of the human body. It is similar in design and construction to the X-ray 

tubes used in general radiographic applications. Fluoroscope used in angiographic 

systems produces clear images of moving vessels. In order to produce that, the 

fluoroscope needs short, powerful X-ray pulses and to achieve that it consists of a 

high-power X-ray generation system. Moreover, in cardiac studies, exposure time 

ranging from 1 to 10 milliseconds is required and the radiation output can be either 

continuous or pulsed [37]. Automatic exposure rate control maintains the radiation 

dose per frame at a predetermined level, adapting to the attenuation characteristics of 

the patient’s anatomy and maintaining a consistent level of image quality throughput, 

which is required for the examination [37]. In order to limit the geometric extent of 

the X-ray field, either circular or rectangular shape collimator shutters are assembled 

in the X-ray tube. The shape of the collimation shutter depends on the shape of the 

image receptor of the fluoroscope. The beam hardening filters are placed in between 

the X-ray tube exit port and the collimator for filtration of the X-ray beam path, 

providing flexibility to manage the low dose and higher dose modes according to the 

conditions dictated during a fluoroscopic procedure. Further, it is important to note 

that the patients’ table of the fluoroscope system does not absorb much radiation to 

avoid shadows, loss of signal and loss of contrast in the image. 

The X-ray image intensifier or the image receptor of the fluoroscopy system is an 

electronic device that detects X-rays that passes through the patients’ body to form 

X-ray images. It converts the detected X-ray beam intensity pattern into a visible 

image, which is suitable for capturing by a video camera and displaying on a video 

display monitor [32]. Further, it provides both real-time imaging capability, which 

allows patient positioning, catheter manipulation and recording of the angiographic 

injection. In order to achieve this, the X-ray image intensifier consists of four major 

components namely; an input phosphor layer, a photocathode, several electron optics 

and an output phosphor layer. Figure 2.4 depicts the comprehensive schematic of the 
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organization of these components in the X-ray image intensifier for further 

clarifications.  

 

The function of the X-ray image intensifier begins by converting the detected X-ray 

image into a visible light image. It is done by the input phosphor layer equipped with 

the X-ray image intensifier. As the next step, the photocathode which is placed in 

close proximity to the input phosphor layer releases electrons directly proportional to 

the amount of visible light from the input phosphor that is incident on its surface. 

These released electrons are steered, accelerated and multiplied in number by the 

electron optic components and finally contact the surface of the output phosphor 

layer in the X-ray image intensifier. The coated phosphor material in the output 

phosphor layer glows visibly when struck by high energy electrons and converts 

them into light. After that, a video camera, which is optically coupled to this 

phosphor screen observes the intensified image and forwards it to a computer for 

post-processing. Finally, these post-processed signals are rendered using the display 

devises to visualize the detected anatomical structures. The brightness of the images 

produced by the X-ray image intensifiers are achieved by increasing the electron 

 

Figure 2.4: Components of an X-ray image intensifier [38]. 
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energy produced by the accelerating potential and decreasing the size of the image as 

it is transferred from the input to the output phosphor [32]. 

As shown in Figure 2.4, output phosphor layer of the X-ray image intensifier is 

coupled to a video camera. Further, a film camera is also assembled in angiography 

devises, which is used for the cardiac imaging to produce the CCAs. This film 

camera is a 35 mm motion picture camera and is optically attached to the image 

intensifier output phosphor (Figure 2.4). In order to record the fluoroscopic image 

with the video camera and film camera, the X-ray image intensifier should be able to 

divide the light coming from the output phosphor layer and direct it in two separate 

paths. This system of reflecting light in two directions is called beam splitting and it 

is done by a semi transparent mirror (beam splitter), which is placed between the 

image intensifier and the video camera tube. Ninety percent of the light is reflected to 

the film camera while the remaining light passes through the mirrors and is received 

by the video camera [39]. The video cameras used in X-ray image intensifier systems 

were originally analog devices borrowed from the broadcast television industry but 

later systems equipped with digital cameras based on charge-coupled device image 

sensors or complementary metal oxide semiconductor technology were used.  

The modern angiographic suites are produced with the digital image processor unit, 

which is used for real time processing of the captured images by the video camera. 

Spatial filtering, temporal filtering, image-subtraction and integration algorithms are 

implemented with this image processor unit to post-process the images before 

rendering. 

In modern fluoroscopy systems, the X-ray image intensifier and video camera 

components are replaced by a flat panel detector. The flat panel detector consists of 

an array of individual detector elements. These elements are square shape and 140–

200 microns per side [36]. Further, those are fabricated using amorphous silicon thin-

film technology onto glass substrates. A single detector may contain as many as 5 

Million detector elements. However, these flat panel detectors are more beneficial 

than X-ray intensifier based detectors since it avoids the different types of imaging 

artifacts, which are associated with X-ray image intensifiers such as geometric “pin-
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cushion” distortion, “S” distortion, veiling glare (glare extending from very bright 

areas) and vignetting (loss of brightness at periphery). Moreover, the dynamic range 

of the images produced by the flat panel detectors is wider than the X-ray image 

intensifier based detectors, therefore the quality of the images increases in the flat 

panel detectors.    

2.1.3 Contrast material 

During coronary angiography, the contrast material is needed to clearly visualize 

vessel structures because the radiographic contrast of blood is similar to the soft 

tissues. Contrast material consists of an iodine-containing compound, with maximum 

iodine concentrations of about 350 mg/cm3 [32]. Contrast material is injected through 

a catheter ranging in diameter roughly from 1 to 3 mm and the radiographic images 

of the contrast-filled vessels are recorded using either film or video during the 

angiography procedure [32].  

It is important to note that, these hardware devices are customized optimally during 

clinical procedures in order to obtain the better images for diagnosis. As a result of 

that, the CAs are recorded under different standard angiographic views for obtaining 

better visualizations of the different vascular sections to detect and assess the disease 

regions. The next section of this chapter will discuss about these standard 

angiography views and how these views used for the stenosis detection.  

2.2 Angiography images   

Multiple views from different angles of coronary angiograms need to be obtained in 

order to accurately diagnose CA disease. It is essential to ensure that all required CA 

segments are seen clearly in recorded angiograms without foreshortening or 

overlapping vessels [5]. In order to achieve that, there are standard angiography 

projection views available. This section will discuss about those standard 

angiography projection views used in interventional cardiology.     
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2.2.1 Angiography views  

The c-arm is placed perpendicularly across the anterior posterior direction of the 

patient who is laid on the cardiac catheterization table and this positioning of the c-

arm produces the default angiography view namely Anterior-Posterior (AP) view.  

However, in this default angiographic view, the spine sits in the middle of the CCA 

picture and the CAs lie directly in front of it. This will interfere with the visual 

quality of the CCA because the similarity in radiographic density between the spine 

and the contrast filled CAs interfere. Hence, multiple CCAs need to be recorded 

during the cardiac catheterization procedure under different standard angiography 

views. These angiography views are obtained by moving the c-arm in various 

angulations. Moreover, these angulations of each view are given by two major 

movements of the c-arm namely; rotation and skew. As described in section 2.1.1, 

the c-arm can be rotated towards the left and right directions of the patient and these 

views are known as the LAO and RAO views, respectively. The amount of 

angulation of the c-arm towards the patient’s head or foot is known as cranial and 

caudal views, respectively. Cranial and caudal views are used to open overlapped 

coronary segments that are foreshortened or obscured in regular views [40]. 

Moreover, this nomenclature for radiographic projections is depicted in Figure 2.5 

for further clarifications.    

It is important to emphasize some visual indications in the angiogram images 

obtained under the prior mentioned angiography projections to recognize the exact 

view directly. Figure 2.6 highlights such visual indications for each angiography 

projection clearly. According to Figure 2.6 (a), in LAO view, the spine and catheter 

are placed on the right and left sides of the image respectively. Nonetheless in RAO 

and caudal angulations the catheter and spine are found on the left side of the image 

(Figure 2.6(b)). In AP and cranial projections, both the catheter and spine are located 

in the center of the image. Moreover, these projections visualize the shadow of 

diaphragm across the angiogram image as depicted in Figure 2.6(c).  
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These views highlight specific and distinct segments of the coronary anatomy and 

permit discrete visualization of underlying pathologic conditions. Understanding of 

the usefulness of various radiographic views (and nomenclature) is essential [40]. 

Following sections briefly discuss about the important aspects of each of the 

angiography views with visual illustrations.  

 

Figure 2.5: Nomenclature for angiography projections. (Arrow heads show the 

direction of the X-ray beam.) (a) RAO; (b) AP; (c) LAO; (d) cranial view; (e) AP 

viewed from patient’s side; (f) caudal view [41]. 
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2.2.2 Views of LCA 

During the cardiac catheterization procedure, the catheter is placed in the left CA 

orifice to obtain the CCAs of the LCA under the different angulations and c-arm 

movements. As a result of that, there are eight projections that have been identified 

as the standard views for LCA namely; LAO straight, RAO straight, AP caudal, 

LAO cranial, RAO cranial, LAO caudal (spider), RAO caudal and lateral. Following 

sections discuss about these projection views and vessel segments of LCA depicted 

in each view with visual illustrations.    

 

Figure 2.6: Clues to recognize the angiographic views. (a) LAO view; (b) RAO 

and caudal views; (c) AP and cranial views. 
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LAO straight  

The LAO straight view is obtained by rotating the c-arm from 400 to 600 angulations. 

In this view, the distal parts of the LCA are overlapped and the proximal parts of the 

vessels are foreshortening, particularly the CX[42]. However, steep angles of c-arm 

such as from 50 to 60 degrees may be good in studying the mid and distal parts of the 

LAD and the diagonal artery of the LCA. Figure 2.7 depicts the angiogram image, c-

arm setup and LAD vasculature visualization under the LCA- LAO straight view for 

further clarification.  

 

RAO straight  

The RAO straight view clearly visualizes the proximal portion of the LAD, which is 

the origin of the OMB of LCA and left postero-lateral branches of the CX. In this 

view, the LAD begins close to the spine and moves towards the left ventricular apex. 

Further, it visualizes one or more diagonals and several SP branches of LAD. In this 

view, the CX moves parallel to the spine. It provides the OMB and left postero-

 

Figure 2.7: LCA - LAO straight view (60 degrees). (a) angiogram; (b) c-arm 

setup; (c) vasculature visualization. 
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lateral branches that come off at an angle and run roughly parallel to the LAD. The 

visual illustrations of LCA-RAO straight view are depicted in Figure 2.8.   

 

AP caudal   

This view is also known as shallow RAO view and displays the proximal segments 

of the Left Main Coronary Artery (LMCA) and CX. Figure 2.9 depicts the visual 

illustration of this view.  

LAO cranial 

The LAO cranial view visualizes the LMCA (slightly foreshortened), LAD, septal 

and diagonal branches of the LAD clearly. In this view, it is easy to detect and 

recognize the septal and diagonal branches easily because, these branch vessels are 

visualized in left and right side of the viewport respectively. Moreover, it visualizes 

the beginning of the LAD close to the spine and then moves away towards the left 

ventricular apex. Cranial angulation of the view tilts the LMCA down and permits to 

view the LAD-CX bifurcation. The CX in the RAO-cranial view moves away from 

Figure 2.8: RAO straight view (30 degrees). (a) angiogram; (b) c-arm setup; (c) 

vasculature visualization. 
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the LAD and runs towards the spine. It curves downwards and inferiorly runs 

roughly parallel to the LAD before branching off. In this projection, visual 

degradation of the angiogram is observed as a result of the Diaphragm. Nonetheless, 

by setting up the proper angulations, the density of the diaphragm can be moved 

down or out of the view. Figure 2.10 clearly visualizes the structural representations 

of the CAs under the LAO cranial view.  

 

LAO caudal (spider) 

The LAO caudal view is also known as the "spider" view because it lays out the main 

branches of the LMCA in a divergent manner [40]. In this view, the LMCA and LAD 

are foreshortened but the ostium of the LCA and the LAD-CX bifurcation is clearly 

depicted. Moreover, the proximal and mid portions of the CX are clearly presented 

with the origins of OMBs. LAO caudal is a superior view for visualizing the origin 

of the ramus intermediate CA and the origin of OMBs. However the CCAs of this 

view suffer from poor image quality caused by overlapping of the diaphragm and 

Figure 2.9: LCA – AP caudal view (30 degrees). (a) angiogram; (b) c-arm setup; 

(c) vasculature visualization. 
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spine within the blood vessel viewing area [40]. Figure 2.11 illustrates this view for 

further clarifications.   

 

RAO cranial 

The RAO cranial view is used to visualize the mid and distal sections of the LAD. 

The origins of the diagonal branches of the LAD and bifurcations in diagonal 

branches are clearly visualized in RAO cranial view. The proximal LAD and CX 

usually are overlapped. Not only that but also the marginal branches are also 

overlapped in this view. Apart from that, the CX artery is foreshortened, but 

posterior lateral branches are clearly visualized. The vessel representations in RAO 

cranial view is clearly depicted in Figure 2.12.  

 

Figure 2.10: LCA – LAO (45 degrees) cranial (30 degrees) view. (a) angiogram; 

(b) c-arm setup; (c) vasculature visualization. 
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Figure 2.11: LCA – LAO (50 degrees) caudal (30 degrees) view. (a) angiogram; 

(b) c-arm setup; (c) vasculature visualization. 

Figure 2.12: LCA – RAO (30 degrees) cranial (30 degrees) view. (a) angiogram; 

(b) c-arm setup; (c) vasculature visualization. 
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RAO caudal  

The RAO caudal view is also considered as one of the best angiography views of 

LCA and depicts the LMCA bifurcation, proximal LAD, proximal to mid CX, origin 

and trunk of the OMB and the ramus intermediate branch. Figure 2.13 depicts the 

vessel structure visualizations and c-arm setup under this view. Moreover, this RAO 

cranial view is used as one of the best views to visualize the CX artery in clinical 

procedures. Nonetheless, The LAD beyond the proximal segment is obscured by 

overlapped diagonals in this view and is considered as a limitation of this view [40]. 

 

Lateral 

A lateral view is obtained by rotating the c-arm by 90 degrees and placing it parallel 

with the floor (Figure 2.14(b)). This view provides the best visualizations of the mid 

and distal parts of the LAD. Further, in this view, the LAD and the CX arteries are 

well separated and the diagonals are overlapped. Figure 2.14 depicts the visuals of 

LCA taken under the lateral view.   

 

Figure 2.13: LCA – RAO (30 degrees) caudal (30 degrees) view. (a) angiogram; 

(b) c-arm setup; (c) vasculature visualization. 
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2.2.3 Views of RCA 

During the cardiac catheterization procedure, the catheter is placed at the orifice of 

the RCA to obtain the CCAs of the RCA under different angulations and c-arm 

movements. As a result of that, there are six projections, which have been identified 

as the standard views for RCA namely; AP view, LAO straight, RAO straight, AP 

cranial, LAO cranial and lateral.  Following sections discuss about these projection 

views and vessel segments of RCA depicted in each view with visual illustrations. 

AP view 

As mentioned in section 1.2.3, the RCA arises from the anterior position of the right 

coronary cusp and travels in the atrio-ventricular groove. In the AP view, the RCA 

begins close to the spine and runs roughly parallel to it. Moreover, the AMB, PDA 

and right ventricular branch of the RCA are clearly visualized in this AP view. 

Figure 2.15 illustrates the RCA representation for further clarification.  

 

Figure 2.14: LCA – LAO lateral view. (a) angiogram; (b) c-arm setup; (c) 

vasculature visualization. 
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LAO straight 

The LAO straight view is used to view the ostium and proximal portion of the RCA. 

As shown in Figure 2.16, the PDA and posterior lateral branches are foreshortened in 

this view and also the origins of those branches are obscured by overlapping.  

RAO straight      

In the straight RAO view, the RCA begins close to the spine and runs roughly 

parallel to it. The PDA and posterior lateral branches come off the RCA at nearly 

right angles. Hence, this view provides the excellent visualizations of the mid 

portions of the RCA, the origin of the AMB, the PDA and posterior lateral branches. 

Moreover, this view is also a superior view that demonstrates the SP branches. 

Figure 2.17 depicts the visual illustration of this view for further clarifications.  

 

 

Figure 2.15: RCA – AP view. (a) angiogram; (b) c-arm setup; (c) vasculature 

visualization. 
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Figure 2.16: RCA – LAO straight view (45 degrees). (a) angiogram; (b) c-arm 

setup; (c) vasculature visualization. 

 

Figure 2.17: RCA – RAO straight view (30 degrees). (a) angiogram; (b) c-arm 

setup; (c) vasculature visualization. 
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AP cranial  

The AP cranial view is the best view to visualize the origin of the RCA, the PDA and 

posterior lateral branches of a dominant RCA system. The mid segment of the RCA 

is foreshortened in this view and Figure 2.18 depicts the vessel structure 

representation obtained under this angiography view.  

 

LAO cranial  

As depicted in Figure 2.19, the LAO cranial view visualizes the origin of the RCA, 

the entire length of the mid RCA, the PDA and PDA bifurcation. Normally, the PDA 

and posterior lateral branches are slightly foreshortened in this view. Having proper 

cranial angulations can tilt the PDA down to see the vessel contour and avoid 

foreshortening. Moreover, this view depends on deep inspiration to clear the 

diaphragm.  

 

 

Figure 2.18: RCA – AP cranial view (30 degrees). (a) angiogram; (b) c-arm 

setup; (c) vasculature visualization. 
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Lateral 

The lateral view depicts the origin and mid segment of the RCA. The PDA and 

posterior lateral branches of the RCA are foreshortened in this view. The RCA 

representation obtained under this view is clearly depicted in Figure 2.20 for further 

visual analysis.  

Table 2.1 summarizes the angiographic projections and the optimal visualization of 

the LCA and RCA [42]. According to the Table 2.1, it enlists the recommended  

standard angiographic projections for fourteen CA segments namely; Left main  

ostium, Left main bifurcation, LAD proximal, LAD mid, LAD distal, LAD diagonal, 

CX proximal, CX distal, OM bifurcation, RCA proximal, RCA mid, RCA distal, 

PDA and Posterior Left Ventricular (PLV).  

 

 

 

Figure 2.19: RCA – LAO (20 degrees) cranial (25 degrees) view. (a) angiogram; 

(b) c-arm setup; (c) vasculature visualization. 
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During the cardiac catheterization procedure, a set of CCAs are recoded separately 

according to the aforementioned projection angles. These recoded CCAs are used for 

detecting and grading the stenosis in CAs. The next section of this chapter will 

explain angiography based stenosis grading method, which is used in cardiac clinical 

diagnosis process.      

2.3 Assessment of coronary stenosis  

The coronary stenosis or degree of lumen narrowing is measured as the estimated 

percentage lumen reduction of the most severely narrowed segment compared with 

the adjacent normal vessel segment, seen in the most apparent angiography 

projection[40]. As mentioned in section 1.3, coronary stenosis occurs due to 

eccentrically or concentrically deposited plaque regions. Figure 2.21 depicts these 

eccentric and concentric plaque deposits with the severity level of them (eccentric 

plaque presents 50% of severity and concentric plaque represents 90% of severity). 

 

 

Figure 2.20: RCA – lateral view. (a) angiogram; (b) c-arm setup; (c) vasculature 

visualization. 
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Table 2.1: Angiographic projections and optimal visualization [42]. 

CA  
Segment 

LAO  
40-500, 
caudal 
25-400 

(spider) 

AP/RAO  
5-150, 
caudal 

 300 

RAO 
30-450, 
caudal 
30-400 

AP/RAO 
5-100, 

cranial  
35-450 

LAO 30-
450, 

cranial 
25-350 

Lateral  
caudo- 
cranial  
10-300 

LAO 
45-
600 

RAO 
30-
450 

Left main  
ostium 

++ + + +++ +++ - - - 

Left main 
bifurcation 

+++ +++ ++ - - - - - 

LAD proximal ++ ++ +++ ++ ++ + - - 
LAD mid - + + +++ ++ ++ - - 
LAD distal + + +++ + - +++ - ++ 
LAD/ 
diagonal 

++ + - ++ +++ - - - 

CX proximal + +++ +++ - - - - - 
CX distal + + ++ +++ ++ + ++ - 
OM 
bifurcation  

++ +++ ++ - - - + - 

RCA proximal - - - + +++ - ++ - 
RCA mid - - - - + +++ ++ +++ 
RCA distal  - - - +++ +++ - ++ - 
PDA - - - +++ ++ - + ++ 
PLV + - - +++ ++ + + - 

View not recommended; + occasionally useful; ++ very useful; +++ ideal view. 

 

 

Figure 2.21: Different types of stenosis [43]. 
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Since the coronary angiography provides excellent visualizations of CA vasculature, 

clinicians carefully observe the vasculature recorded in the angiograms to detect 

these plaque types. Presumably, the severity level of the detected stenosis is 

determined subjectively by analyzing these X-ray projections. Consequently, the 

percentage of detected stenosis severity is marked by giving an arbitrary value based 

on the clinicians’ experience. Hence, these  measurements consist of either 

overestimations or underestimations [25]. It has been reported that there can be a 

±20% variation between the readings of two or more experienced cardiologists [40].   

Hence, it is apparent that this subjective grading of severity of the detected stenosis is 

erroneous. As a solution for that, it is possible to have severity range criteria for 

grading the detected stenosis. Hence, four categories of lesion severity for grading 

the detected stenosis have been described as follows; 1 - minimal or mild CA 

disease, narrowing <50%, 2 - moderate, stenosis between 50% and 75%, 3- severe, 

stenosis between 75% and 95% and 4 - total occlusion [40]. This schema is simplistic 

but is subjective and may not be applicable when a vessel is diffusely diseased. 

The American College of Cardiology and American Heart Association (ACC/AHA) 

lesion classification system was one of the first angiography scoring systems 

developed, comprising 11 angiographic variables with all lesions categorized into 

types A, B1, B2 and C [44]. The lesion categories described in this system are based 

on anticipated rates of success. Hence, it was expected that low-risk type A lesions 

would have a success rate of >85%, moderate-risk type B lesions were predicted to 

have a 60% to 85% success rate, and high-risk type C lesions had a <60% success 

rate. Moreover, the characteristics of each lesion class differed by degree of proximal 

tortuosity, angulation of the stenosis segment, the length of the lesion, and the 

presence of total occlusion, bifurcation lesions, thrombus or friable and vein graft 

lesions [45]. Table 2.2 enlists the characteristics considered according to this grading 

system [46].    

Due to various reasons, angiography based stenosis grading consists of some 

obstructions. The next section will elaborate the revealed problems in angiography 

and its’ assessments with the literature evidence. 
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Table 2.2: American College of Cardiology/American Heart Association Task Force 

(ACC/AHA) classification of the primary target stenosis[46]. 

Type A Type B- I and B-II Type C 
Discrete (< 10 mm length)  Tubular (10–20 mm 

length)  
Diffuse (>2 cm length) 

Concentric Eccentric  Diffuse  
Readily accessible  Moderate tortuosity of 

proximal segment  
Excessive tortuosity of 
proximal segment  

Non-angulated segment, 
<450   

Moderately angulated 
segment, >450, <900  

Extremely angulated 
segments >900 

Less than totally occlusive  Total occlusion < 3 
months old  

Total occlusion >3 months 
old 

No major branch 
involvement  

Bifurcation lesions Inability to protect major 
side branches. 
Degenerated vein grafts 
with friable lesions 

Smooth contour Irregular contour  
Not ostial in location Ostial in location  
Little or no calcification Moderate to heavy 

calcification 
 

Absence of thrombus Some thrombus present  
Note: B1 = 1 characteristic only; B2 = 2 or more characteristics 

2.4 Problems in Coronary Angiography  

This section will briefly review the problems of coronary angiography in detecting 

and assessing stenosis severity. According to the literature evidence and empirical 

studies, two main factors, which cause negative consequences for angiography based 

stenosis assessment have been identified namely; subjective stenosis assessment and 

visual degradations in angiograms. Following two sub sections discuss about the 

impact of these consequences comprehensively.  

2.4.1 Subjective stenosis assessment  

Angiogram based stenosis assessment is generally a subjective process and depends 

on the experience of the clinicians. Section 2.3 explained about the available 

subjective stenosis grading methods widely used in clinical diagnosis. These 

subjective assessments lead to overestimations or underestimations of the detected 

stenosis and are often inaccurate in predicting, which lesions cause ischeamia [23] 
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[25]. Moreover, in most catheterization procedures, lesions with a diameter stenosis 

of ≥ 50% on the angiogram are generally considered for revascularization and it is 

not the optimal decision for all clinical cases.  

In recent past, Tonino et al. has conducted a research study to determine the 

relationship between angiographic stenosis severity and functional stenosis severity 

as measured by the FFR [23]. The results of study [23] have clearly revealed the 

negative impact of the angiography based subjective stenosis assessment. For study 

[23], 1329 lesions were selected from 509 patient cases. Initially, the operator 

categorized the lesions according to the visual angiographic stenosis severity into 

50% - 70%, 71% - 90% and 91% - 99% diameter stenosis groups. Then the FFR was 

done for all subjects and if the FFR of a particular stenosis >80 was considered as 

functionally non-significant stenosis (no need to place a stent). Table 2.3 presents the 

results obtained from this research study and Figure 2.22 depicts the visual 

illustrations of the results of the same study for more clarifications.   

FFR is a quantitative stenosis assessment method based on the functional 

significance of the CA stenosis (Section 1.4.2). Using the FFR for study [23], it has 

enabled to compare the significance of the angiography based subjective stenosis 

analysis results with the FFR based quantitatively assessed results. Hence, the most 

important finding in this study is that most of the stenosis declared as significant 

through angiography based subjective assessment are reported as functionally 

insignificant stenosis according to the FFR study. This factor is clearly indicated by 

the figures in Table 2.3. According to this Table 2.3, 670 lesions were reported as 

significant stenosis according to the angiography assessment under the 50%-70% 

category, but 402 cases out of those 670 were reported as functionally insignificant 

stenosis in FFR study. Moreover, 96 lesions were reported as significant stenosis 

according to the angiography assessment under the 91%-99% category, but only 7 

cases out of those 96 were reported as functionally significant stenosis in FFR study 

and all other cases are functionally insignificant. This will emphasize in the visual 

proofs given in Figure 2.22 further.    
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Hence, it is clear that the subjective assessment of stenosis provides erroneous results 

in angiography. Not only that but also the visual degradation, which occurs in 

angiography also makes some negative impact of stenosis assessment and the next 

section will emphasize the consequences of these factors in detail.     

 

 

Figure 2.22: Mismatches between the visual assessment and function assessment 

of stenosis. (a) 50%-70% angiography category with 0.71 FFR; (b) 50%-70% 

angiography category with 0.91 FFR; (c) 71%-90% angiography category with 

0.57 FFR; (d) 71%-90% angiography category with 0.84 FFR (arrow heads 

represent the stenosis location, * represents critical and ** represents non-critical 

lesions according to the FFR) [23]. 
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Table 2.3: Results of the angiographic versus functional severity of CA stenosis 

obtained by Tonino et al [23]. 

 Angiogram Severity 
50% to 70% 

Category 
n=670, 47% 

71% to 90% 
Category 

n=513, 39% 

91% to 99% 
Category 

n=96, 15% 
FFR  
Severity 

FFR>0.80 
Functionally non –
significant stenosis  

402 cases,  
65% 

104 cases,  
20% 

7 cases,  
4% 

FFR<=0.80 
Functionally 
significant stenosis 

218 cases,  
35% 

409 cases,  
80% 

189 cases, 
 96% 

n = number of cases 

2.4.2 Visual degradations in angiogram 

Visual degradations in angiograms mainly occur due to the physical organization of 

the organs in the chest and the artifacts that occur during the angiogram procedure. 

Vessel overlap and superimposition of other tissues such as ribs, spine or cardiac 

chambers on CAs can be considered as degradation, which occurs due to the physical 

organization of the organs in the chest [26][40]. Vessel overlap makes obstructions in 

vessel delineation. Clear recognition of CA vasculature in angiography view is 

essential to segment the CAs and locate the stenosis area [25]. This process becomes 

tedious or even impossible when the blood vessels in the image are overlapped. 

Superimposition of ribs, spine or cardiac chambers on blood vessels also provides 

unclear visualizations of CAs in the angiogram image and causes obstructions to 

recognize the blood vessels clearly. Poor opacification, noise, non-uniform 

illumination and motion are considered as the negative impacts that occur during the 

angiogram procedure [25][27-29]. The impact of these factors will be discussed in 

detail in Chapter 3.  

2.5 Research background of the study     

Even though the coronary angiography consists of visual problems, global motion 

artifacts and subjective diagnosis, it is still the standard technique for guiding PCI in 

patients with CA disease [26]. Therefore, various research attempts have been done 
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in recent past to improve coronary angiography under the various areas such as the 

visual enhancement of the angiograms, segmentation of CA vasculature and 

quantitative coronary analysis. This section emphasizes some of the important 

background computer vision theories and recent research attempts carried out under 

aforementioned aspects.  

2.5.1 Background studies for enhancement of angiography  

The objective of this section is to emphasize the various research attempts made in 

recent past to find the solution for the identified coronary angiography problems. It 

has been reported that the literature on enhancing direct coronary angiography 

images for visualization purposes is very limited [47]. However, in this section, some 

of the research attempts conducted for enhancing the angiography based on 

techniques such as filtering, circular sampling, non-linear approach using stick, 

pseudo color processing, contrast stretching and wavelet based noise removal are  

presented. 

It is apparent that various filtering techniques are being used for enhancing 

angiography images by reducing noise and non-uniform illumination. Angiogram 

enhancement technique mentioned in [48][49] is based on directional filter banks and 

those  directional filters were implemented using high pass filters. The directional 

images obtained from the filter bank could be considered as the results obtained by 

the decomposition of the original image based on the gradient direction. Further, it 

has the capability to reducing the noise as an added advantage.        

The circular sampling technique was implemented in the study published in [50] for 

removing noise and the non-vessel regions from the angiography images. It has been 

mentioned that the circular sampling samples a vessel structure around a sampling 

point by extending the sample circles spatially. The noisy segments are miss-

segmented in this approach and those miss-segmented areas can be removed from the 

angiogram image in order to enhance it.  

It is apparent that the noise associated with the images is also increased during the 

traditional enhancement techniques, which are based on unsharp masking. Tu and his 
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team have published a non-linear model for enhancing the angiography image details 

without having such negative effects and that suggested model was known as stick-

guided lateral inhibition [47]. This proposed model simulates the enhancing 

mechanisms integrated in the eyes of human beings and of many animals and its’ 

implementation is based on asymmetric sticks [51]. The sticks are a set of line 

segments passing through the current pixel and are able to approximate the edges in 

images without co-relating with noise patches. Therefore, sticks can smoothen out 

noise patches without damaging the real edges of the angiogram [52]. Results of this 

study have provided high observer agreement value for stick based method rather 

than unsharp mask based enhancement method. 

Pseudo coloring of angiogram images can be used as an enhancement technique to 

improve its’ visual quality. It is done by mapping each pixel value in a gray scale 

image in to a color according to a table or function [53]. Pseudo color processing 

could accentuate blood vessels in angiography images.  

Research study conducted for extracting the CA tree in [26] has applied “temporal” 

wavelet transformation for noise removal and matched filters for blood vessel 

enhancement. In wavelet transformation, the input image is decomposed into sub 

regions by using low pass and high pass filters. Hence, the noise is automatically 

shifted into the specific decomposed images. This noise has been removed by 

thresholding the image.   

Contrast Limited Adaptive Histogram Equalization (CLAHE) method has been 

applied in a recent research study for improving the contrast of the angiograms 

during its pre-processing phase [54][55]. In CLAHE, the histogram is cut at some 

threshold and then equalization is applied. It is an adaptive technique because an 

image is enhanced by applying CLAHE on small data regions called tiles rather than 

the entire image [56]. The resulting neighboring tiles are then combined back 

faultlessly using bilinear interpolation. The contrast in the homogeneous region can 

be limited so that noise amplification can be avoided [56]. 

Motion is another negative artifact in CCAs. Hence, motion stabilization becomes 

another pre-processing activity in CCA based processing. However, it has been 
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reported that the motion of anatomy is quiet complex and cannot be accurately 

corrected by estimating models with low degree of freedom such as rigid or affine 

transformation [29]. The literature survey of this study reveals that the feature 

descriptor based method, image registration and optical flow based methods are 

among the major techniques for motion stabilization in CCAs and provided 

acceptable results for determining the cardiac dynamics. 

A Scale Invariant Feature Transform (SIFT) based motion estimation and video 

stabilization technique was described in a recent research study [57]. In this study, 

SIFT was used to obtain the key points between two consecutive frames. The 

shortest distance between SIFT feature in two consecutive frames were calculated 

during the SIFT feature matching step of this study to determine the Global Motion 

Vector (GMV). 

An optical flow and elastic registration based technique has been published in  [58] 

for analyzing the CA dynamics. In their method, the vessel skeletons are extracted 

from original images and the optical flow field along skeletons is estimated to 

determine the arterial dynamics. Consequently, the estimated arterial dynamics are 

transformed into autoregressive model and elastic registration between skeletons of 

the same vessel branch at two different time intervals to quantitatively determine the 

motion of CAs.  

2.5.2 Background studies for vessel segmentation 

Segmentation subdivides an image into its constituent regions or objects [59]. 

Accurate segmentation of CAs in angiograms is a challenging task. The major 

reasons for that are; poor signal to noise ratio due to poor X-ray penetration, 

overlapping vessels, superimposition of vessels with various anatomical structures 

such as ribs, spines or heart chambers, vessel foreshortening, noise because of 

uneven distribution of the contrast agent, environment noise influence of image 

processing and visual degradation that occurs due to the non-uniform illumination 

[25][26]. Various segmentation methods based on coronary angiography have been 

reported in recent past and the aim of this section is to highlight the significant 

features and methods of those studies under various categories. Segmentation 
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methods based on coronary angiography can be categorized under the criteria such as 

pattern recognition approaches, model based approaches, tracking based approaches 

and Artificial Intelligence based approaches [60]. Following sections will be 

elaborated on the research background of CA segmentation under aforementioned 

criteria.    

Pattern recognition approaches 

Pattern recognition techniques can automatically detect or classify the image object 

or features. For vessel extraction, it is concerned with the automatic detection of 

vessel structures [60]. Filter based approach, region growing approaches, skeleton 

based approaches, mathematical morphology schemes, matching filters method and 

multi scale based method can be considered as various approaches used for pattern 

recognition based segmentation [61].  

Filter based approach: 

Filters are widely used in image segmentation to remove noise and improve the 

digital image feature desired to be extracted [62]. In this approach, image is 

convolved with either a single or multiple filters to extract the object of interest. 

Designing different filters to detect the vessels with different orientation and size 

plays a significant role in extracting vessel contours [60]. It is important to highlight 

Frangi’s vessel enhancement filter, which is widely accepted in vessel enhancement 

of medical images in recent past because of its ability to filter out the tubular 

structures from the image to be processed. The blood vessels can be considered as 

tubular structures and the application of Frangi’s filter is crucial in blood vessel 

segmentation [63].  

It is important to note that the proposed segmentation method, which has been 

implemented in this research study is also based on Frangi’s vessel enhancement 

filter. Hence, it is significant indeed to elaborate the implementation steps of the 

Frangi’s filter in this section. Frangi’s filter is implemented based on the second 

order partial derivatives of the input image and it can be calculated by convolution 

input image with an appropriate kernel. It provides second order four directional 
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images based on the gradient variation along the horizontal, vertical and two 

diagonal directions of the input image. Later, a Hessian matrix is calculated using the 

second order derivative images obtained in the previous step. Two eigenvalues and 

four eigenvectors are produced for each pixel point of the input image as the result of 

the Hessian matrix calculation. Those resulting eigenvalues and eigenvectors are 

used to determine the vesselness of the processed image using the norm defined by 

Frangi et al. and it enlists in Table 2.4.  

Table 2.4: Possible structure orientations in 2D images depending on the eigenvalues 

λ1 and λ2 of Hessian matrix [63]. 

λ1 λ2 Orientation pattern 

N N Noisy, no predefined direction 

L H- Tubular structure (bright) 

L H+ Tubular structure (dark) 

H- H- Blob-like structure (bright) 

H+ H+ Blob-like structure (dark). 

H=high, L=low, N=noisy, usually small, +/- indicate the sign of the eigenvalue. 

Various research attempts have been reported to segment the CAs based on Frangi’s 

filter. Wang and his team have published a CA segmentation method based on 

Frangi’s filter and region growing technique [64]. During the pre-processing, they 

have generated the second order directional derivative images through convolution of 

input angiogram image with the second order partial derivatives of the Gaussian 

filter of scale σ. Moreover, they have applied Frangi’s filter under different scales of 

σ to select the optimum vessel enhancement result. Consequently, the region growing 

method was applied on the enhanced images to improve the spatial connectively of 

the detected blood vessels. Moreover, they have interactively selected multi seed 

points in vessel regions and allowed those points to grow within the region growing 

processes simultaneously. As a result of that, several dispersal regions were produced 

and the homogeneous regions were merged together through homogeneous test. The 

homogeneity test was established according to the analysis of image features by gray 

scale histogram and K-means clustering. Experimental results of this study have 
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elaborated its’ capability for noise suppression and the extraction of small and distal 

vessels of CA vasculature.        

A novel hybrid region growing method with a differential geometry vessel detector 

for the segmentation and identification of the cardiac coronary tree in angiograms 

was published by Lara et al [54][65]. In this study, they have applied CLAHE to the 

angiography images as the initial pre-processing method to enhance the contrast [66]. 

Consequently, Fangi’s filter based vessel resemblance function was implemented to 

separate the vascular regions from the background. Pixels in those extracted vessel 

regions have been selected as the seed point for the automatic region growing 

method. However, the initial seed point is given interactively and circular filtering 

technique around the seed point was applied to determine the background pixels and 

the blood vessels. Finally contour detection was applied and the largest contour was 

extracted out as the CA vasculature. Moreover, this study has reported an accuracy of 

87.58% for CA segmentation.  

Two recent research studies done by Sasidharan and Shashank also used Frangi’s 

filter based approaches to segment the CAs in their research studies [67][68]. In 

Sasidharans’ approach CAs are segmented using three major phases namely; 

application of noise adaptive fuzzy switching median filter, application of Frangi’s 

vessel detection and region growing. Noise adaptive fuzzy switching median filter 

was applied as a pre-processing technique to remove impulse noise and enhance the 

angiography image. Subsequently, the Frangi’s filter was applied to detect the CAs. 

Moreover, they have used histogram based analysis to automatically detect the seed 

point for implementing the region growing phase. Additionally, this segmentation 

method was declared as a fully automatic segmentation approach and it was one of 

the significant features of this study. The segmentation method proposed by 

Shashank and team also used the Frangi’s filter based approach to segment the blood 

vessels. Additionally, they have applied rotation invariant anisotropic diffusion 

filtering for further enhancing the results.           
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Region growing approaches: 

Region growing segment the image by merging pixels to a region based on either 

value similarity or special similarity. O’Brien and Ezquerra automatically segment 

the CA vasculature based on a region growing approach [69]. In this study, region 

growing was performed to extract the initial approximation of the vessel structure. 

After that they have extracted the vessel skeleton and some remaining undetected 

vessel segments. Subsequently, the vessel regions and non-vessel regions were 

extracted from the angiography image.  

Köse has proposed a fully automatic segmentation method by considering the  spatial 

coherence of the angiogram images [50]. According to his publication, the proposed 

method can handle complex structures such as sharp curved, branched vessels, and 

vessels with varying length on a noisy and changing background. The method 

initially removes the background from the angiogram image by using an averaging 

technique that calculates the average intensity within the region of interests with a 

given dimension. Subsequently, a circular sampling technique is applied to determine 

the blood vessel regions. In this approach, the intersections between sampling circles 

and sampled blood vessel were determined to calculate the intersection distribution. 

The dominant intersections were checked to segment the vessel structure in the 

angiogram to be processed and segmented vessel regions were extracted out as the 

results. Finally, a circular filtering technique was applied to remove small noisy 

fragments from the resulting image. 

Skeleton based approaches: 

Skeleton based methods are used to extract the centerline of blood vessels. 

Moreover, these methods can be used to create the vessel tree by connecting these 

extracted vessel centerlines. Various methods can be used to extract the vessel 

centerline such as application of thresholding and then object connectivity, 

thresholding followed by thinning procedure and extraction based on graph 

description are some of the instances [60]. Research study of  O’Brien and Ezquerra, 

which was discussed under the region growing segmentation can also be stated here 

as an instance for a skeleton based CA segmentation method [69].    
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Mathematical morphology schemes: 

Mathematical morphology could be considered as a tool for extracting image 

components that are useful in the representation and description of region shape [70]. 

Sun et al. have been reported that the mathematical morphology is an ideal operator 

for vessel extraction because, it can use uniform operator to deal with different vessel 

structures such as branching and crossing [31]. Moreover, they have proposed a 

vessel segmentation method using combined morphological operations and 

watershed operation. In their study, they have used morphological top hat operation 

for enhancing the vessel tree in angiograms. Moreover, they have designed two 

filters namely fuzzy morphological open filter and fuzzy morphological duel opening 

filter to eliminate the noise in the enhanced images and to avoid widening the vessels 

due to the vessel-like noise remaining in the enhanced images respectively. 

Consequently, morphological watershed was applied to the resulting enhanced 

images to detect the vessel boundary.  

Research study done by Eiho and Qian had used mathematical morphology to 

completely extract the CA vasculature from coronary angiography [71]. Initially they 

have enhanced the shape of the vessel by applying the top hat operation. Secondly, 

morphological erosion followed by half-thresholding operations were applied to 

remove the non-vessel areas from the enhanced angiogram image. As the next step, 

the whole vessel tree had been extracted based on the given seed point by 

considering intensity similarity of the neighboring pixels. Then the vessel skeleton 

has been obtained through the thinning operation followed by dilation operation. 

Finally, the watershed transformation operation has been applied to the binary image 

to extract the edges.  

Matching filters method:  

Matching filters approach is one of the pattern recognition techniques, which can be 

used for segmentation of vessel structures from angiography. In order to extract the 

object of interest, the image is convolved with multiple matched filters. Moreover, 

the match filters are usually followed with some other image processing operations 

like thresholding to get the final vessel contours [60]. CA segmentation method 



70 
 

suggested by Lin and Ching used match filter approach for their study published in 

[26] to extract the CA vasculature by processing CCAs. The proposed method 

consisted of two major stages namely signal based image segmentation and vessel 

feature extraction such as vessel diameter. As the initial step of segmentation stage, a 

temporal Fourier analysis was employed to eliminate the stationary background and 

slow moving objects in the CCA images. Subsequently, the 3D wavelet 

transformation was applied to reduce the noisy structures in the partially processed 

CCA images. Consequently, a set of matched filters was applied to enhance the CAs. 

The proposed matched filters were created based on two parameters namely; 

orientation and size. Hence, 72 filters of twelve orientations and six sizes have been 

applied. Finally, a clustering analysis, histogram technique, and size filtering were 

utilized to obtain a binary image that consists of the final segmented CA tree.  

Multi scale based method: 

Multi scale segmentation approach can also be categorized under pattern matching 

approach and implemented by varying the image resolution. The main important 

aspect of this technique is increased processing speed. In multi scale segmentation, 

the strong structures can be segmented at the low resolution level and weak 

structures, such as branch vessels, can be segmented at higher resolution [60]. Lee et 

al. have suggested a method for quantitative coronary analysis by using a 

combination gradient segmentation (wavelet edge detection) and region 

segmentation [72]. In this study, the multi scale masks of wavelet transformation 

were generated and applied together with the angiogram images to generate the 

series of multi scale images with different gradient strength scales.       

Model based approaches 

In addition to the pattern recognition approaches, it is possible to use model based 

approaches for segmentation of blood vessels from angiography. Model based 

approaches apply explicit vessel models to extract the vasculature and some literature 

evidence has emphasized the application of parametric deformable models to 

segment the CA vasculature significantly. Moreover, these parametric deformable 

model techniques find object contours using parametric curves that deform under the 
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influence of internal and external forces. Active contour models or snakes are a 

special case of a more general technique of matching a deformable model by means 

of energy minimization [73] . 

A recent research study emphasized the application of snake model to locate the 

vessel boundaries of coronary angiograms [74]. According to the research method 

described in [74], the investigators have introduced a certain mechanism to overcome 

two problems of snake model, which are lower capture range and non-availability of 

evolution stop mechanism through dynamic gradient flow and adaptive balloon force 

respectively.  

Parametric model approaches define objects of interest parametrically. In tubular 

object segmentation applications, objects of interest are described either as a set of 

overlapping ellipsoids or a circular vessel model. Moreover, in parametric model 

approaches, the parameters of the model used are estimated from the image [60]. Zou 

et al. have proposed a parametric model based consecutive scan line tracking method 

for extracting CA vasculature from digital subtraction angiograms [75]. Consecutive 

scan line profiles were fitted by a parametric model based on local intensity 

information of the angiogram image to be processed. As a result of this scan line 

fitting to local intensity profile of the image, the vessel center point can be detected 

along the scan line. Moreover, derivative of the center point provides the tracking 

direction for continuing the vessel tracking. An adaptive tracking strategy was 

applied with appropriate termination criteria to track each vessel segment. When 

tracking stops, to prevent premature termination and to detect bifurcations, a “Look 

Ahead Detection” scheme was used to search for possible continuation points of the 

same vessel segment or those of its bifurcated segments. The proposed algorithm can 

automatically extract almost complete CA vasculature from digital subtracted 

angiography images.  

Tracking based approaches 

Tracking based approaches apply local operators on a focus known to be a vessel and 

track it. Vessel tracking approaches apply local operators starting from an initial 

point, detecting vessel centerline or boundaries by analyzing the pixels orthogonal to 



72 
 

the tracking direction [60]. Van der Zwet, Pinto, Serruys and Reiber have invented a 

tracking based method to find the path lines of the CAs  in coronary angiograms 

[76]. According to their investigation, the path lines are detected using two 

algorithms namely tracking algorithm and box algorithm. Tracking algorithm was 

used to find all curves in the angiogram image, which were candidates for being a 

path line. Box algorithm was used to provide the seed points that may possibly 

belong to the path line, which was being searched.  

Moreover, Shoujun et al. has proposed a fully automatic tracking based method that 

can adapt to varying vessel curvatures and diameters resulting from arterial stenoses 

or aneurysms [77]. The proposed vessel segmentation method has been implemented 

based on probabilistic vessel tracking and fuzzy structure pattern inferring. Multi 

scale Gabor filtering and Hessian matrix analysis were used during the pre-

processing phase of this study to enhance and extract vessel features from the 

original angiographic image, leading to a vessel feature map as well as a vessel 

direction map. In tracking, vessel feature map was analyzed automatically for 

detection a seed point. After that, two operators namely; probabilistic tracking 

operator and a vessel structure pattern detector worked together based on the 

detected seed point to extract vessel segments or branches one at a time. A multi 

feature based fuzzy inferring function, which is implemented based on vessel 

structure pattern detector has been implemented in this study to gather the local 

structure pattern. The identified structure pattern, such as crossing or bifurcation, was 

used to control the tracking process, for example, to keep tracking the current 

segment or start tracking a new one, depending on the detected pattern.  

Artificial Intelligence based approaches 

Artificial Intelligence based segmentation methods utilize knowledge to guide the 

segmentation process to extract the vessel structures [60]. Image acquisition 

technique or general blood vessel model can be used as prior knowledge to guide the 

Artificial Intelligence based segmentation process. Artificial Intelligence based 

segmentation method possesses high level of accuracy but the computational 

complexity is much larger than the other segmentation methods.  
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Stansfield has proposed a rule-based expert system for automatic segmentation of 

CAs from digital subtracted angiograms [78]. Her proposed system consists of three 

processing stages namely pre-processing stage and the two stages embodied in the 

expert system itself. During the pre-processing stage, both an edge and a region 

analysis are performed separately and later those two representations were combined. 

Subsequently, the region segmentation was performed by analyzing the detected 

edges. Later on, the detected regions were divided into "strips" based on their shape 

and those were placed along with the edge segments created by the edge analysis. At 

the end of pre-processing, the resulting image served as input to the expert system. 

The main function of the expert system was to isolate the CAs in the segmented 

image, while eliminating remaining noise structures from the partially processed 

angiography images. Moreover, this expert system was rule based and consisted of 

three components namely; database or short term memory, a knowledge base or long 

term memory and a rule interpreter, which controls the problem solving process. The 

expert system itself is separated into two independent stages namely the low level 

stage and the high level stage. In the low level stage of expert system, a domain 

independent knowledge of image segmentation, grouping, and geometric relations 

was applied to the segmented image created by the pre-processing stage. In this 

stage, the rules are applied to join line segments, to merge regions and to establish 

such relations as adjacent and parallel. It provided the refined segmentation and a set 

of relations between the objects in the segmented image as the results. In the high-

level stage, it has applied a domain dependent knowledge of cardiac anatomy and 

physiology to interpret this segmented image. Moreover, in this stage, it can 

recognize blood vessels and noise separately. Subsequently, a final segmented image 

is created containing only detected blood vessels in high-level stage of the  

Stansfield’s rule-based expert system.   

2.5.3 Background studies for quantitative coronary analysis  

Angiography based quantitative coronary analysis is done to obtain parameters that 

quantify the coronary artery lumen to determine the severity of the coronary stenosis 

[79]. It is done based on better contrast coronary angiograms. Moreover, the 

approaches suggested for vessel skeleton extraction and vessel path tracking are 
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widespread in research studies carried out in the recent past. Hence, the objective of 

this section is to elaborate some of the important research attempts made for 

quantitative coronary analysis to distinguish the rationale of objective assessment of 

stenosis.  

Zou et.al have proposed a model based consecutive scan line tracking method for 

extracting CA vessel networks [75]. In their proposed method, the consecutive scan 

line profiles are fitted by a parametric imaging model to estimate local vessel center 

point, radius, edge locations and direction. Moreover, an adaptive tracking strategy 

has been proposed with possible termination criteria to track each vessel segment. 

Possible continuation points of the same vessel segment or those of its bifurcated 

segments are searched by using a specific look-ahead detection scheme, which is 

implemented in this study. This is useful for preventing premature termination of 

tracking and detection of bifurcations. Moreover, the initial seed point and tracking 

direction is set interactively for this proposed tracking method and it extracts the 

majority of the vascular network from the angiography image as the results. 

Lin and Ching have proposed a gradient vector flow based feature extraction method 

for the segmented CA vasculature in [26]. In their study, the CA segmentation results 

are depicted in a binary image and it is used for determining the medial axis of the 

CAs. The vectors in the gradient vector flow field are created from the segmentation 

image to obtain the medial axis of the vessel. Hence, it provides a polygonal path 

with two end points on the medial axis of a vessel and it is denoted as the initial 

snake model. Moreover, the vector flow pushes the polygonal path towards the 

center of the vessel and provides the medial axis of the vessel when the snake 

converges to it at minimum cost. The edges of the vessels are obtained by applying 

canny edge detection and vessel diameter is calculated by modeling two 

perpendicular lines to left and right side boundaries from the medial axis [80].  

Canny edge detection is also used in the research study, which is discussed in this 

thesis, for extraction of the vessel boundaries. Therefore, it is worth to state the main 

implementation steps of Canny edge detection algorithm as stated in [80]. 

Accordingly, this algorithm extracts the edges of the objects through five main steps 
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namely; smoothing, finding gradients, non-maximum suppression, double 

thresholding and edge tracking by hysteresis. Figure 2.23 depicts the visual 

illustrations of these implementation steps clearly. In order to noise being mistaken 

as edges, smoothing is applied as the initial step of this edge detection algorithm to 

reduce the noise (Figure 2.23 (b)). Generally, the edges are placed where the 

gradients of the image has large gradient magnitudes. Hence, it calculates the 

gradient magnitude of the image by using sobel filter as the second step (Figure 2.23 

(c)). Moreover, the gradient orientation is also calculated to determine the edge 

direction. The objective of the non-muximum suppression is to transform the blurred 

edges detected in the previous step to sharp edges. In order to achieve that, it will 

preserve all local maxima by deleting everything else in the gradient image (Figure 

2.23 (d)). Consequently, double thresholding is applied to the non-maximum 

suppression result to determine the potential edges. Within the double thresholding, 

edge pixels stronger than the high threshold are marked as strong edges, edge pixels 

weaker than the low threshold are deemphasized and edge pixels between the two 

thresholds are marked as weak edges (Figure 2.23 (e)). Finally, within the edge 

tracking by hysteresis operation, all edges that are not connected to the strong edges 

are deemphasized further and strong edges are preserved to generate the final results 

(Figure 2.23 (f) and (g)).        

Hernandez-Vela and his team have published a CA segmentation and centerline 

extraction method in [81]. The proposed method is implemented based on graph-cuts 

theory. Moreover, this graph-cuts theory has been applied in this study to model 

vessel structures to obtain a globally optimal segmentation of the CA tree in 

angiography images and to achieve accurate detection of both the centerline and the 

vessel borders. At this juncture, they have combined the computed features like 

vesselness (the local vessel appearance), geodesic paths (the local connectivity to 

other vessel regions), and a new multi scale edge map (a new multiscale version of 

the adaptive canny detector) based on the angiography image to be processed in 

order to customize the graph-cuts approach for segmentation of tubular structures. 

The segmented binary image is used to determine the vessel centerlines. Within the 

procedure, the distance map of the binary segmentation image is computed. 
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Consequently, non-maxima suppression is applied to find local maxima and a classic 

ridge transversal method is applied to connect the local maxima. The ridge 

transversal stops when it finds another centerline or it exits the segmented area.  

A novel method has been proposed for structural matching of CA junctions recorded 

in CCA  by Yumei in [82]. This method is basically used to track the correspondence 

of vessel branches among the consecutive CCA frames. Multi scale Hessian matrix 

based approach has been used for vessel enhancement and segmentation. Segmented 

vessel tree is saved as a binary image and it is used for extraction of blood vessel 

junctions and tracking the extracted junctions. Prior to extracting the vessel 

junctions, vessel skeleton is obtained by applying morphology-based image thinning 

technique. Subsequently, the vessel junctions are extracted by traversing the blood 

vessel skeleton and a graph of junctions is obtained as the results. Additionally, 

significant features of the vessel junctions such as its position, the intensity of its 

neighbors, its branch angles and branch widths have been computed. Finally, 

junction tracking is performed between two consecutive frames in the CCA to find 

Figure 2.23: Steps of canny edge detection. (a) original image; (b) smoothed 

image; (c) gradient magnitude; (d) edges after non-maximum suppression; (e) 

double thresholding; (f) edge tracking by hysteresis; (g) detected edges. 
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the correspondence between the branches represented in the computed graphs among 

two consecutive frames of the CCA to be processed. It is done by computing the 

difference of the two identical junctions’ descriptors computed for two consecutive 

CCA frames. 

The research study mentioned in this thesis is used Zhang and Suen’s fast parallel 

thinning algorithm to obtain the skeleton of the blood vessels [83]. It is proven that 

this thinning algorithm can efficiently generate single pixel width skeletons of 

different shapes of objects efficiently. Moreover, the algorithm removes all the 

contour points of the image except those points that belong to the skeleton. The 

algorithm repeatedly executes certain operations and within iteration, the algorithm 

has further divided into two sub iterations to preserve the connectivity among the 

skeleton pixels. Moreover, Figure 2.24 depicts the visual illustrations of these sub 

iterations and the original Zhang and Suen’s fast parallel thinning algorithm has been 

published [83]. Accordingly, the first sub iteration removes only the south-east 

boundary points and the north-west corner points, which do not belong to the 

skeleton (Figure 2.24 (a)). Just as, within the second sub iteration, it removes only 

the north-east boundary points and the south-east corner points, which do not belong 

to a skeleton (Figure 2.24 (b)). 

Another CA tree extraction method has been published by Haris et al. and they have 

introduced circular sampling based vessel path tracking method in their study 

[84][85]. Moreover, the approximate centerline and borders of the coronary arterial 

tree are extracted through a recursive artery tracking method, which is implemented 

based on circular template analysis for the local artery border detection. In the latter 

stage of the proposed method, accurate skeleton and borders of each artery segment 

of the arterial tree are computed based on the morphological tools of homotopy 

modification and watershed transform. The structural descriptions of the CA tree 

(skeleton and borders) along with accurate information for the CA dimensions have 

been produced as the output of this research study.  



78 
 

 

Adaptive tracking algorithm has been proposed by Sun to automatically identify the 

vessel contours in coronary angiograms [86]. Proposed tracking algorithm starts with 

the given seed point and exploit the spatial continuity of the vessel’s centerline, 

orientation, diameter, and density. Moreover, the algorithm consists of an 

extrapolation-update process, which is guided by a matched filter. Furthermore, this 

proposed tracking method has been tested using synthetic images, digital subtraction 

angiograms, and CCAs to verify its’ robustness and efficiency.   

A new deformable spline based method for determining vessel boundaries, and 

enhancing their centerline features has been published by Klein et al [87]. In this 

proposed method, vessels are represented by B-spline snakes, and are optimized on 

filter outputs with dynamic programming. Moreover, vessel centerlines were defined 

mathematically as a line drawn between two edges such that, at any point along its 

length, its perpendiculars intersect the edges at equal distances from itself. The 

diameter stenosis is determined from a computed vessel centerline. In order to 

achieve that, the first point of the centerline is given initially. Consequently, vessel 

centerline is tracked iteratively to compute the diameter of the vessel. In order to do 

that, a T-shaped structure is used and it is positioned on the given center point as its’ 

Figure 2.24: Zhang and Suen’s thinning algorithm steps. (a) results of first sub 

iteration; (b) results of second sub iteration; (c) generated skeleton (‘@’ indicates 

the image pixels, ‘.’ Indicates removed pixels.). 
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long arms perpendicular to a short stem. Subsequently, the “T” is rotated and an 

orientation in which the two resulting distances along the arms to the edges are equal 

is sought. The intersection of the stem and arms of the “T” then becomes the next 

point on the centerline. This process is repeated until the end of the marked 

centerline of the vessel. 

Moreover, Shoujun et al. has proposed a fully automatic tracking based method that 

can adapt to varying vessel curvatures and diameters resulting from arterial stenosis 

or aneurysms [77]. A probabilistic vessel tracking and fuzzy structure pattern 

inferring technique have been implemented in this study for vessel segmentation.  

2.6 Summary   

This chapter has emphasized on how angiography is used for CA disease diagnosis 

and its’ strength and weaknesses. Initially, the setup of cath lab and the function of 

the fluoroscope used for imaging were discussed. Then the angiographic views were 

clearly elaborated with visual illustrations. How the views are used for grading the 

stenosis had been discussed in the next section of the chapter. After that, the proven 

limitations in angiography in subjective stenosis assessment have been mentioned 

with evidence. The background studies carried out with respect to this image 

modality has been elaborated as the last section of this chapter. .  
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CHAPTER 3  

FRAME ENHANCEMENT AND ALIGNMENT  

The process of generating CCAs and its visual representations have been discussed 

comprehensively in Chapter 02. Even though these CCA frames are produced 

directly by the fluoroscope, past researches and empirical results have shown that 

those produced CCA frames are degraded by various types of artifacts. Moreover, 

those negative artifacts result in severe obstructions for segmentation the vessel 

structures and quantitative analysis of stenosis. Hence, it is worth analyzing those 

artifacts and to implement an effective process to enhance the CCA frames to obtain 

the optimal quality required for the subsequent processing.  

Initially, the chapter emphasizes the complete design of the proposed quantitative 

coronary analysis method of this research study for improving the CCA for objective 

diagnosis. Later, the chapter is focused to discuss about the first phase of this 

proposed method, which is known as pre-processing. Within this section, it 

elaborates the effect of already recognized negative visual artifacts in CCAs with 

visual illustrations. Finally, the main implantation stages of the proposed pre-

processing phase such as frame enhancement, frame alignment and mask creation 

will be detailed comprehensively.       

3.1 Overview of the proposed method   

In order to achieve the study objectives stated in section 1.7, a novel method has 

been proposed as depicted in the flow chart of Figure 3.1. According to the 

flowchart, the direct CCA is input to this proposed method. An individual frame 

extracted from this input CCA is processed at a time by passing it through the four 

main processing phases namely; pre-processing, segmentation, vessel tracking and 

calculation. Although this is an iterative process, the same processing phases will be 

implemented on each and every frame of the input CCA continuously. Within 

iteration, it logs the diameter of the selected vessel segment and length of the vessel 

skeleton with respect to the current frame to be processed. These log data can be 
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used to generate visualizations of the vessel diameter to determine the suspected 

regions.      

 

The objective of the pre-processing phase is to enhance the visual quality of the CAs 

shown in the CCA frame to be processed. It is achieved by reducing the recognized 

visual degradation artifacts from the CCA frame such as noise, non-uniform 

illumination and global motion. Moreover, in this phase, some image processing 

techniques have been applied to emphasize the blood vessels by reducing the 

background details shown in the frame. This enhanced frame is input to the 

subsequent segmentation phase to extract the main CA depending on the 

angiography view. Subsequently, this segmented frame is input to the vessel tracking 

 

Figure 3.1: Flow chart of the proposed method. 



82 
 

phase to track the vessel skeleton starting from the catheter engaged point visualized 

in the frame to be processed. 

The vessel diameter and length of vessel skeleton calculations are done in the last 

implementation phase of this proposed method, which is known as quantitative 

analysis. Meantime the calculated vessel diameter and length of vessel skeleton are 

logged for both result analysis and detection of stenosis regions in the processed 

main CA segment. This chapter broadly discusses about the implementation steps of 

the pre-processing phase and the remaining implementation phases of this proposed 

method will be elaborated comprehensively in the following chapters.  

Ethics Review Committee of the Faculty of Medicine, University of Colombo has 

granted the ethical clearance to extract the CCAs, which are required for validating 

the results of this proposed method. Hence, the direct CCAs recorded under the three 

standard angiography views were selected for data validation namely; LAO Cranial 

in RCA catheterization and AP Caudal and AP Cranial views in LCA catheterization. 

The main reason for selecting the aforementioned angiogram views for creating the 

dataset is that those views provide excellent visualizations for the main CAs namely 

RCA, CX and LAD respectively.    

3.2 Visual degradations in CCA frame    

It is necessary to obtain clear X-ray images for CCAs because, spatial indistinctness 

of CCA frames cause incorrect assessments in subsequent quantitative approaches 

followed in this study. The quality of angiographic X-ray images is determined in 

terms of contrast and spatial resolution. Moreover, it has been reported that these 

angiographic quality factors depend on the following effects: geometric distortions, 

the resolution of the detector, scatter and veiling glare, non-uniform opacification, 

noise and motion [30]. Fluoroscope with a flat panel detector has some inbuilt 

mechanics to evade the geometric distortions, scatter and veiling glare from the 

angiography images. However, non-uniform illumination, noise and motion are still 

present in the angiography images and cause some visual degradation in recorded 

angiography images. Following sections will emphasize the characteristics and 

consequences of those artifacts for the CCAs in detail.   
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3.2.1 Non-uniform illumination and poor opacification 

Non-uniform illumination in CCAs degrades the visual quality of the angiography 

and formulates some incorrect vessel segments in computer based vessel recognition 

or segmentation procedures. This phenomenon visualizes an individual vessel 

breaking into several segments. Moreover, it makes some hindrances to clearly 

recognize which branch segment belongs to which CA in the frame to be processed. 

Hence, it makes some difficulties to automatically segment the CAs accurately [25]. 

Figure 3.2 (a) depicts this artifact for further clarifications. In this figure, the affected 

area is circled and within that area, it is hard to identify which vessel branch belongs 

to which CA apparently.        

It is reported that the poor contrast opacification of the vessel may lead to a false 

impression of an angiographically significant lesion or lucency, which could be 

considered a clot [40]. Further, inadequate mixing of contrast material and blood 

could be seen as a luminal irregularity. It occurs when there is a strong presence of 

blood and contrast agents in the vessels, the thick vessels have more contrast to noise 

ratios than the small narrow ones [25]. Figure 3.2 (b) clearly depicts this artifact. 

Contrast of the vessel depicted in the circular area is extremely poor when compared 

to the main blood vessel. In order to overcome this issue, a bolus injection of contrast 

material must be delivered continuously until the adequate opacification level is 

reached and the angiogram could be interpreted correctly. Moreover, it is possible to 

enhance the delivery of contrast material by using a larger catheter or a power 

injector. Even though the injection of contrast agent is controlled mechanically still 

there is a possibility of getting low contrast angiography images. Hence, it is 

necessary to find a method to overcome this problem automatically.     

As shown in Figure 3.2 (c), the occurrence of indistinguishable white or gray color 

patches on vessel regions is  also problematic in automatic processing of CCAs [27]. 

As shown in Figure 3.2 (c), this haziness occurs when the X-ray beams are 

positioned perpendicularly to the plaque deposit during the image acquisition. Apart 

from that, the inconsistent delivery of contrast agent also causes the same visual 

degradation. The affected areas are visualized as white or gray color patches, making 
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it hard to distinguish the availability of stenosis in the vessel and to measure the 

degree of that stenosis. Further, this effect reduces the spatial coherence of the vessel 

structures and provides number of incorrectly segmented disconnected vessel 

segments as a result of such segmentation. Therefore, it causes obstructions in 

quantitative assessment of lumen diameter of the vessels.   

 

3.2.2 Noise 

CCA frames reduce the ability to identify the defects in some blood vessels due to 

the low contrast embedded by the noise. Accordingly, the effective approaches to 

remove noise become mandatory. Angiograms are characterized by noise, which is 

caused by two main sources; quantum noise and electrical noise [30] [47]. Quantum 

noise occurs due to the random distribution of X-ray photons on the image area 

 

Figure 3.2: Effect of non-uniform illumination and poor opacification of 

angiogram. (a) non- uniform illumination; (b) poor contrast; (c) haziness. 
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during the image formation in fluoroscope. During the image formation, part of an 

X-ray beam forms the exposure to one small area within a receptor of the 

fluoroscope. Due to this random exposure of X-ray photons, at some points, there 

might be clusters of several photons and, also, there exists some areas where only a 

few photons are collected. This uneven distribution of photons shows up in the image 

as quantum noise [88]. Figure 3.3 clearly depicts this effect by using two angiogram 

images. Figure 3.3 (a) shows an image, which is captured under low radiation dose 

where as Figure 3.3 (b) shows the same vessel structures, which were captured under 

high radiation dose. It determines that the image captured under low radiation dose 

suffers from quantum noise and has low contrast to characterize the blood vessels 

precisely compared to the high radiation dose image. In addition to the quantum 

noise, the electrical system adds Gaussian noise and impulse noise to the CCAs 

[30][57][68]. 

 

3.2.3 Motion 

Unlike renal or cerebral angiograms, CCAs are recorded with motion, which is 

another factor that affects the quality of the CCAs. Mainly, there are three types of 

motions in CCAs namely global, radial and the local motions. Global and radial 

motions occur due to the systolic and diastolic movements of the heart [89]. Global 

 

Figure 3.3: Effect of radiation dose for angiography. (a) low radiation does 

image; (b) high radiation dose image. 
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motion produces rapid displacements of vessel structures from its’ initial recorded 

point, and radial motion makes tiny movements in distal parts of the main CAs. 

Local motion occurs due to the flow of the contrast agent within the CAs, and it is 

the important motion category used to determine the functional significance of 

arterial flow [90]. CAs are adhering to the epicardium of the heart and follow 

dynamic performances of the related myocardium during heart beat. Hence cardiac 

motion can be directly determined by arterial motion as depicted in Figure 3.4  [58]. 

The figure consists of non-uniformly illuminated four consecutive frames of a CCA 

and the catheter engaged area shown in each frame is marked using a white square 

for better visualization of the artifact. The placement of this marked region is 

displaced in the four consecutive frames of Figure 3.4 as a result of global motion.  

Not only that, but also the distribution of contrast agent gradually increases in all the 

four frames as a result of the local motion.   

 

As visualized in Figure 3.4, the CAs are displaced from its initial position due to 

global motion. Hence, it is clear that the blood vessel structures are not aligned 

among the consecutive CCA frames due to this global motion. It causes some 

obstructions in automatic vessel tracking using CCAs because it is required to 

segment and track the CAs within the whole frame sequence. This can be simplified 

if the vessel structures are positioned in a stable place in each frame of the CCA to be 

processed. Moreover, this global motion can generate some frames in a CCA, which 

represents superimposition of CAs with background tissues like spine and 

Figure 3.4: Motion artifacts in CCAs. (White square indicates the catheter-

engaged region.) 
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diaphragm. This may cause some problems to characterize the CAs from the 

background structures in some processing phases.  

It is apparent that the requirement of finding a solution to evade the aforementioned 

visual problems from the CCA frames is crucial. Hence, it is mandatory to 

empirically find a methodology to obtain uniformly illuminated, noise reduced 

visually aligned frames as a prior step of this proposed study. The pre-processing 

phase of this study has addressed these issues empirically and the following sections 

of the chapter discuss the steps of pre-processing phase comprehensively.  

3.3 Proposed method for pre-processing phase  

It has already been mentioned that the frames extracted from direct CCA are used in 

this research study to process and quantitatively analyze the severity of stenosis. 

Generally, the direct CCAs consist of a frame sequence, which visualizes different 

scenes such as the catheter engagement, filling of contrast agent within the CAs and 

representing filled vessel structures. Figure 3.5 depicts a frame sequence of a sample 

CCA, which can be used to clearly identify those visual scenes separately. According 

to Figure 3.5, frames, which are labeled from 1 to 7, 8 to 14 and 15 to 20 represent 

catheter engagement, filling of contrast agent within the CAs and filled vessel 

structures respectively. Out of those scenes, the frames visualizing the filling of 

contrast agent within the vessel structure and frame prior to start visualizing the first 

drop of contrast agent flooding are important to determine the functional features of 

CAs because, it is required to have a frame sequence that depicts the flooding of 

contrast agent within the arteries to determine the functional significance of CAs. 

Hence, those frames are selected from input CCAs for processing. This factor can be 

further clarified using Figure 3.5. In this figure, those frames labeled from 7 to 14 are 

marked as selected frames because those frames are responsible to visualize the 

required scenes. The frame recorded prior to start visualizing the first drop of 

contrast agent clearly visualizes the successful catheter engagement with the selected 

CA. Moreover, this frame clearly represents the background of the frame and initial 

placement of the catheter clearly. This feature is important to frame alignment and 

vessel path tracking, which will be discussed in future sections in this thesis. Once 
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the frame selection has been completed a direct CCA can be denoted as a sequence 

of frames as shown in equation (3.1).  

݂
௦ሺݔ, ሻݕ ൌ ሾ ݂

ଵሺݔ, ,ሻݕ ݂
ଶሺݔ, ,ሻݕ ݂

ଷሺݔ, ………ሻݕ . ݂
ሺݔ, ሻሿ (3.1)ݕ

Where f0(x,y) represents the direct CCA frame with (x,y) spatial coordinates and the 

superscript s of each frame f0(x,y) indicates the frame sequence number starting from 

1 to n. It can be used to directly identify any frame of CCA to be processed. 

Moreover, the subscript of f indicates a certain operational step of the proposed 

method and initially it is assigned 0 to mark the non-processed direct CCA frames.   

 

 

Figure 3.5: Visuals of selected frames of a CCA for processing. (Frames from 7 

to 14 have been selected in this CCA for processing.) 
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As mentioned in section 3.1 above, the input CCA frames are processed repeatedly 

and the flowchart depicted in Figure 3.1 clearly represents the processing phases of 

the proposed method. The main focus of this chapter is to elaborate the pre-

processing phase of the study and Figure 3.6 depicts the implementation stages of 

that proposed pre-processing phase. According to Figure 3.6, the input direct CCA 

frame (f0(x,y)) is processed under three processing stages namely frame 

enhancement, frame alignment and mask creation. As a result of that, the pre-

processing phase produces visually aligned enhanced frames and mask image as the 

output. The next sections of this chapter will elaborate the implementation stages of 

the proposed pre-processing phase of this study in detail.   

3.4 Frame enhancement  

The objective of frame enhancement is to convert direct CCA frames into noise free 

uniformly illuminated frames. There are some reported factors in the area of 

angiographic image enhancement, which have been widely accepted by cardiologists 

[47]. Those are: 

 The image enhancement is used for visualization purposes only, and not for 

quantitative analysis. 

 Detailed image structures should not be lost during the enhancing procedure. 

 The original dimensions of vascular structures should be preserved in the 

enhanced image. 

Moreover, those factors are also persevered in this frame enhancement stage.  

As mentioned in section 3.2, it has been revealed that the direct CCA frames suffer 

from quantum noise and impulse noise. The CCAs used to test in this study have 

been produced by the fluoroscope with flat panel detectors and those machines have 

some inbuilt mechanisms to reduce the effect of quantum noise such as binning.  
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Further, it has been reported that this quantum noise can be minimized through the 

spatial filtering techniques [91]. Some spatial filtering methods have been 

implemented during the segmentation phase of this study. Hence, it will be minimize 

the remaining quantum noise in the CCA frames to be processed. In order to 

eliminate the impulse noise, a median filter with kernel size 3×3 was applied to the 

input direct CCA frame to be processed [57]. The frame obtained after the noise 

reduction is denoted as f1(x,y) and it can be characterized by two components namely 

illumination (i) and reflectance (r) as shown in equation (3.2); 

ଵ݂ሺݔ, ሻݕ ൌ ݅ሺݔ, ሻݕ ൈ ,ݔሺݎ ሻ (3.2)ݕ

 

Figure 3.6: Implementation stages of pre-processing phase. 
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Where;  0 < i(x,y) < ∞,  0 < r(x,y) < 1 ( 0 – total absorption, 1 – total reflectance ) 

and x,y represent the spatial coordinates of the image function f1(x,y).   

Subsequently, this noise-reduced frame was further processed to remove the effect of 

non-uniform illumination. In order to achieve that, homomorphic butterworth high  

pass filter was applied to attenuate the illumination component (i) from the CCA 

frame [92]. Conventionally, the illumination (i) and reflectance (r) components of an 

image are not separable. Homomorphic filtering is a method in which the 

illumination and reflectance components can be filtered individually [93]. Due to 

that, homomorphic filter was selected to obtain the expected uniform illumination of 

the CCA frames to be processed. It consists of several steps and those steps have 

been elaborated subsequently. 

As the initial step, the CCA frame f1(x,y) is mapped into the natural logarithm 

domain. As a result of that, the frame is transformed to the sum of its illumination 

and reflectance components as shown in equation (3.3).  

,ݔሺ ሻݕ ൌ ݈݊ሼ݅ሺݔ, ሻሽݕ  ݈݊ሼݎሺݔ, ሻሽ (3.3)ݕ

Where, p(x,y)  denotes the resulting frame obtained after applying natural logarithmic 

on f1(x,y); 

After that, the Discrete Fourier Transform (DFT) is applied to partially processed 

frame to transform it into the frequency domain. Equation (3.4) represents the 

transformation of p(x,y) in to DFT; 

,ݔሺሼܨ ሻሽݕ ൌ ,ݔሾ݈݊ሼ݅ሺܨ ሻሽሿݕ  ,ݔሺݎሾ݈݊ሼܨ  ሻሽሿݕ

Becomes  

,ݑሺ ሻݒ ൌ ݅ሺݑ, ሻݒ  ,ݑሺݎ  ሻݒ

(3.4)

 

Where, F denotes the application of DFT, i(u,v) and r(u,v) are the Fourier transforms 

of ln{i(x,y)} and ln{r(x,y)}. (u,v) represents coordinates of the frequency spectrum 

obtained by the DFT.  
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It has been reported that the illumination components of the CCA frame can be easily 

identified through the low frequency content in the frequency domain because the 

illumination is considered as a slowly varying pattern in a particular image [48]. 

Hence, the butterworth high pass filter was applied to emphasize the high frequency 

components of the frame to be processed. These high frequency components are 

responsible in saving the ridge structures in the frame and for attenuating the low 

frequency bands, which are responsible for illumination. In order to filter out the 

high frequency bands, convolution was done between the DFT frame (p(u,v)) and the 

butterworth high pass filter (b(u,v)). Equation (3.5) represents this operation and 

h(u,v) denotes the resulting filtered frame obtained finally.    

݄ሺݑ, ሻݒ ൌ ,ݑሺ ሻݒ ∗ ܾሺݑ, ሻ (3.5)ݒ

b(u,v) is obtained convoluting the p(x,y) by the butterworth high pass filter function 

(hpf)  given in equation (3.6);    

݂݄ ൌ
1

1  ሼܦ/ܦሺݑ, ሻሽݒ
ଶ

 (3.6)

Where, D0 is the distance from origin to cutoff frequency in the DFT frequency 

spectrum, D(u,v) is the radial distance from the origin and n is the order. According 

to the study mentioned in [48], values of both D0 and n have been set as 10 and 2 

respectively. As a result of filtering, high frequency components relevant to the 

image reflectance are emphasized and low frequency components relevant to the 

illumination are deemphasized. After the filtering, inverse DFT has been applied to 

transform the image into natural logarithm domain as shown in equation (3.7);  

݈ሺݔ, ሻݕ ൌ ,ݑଵሼ݄ሺିܨ ሻሽݒ ൌ ,ݑଵሼܾሺିܨ .ሻݒ ݅ሺݑ, ሻሽݒ  ,ݑଵሼܾሺିܨ .ሻݒ ,ݑሺݎ  ሻሽ (3.7)ݒ

Where F-1 denotes the inverse DFT operation and l(x,y) is the resulting image 

݅ᇱ ൌ ,ݑଵሼܾሺିܨ .ሻݒ ݅ሺݑ,  ሻሽݒ

ᇱݎ ൌ ,ݑଵሼܾሺିܨ .ሻݒ ,ݑሺݎ  ሻሽݒ

Hence;  
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݈ሺݔ, ሻݕ ൌ   ݅ᇱ   ᇱݎ

Then, to get back the homomorphic filtered CCA frame to the spatial domain, the 

transformation of natural logarithm has been inversed, which is exponential. 

Equation (3.8) represents this operation.  

ଶ݂ሺݔ, ሻݕ ൌ ,ݔሾ݈ሺݔ݁ ሻሿݕ ൌ ,ݔሾሺ݅ᇱሺݔ݁ ሻሿݕ ൈ ,ݔᇱሺݎሾሺݔ݁   ሻሿݕ

Hence; 

ଶ݂ሺݔ, ሻݕ ൌ ݅ሺݔ, ሻݕ ൈ ,ݔሺݎ  ሻݕ

(3.8)

Where, f2(x,y) denotes the homomorphic filtered image.  i0(x,y) and r0(x,y) are the 

illumination and reflectance components of the homomorphic filtered image, which 

satisfy the following conditions i0(x,y) ≠ i(x,y) and r0(x,y) ≠ r(x,y).  

As a result of aforementioned implementation steps, the processed CCA frame has 

been converted in to a uniformly illuminated frame. Moreover, this uniformly 

illuminated frame has been normalized by using equation (3.9) to obtain the better 

contrast among the vessel structures [48]. 

ଷ݂ሺݔ, ሻݕ ൌ  

ە
ۖ
۔

ۖ
ۓ
ௗܯ  ඨ ௗܸሺ ଶ݂ሺݔ, ሻݕ െ ሻଶܯ

ܸ
݂݅ ଶ݂ ሺݔ, ሻݕ  ܯ

ௗܯ െ ඨ ௗܸሺ ଶ݂ሺݔ, ሻݕ െ ሻଶܯ

ܸ
 ݂݅  ଶ݂ ሺݔ, ሻݕ  ܯ

 (3.9)

Where M and V denote the estimated mean and variance of input frame (f2(x,y)) and 

Md and Vd are desired mean and variance values respectively. f3(x,y) is the output 

frame. As mentioned in [48], Md was set as M/2 and Vd was set as (V×4) to obtain 

better results. It is important to note that the radial distance and order parameters of 

butterworth high pass filter and Md, Vd parameters of normalization are adjustable 

according to CCA obtained under different machines.  

Figure 3.7 depicts visual illustrations of the frame enhancement stage. It contains 

three direct CCA frames (f1(x,y)), which visualizes the LAD, CX and RCA arteries 

and enhanced versions of those frames (f3(x,y)) respectively. Hence, it is apparent 
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that this frame enhancement stage of pre-processing phase provides noise reduced 

uniformly illuminated better contrast CCA frames as the output. These enhanced 

frames (f3(x,y)) are then input to the next stage of the pre-processing phase, which 

will be discussed in the next section.   

 

3.5 Frame alignment 

As mentioned in section 3.2.3, the CCAs are implicitly recorded with global motion 

thus it changes the placements of vessel structure from one frame to another. Due to 

 

Figure 3.7: Frame enhancement. (a) LAD; (c) CX; (e) RCA; (b) enhanced LAD; 

(d) enhanced CX; (f) enhanced RCA. 
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this, it is difficult to obtain visual correlation of the vessel structure across the CCA 

frames sequence (Figure 3.4) [57] [94]. Nonetheless, the visual correlation of the 

marked or dyed arteries across the frames is crucial prior to determining the 

functional significance of the CAs because it causes some obstructions in automatic 

vessel tracking. Further, it requires additional computation steps to determine the 

placement of vessel’s starting point (catheter engaged point) in each frame due to the 

non-existence of visual correlation. Therefore, it is significant indeed to suggest a 

method to stabilize global motion artifact in the CCA frames using the enhanced 

frames produced in the previous step of the pre-processing stage. Hence, in this 

study, a frame alignment stage has been implemented for determining the global 

motion among the consecutive CCA frames and reconstructing those frames to 

achieve the desired vessel alignment.  

In order to determine the global motion, it is required to calculate the GMV among 

the consecutive CCA frames and is calculated based on the template matching Image 

Processing technique. Further, this calculated GMV presents the displacement of the 

blood vessels (frame content) among the two consecutive frames as depicted in 

Figure 3.4. Subsequently, the frame reconstruction step will be performed to adjust 

the frame contents according to the calculated GMV. As a result of that, visual 

alignment among frame content can be achieved and it visualizes the spreading of 

contrast agent within the vessel structure starting from one fixed point. 

In conventional template matching, the given template is matched with the reference 

image to find the region of interest based on the spatial contents coherence [95]. 

However, when considering about angiogram images the conventional template 

matching will fail in some situations because, the arteries recorded in angiogram 

frames are different from frame to frame due to vessel structure deformation due to 

motion artifact and non-uniform distribution of contrast agent within the CAs. This 

issue has been successfully addressed by the proposed frame alignment stage. The 

next sections of this chapter elaborate the implementation steps of this frame 

alignment stage based on its’ five implementation steps namely; (i) template 

selection, (ii) template matching, (iii) false matching correction, (iv) calculating the 

GMV and (v) frame reconstruction.  



96 
 

3.5.1 Template selection  

The proposed content alignment begins with the template selection step. In this step, 

the initial template is selected interactively from the first frame of the input pre-

processed CCA. As shown in Figure 3.8(a), this selected template is located at Fx,y 

point of the initial frame and it has w width and h height. The values of w and h 

depend on pixel width and height of the arbitrarily selected template. In addition to 

the template selection, it is necessary to select another region around the selected 

template as the search window in order to set the boundary for the subsequent 

template matching step. Figure 3.8(b) depicts the template search window located at 

Gx,y point of the initial frame. It has m width and n height where m˃w and n˃h. The 

matching will provide elegant results if the selected template consists of a clear 

object within it. Therefore, selecting a template around the catheter engaged area 

visualized in the first frame of the CCA provides successful results during the 

template matching steps because the catheter engaged area is clearly visualized in all 

recorded frames of most CCA cases. Hence, it is recommended to select the initial 

template from such an area in the first frame of the CCA to be processed. 

3.5.2 Template matching 

Template matching step begins after the template selection step and repeats until the 

last frame of the CCA is processed. Within this step, the template selected from the 

initial frame (location: Fx,y and dimensions: w×h) is matched with the next frame 

using the search window of size m width and n height as shown below;  

Iteration Previous frame Current frame Remarks  

1  ଷ݂
ଵ Template selection  

2 ଷ݂
ଵ ଷ݂

ଶ Match frame 1 with frame 2 

3 ଷ݂
ଶ ଷ݂

ଷ Match frame 2 with frame 3 

 .. ..  

n-1 ଷ݂
ିଶ ଷ݂

ିଵ Match frame n-2 with frame n-1 

n ଷ݂
ିଵ ଷ݂

 Match frame n-1 with frame n 
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The Correlation Coefficient (CC) is selected as the similarity measure for the 

template matching step because it produces the lowest false matching occurrences in 

the preliminary experiment [95]. Equation (3.10) denotes the CC method applied in 

the template matching step; 

ܥܥ ൌ   ሾܶᇱሺݔᇱ, .ᇱሻݕ ݔᇱሺܫ  ,ᇱݔ ݕ  ᇱሻሿଶݕ

௫ᇲ,௬ᇲ

 
(3.10)

Where; 
ܶ′ሺݔᇱ, ሻ′ݕ ൌ  ܶሺݔᇱ, ᇱሻݕ െ ܶ 

 

ݔሺ′ܫ  ,ᇱݔ ݕ  ሻ′ݕ ൌ ݔሺܫ   ,ᇱݔ ݕ  ሻ′ݕ െ  ܫ

T and I denote the template and the search window of the current frame in the CCA 

respectively. (x, y) denotes the coordinates of the search window and (x’, y’) denotes 

the coordinates of the template starting from top left corner of it.  Tmean gives the 

mean intensity of the template and Imean gives the mean intensity of the search 

window, which is computed based on the region under the template.  

In order to keep the computational output of the CC method, floating point matrix of 

size (m–w+1) width and (n–h+1) height are created intermediary in each iteration 

and is denoted as template matching result matrix R. The coordinate point, which 

 

Figure 3.8: Template selection. (a) selected initial template; (b) selected template 

matching window. 
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contains the maximum value in R is selected as the best match point and is denoted 

as Rmax. Subsequently, this template matched point (Rmax) is marked in the current 

frame and is denoted as Cx,y where Cx,y≠Fx,y. Inequality between Cx,y point and Fx,y 

point is caused by global motion, which occur due to the heart beat. A visual 

illustration of the template matching step is depicted in Figure 3.9. Sub image (a) and 

(b) in Figure 3.9 depict the reference (template at Fx,y point) and matched templates 

(template at Cx,y point) in two consecutive frames of a particular CCA. Moreover, 

Figure 3.9(c) depicts the template matching result matrix (R) created based on the 

search window in Figure 3.9 (d). The point, which has the maximum value for CC is 

marked in that image as Rmax.  Additionally, the coordinates with respect to Rmax is 

marked in the search window depicted in Figure 3.9(d) as Cx,y to represent the 

template matched region.   

 

Figure 3.9: Template matching step between two consecutive frames. (a) marked 

template Fx,y point in previous frame; (b) matched template at Cx,y point in current 

frame; (c) template matching result matrix R; (d) matched template at Cx,y point 

in the search window extracted from the current frame. 
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Figure 3.10 clearly illustrates the global motion captured through template matching. 

Due to that, the templates are displaced between the two consecutive frames and as a 

result of that, the vessel structures are not visually aligned. Hence, it is clear that the 

application of template matching is ensured to determine the GMV of the CCA to be 

processed.    

 

3.5.3 False matching correction  

Conventionally, template matching always provides spatially and visually correct 

matches. However, the empirical results of this study have revealed that, the template 

matching provides spatially correct but visually incorrect matches rarely in certain 

matching occurrences of some CCAs. This type of matching is considered as a false 

matching in frame alignment. The reasons for attaining false matching are the 

deformations in vessel structures due to the motion artifacts and non-uniform 

distribution of the contrast agent. However, these reasons technically matter template 

matching and lead to occur incorrect matching results in rare occasions. The template 

matching executes the results based on a similarity measure and finds the matching 

region from the current frame only by considering the spatial coherence of both 

reference and matched templates. Hence, it does not perform the execution by 

considering the similarity of visual features in the reference template. Due to motion 

artifacts and non-uniform distribution of the contrast agent, the intensity distribution 

 

Figure 3.10: Template matching step between two consecutive frames. (a) 

selected template at Fx,y point; (b) matched template at Cx,y point. 
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of the current frame can changed and it leads to this false matches. Figure 3.11 

depicts this exception clearly. According to this figure, label x of image (a) depicts 

marked template and both labels y and z in image (b) denotes the false and expected 

correct   matching templates respectively. Hence, it is apparent that this exception 

leads to the defective frame alignment. Therefore, a mechanism required to formalize 

matching the visual contents of the template in addition to matching the spatial 

coherence. This was the objective of this false matching correction step. Next, the 

technique, which is used to detect and correct the false matches in template matching 

has been elaborated in detail.  

 

False matching detection is done by comparing the shape similarity of the vessel 

structures existing in the reference and matched templates. In order to achieve that, 

the reference and matched templates obtained from the previous and current frames 

are extracted in to two separate images and a sequence of operations is implemented 

to isolate the vessel structures. Figure 3.12 depicts the application of different 

operations for the template images in (a) and (b), which are extracted from previous 

 

Figure 3.11: False template matching occurrence. (a) initial frame; x denotes the 

selected template; (b) Matching frame; y denotes the false template and z denotes 

the expected correct template. 
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and current frames. As the initial operation, the edge based segmentation was applied 

to both template images to mark the different visual segments in those images [78].  

It is illustrated in Figure 3.12 (c) and (d). According to these visual illustrations, it is 

clear that all the segmented edges do not correspond to the blood vessel structures. In 

order to emphasize the blood vessel structures from the template images, image 

thresholding operation is applied (threshold is set empirically as 50). Due to 

thresholding, the blood vessel structures and some of the background structures have 

been extracted as the foreground objects.  Figure 3.12 (e) and (f) depict the effect of 

image thresholding for the template images for further clarifications. Nonetheless, it 

has been experimentally observed that the largest objects emphasized in the 

thresholded template images were the vessel structures. Therefore, contour detection 

was applied for both thresholded template images separately and largest detected 

contour was extracted as the vessel structures in each template images as shown in 

Figure 3.12 (g) and (h). Those processed template images are now suitable for 

determining the shape similarity.   

 

Figure 3.12: Steps of shape matching of template images. (a) and (b) reference 

and matched template images; (c) and (d) edge segmented images of template 

images in (a) and (b); (e) and (f) threshold results of edge segmented images in 

(c) and (d); (g) and (h) vessel segment isolated images of the threshold result 

images in (e) and (f). 
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The shape similarity between the blood vessel structures in the template images are  

determined based on the Histogram based Oriented Gradient (HOG) descriptor [96]. 

The HOG descriptor is a feature descriptor used for object detection in computer 

vision. It counts the occurrences of gradient orientation in localized portions of an 

image to generate the HOG descriptor ID. Moreover, the local object appearance and 

shape within an image can be described by the distribution of intensity gradients or 

edge directions. The HOG descriptor is also implemented based on the gradient 

orientation. Hence, the HOG descriptor has been selected as the ideal technique for 

determining the shape similarity of the vessels in template images.   

The implementation of HOG descriptor can be achieved by dividing template image 

into small regions, called cells, and for each cell compiling a histogram of edge 

orientations for the pixels within the cell. Hence, in this study, it has been selected 

4×4 cells and 8×8 blocks to calculate the histograms of gradient orientation and there 

are four cells in one block. Figure 3.13 depicts a sample implemented HOG 

descriptor for a scaled template image (64×8 size). It consists of 16 ×2 total blocks. 

Further, it represents the computed histogram of gradient orientation in each block. 

Moreover, each of these histograms has 9 bins to represent orientation of voted 

pixels from 00- 1800. The length of the bin in each histogram indicates the dominant 

direction of gradient magnitude. Eventually, the combination of these histograms 

forms the ID for the HOG descriptor.   

  

 

Figure 3.13: Implementation of HOG descriptor. 
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After calculating the HOG descriptor for both template images, the Euclidean 

distance between those HOG descriptors (HOG distance – DHOG) has been 

calculated to formalize a mechanism to determine whether the current template 

match is false match or not. Therefore, following algorithm was implemented to 

detect the false matching occurrences.  

False Matching Detection (dmean, dstd, dtemp ) 
begin 

if (dtemp == 0) ||  
      [((dmean- dstd ) <=dtemp) && (dtemp <= (dmean+ dstd ))] then  
    Correct match  
else  
    if dtemp > (dmean + dstd) then  
        if  (dtemp / (dmean + dstd)) > distanceFactor then 
            Detect as FP matching  
            Apply correction process  
        else  
  compute DHOG 
           if (DHOG >= DHOGThreshold) then  
   Detect as FP match  
                Apply correction process  
           else  
   Correct match  
           end if  
        end if  

     else  
        if ((dmean - dstd)/ dtemp) > distanceFactor  then 
            Detect as FP matching  
            Apply correction process  
        else  
  Compute DHOG 
  if (DHOG >= DHOGThreshold) then 
   Detect as FP match  
                Apply correction process  
           else 
   Correct match  
           end if  
        end if 
    end if  

    end if  
end 
NOTE: FP stands for False Matching  
 

dtemp is the displacement between the templates and dmean and dstd are mean template 

displacement and standard deviation of template displacement of the CCA being 

processed. Distance factor (distanceFactor) is a constant and it has been emphirically 
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set as 2 for this study. It means, if any template distance (dtemp) greater than 2 times 

upper distance boundary (dmean + dstd) or if any template distance (dtemp) less than 2 

times lower distance boundary (dmean - dstd) is considered as false match.  Apart from 

that, the computed HOG distance value is compared with a threshold HOG distance 

value (DHOGThreshold), which is 45 and it is determined during one of the preliminary 

experiments of this study. Figure 3.14 depicts the detected true (image (a) and (b)) 

and false (image (e) and (f)) template matching occurrences of a CCA with their 

respective HOG descriptor visualizations to further clarify the technique.   

A template re-correction method is also implemented to re-correct any false 

matching occurrences. It is done using the matched point obtained in the previous 

template matching iteration. e.g. If the false matching detection occurs in nth iteration 

of the content alignment, it will use the matched coordinates obtained in the (n-1)th 

iteration to re-correct it. In this re-correction method, re-corrected template matching 

point is marked explicitly from Px,y position in the current frame where Px,y equals to 

the Cx,y point of previous iterations’ template matching step. 

It was revealed that this re-correction method provides a near equal matched area for 

the reference template. The reason for that is, deformations occur among the vessel 

structures due to the radial motion among the arteries. Therefore, it is necessary to 

smoothen the re-corrected point to find the best match point. Euclidean distance 

between the reference template and the matched template region in the current frame 

is taken as the metric to find the best matched point. 

In order to smoothen the re-corrected point, the Euclidean distance is calculated 

between the template at Fx,y  point of the previous frame and the re-corrected template 

marked in Px,y point in current frame, and the result is denoted as EDi. Subsequently, 

a block matching is applied within a K region around Px,y point in the current frame 

to detect a more closer matching region to the reference template at Fx,y. Moreover, K 

is set as (template width /4) because it is obvious that the re-corrected best match 

point should be placed proximal to the Px,y. Euclidean distance values are calculated 

separately between the template at Fx,y point and re-positioned template within the 

selected region K around Px,y . At the end of this block matching, the point, which has 
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the minimum Euclidean distance is selected and is denoted as EDm. Finally, the 

coordinate point, which provides EDi is selected as re-corrected best matched 

location if EDi≤ EDm.  Otherwise EDm is selected as the re-corrected best matched 

point during this false matching correction step. 

Figure 3.14: Detection of true and false matching occurrence based on HOG 

descriptor. (a) and (b) two consecutive frames with true matched templates; (e) 

and (f) two consecutive frames with false matched templates;   (c) and (d) HOG 

descriptors of true match (DHOG =17.6416); (g) and  (h) HOG descriptor of false  

templates (DHOG =49.4431). 
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3.5.4 Calculating the GMV 

In order to construct the global motion stabilized frames, it is required to compute the 

motion vector Mx,y of two consecutive frames using the equation (3.11);  

௫,௬ܯ ൌ ൫ܥ௫ െ ,௫ܨ ௬ܥ െ ௬൯ (3.11)ܨ

Where Cx and Cy denote the x, y coordinates of the matched point obtained from Cx,y 

point in the current frame, and Fx and Fy denote the x, y coordinates of the selected 

template point at Fx,y point in the previous frame.  

3.5.5 Frame re-construction.   

In order to construct a motion stabilized frame, the current frame is translated to a 

calculated distance towards the direction determined by the motion vector. If (Cx–Fx) 

is negative, the current frame must be shifted to the right direction by Mx, distance; 

else it is shifted to -Mx distance left. Similarly, if (Cy–Fy) is negative, the current 

frame must be shifted downwards My distance; else it is shifted upwards –My 

distance. As a result of this translation, a global motion stabilized frame is 

constructed from the enhanced frame f3(x,y) and this resulting frame denoted as 

f4(x,y).   

This global motion stabilized frame is used as the input for the template matching 

step of the next iteration of the proposed method for selecting the template from Fx,y 

point with dimensions of (w×h). After the first iteration, the aforementioned template 

selection step is done automatically using the newly constructed frame ସ݂
௦ሺݔ,  ሻݕ

where s = 1,2,3,…..,n. This procedure is repeated until the last frame of the input 

CCA and a set of global motion eliminated angiogram images are produced as the 

output. 

Figure 3.15 provides summarized views of pre-processing phase to clearly recognize 

its effect to the CCAs. The top row of Figure 3.15 depicts non-uniformly illuminated 

four consecutive frames (f0(x,y)) of a CCA. Catheter engaged area shown in each 

frame is marked using a white square for better visualization of the motion artifact. 
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As mentioned in section 3.2.3, the cardiac motion (global motion) can be directly 

determine by arterial motion.  

 

It is revealed in the CCA views shown in Figure 3.15 clearly because the placement 

of this marked region is displaced in the four consecutive frames of the figure due to 

this global motion. The middle row represents the uniformly illuminated 

corresponding four frames (f3(x,y)) obtained after the frame enhancement. Moreover, 

the frame contents in these frames are still not aligned with each other due to global 

motion. The frames depicted in the bottom row represent the corresponding 

contented aligned frames (f4(x,y)) of the enhanced frames. Moreover, it is visualized 

that the placement of the marked region is positioned in the same location of the four 

consecutive frames due to global motion stabilization. These uniformly illuminated 

Figure 3.15: Summary view of pre-processing phase. (Top row represents four 

consecutive frames of direct CCA ( ଵ݂
௦). Middle row represents enhanced frames 

( ଷ݂
௦) and bottom row represents content aligned frames ସ݂

௦.) 
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content aligned frames are one of the outputs of this pre-processing phase. 

Consequently, these frames are input to the next phase of the proposed method, 

which is known as segmentation for further processing.     

3.6 Mask Creation    

It is apparent to extract the catheter region and the CA tree visualized in each CCA 

frame as the foreground during the segmentation phase. In order to achieve that, a 

mask image has been created to represent the accumulated foreground area of the 

CCA to be processed and it was the objective of this stage [97]. Mask image is the 

other output generated by pre-processing phase of this study and consists of two 

major steps namely; creating the accumulated foreground image and enhancement.  

Initial step of mask creation is done after the frame reconstruction step of content 

alignment. Though the content alignment is an iterative procedure, the accumulated 

foreground image created by mask creation is also performed iteratively. The 

accumulated foreground image creation was done by executing three operations to 

the copies of two consecutive frames, which are processed within each repetitive step 

of the content alignment. As the first operation, the frame difference between the 

copies of two consecutive frames of the CCA to be processed is computed. This 

frame difference depicts the intersection area where the foreground objects (catheter 

and CA tree) are moving within the CCA frame. Figure 3.16 (c) depicts the frame 

difference image of the two consecutive frames visualized in (a) and (b) for further 

clarifications of the aforementioned operation. This frame difference operation 

generates some noise blobs in addition to the foreground intersection area.  Those 

noise blobs highlighted by Figure 3.16 (c) should be minimized significantly to 

obtain the best mask image. As the second operation, thresholding is applied to the 

frame difference image to obtain clearly separated background and foreground 

regions of the frame difference image as depicted in Figure 3.16(d). Setting the 

threshold is done manually and it depends on the visual contents represented in the 

CCAs. The amount of noise blobs in the frame difference image is reduced mostly 

due to the application of thresholding operation.  
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Afterwards, the contents of this threshold frame difference image are copied to 

another matrix to form the initial mask image. The content of this initial mask image 

is accumulated repeatedly with the content of thresholded frame difference image 

generated within the content alignment iterations of the proposed pre-processing 

phase. Figure 3.17 depicts the initial mask image of a sample CCA. According to 

that, white region represents the accumulated foreground displacement area and 

black region represents the background area of the CCA. 

Enhancement step begins after creating the initial mask image. This will be 

performed after the content alignment (Figure 3.6). The objective of this 

enhancement step is to further improve the initial mask image by reducing noise 

blobs further and merge the concave areas within the foreground region. Therefore, 

 

Figure 3.16: Frame difference in accumulated foreground image creation. (a) and 

(b) two consecutive CCA frames; (c) frame difference image; (d) thresholding 

result. 
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the tiny white blobs in binary mask image (area < 10) are eliminated through contour 

detection and removal. Consequently, the morphological dilation operation is applied 

to expand and merge the concave areas within the foreground region of the mask 

image. This created mask image is denoted as fm(x,y) and will be used in 

segmentation phase to extract the foreground of the frame through background 

subtraction.     

 

3.7 Summary   

This chapter presented the design and implementation steps of proposed quantitative 

coronary analysis method of this research study and elaborated the pre-processing 

phase comprehensively. Noise, non-uniform illumination and global motion are 

reported as the main factors, which degrade the visual quality of the CCAs and major 

consequences for making some obstructions in processing of CCAs. This study 

introduces a mechanism to remove non-uniform illumination through homomorphic 

filtering. Moreover, it introduces a novel approach to obtain visual alignment of the 

arterial flow visualized in the CCA frames by removing the global motion artifact. 

The proposed method was implemented based on an improved template matching 

 

Figure 3.17: Mask image of a sample CCA. (left – CCA frames, right – mask 

image.) 
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technique that can be adapted to match the deformed vessel structures in CCAs. 

Further, the steps of creating mask image, which is required for foreground 

extraction in segmentation phase has been explained. The uniformly illuminated 

content aligned CCAs produced from this phase can input to consequent vessel 

segmentation phase.  
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CHAPTER 4  

SEGMENTATION  

For quantitative coronary analysis, it is significant indeed to extract the CA tree from 

the CCA frame, which is being processed. This phase of study is known as 

segmentation and a scientific approach has been suggested to extract the CA 

vasculature from the CCA frames. Uniformly illuminated content aligned CCA 

frames (f4(x,y)) and mask image with respect to the CCA to be processed (fm(x,y)) are 

inputs to the proposed segmentation method of this study to extract the CA tree. The 

proposed method for vessel segmentation has been discussed comprehensively in the 

initial section of this chapter. Thereafter, the implementation steps of the proposed 

segmentation phase have been elaborated in detail within the next three sections 

namely; foreground enhancement, structure filling and foreground extraction.  

4.1 Proposed method for vessel segmentation  

The proposed vessel segmentation method is mainly based on a spatial filtering and 

region growing approach. It follows Frangi’s filter for vessel enhancement, which 

was widely accepted for vessel enhancement in recent past research studies [63][98]. 

The main objective of this phase is to extract the foreground area from the CCA 

frames. As mentioned in section 3.6, CAs and parts of the catheter recorded in each 

frame of CCA are considered as foreground objects. Moreover, this segmentation 

method does not depend on any kind of prior knowledge about vessel regions of 

CCAs.  

Uniformly illuminated content aligned CCA frames (f4(x,y)) and mask image of the 

CCA to be processed (fm(x,y)) are input to the segmentation phase and the output 

frames almost clearly extract the complete vascular tree in the CCA frame to be 

processed. The main implementation stages of the proposed segmentation phase are 

depicted in Figure 4.1 and already published in [98]. According to the figure, it 

mainly consists of three main implementation stages namely; foreground 

enhancement, structure filling and foreground extraction. Following sections 

elaborate the steps of the implementation stages of the segmentation phase in detail.   
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4.2 Foreground enhancement  

The main objective of the foreground enhancement is to further emphasize the vessel 

structures by smoothening the CCA frame to be processed. It consists of three 

implementation steps namely; background subtraction, obtaining the directional 

second order partial derivative images and application of Frangi’s filter. Following 

sections explains those implementation steps in detail.  

 

Figure 4.1: Implementation stages of segmentation phase. 
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4.2.1 Background subtraction  

The objective of background subtraction is to reduce the effect of superimposition of 

vessels with other anatomical structures like ribs, spine or heart chambers. In order to 

achieve this, mask (fm(x,y)) created in pre-processing phase is subtracted from the 

current CCA frame (f4(x,y)) to be processed. The resulting image obtained from 

background subtraction is denoted as f5(x,y). It preserves only the accumulated 

foreground area in each CCA frame where the vessel can be displaced throughout the 

frame sequence of the CCA to be processed and remove the background structures 

visualized in the CCA frames considerably. Further, this background subtraction step 

reduces the quantum noise distributed in the background regions of the frame greatly. 

Figure 4.2 depicts the visual illustrations of background subtraction. Figure 4.2 (a), 

(d), (g) represents three pre-processed frames (f4(x,y)) of LAD, CX and RCA CAs 

and (b), (e), (h) images represents the respective mask images (fm(x,y)). Moreover, 

Figure 4.2 (c), (f), (i) images represents the extracted foreground (f5(x,y)) of 

respective frames in (a), (d) and (g) images.      

4.2.2 Obtaining the directional second order partial derivative images 

It is mandatory to obtain the directional second order partial derivative images of 

CCA frame (f5(x,y)) to apply the Frangi’s filter. These derivative images can be 

calculated by applying convolution of a second order partial derivatives of a 

Gaussian filter G (u,v) at a scale σ. Equations (4.1), (4.2), (4.3) and (4.4) elaborate 

the formation of these derivative images denoted as Iu,u, Iu,v, Iv,u and Iv,v .    

௨,௨ܫ ൌ ସ݂ሺݔ, ሻݕ ∗ (4.1) 1ܨ

 

௨,௩ܫ ൌ ସ݂ሺݔ, ሻݕ ∗ 2ܨ (4.2)

 

௩,௨ܫ ൌ ସ݂ሺݔ, ሻݕ ∗ (4.3) 2ܨ
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௩,௩ܫ ൌ ସ݂ሺݔ, ሻݕ ∗ 3ܨ (4.4)

Where F1, F2 and F3 are the second order partial derivative of Gaussian filter 

obtained through (4.5), (4.6) and (4.7) respectively; 

1ܨ ൌ
߲ଶܩ

ݑ߲ݑ߲
 

(4.5)

 

 

Figure 4.2: Background subtraction. (a), (d), (g) pre-processed frames (f4(x,y)) of 

LAD, CX and RCA; (b), (e), (h) respective mask images (fm(x,y)); (c), (f), (i) 

extracted foreground (f5(x,y)). 
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2ܨ ൌ
߲ଶܩ

ݒ߲ݑ߲
 (4.6)

 

3ܨ ൌ
߲ଶܩ

ݒ߲ݒ߲
 (4.7)

Where G denotes the Gaussian function of scalar σ as shown in the equation (4.8); 

,ݑሺܩ ሻݒ ൌ
1

ଶߪߨ2√
݁
ି௨మା௩మ

ଶఙమ  (4.8)

The empirical studies revealed that it provides best gradient approximations of the 

CCA frame when σ is set as 1.25.  Figure 4.3 depicts the second order derivatives of 

a Gaussian kernel at scale 5, which generates for (4.5), (4.6) and (4.7).  According to 

the figure, it conceives the second derivative of a Gaussian kernel as probe kernel 

that measures the contrast between the regions inside and outside the range (-5, 5) in 

the direction of the derivative [63]. Moreover, the implementation of the Gaussian 

convolution further smoothens the foreground area of the CCA frame.  

4.2.3 Application of Frangi’s filter. 

Frangi’s filter was applied in foreground enhancement stage because it has proven 

capability to extract the tubular structures recorded in angiograms [54] [64] [67] [68]. 

Blood vessels visualized in angiograms can be considered as tubular structures. Thus, 

the Frangi’s filter is the ideal filter to emphasize the vessel regions in CCA frames.  

Frangi’s method describes three-dimensional curved surface as two dimensional 

coordinates of pixels and their corresponding gray-values. Hence, the two-

dimensional coordinates of pixels in image can be denoted as (x, y) and I denoted the 

corresponding gray-value in (x, y) coordinates of the image [64]. Moreover, the 

curvature of the curved surface in the CCA frame can be defined with Hessian matrix 

(H) as shown in the equation (4.9); 

ܪ ൌ 
,ݔ௨௨ሺܫ ሻݕ ,ݔ௨௩ሺܫ ሻݕ

,ݔ௩௨ሺܫ ሻݕ ,ݔ௩௩ሺܫ ሻݕ
൨ (4.9)
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Where, Iuu(x,y), Iuv(x,y) = Ivu(x,y) and Ivv(x,y) are the directional second order partial 

derivatives of CCA frame f5(x,y) produced in equations (4.1), (4.2), (4.3) and (4.4).  

 

Two eigenvalues denoted as λ1 and λ2 and corresponding eigenvectors produced by 

the simplification of Hessian matrix given in equation (4.9) can be used to define the 

vesselness feature of the CCA frames. Moreover, this vesselness feature will be 

 

Figure 4.3: Second order derivatives of a Gaussian kernel. (a) F1; (b) F2; (c) F3. 
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determined based on the norm proposed by Frangi et al. which is based on the 

eigenvector of Hessian matrix. The proposed norm is emphasized in Table 2.4 for 

further clarifications [63]. Hence, to make the final conclusion regarding the 

vesselness feature of the processed CCA frame, it is mandatory to obtain the 

eigenvalues for each point in 2D CCA frame to be processed by computing the 

corresponding Hessian matrix. From an analysis of the eigenvalues and eigenvectors 

of the Hessian matrix, it is noticeable that the strongest eigenvalue of the Hessian 

matrix and its corresponding eigenvector in a point (x,y) gives the strongest curvature 

of 2D-surface and its direction. In this situation the computed eigenvalues are 

ordered as |λ1|≥|λ2|. The eigenvector corresponding to the weaker eigenvalue 

represents the surface direction perpendicular to the strongest curvature and the 

computed eigenvalues satisfy the condition λ1>0 and λ2≈0 [54]. Based on all 

aforementioned facts in this section the vessel resemblance function is stated as 

shown in equation (4.10) to enhance the foreground of the CCA frame to be 

processed;  

݂ሺݔ, ሻݕ ൌ ቄ
255 ݂݅ሺߣଵ  1ሻ
0 ݁ݏ݅ݓݎ݄݁ݐ

 (21)

Where f6(x,y) is the foreground enhanced image provided as the result of this step.  

Figure 4.4 depicts the visual illustrations of the results obtained after application of 

Frangi’s filter. Brighter regions in that figure emphasize the enhanced foreground of 

LAD, CX and RCA CAs respectively.    

4.3 Structure filling  

The resulting frames obtained after the foreground enhancement step consist of some 

discontinuities of vasculature. Images in Figure 4.5(a), 4.6(a) and 4.7(a) depict this 

issue clearly. These images conceive the enhanced foreground of LAD, CX and RCA 

CAs respectively and disconnected regions in those CAs are circled to clearly 

recognize the problem. The reason for this is the uneven distribution of contrast 

agent in angiography. As a result of that, in most angiogram cases, the CAs are not 

visualized by uniform intensity. Therefore, the brighter regions in detected blood 

vessels are deemphasized and darker regions are preserves by providing results with 
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disconnections in the detected vessel tree. This causes under segmentation during the 

foreground extraction step and it is a great obstruction that needs to be surmounted 

prior to the foreground extraction.  Therefore, the main objective of this structure 

filling step is to improve the spatial coherence of foreground by achieving the 

connectivity between the disconnected blood vessel areas in foreground enhanced 

frames denoted as f6(x,y).  

 

Figure 4.4: Results of Frangi filter. (a) LAD; (b) CX; (c) RCA CAs. 
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Figure 4.5: Structure filling of LAD. (a) disconnected regions in f6(x,y); (b) 

foreground mask denoted as f7(x,y); (c) overlapping f6(x,y) on f7(x,y); (d) 

structured filled image. 

 

Figure 4.6: Structure filling of CX. (a) disconnected regions in f6(x,y); (b) 

foreground mask denoted as f7(x,y); (c) overlapping f6(x,y) on f7(x,y); (d) 

structured filled image. 
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A sequence of operations have been employed to obtain the spatial coherence of the 

detected foreground depicted in f6(x,y). As the initial step, a foreground mask image 

denoted as f7(x,y) has been created using the foreground enhanced frame (f6(x,y)). In 

order to achieve that, a copy of foreground enhanced frame (f6(x,y)) is dilated 

manually by repeating the dilation over and over again until all the disconnected 

blobs are connected and it is denoted as fd(x,y). After that, a foreground mask image 

(f7(x,y)) has been created by using the dilated foreground enhanced frame (fd(x,y)) 

and the corresponding pre-processed frame denoted as f4(x,y) using the matching 

function shown in equation (4.11).  

݂ሺݔ, ሻݕ ൌ ൜ ܶరሺ௫,௬ሻ ݂݅ሺ ܶሺ௫,௬ሻ ൌ 255ሻ

100 ݁ݏ݅ݓݎ݄݁ݐ
 (4.11)

Where, T denotes the intensity of the coordinates in x, y of the respective image.  

 

Figure 4.7: Structure filling of RCA. (a) disconnected regions in f6(x,y); (b) 

foreground mask denoted as f7(x,y); (c) overlapping f6(x,y) on f7(x,y); (d) 

structured filled image. 
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Images in Figure 4.5(b), 4.6(b) and 4.7(b) depict the three foreground mask images 

created for LAD, CX and RCA CAs respectively. Foreground enhanced frame 

(f6(x,y)) is then overlapped onto the foreground mask (f7(x,y)) using the equation 

(4.12) to recognize the branches, which need to be connected. 

݂ሺݔ, ሻݕ ൌ ൜
0 ݂݅ሺ ܶలሺ௫,௬ሻ ൌ 255ሻ

݂ሺݔ, ሻݕ ݁ݏ݅ݓݎ݄݁ݐ
 (4.12)

Where, T denotes the intensity of the coordinates in x, y of the respective image.  

Images in Figure 4.5(c), 4.6(c) and 4.7(c) depict the three overlapped images created 

for LAD, CX and RCA CAs respectively. Moreover, in these overlapped images, the 

disconnected regions visualized in the foreground enhanced frame (f6(x,y)) are now 

linked with the intensities of the f4(x,y) frame.  

Finally, to achieve the desired connectivity over the entire foreground and represent 

it in a uniform manner, all the coordinates in the overlapped frame (f7(x,y)) is 

updated using the equation (4.13). 

݂ሺݔ, ሻݕ ൌ ൜
0 ݂݅ሺ0  ܶళሺ௫,௬ሻ  90ሻ

100 ݁ݏ݅ݓݎ݄݁ݐ
 (4.13)

Where, T denotes the intensity of the coordinates in x, y of the respective image.  

The intensity ranging from 0 to 90 is responsible for visualizing the full CA 

vasculature extracted to the foreground mask image and is determined based on the 

dynamic range of the intensity histograms of foreground mask images created in this 

stage. This structure filled frame denoted as f7(x,y) is returned as the output of this 

stage and the images in Figure 4.5(d), 4.6(d) and 4.7(d) depict the three visual 

illustrations created for LAD, CX and RCA CAs respectively. Finally, it is possible 

to achieve the connectivity and desired uniform intensity over the whole CA 

vasculature depicted in the CCA frame to be processed. These resulting frames are 

used for subsequent foreground extraction, which will be discussed in the next 

section.   
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4.4 Foreground extraction 

The objective of foreground extraction is to specifically mark the CA vasculature 

with catheter engagement region as desired foreground and extract them as the 

segmentation results. A structure filled image (f7(x,y)) produced in the previous stage 

is used as the input to mark the aforementioned foreground region. In order to 

achieve that, a region growing technique known as “flood fill” is used. The seed 

point for the flood fill operation is selected interactively from the catheter engaged 

point of the structure filled image (f7(x,y)). Finally, it is mandatory to extract the 

flood filled foreground region as the result of the segmentation phase. The result 

frame is denoted as f8(x,y) and is generated using the equation (4.14).  

଼݂ ሺݔ, ሻݕ ൌ ൜
0 ݂݅ሺ ܶళሺ௫,௬ሻ ൌ 50ሻ

255 ݁ݏ݅ݓݎ݄݁ݐ
 (4.14)

Where, T denotes the intensity of the coordinates in x, y of the respective image and 

50 is taken as the filled intensity used in the flood fill operation because it does not 

make any interference with both foreground and background pixels in image f7(x,y) 

because this input image (f7(x,y)) is a binary image. As a result of the flood fill 

operation, f8(x,y) image has formed and the foreground region of this result image 

has intensity 50 and background region has intensity 255. Figure 4.8 (b), (d) and (f) 

depict the segmentation results of LAD, CX and RCA CAs with respect to the direct 

CCA frames depicted in (a), (c) and (e) in the same figure.  

4.5 Summary  

This chapter has elaborated the proposed method for segmentation of the CCAs to be 

processed. The catheter engaged point and the complete CA vasculature depicted in 

each CCA are extracted into a separate image as a result of this proposed method. 

Initially the chapter discussed about the proposed segmentation method for 

foreground extraction followed in this study. It consists of three main 

implementation stages namely foreground enhancement, structure filling and 

foreground extraction. Latter sections of the chapter have discussed these 

implementation stages comprehensively with visual illustrations for further 

clarifications. The results provided in this segmentation phase are directly applied for 
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the next phase of the study, which is known as vessel tracking and luminal 

information extraction and it will be discussed in the next chapter.     

 

Figure 4.8: Foreground extraction. (a), (c), (e) direct CCA frames of LAD, CX 

and RCA; (b), (d), (f) respective segmentation results. 
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CHAPTER 5  

VESSEL TRACKING AND FEATURE EXTRACTION   

Subjective stenosis analysis and lack of quantification methods for determining the 

severity of stenosis are considered as major drawbacks in angiography image 

modality. Thus, it is crucial to suggest an accurate quantification method to improve 

this medical image modality for objective clinical assessments. Therefore, the main 

aim of this chapter is to elaborate the design and implementation stages of the 

proposed vessel tracking and quantitative analysis phases of this research study. In 

here, the segmentation image denoted as f8(x,y) is further processed to obtain the CA 

luminal information such as blood vessel boundary, skeleton and diameter along the 

vessel skeleton. The proposed vessel path tracking method has been explained 

clearly in the first section of this chapter. Consequently, the methods proposed for 

quantitative analysis and representation of the results have been elaborated with 

visual illustrations.      

5.1 Vessel path tracking  

The objective of vessel path tracking phase is to store the consecutive pixel points of 

the skeleton of a pre defined CA segment in to a specific data structure. These stored 

pixel points will be utilized in subsequent quantitative analysis phase. Segmented 

frames (f8(x,y)) produced in the segmentation phase are input to the vessel path 

tracking phase and it consists of two main implementation stages namely; vessel 

isolation and skeleton path tracking. Selecting a vessel segment from the segmented 

vessel network and obtaining the skeleton and boundary of that extracted segment 

will be done in vessel isolation stage. Moreover, storing the consecutive pixel points 

of the skeleton of the isolated vessel segment in to a specific data structure will be 

done in skeleton path tracking stage.  

Figure 5.1 depicts three CCA frames, which are used to provide visual illustrations of 

the various implementation steps discussed in this chapter. Hence, Figure 5.1 (a), (c) 

and (e) depict LAD, CX and RCA CAs extracted from three direct CCA cases 

respectively. Moreover, Figure 5.1 (b), (d) and (f) depict segmentation results of 
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those selected frames respectively. Three important parts visualized in CCA frames 

have been labeled in each image of Figure 5.1 and those are; catheter segment, 

catheter engagement point and vessel network. Identification of those parts in CCA 

frame is important to clearly understand the implementation steps described in this 

chapter. Following subsections elaborate the implementation steps of vessel isolation 

and skeleton path tracking stages in detail.  

 

 

Figure 5.1: Selected frames. (a), (c), (e) direct CCA frames representing LAD, 

CX and RCA; (b), (d), (f) respective segmentation result (f8(x,y)) of (a), (c) and 

(e) images. 
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5.1.1 Vessel isolation  

The objective of vessel isolation is to separate a clinically important vessel segment 

from the segmented vasculature. In order to achieve that, it is required to select a 

clinically important vessel segment from the input CCA frame (f8(x,y)). In this study, 

main arterial segments of LAD, CX and RCA are considered as the clinically import 

vessel segments.            

The proposed vessel selection step has to be done as an interactive activity. Within 

this method, vessel cut lines are marked across the capillaries and unwanted branches 

to make them disconnected from the desired main artery. As a result of this vessel 

cut operation the whole vessel network is broken down into multiple blobs explicitly. 

Moreover, it has been experimentally observed that the main artery segment that 

remains in the frame is the largest segment out of all available blobs in the frame. 

Hence, contour detection is applied to the CCA frame and the largest detected 

contour is extracted to save it as a separate image. This resulting frame is denoted as 

f9(x,y) and it contains the isolated main vessel segment. Moreover, subsequent 

quantitative analysis will also be applied only for this isolated main vessel segment 

in f9(x,y) image.  

Figure 5.2 depicts the visual illustrations of the vessel isolation stage. Images (a), (c) 

and (e) of Figure 5.2 represent the segmentation results of three selected CCA 

frames. The red color lines in these images indicate the interactively marked vessel 

cut lines. It has been clearly depicted that the branch vessels visualized in these CCA 

frames have been disconnected from the root artery segment due to the existence of 

vessel cut lines. As a consequence of that, the roots CAs in these three cases have 

been preserved successfully and those are depicted in Figure 5.2 (b), (d) and (f). 

Moreover, it is important to note that this isolated segment contains the three 

important parts mentioned in section 5.1 namely; the catheter segment, catheter 

engage point and isolated root CA segment.        

Afterwards, image thinning and canny edge detection operations are applied 

separately to the f9(x,y) image to obtain the skeleton and boundary of the isolated 

segment respectively [80]. Zhang and Suen’s fast parallel thinning algorithm has 
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been applied to obtain the skeleton because, it provides a connected  skeleton with 

single pixel width [83]. Having a single pixel width skeleton is an important aspect 

for subsequent skeleton path tracking because it efficiently tracks the tiny skeleton 

rather than tracking a larger one. Selecting a canny edge detector for boundary 

detection is significant because it provides a low error rate in edge detection (high 

noise suppression), contains excellent edge localization and provides single detection 

response per edge [99].  

 

 

Figure 5.2: Vessel isolation. (a), (c), (e) vessel cut operation on LAD, CX and 

RCA (red color lines represents vessel cut lines); (b), (d), (f) isolated segments 

(f9(x,y))  of respective (a), (c) and (e) images. 
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The skeleton image is denoted as fs(x,y) and boundary image is denoted as fb(x,y). 

Figure 5.3 depicts the visual illustrations of the thinning and boundary detection 

results of f9(x,y) images depicted in Figure 5.2. Images (a), (c) and (e) of Figure 5.3 

represent the skeletons of f9(x,y) images in Figure 5.2 (b), (d) and (f) respectively.  

Additionally, images (b), (d) and (f) of Figure 5.3 represent the detected boundary 

(detected skeleton is also marked in each image) of Figure 5.2 (b), (d) and (f) 

respectively. Moreover, it is important to note that these skeleton images also contain 

the skeletons of three important parts mentioned in section 5.1 namely; the catheter 

segment, catheter engage point and isolated root CA segment. This resulting skeleton 

image (fs(x,y)) is used for subsequent skeleton path tracking and boundary image 

(fb(x,y)) is used for quantitative coronary analysis. The next section will elaborate the 

skeleton path tracking stage of vessel path tracking phase.  

5.1.2 Skeleton path tracking          

Skeleton path tracking is the second implementation stage performed after the vessel 

isolation stage. The skeleton path tracking stage is implemented to store the 

consecutive pixel points of the skeleton visualized in skeleton image fs(x,y) in to a 

specific data structure. In order to achieve that, a committed algorithm has been 

proposed and it is named as Skeleton Path Tracker (SPT) algorithm. It will perform 

tacking based on a given seed point and marked tracking direction. In this section, 

initially the proposed SPT algorithm will be discussed and the application of this 

algorithm for processing the CCA will be discussed subsequently.  

SPT algorithm  

The proposed SPT algorithm is a simple line-tracking algorithm, which is based on 

the pixel connectivity. Skeleton image (fs(x,y)) obtained in the vessel isolation stage 

is input to this algorithm and it is apparent that this skeleton image (fs(x,y)) is a 

binary image. Hence, all the on pixels (intensity value = 255) in this image represent 

the skeleton and off pixels (intensity value = 0) represent the background. Within the 

tracking algorithm, two arrays are maintained to keep the pixel points of the skeleton. 

These arrays are named as skeleton point array and tagged point array. Skeleton 

point array contains the tracked pixel points along the vessel skeleton and tagged 
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point array contains the pixels, which are tagged during the tracking process. 

Moreover, maintaining a tagged point array is crucial in this tracking algorithm 

because it is used to avoid reversing the tracking and precede the tracking process to 

the end of the skeleton. Completed skeleton point array with tracked pixel points 

along the vessel skeleton will be the expected output of this proposed algorithm.   

 

Figure 5.3: Vessel skeleton and boundary extraction. (a), (c), (e) vessel skeleton 

of selected LAD, CX and RCA segments; (b), (d), (f) detected boundary of 

selected LAD, CX and RCA segments. 
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Setting seed point and tracking direction:  

In order to start the execution of SPT algorithm, it is necessary to set a seed point and 

mark the tracking direction. Seed point is a pixel point, which is on the detected 

skeleton of the input image fs(x,y) and is marked interactively. According to the 

Figure 5.3 (a), (c) and (e), it is apparent that this detected skeleton consists of a 

catheter portion skeleton and a vessel portion skeleton. Hence, two possible tracking 

directions occur starting from the seed point namely forward and reverse direction. 

Moreover, forward direction means tracking towards the vessel skeleton portion 

starting from the seed point and reverse direction means tracking towards the 

catheter portion starting from the seed point. Even though there are two tracking 

directions available, forward tracking will be the desired approach in this study. 

Hence, it is required to always mark forward direction as the tracking direction and 

essential to deny reverse tracking.  

Figure 5.4 emphasizes important steps of marking the tracking directions. Figure 5.4 

(a) depicts a sample skeleton image (fs(x,y)) and assume that it is required to track 

this skeleton starting from the given seed point. A 10×10 pixel region around the 

seed point is marked in the same image and image (b) of Figure 5.4 expands this 

marked region for better visualizing the pixel positions. On pixels in Figure 5.4 (b) 

represent the skeleton pixels and off pixels represent the background. Moreover, the 

given seed point is colored in gray, in the same image to clearly identify its position.  

Forward tracking direction is marked interactively based on the seed point position. 

Figure 5.4 (c) emphasizes the eight neighboring pixels of the seed point. Moreover, 

the on pixels in this Figure 5.4 (c) denote the pixels on the skeleton. The skeleton’s 

forward and reverse direction can be visually determined by analyzing the placement 

of the on pixels in this eight neighboring window. According to that, the reverse 

tracking will occur if the SPT algorithm starts to track the upper on pixel from the 

seed point and forward tracking will occur if the SPT algorithm starts to track the 

lower on pixel from the seed point. Hence, to avoid reverse tracking, it is mandatory 

to interactively select the reverse direction on pixel and update it as off pixel 

(intensity value = 0). This operation is clearly depicted in Figure 5.4 (d). As a 
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consequence of this operation the skeleton is broken down into two parts and SPT 

algorithm start to track the on pixels in the forward direction stating from the seed 

point. Figure 5.4 (e) denotes the forward tracking and skeleton representation at the 

end of marking the tracking direction.          

 

 

 

Figure 5.4: Setting tracking direction. (a) skeleton image (fs(x,y));(b) expanded 

area of skeleton image in (a); (c) eight neighbors of the seed point; (d) eight 

neighbors of the seed point after setting the tracking direction; (e) expanded area 

of skeleton image in (a) after setting the tracking direction. (Yellow arrow – 

reverse tracking direction, green arrow – forward tracking direction.). 
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SPT Algorithm steps: 

The proposed SPT algorithm is initiated to track the skeleton path after setting a seed 

point and tracking direction, and is given below;  

Skeleton Path Tracker (marked seed point)  

BEGIN 

1. Set marked seed point as the current seed point.  

2. Add current seed point into skeleton point array. 

3. Find candidate pixels from eight neighbors of current seed point.  

4. Add possible candidate pixels to skeleton point array and candidate point 

array. 

5. If there is no candidate pixel, end up the tracking.  

6. If there exist one candidate pixel set it as next seed point and continue with 

step 9. 

7. If there exist more than one candidate pixel in candidate point array, compute 

the candidate density value for each candidate pixel. 

8. Find the candidate pixel with highest candidate density value and set it as the 

next seed point. 

9. Add current seed point in to the tagged point array. 

10. Add candidate pixels in to tagged point array except candidate pixel with 

highest candidate density value and reset candidate key point array unless 

candidate point array is empty.  

11. Continue with step 3.   

END 

SPT algorithm repeatedly tracks the skeleton path starting from the given seed point 

until it finds a seed point with zero candidate pixel. Here the candidate pixel means 

the pixels in eight neighbors of current seed point that can be selected as the next 

seed point to proceed with the next iteration. Any on pixel in the eight neighbors of 

current seed point, which is not previously selected as a seed point and not marked as 

a tagged pixel can be a candidate pixel. One seed point can have zero or more 
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candidate pixels. If there exist more candidate pixels for a seed point, one out of 

those available candidate pixels can become the next seed point otherwise it will end 

the tracking process. Hence, a temporary array is maintained to keep the candidate 

pixels in iterations and it is denoted as candidate point array. According to these 

factors it is apparent that this proposed SPT algorithm tracks one pixel per iteration. 

The initial step of the proposed SPT algorithm is setting the current seed point. User 

interactively marked seed point is passed to this algorithm and it is set as the current 

seed point. After that, this initial current seed point is added into the skeleton point 

array. Then, the iterative process begins and the steps of the iterative process 

executed until it finds a seed point with zero candidate pixels. The first step within 

the iteration is finding candidate pixels of the current seed point. As stated earlier in 

this section, any on pixel in the eight neighbors of current seed point, which was not 

previously selected as a seed point and not marked as a tagged pixel is detected and 

add to both skeleton point array and candidate point array. At this juncture, it can 

produce one of the three possible values for the candidate pixel count and these 

values are 0, 1 and >1. Depending on this candidate pixel count there are three 

possible cases that could arise. These three cases are listed below;  

 Case 1: Current seed point has no candidate pixels: It means that there are 

no more on pixels in the skeleton image to be tracked and terminates the 

tracking process.  

 Case 2: Current seed point has 1 candidate pixel: In this situation the 

detected candidate pixel is implicitly set as the next seed point to proceed 

with the next iteration. Moreover, current seed point is added into the tagged 

point array and the candidate point array is reset for the next iteration.  

 Case 3: Current seed point has more than 1 candidate pixel:  In this case 

the candidate density value is calculated for each and every detected 

candidate pixel. After that, the candidate pixel with highest candidate density 

value will be selected as the next seed point. Moreover, current seed point 

and each candidate pixel, except the candidate pixel with highest candidate 
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density value are added in to the tagged point array consecutively. Finally the 

candidate point array is reset for the next iteration.  

It has introduced a new term called “candidate density value” in above Case 3. 

Simply, it means the white pixel count around the eight neighboring candidate pixels, 

which should be previously untagged and not equal to the current seed point. 

Moreover, Table 5.1 elaborates the behavior of the three cases of proposed SPT 

algorithm. In Table 5.1, arrow heads indicate tracking direction, Yellow cells 

indicate tracked pixels and White cells indicate skeleton pixels. Finally, the skeleton 

point array with tracked skeleton pixels is returned as the output and it will be used 

in the next phase of the proposed method to determine the vessel diameter. The 

complete pseudo code of the SPT algorithm and its execution has been included in to 

Appendix B for further clarifications. Next section will elaborate the application of 

this proposed SPT algorithm for processing CCA used in this study.  

Application of SPT algorithm for processing CCA:     

Segmented frames (f8(x,y)  produced in the segmentation phase is input to the vessel 

path tracking phase. Like in other implementation phases, one CCA frame is 

processed at a time. Hence the clinically important main vessel segment is extracted 

from the segmented frame during the vessel isolation stage and it is denoted as f9(x,y) 

image. Additionally, both the skeleton image (fs(x,y)) and boundary image (fb(x,y)) of 

f9(x,y) is also produced and the proposed SPT algorithm is executed on this skeleton 

image (fs(x,y)) to track the skeleton.  

As mentioned in section 3.3, the first frame of a CCA used to process in this study 

visualizes the successful catheter engagement and the rest of the frames visualize 

filling of contrast agent within the CA vasculature. Therefore, it has to track the 

skeleton of the catheter when this SPT algorithm is applied to the first frame of the 

CCA to be processed.   

 

 



136 
 

Table 5.1: Three cases of SPT algorithm. 

Sample Skeleton Image  8 neighbors of 
current seed point 

Remarks 

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
 

 
 
 

  

 
 

  

 
 

  

 
[5,2] point is 
selected as the seed 
point and it has a 
single candidate 
pixel, which is 
[4,3] point. 
 

 
This is an instance 
for condition 2 of 
SPT algorithm. 
Hence it   selects 
[4, 3] point as next 
seed point.   

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
 

 
 
 

  

 
 

  

 
 

  

 
[4,3] point is 
selected as the seed 
point and it has two 
candidate pixels,  
which are [3,4] and 
[4,4] points. 
 

 
This is an instance 
for condition 3 of 
SPT algorithm. 
Hence it is 
necessary to 
compute the 
candidate density 
of two candidate 
pixels. Candidate 
density of [3,4] is 
3 and [4,4] is 2. 
Hence [3,4] point 
is selected as next 
seed point.   
 

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
 

 
 
 

  

 
 

  

 
 

  

 
[1,6] point is 
selected as the seed 
point and it has 0 
candidate pixels.  
 

 
This is an instance 
for condition 1 of 
SPT algorithm. 
The skeleton path 
tracking ends up 
at this point.  
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This is an important aspect of this study because the last skeleton point of the 

catheter skeleton signifies the catheter engagement point of the blood vessel. Hence, 

this pixel point can be used to automatically set the initial seed point for tracking the 

vessel skeleton of the subsequent skeleton image of the CCA to be processed. 

Further, the position of the catheter engagement point has been fixed during the 

frame alignment stage of the pre-processing phase. As a consequence of that, the 

variation of the placement of catheter engaged point throughout the frame sequence 

has become lower. Figure 5.5 has provided visual illustrations of the execution of 

proposed SPT algorithm on four consecutive skeleton images of a certain CCA. 

Image (a) of Figure 5.5 depicts the first frame of the selected CCA and it visualizes 

the skeleton of the catheter. Seed point is marked on this catheter skeleton and last 

track point of the catheter skeleton is also highlighted in the same image. Moreover, 

this last track point is automatically set as the initial seed point of the subsequent 

skeleton images and it is emphasized in images (b), (c) and (d) of Figure 5.5. 

Furthermore, the SPT algorithm executes automatically based on this initially set 

seed point and perform tracking continuously until it satisfies the case 1.    

The skeleton point array produced in this vessel path tracking phase is input to the 

subsequent quantitative analysis phase with the relevant boundary image, which is 

denoted as fb(x,y) to extract the clinically important luminal information. The 

implementation steps of this quantitative analysis phase will be elaborated in the next 

section of this chapter.   

5.2 Quantitative analysis 

Quantitative analysis is the last implementation phase of the proposed methodology 

and its objective is to formalize an acceptable standard for assessment of CA 

dimensions using a quantitative approach. The skeleton point array and boundary 

image (fb(x,y)) produced in previous vessel path tracking phase is input to this 

quantitative analysis phase and it calculates the vessel diameter along the vessel 

skeleton as the output. The proposed algorithm for calculating vessel diameter is 

based on the geometry of vessel boundary and skeleton. Following section elaborates 

the steps of this proposed Vessel Diameter Calculation (VDC) algorithm.       
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5.2.1 Vessel Diameter Calculation (VDC) algorithm  

In this algorithm, the vessel diameter is calculated simply based on the vessel 

skeleton. Moreover, within VDC algorithm, it tracks two perpendicular lines, which 

are drawn from each and every skeleton point to left and right boundary points of the 

vessel. A sample model depicted in Figure 5.6 is used to elaborate the steps of the 

VDC algorithm. In this model, green lines represent the vessel boundary and green 

dash line represents the vessel skeleton. P1 is the first skeleton point and P2 is 

another skeleton point, which locates g gap away from the P1 point. The angle 

 

Figure 5.5: Skeleton path tracking in CCA. (a) skeleton image of the first frame 

visualizes catheter engagement with artery; (b),(c) and (d) three consecutive 

frames of the same CCA (Yellow colored arrow indicates tracking direction). 



139 
 

between P1-P2 line with horizontal axis is denoted as a0. P2-P3 and P2-P4 are two 

perpendicular lines for P2 point of length g.      

 

Diameter calculation algorithm starts from the skeleton point, which belongs to the 

vessel segment denoted as P2. The gap g between P1-P2 points has been set as 15 

pixels because it should be greater than the maximum radius of typical CA [100]. 

The main steps of proposed VDC algorithm are stated below; 

Step 1: Find the angle between P1- P2 line with horizontal axis in degrees as 

mentioned in the equation (5.1); 

ܽ ൌ ି݊ܽݐ ൬ฬ
ܲ2௬ െ ܲ1௬
ܲ2௫ െ ܲ2௫

ൈ
180

ߨ
ฬ൰ (5.1)

 

Figure 5.6: Vessel diameter calculation model. 
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Step 2: Find P3 point using the equation (5.2). Note that this P3 point is 

perpendicular to the P1-P2 line that intersects left side boundary of the vessel where 

P2-P3 line exists;  

ܲ3 ൌ ൫െ ௬ܸ, ௫ܸ൯ (5.2)

Where Vx = (P1x – P2x) and Vy = (P1y- P2y) 

Step 3: Find P4 point using the equations (5.3) and (5.4). Note that this P4 point is 

perpendicular to P1-P2 line that intersects right side boundary of the vessel where 

P2- P4 line exists; 

ܲ4௫ ൌ ቔܲ2௫  ݃ ݏܿ ቀܿ ൈ
ߨ

180
ቁቕ (5.3)

 

ܲ4௬ ൌ ቔܲ2௬  ݃ ݊݅ݏ ቀܿ ൈ
ߨ

180
ቁቕ (5.4)

 

Step 4: Tracks the P2- P3 line from P3 point until the boundary intersection Pl is met 

and calculates the distance between P2 to Pl as the radius dl from P2 point to left 

side vessel boundary.  

Step 5: Tracks the P2- P4 line from P4 point until the boundary intersection Pr is 

met and calculates the distance between P2 to Pr as the radius dr from P2 point to 

right side vessel boundary. 

Step 6: Diameter of the vessel segment with respect to the P2 point is given by 

dl+dr. 

Step 7: Store calculated radius and diameter values  

Step 8: Shift P1 point to the next vessel skeleton point if exists and repeat the above 

steps 1 to 7. 
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Step 4 and 5 of VDC algorithm consists of line tracking from point P3 to P2 and P4 

to P2 respectively. SPT algorithm implemented for vessel path tracking phase is re-

used in VDC algorithm appropriately. The two perpendicular lines of point P2 

denoted as P2-P3 and P2- P4 are modeled in a mask image, which has the same size 

as that of the boundary image (fb(x,y)). Then SPT algorithm is executed to track these 

two lines one after the other. While tracking, it checks the intensity from the 

boundary image (fb(x,y)) with respect to the calculated next seed point. If the 

intensity of the boundary image (fb(x,y)) with respect to the next seed point equals to 

255, it means the specific line intersects one of the boundaries of the artery. These 

intersection points are denoted as Pl and Pr depending on the line tracking direction. 

Pl is the intersection point when tracking is from point P3 to P2 and Pr is the 

intersection point when tracking is from point P4 to P2.  

This VDC algorithm is applied from second frame to last frame of the CCA to be 

processed because the development of vessel skeleton will be recorded from the 

second frame onwards. The first frame only represents the catheter engagement and 

it is used only for determining the catheter engagement point. Figure 5.7, 5.8 and 5.9 

depict the visual illustration of implementation of the VDC algorithm of selected 

LAD, CX and RCA CAs for further clarifications. Image (a) of Figure 5.7, 5.8 and 

5.9 depict the marked boundary and skeleton of the selected artery segment and 

image (b) of Figure 5.7, 5.8 and 5.9 depict the visual illustration of execution of the 

VDC algorithm.  

5.2.2 Processing other CCA frames 

At this juncture, it has been comprehensively elaborated all four major 

implementation phases of the proposed method as mentioned in section 3.1. 

According to the flow chart depicted in Figure 3.1, it will check whether it has more 

frames to process. If the CCA currently being processed has more frames, the next 

frame is extracted and input to the pre-processing phase to proceed with the next 

iteration. At the end of each iteration step except the first, the computed information 

such as radius to the left side boundary, radius to the right side boundary and vessel 

diameter are recorded in a log according to the skeleton point. The count of skeleton 
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points in each frame indicates the length of the skeleton. Moreover, these log records 

are organized according to the CCA frame number being processed. Finally, this 

proposed method returns the log file with aforementioned luminal information as the 

output. Additionally, the information stored in the log file of a certain CCA case can 

be further utilized to visualize a respective CCA frame as a supportive tool in making 

clinical decisions.      

 

Figure 5.7: Vessel diameter calculation of LAD. (a) enhanced frame with marked 

LAD segment; (b) execution of VDC algorithm. 
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Figure 5.8: Vessel diameter calculation of CX. (a) enhanced frame with marked 

CX; (b) execution of VDC algorithm. 
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Figure 5.9: Vessel diameter calculation of RCA. (a) enhanced frame with 

marked RCA segment; (b) execution of VDC algorithm. 
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Figure 5.10 depicts a sample CCA frame with calculated diameter values along the 

skeleton of the selected CA segment. These diameter results can be used to 

determine the CA obstructions and it will be discussed in the next chapter. Moreover, 

Appendix C emphasizes the main processing steps of this proposed quantitative 

coronary analysis method with series of visual illustrations for further clarifications.  

 

5.3 Summary  

This chapter mainly elaborated the experimental approaches executed to implement 

the vessel path tracking and quantitative analysis phases of the proposed method of 

this research study. The clinically important vessel segment is extracted from the 

input segmented frame (f8(x,y)) and the skeleton (fs(x,y)) and boundary (fb(x,y))  of 

 

Figure 5.10: Display diameter results. 
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that selected arterial segment is extracted separately. Consequently, vessel skeleton 

path is tracked using the proposed SPT algorithm and pixels’ coordinates on the 

skeleton path are stored in a specific array. Subsequently, the boundary image and 

stored skeleton points are used to determine the vessel diameter through VDC 

algorithm. Computed luminal information is recorded in a log file and those stored 

records have been used to provide the visualizations to make the objective 

assessment of the CA disease. Experimental setups and results of this research study 

are organized in the next chapter.       
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CHAPTER 6  

VALIDATION METHODS AND RESULTS 

The objective of this chapter is to experimentally validate the various aspects of the 

implementation phases of the proposed quantitative coronary analysis method 

mentioned in Chapters 3, 4 and 5. In particular, the robustness of the frame 

alignment, accuracy of the segmentation algorithm and the technical feasibility of 

VDC algorithm have been evaluated using a randomly selected clinical data set.  

6.1 Data extraction  

The direct CCAs produced by Philips Medical System were used for the experiments 

and those were recorded at a frame rate of 15fps with 512×512 resolution. The 

selected CCAs for creating the dataset were recorded under the three standard 

angiography views namely LAO cranial, AP caudal and AP cranial views. The main 

reason for selecting the aforementioned angiogram views for creating the dataset is 

that those views provide excellent visualizations for the main CAs namely RCA, CX 

and LAD respectively.  

6.2 Validation in pre-processing phase  

Algorithms developed for frame alignment is validated in this set-up. In order to 

achieve this, fifty direct CCA cases, which have been recorded under the three 

angiography views mentioned in section 6.1 were selected randomly to create a data 

set. Hence, 24 CCA cases were selected under LAO Cranial view, 13 CCA cases 

were selected under the AP Caudal view and 13 cases were selected under the AP 

Cranial view.  

Moreover, the proposed validation method consists of three main steps namely; 

finding the best similarity measure for template matching, finding the value for 

DHOGThreshold and assessing the robustness of the proposed frame alignment algorithm. 

Following sub sections have broadly emphasized the implemented procedures and 

obtained results for each of those validation steps. 
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6.2.1 Finding the best similarity measure for Template Matching  

In order to find the best similarity measure for the template matching, the proposed 

frame alignment algorithm was executed separately on the created dataset under the 

six different similarity measures defined in open source computer vision and 

machine learning software library called OpenCV. Hence, a total of 1372 × 6 

template matching steps were presented in the executed dataset under each similarity 

measure. Further, the visually observed template matching judgment, calculated 

HOG distance (DHOG) and the Euclidean distance between matched templates for 

each matching step were recorded.  

Each matching instance is determined as either as successful match or mismatch 

based on the visually observed template matching judgment made by experts and is 

used as the ground truth for the validation process. Moreover, these successful 

template matching instances are denoted as positive matches and unsuccessful 

matches are indicated as negative matches. Subsequently, the positive matching 

percentage for each CCA under the six similarity measures was computed separately 

to determine the best similarity measure and the results are enlisted in Table 6.1. 

Based on the results presented in Table 6.1, CC was selected as the best similarity 

measure for the frame alignment algorithm because it possesses the highest positive 

matching percentage. 

Table 6.1: Positive matching percentage under various similarity measures. 

Similarity Measure True Positive 
Matching % 

Square Difference  83.61 
Normalized Square Difference  87.66 
Correlation 90.31 
Correlation Normalized 86.19 
Correlation Coefficient (CC) 91.76 
Normalize Correlation Coefficient 91.72 

 

Further, Table 6.2 summarizes the positive matching results obtained under the CC 

similarity measure for each test case according to the selected angiography view. 

Moreover, the analysis results have shown the positive matching percentages under 
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the selected views as follows; LAO cranial view of RCA: 91.68%; AP caudal view 

of LCA: 92.47%; AP cranial view of LCA: 91.11%. Average positive matching 

percentage was reported as 91.76%.  

Table 6.2: Positive matching percentage under CC similarity measures. 

Test 
Case 

RCA LCA 
LAO_CRANIAL AP_CAUDAL AP_CRANIAL 

Total 
Matches 

Positive 
Matches 

Total 
Matches 

Positive 
Matches 

Total 
Matches 

Positive 
Matches 

1 19 19 13 13 23 23 
2 23 23 21 6 44 44 
3 20 20 26 26 12 12 
4 19 19 16 16 19 19 
5 15 15 22 22 18 18 
6 17 17 23 23 18 18 
7 30 30 36 36 36 36 
8 33 33 36 36 30 30 
9 29 29 34 34 30 30 
10 28 28 36 36 20 20 
11 21 21 24 8 18 18 
12 40 26 32 32 24 24 
13 30 30 23 23 18 2 
14 24 24 23 23 24 18 
15 12 12 24 24 24 11 
16 22 22 23 23 23 18 
17 21 7 13 13 21 21 
18 19 9 20 20 21 21 
19 19 19 8 8 15 15 
20 16 16 12 8 12 12 
Total  457 419 465 430 450 410 
True 
positive 
%  91.68  92.47  91.11 
 

6.2.2 Finding a value for DHOGThreshold 

In order to find the threshold value for DHOGThreshold, F1 score was calculated for the 

possible threshold values ranging from 1 to 100 separately, according to the three 

selected angiography views. It has been calculated by using the visually observed 

template matching judgment and the recorded DHOG values for each matching 

instance of the selected CCAs. True positive, false positive and false negative 
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matches needed for determining the F1 score and those were calculated using the 

equations (6.1), (6.2), and (6.3) respectively;  

ܶ ܲ௧௦ ൌ ‖ሼܦுைீሽ ൏ ܶ|| ∩ ||ሼܦுைீሽ ൌൌ (6.1) ‖ܯ

     

ܨ ܲ௧௦ ൌ ‖ሼܦுைீሽ ൏ ܶ|| ∩ ||ሼܦுைீሽ ൌൌ ܰ‖ (6.2)

 

௧௦ܰܨ ൌ ‖ሼܦுைீሽ  ܶ|| ∩ ||ሼܦுைீሽ ൌൌ (6.3) ‖ܯ

Where, {DHOG} indicates the set of HOG distance values obtained for each template 

matching instance according to the selected angiography view and T indicates the 

threshold values ranging from 1 to 100. Moreover, M and N denote the visually 

observed template matching judgment where M indicates the positive matching 

instance and N indicates negative matching instance respectively. Graphs depicted in 

Figure 6.1, 6.2 and 6.3 represent the F1 score variation against the threshold values 

ranging from 1 to 100 for three selected angiography views.     

 

Figure 6.1: Distribution of F1 score against the possible threshold value range for 

RCA LAO cranial view (Maximum F1 score = 0.951 for threshold value 38).   
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Figure 6.2: Distribution of F1 score against the possible threshold value range for 

LCA AP caudal view (Maximum F1 score = 0.918 for threshold value 43). 

 

Figure 6.3: Distribution of F1 score against the possible threshold value range for 

LCA AP cranial view (Maximum F1 score = 0.919 for threshold value 55). 
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According to the results, it could be observed that those threshold values determined 

as 38, 43 and 55 have provided the maximum F1 score for RCA LAO cranial, LCA 

AP caudal and LCA AP cranial views respectively. Hence, the mean value of the 

obtained threshold values is selected as the DHOGThreshold, which is 45.    

6.2.3 Assessing the robustness of the proposed method  

The proposed method was executed for the second time using the same data set and 

same template parameters used in the first test. During this execution the proposed 

false matching correction algorithm was enabled to detect and correct false matches. 

During this execution CC was set as the similarity measure for template matching 

operation and the DHOGThreshold was set as 45. Table 6.3 enlists the positive matches 

obtained as the results of this execution. Analysis of the results of this execution have 

revealed the following positive matching percentages under the selected views as 

follows; LAO cranial view of RCA: 97.82%; AP caudal view of LCA: 99.12%; AP 

cranial view of LCA: 95.33%. Average positive matching percentage was reported as 

97.45%. Figure 6.4 graphically represents the effect of false matching detection 

algorithm for improving the robustness of the frame alignment stage.   

6.3 Validation in segmentation phase 

Accurate segmentation is one of the mandatory requirements of this research study 

because it directly affects the accuracy of subsequent quantitative analysis phase in 

this study. The proposed segmentation phase has been elaborated comprehensively in 

Chapter 4 and the objective of this section is to emphasize the validation methods 

and the results, which have been used to determine the segmentation accuracy.   

A dataset of 39 CCA cases has been created to validate the proposed segmentation 

method. The selected CCAs were recorded under the three standard angiography 

views mentioned in section 6.1. Hence, 15 CCA cases recorded under the LAO 

Cranial (for RCA) view, 13 CCA cases recorded under the AP Caudal (for CX) view 

and 11 cases recorded under the AP Cranial (for LAD) view were selected to create 

the test data set. 
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Table 6.3: Positive matching results of CCAs under the CC similarity measure and 

DHOGThreshold = 45. 

Test 
Case 

RCA LCA 
LAO_CRANIAL AP_CAUDAL AP_CRANIAL 

Total 
Matches 

Positive 
Matches 

Total 
Matches 

Positive 
Matches 

Total 
Matches 

Positive 
Matches 

1 19 19 13 13 23 20 
2 23 23 21 21 44 44 
3 20 20 26 26 12 12 
4 19 19 16 16 19 19 
5 15 15 22 22 18 18 
6 17 17 23 23 18 18 
7 30 30 36 36 36 23 
8 33 33 36 36 30 30 
9 29 29 34 34 30 30 
10 28 28 36 36 20 20 
11 21 21 24 24 18 18 
12 40 40 32 32 24 24 
13 30 30 23 23 18 18 
14 24 24 23 23 24 24 
15 12 12 24 24 24 24 
16 22 22 23 23 23 18 
17 21 21 13 13 21 21 
18 19 9 20 20 21 21 
19 19 19 8 8 15 15 
20 16 16 12 8 12 12 
Total  457 447 465 461 450 429 
True 
positive 
%  97.82  99.12  95.33 
 

6.3.1 Evaluation method 

In order to validate the proposed segmentation method, the proposed segmentation 

algorithm was tested separately using the CCAs of the created data set. According to 

the pixels classification in the segmentation result, the segmentation accuracy 

(SegAcc) was calculated for each frame of the CCA being processed, using the 

equation (6.4); 

ሻܨሺܿܿܣ݃݁ݏ ൌ
ሻܨሺ݃݁ݏ‖ ∩ ‖ሻܨሺܶܩ

‖ሻܨሺܶܩ‖
 (6.4) 
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Where, ||x|| stands for the cardinality of x and x indicates the pixel count of the 

foreground. F is the input CCA frame and Seg(F) is the segmented frame obtained 

from the proposed segmentation method. GT (F) is the ground truth image of frame 

F.  Ground truth images are created manually and those images are specific to the 

frame to be processed. Moreover, those ground truth images represent marked pixels, 

which belong to the main arterial region, which is emphasized according to the 

recorded angiogram view. All ground truth images were certified by a professional 

Radiographer in order to ensure the accuracy of them. Figure 6.5 visually illustrates 

three sample ground truth images of LAD, CX and RCA with the respective 

enhanced CCA frames for further clarifications.  

Even though this metric determine the segmentation accuracy with respect to a 

specific CCA frame F, it is important to define the segmentation accuracy in relation 

to the entire angiography. Hence, the mean segmentation accuracy was determined 

for each CCA by analyzing the segAcc(F) values computed for each and every frame 

of the processed CCA cases in the dataset.  

 

Figure 6.4: Positive matching percentage (False matching detection is disabled in 

TEST 01 and enabled in TEST 02).
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It is also significant indeed to measure how the segmentation is wrong. It can be 

determined by computing both false positive and false negative pixels in the 

segmented frames. False positive consists of those pixels belong to the background, 

but are classified as foreground, and false negative consists of those pixels belong to 

the foreground, but are classified as background. Moreover, the equations (6.5) and 

 

Figure 6.5: Example for ground truth frames. (a), (c), (e) enhanced CCA frame 

visualizing LAD, CX and RCA CAs respectively; (b), (d), (f) created ground 

truth images of LAD, CX and RCA segments of (a), (c) and (e) respectively. 
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(6.6) can be used to compute the false positive error (fallout rate) and false negative 

error (miss rate) measurements of a given frame F respectively.  

ிݎݎݎܧ ൌ
ฮ݃݁ݏሺܨሻ ∩ ሻതതതതതതതതฮܨሺܶܩ

ฮܶܩሺܨሻതതതതതതതതฮ
 (6.5)

 

ிேݎݎݎܧ ൌ
ฮܶܩሺܨሻ ∩ ሻതതതതതതതതതฮܨሺ݃݁ݏ

ሻܨሺܶܩ
 (6.6)

Similarly in computing the segmentation accuracy, it is important to define the false 

positive and false negative assessments in relation to the entire angiography. Hence, 

the mean false positive and mean false negative measurements were determined for 

each CCA by analyzing both ErrorFP and ErrorFN values for each and every frame of 

the processed CCA cases in the dataset.  Figure 6.6, 6.7 and 6.8 visually illustrate the 

assessment of segmentation accuracy, false positive and false negative of the 

extracted foreground of the three frames depicted in Figure 6.5 (a), (c) and (e) 

respectively. Figure 6.5 (b), (d) and (f) images were used as the ground truth images 

for these assessments. Image (a) of Figure 6.6, 6.7 and 6.8 depict the segmentation 

results obtained for processed frames in Figure 6.5 (a), (c) and (e) respectively. 

Image (b) of Figure 6.6, 6.7 and 6.8 depict the visual illustrations of assessment of 

segmentation accuracy. Purple colored regions in those images represent the 

intersected foreground region of both segmented frame and the ground truth image. 

Moreover, green colored regions represent non-intersected segmented foreground 

regions. Image (c) of Figure 6.6, 6.7 and 6.8 depict the visual illustrations of false 

negative assessment, which means assessing those pixels belonging to foreground 

but are classified as background pixels. Red colored regions in those images 

represent the false negative regions and green colored region represents accurate 

foreground pixels. Similarly, image (d) of Figure 6.6, 6.7 and 6.8 depict the visual 

illustrations for false positive assessment, which means assessing those pixels 

belonging to background, but are classified as foreground pixels. Red colored regions 

in those images represent the false positive regions and green colored region 

represents accurate foreground pixels.           
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Further, the sensitivity (true positive rate) and fallout rates (false positive rate) were 

also calculated for each frame of the CCA being processed. Finally mean sensitivity 

and mean fallout rates were also computed by analyzing the calculated sensitivity 

and fallout rates for each and every frame of the individual CCAs of the selected 

dataset. 

6.3.2 Results of segmentation phase  

According to the measurements defined in section 6.3.1, Table 6.4 and 6.5 list the 

evaluation results obtained for LAD artery, Table 6.6 and 6.7 list the evaluation 

 

Figure 6.6: Validating LAD. (a) segmented LAD; (b) segmentation accuracy 

result (88.43%); (c) false negative result; (d) false positive result (Sensitivity: 

0.884, miss rate: 0.116 and fall out rate: 0.012).
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results obtained for CX artery and Table 6.8 and 6.9 list the evaluation results 

obtained for the RCA artery.  

 

These tables mention the average validation results of true positive, true negative, 

false positive and false negative pixels’ assessment according to the selected CCA 

case. Moreover, the computed mean segmentation accuracy, mean sensitivity and 

mean fallout rate were also presented according to the three main CAs. Further, the 

Table 6.10 summarizes the average segmentation accuracy, average sensitivity and 

average fallout rate obtained for the proposed segmentation method.     

 

 

 

Figure 6.7: Validating CX. (a) segmented CX; (b) segmentation accuracy result 

(82.79%); (c) false negative result; (d) false positive result (Sensitivity: 0.828, 

miss rate: 0.171 and fall out rate: 0.029). 
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Table 6.4: Validation results of LAD artery. 

File 

Mean 
Segmentation 

Accuracy  

Mean Miss 
Rate 

(ErrorFN) 

Mean 
Fallout 

(ErrorFP) 
C0418_12 93.37 0.31 0.052 
C0605_09 94.15 0.12 0.054 
C0641_14 98.42 0.12 0.012 
C0643_10 97.04 0.17 0.023 
C0660_11 96.00 0.50 0.008 
C0661_12 94.00 0.08 0.060 
C0664_07 94.53 0.49 0.020 
C0864_10 85.57 0.30 0.130 
C0867_10 90.90 0.19 0.081 
C0870_08 95.51 0.04 0.046 
C0899_07 95.91 0.13 0.038 

 

 

Figure 6.8: Validating RCA. (a) segmented RCA; (b) segmentation accuracy 

result (73.64%); (c) false negative result; (d) false positive result (Sensitivity: 

0.736, miss rate: 0.263 and fall out rate: 0.028. 
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Table 6.5: Validation results of CX artery. 

File 

Mean 
Segmentation 

Accuracy  

Mean 
Miss Rate 
(ErrorFN) 

Mean 
Fallout 

(ErrorFP) 
C0413_12 97.25 0.27 0.016 
C0418_08 90.14 0.12 0.097 
C0522_14 92.73 0.04 0.076 
C0605_08 96.30 0.17 0.029 
C0641_09 97.19 0.08 0.026 
C0643_09 95.98 0.03 0.041 
C0660_09 77.91 0.09 0.235 
C0664_05 96.00 0.27 0.024 
C0666_08 82.56 0.18 0.174 
C0864_08 91.33 0.28 0.073 
C0870_07 94.04 0.36 0.037 
C0897_06 97.38 0.13 0.020 
C0899_08 93.98 0.47 0.037 

 

Table 6.6: Validation results of RCA artery. 

File 

Mean 
Segmentation 

Accuracy  

Mean 
Miss Rate 
(ErrorFN) 

Mean 
Fallout 

(ErrorFP) 
C0413_10 80.86 0.02 0.200 
C0418_14 94.55 0.38 0.025 
C0522_13 97.21 0.02 0.028 
C0605_12 95.97 0.21 0.035 
C0641_16 94.82 0.44 0.030 
C0643_06 96.91 0.27 0.017 
C0660_16 96.18 0.64 0.006 
C0661_09 95.68 0.24 0.030 
C0664_08 96.91 0.05 0.030 
C0666_13 92.32 0.49 0.043 
C0864_14 95.90 0.36 0.024 
C0867_13 94.28 0.07 0.056 
C0870_12 96.29 0.10 0.033 
C0897_10 92.40 0.07 0.076 
C0899_12 97.92 0.27 0.013 
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Table 6.7: Validation results summary of segmentation phase. 

Artery Average Segmentation 
Accuracy 

Average Miss 
Rate 

(ErrorFN) 

Average 
Fallout 

(ErrorFP) 
CX 0.9252 0.19 0.068 
LAD 0.9413 0.22 0.048 
RCA 0.9455 0.24 0.043 
Average Results  0.9373 0.22 0.053 

 

In order to visually compare the results, a set of visual frames of a sample CCA is 

depicted in Figure 6.9 and the respective segmentation results obtained for the same 

CCA is depicted in Figure 6.10.  

 

Figure 6.9: Selected visual frames of a sample CCA (LAD). 
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6.4 Validation of vessel tracking and quantitative analysis phases 

Blood vessel diameter analysis and obstruction analysis are considered as major 

aspects in quantitative coronary analysis. This section elaborates the validation 

methods followed to test the vessel path tracking (SPT algorithm) and quantitative 

analysis (VDC algorithm) algorithms. Moreover, the validation results have been 

presented to discuss about the technical supportability of the proposed quantitative 

coronary analysis method. Initially the proposed method has been validated to assess 

its technical supportability for quantitative coronary analysis and thereafter it is 

compared with a subjectively assessed clinical data set for evaluating its clinical 

feasibility. Flowing sections elaborates these validation methods in detail. 

 

Figure 6.10: Segmentation frames of selected CCA. 
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6.4.1 Assessment of technical supportability   

Technical supportability is defined as the ability to extract the blood vessel features 

for quantitative coronary analysis. Vessel boundary, vessel skeleton and diameter 

along the vessel skeleton are considered as important features for determining the 

quantitative coronary analysis. The ability to extract the aforementioned features of 

the SPT algorithm and VDC algorithm using a data set of 50 CCAs had been 

experimentally analyzed. Hence, 24 CCA cases recorded under the LAO Cranial (for 

RCA) view, 13 CCA cases recorded under the AP Caudal (for CX) view and 13 

cases recorded under the AP Cranial (for LAD) view were selected to create the test 

data set of 50 total CCA cases. The proposed two algorithms were executed for each 

and every frame in the selected data set separately and the computed values for 

desired features were logged separately. Calculated diameter distribution along the 

vessel skeleton was modeled automatically for each frame to determine the 

abnormalities within the lumen. A visual illustration of it is depicted in Figure 6.11 

for clarification.     

 

Figure 6.11: Visualizing the lumen features. (a) enhanced CCA frame of RCA; 

(b) skeleton and boundary detection of the selected vessel segment; (c) diameter 

distribution along the skeleton. 
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Percentage of stenosis determination is another demanding aspect in quantitative 

coronary analysis and this proposed method has addressed this issue successfully. 

Percentage of stenosis can be computed along the vessel skeleton based on the 

marked points. It is assumed that cross sections of the lumen of the vessel vary 

linearly. According to that assumption, the percentage of stenosis has to be 

determined relative to the line modeled between two end points of the marked 

stenosis region. Figure 6.12, 6.13 and 6.14 visually illustrate the results of the 

proposed quantitative analysis phase to determine the technical supportability. Image 

(a) of Figure 6.12, 6.13 and 6.14 depict three frames of the three selected test cases, 

which represent LAD, CX and RCA CAs respectively. Moreover, the clinically 

approved stenosis region is marked in each frame to determine the severity level. 

Image (b) of Figure 6.12, 6.13 and 6.14 represent the selected, tracked segmented 

vessel of the respective initial frame. Graph shown in (c) and (d) images of Figure 

6.12, 6.13 and 6.14 clearly visualize the diameter variation and stenosis percentage 

variation along the marked region in selected frames respectively. According to the 

computed diameter percentage values, RCA stenosis marked in Figure 6.12 reports a 

maximum stenosis level 56.42%, CX artery stenosis marked in Figure 6.13 reports a 

maximum stenosis level 59.3% and LAD artery stenosis marked in Figure 6.14 

reports a maximum stenosis level 81.11%. 

6.4.2 Assessment of clinical feasibility    

It is important to determine the clinical feasibility of this proposed quantitative 

coronary analysis method prior to utilizing it in the clinical procedures for detection 

and quantifying the stenosis. In order to achieve that goal, the proposed quantitative 

coronary analysis method was validated using a CCA dataset of 33 patient cases with 

respective medical diagnosis reports. The data set was created randomly and all the 

medical judgments recorded in the medical reports have been specified subjectively 

by the medical experts. Moreover, the subjectively assessed percentage of luminal 

obstruction and the placement of the stenosis were clearly marked in those selected 

reports.  



165 
 

During the validation process, the relevant CCA files in the patient cases of the data 

set are extracted and processed using the proposed method. Subsequently, the 

percentage stenosis has been determined with respect to the lesions marked in the 

respective medical report. Finally the computed stenosis severity is ranked according 

to the criteria mentioned in [40]. According to that, four categories of lesion severity 

for grading the detected stenosis have been described as follows; 

 Stenosis <50% - minimal or mild CA disease 

 Stenosis between 50% and 75% - moderate CA disease  

 Stenosis between 75% and 95% - severe CA disease  

 Stenosis > 95% - total occlusion 

The results obtained in this validation process are enlisted in Appendix D. In addition 

to that, Figure 6.15 presents the summary of stenosis analysis results according to the 

aforementioned criteria under the subjective analysis method and the objective 

analysis method, which is proposed in this research study.  
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Figure 6.12: Quantitative analysis of RCA. (a) selected direct CCA frame with a 

stenosis region (stenosis region is circled); (b) selecting a vessel segment and 

tracking it for feature extraction; (c) vessel diameter variation along the stenosis 

region; (d) stenosis percentage variation along the stenosis region (Maximum 

stenosis severity level is 56.42%). 
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Figure 6.13: Quantitative analysis of CX. (a) selected direct CCA frame with a 

stenosis region (stenosis region is circled); (b) selecting a vessel segment and 

tracking it for feature extraction; (c) vessel diameter variation along the stenosis  

region; (d) stenosis percentage variation along the stenosis region (Maximum 

stenosis severity level is 59.3%). 
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Figure 6.14: Quantitative analysis of LAD. (a) selected direct CCA frame with a 

stenosis region (stenosis region is circled); (b) selecting a vessel segment and 

tracking it for feature extraction; (c) vessel diameter variation along the stenosis  

region; (d) stenosis percentage variation along the stenosis region (Maximum 

stenosis severity level is 81.11%.). 
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6.5 Summary  

This chapter elaborated the validation methods and results of this study. Main 

implementation phases of the proposed quantitative coronary analysis method have 

been tested by using appropriate clinical data sets. Initially, a validation method was 

proposed for assessing the robustness of the frame alignment algorithm of the pre-

processing phase. Subsequently, the accuracy of the proposed segmentation method 

was evaluated. Validation method proposed for assessing the technical supportability 

of the SPT algorithm and VDC algorithm is proposed in the latter section of the 

chapter. Finally, the clinical feasibility of the proposed method has been evaluated by 

using a subjectively assessed clinical data set. The next chapter critically reviews the 

results of this proposed quantitative coronary analysis method.  

 

 

 

Figure 6.15: Summary of stenosis analysis results. 



170 
 

CHAPTER 7  

DISCUSSION   

The objective of this chapter is to critically discuss about the methodology and 

results of this research study. The chapter is divided into three sections based on the 

major implementation phases of the proposed method. Initially, the significant 

research aspects in the pre-processing phase are discussed. Secondly, the results of 

the segmentation phase are critically analyzed. Finally, the chapter converses about 

the results of both SPT and VDC algorithms and the clinical importance of the 

proposed quantitative coronary analysis method.    

7.1 Discussion on the results of pre-processing phase    

The proposed pre-processing phase contains two implementation stages namely; 

frame enhancement and frame alignment, which are directly applied for improving 

the visual quality of the CCA frames. This section reviews the experimental 

approaches of frame enhancement and the significant research improvements in the 

frame alignment stage.       

7.1.1 Frame enhancement 

In frame enhancement stage, techniques were proposed for reduction of noise and 

obtaining the uniform illumination in the CCA frames. Section 3.2.2 clearly 

elaborated that quantum noise and different kinds of electrical noise such as 

Gaussian and impulse noise as the types of noises that affect the CCAs. Thus, to 

reduce Gaussian and impulse noise most of the studies done in recent past have 

recommended to apply the Gaussian smoothing and median filtering operations 

respectively [54][57][64][65][68][69]. Hence, those reported smoothing techniques 

have been directly used even in this study to obtain the required enhancement of the 

CCA frames. Moreover, median filtering has been applied during the frame 

enhancement stage and Gaussian smoothing has been applied during the creation of 

directional second order partial derivative images in the segmentation phase.         
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The contrast of the CCA frames has been obtained by eliminating the unnecessary 

illumination frequencies and applying the normalization function mentioned in (1.9). 

The resulting enhanced frames are clearly depicted in Figure 3.7. Lara and team have 

used CLAHE method as the contrast enhancement  technique in their proposed 

angiography segmentation study [54]. Even though CLAHE stretches the contrast of 

the image to obtain the visual quality, it cannot remove illumination frequencies 

recorded in the angiogram images, which cause the degradation of visual quality in 

the CCA frames. Moreover, it amplifies the noise signals in the CCA frames [101].  

Figure 7.1 visually illustrates the consequences of various image enhancement 

methods after applying them for a direct CCA frame. Figure 7.1(b) depicts the 

adaptive thresholding result of direct CCA frame shown in image (a).  It is difficult 

to determine the uniform threshold values for implementing the adaptive 

thresholding in order to eliminate non-uniform illumination recorded in CCA frames. 

Non-uniform threshold values causes failures or loss of spatial connectivity of the 

vessel structures and it leads to incorrect segmentation. Figure 7.1 (c) depicts the 

results obtained after applying the CLAHE technique to the direct CCA frame in 

image (a). This image clearly shows that the application of CLAHE does not only 

enhance the desired foreground region, additionally it has enhanced the non-

uniformly illuminated background as well. Figure 7.1 (d) depicts the enhancement 

results provided by the proposed system. This image has deemphasized the 

illumination in the original image and preserved the whole vessel structure as it can 

be visualized in a clear manner.   

Non-uniform illumination is a definite visual degradation effect recorded in the CCA 

frames and in this proposed enhancement method, the homomorphic filter has been 

applied to cut off the frequencies, which are responsible for the illumination. As a 

result of that, it would be possible to save the frequencies, which are reflected from 

the desired objects significantly. Hence, the pre-processing phase of this proposed 

method provided excellent results than using only CLAHE method. Additionally, 

this homomorphic filter based enhancement does not amplify the noise components 

in the frames to be processed because it performs the frame enhancement by 

subtracting unnecessary frequency bands from the original frame. Figure 3.7 depicts 
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the sample frame enhancement results for visually analyzing the results. By 

analyzing those given frames, it can be concluded that this proposed frame 

enhancement method provides better visualization of the CA vasculature without any 

loss to the quality of the image. Further, the original dimensions of the vascular 

structures are also being preserved within this enhancement technique and it is a 

mandatory requirement for subsequent quantitative coronary analysis. 

 

7.1.2 Frame alignment  

The proposed frame alignment stage has been implemented using an image 

registration technique called template matching [95]. The conventional template 

matching matches the given template with the reference image by checking the 

spatial resemblance of intensities and the matching features must not be isotropic and 

scale invariant. Therefore, in conventional template matching the visual contents in 

 

Figure 7.1: Effect of enhancement methods. (a) direct CCA frame; (b) application 

of adaptive thresholding method; (c) application of CLAHE method; (d) 

application of the proposed method. 
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the matched templates are also similar apart from the spatial intensity similarity of 

those matched regions. However, this fact fails in some template matching instances 

of this study. This failure was clearly emphasized in the empirical results given in 

Table 6.2. This Table 6.2 enlisted the number of correct (positive) template matching 

instances obtained for the selected data set according to the conventional template 

matching approach. Moreover, it has been reported that 1259 steps out of 1372 total 

template matching steps have been reported as positive matches and as a percentage, 

it is denoted at 91.76%. Even though this conventional template matching provides 

the highest positive matching rate, empirical results have shown that it possesses 

8.24% chance of having false matching instances. However, it is important to note 

that all of these matching instances are almost correct according to the conventional 

template matching measurements because it is based only on the spatial resemblance 

of intensities but some of these matching instances are unacceptable according to this 

study because, those matching instances do not have the visual content resemblance 

among the matched templates. Figure 3.11 clearly emphasized this problem. The 

main reasons for obtaining these false matches are the occurrence of radial motion 

artifacts in vessels and contrast agent concentration variation among the frames. 

Therefore, it leads to rapid spatial differences between the template and the match 

region in the reference frame as shown in Figure 3.11. Moreover, these false matches 

incorrectly stabilize CCAs and create some impediments in obtaining the desired 

visual co-relation.  

In order to overcome the aforementioned false matches problem, an algorithm has 

been implemented to detect and correct the false matches in template matching and 

this is a major improvement suggested to advance the results provided by the 

conventional template matching technique. According to this proposed algorithm, 

false matches are detected based on the displacement of the matched templates and 

HOG descriptor because, it has been experimentally observed that some false 

matches contain rapid distance displacements and some false matches contain shape 

dissimilarities between the matched templates. As depicted in Figure 3.14, HOG 

descriptor was used to determine the shape dissimilarities and was computed based 

on the segmented vessel regions depicted in the matched templates.  
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This improvement is clearly emphasized by the results shown in Table 6.3. 

According to the results, 1337 steps out of 1372 total template-matching steps were 

reported as positive matches and as a percentage, it is denoted as 97.45%. Hence, it 

improves the conventional template matching accuracy by 5.69% so that it can be 

adapted for matching the deformed structures represented in CCAs. The analysis 

results depicted in Figure 6.4 have further revealed this improvement of obtaining the 

positive template matching occurrences according to the selected angiography views. 

Hence, it can be concluded that the percentage improvement of obtaining positive 

template matching instances according to the selected angiography views is as 

follows; LAO cranial view of RCA: 6.14%; AP caudal view of LCA: 6.65%; AP 

cranial view of LCA: 4.22%. According to the experimental results, it has been 

revealed that the proposed adaptive template matching approach provides the 

matching results by considering both spatial intensity and feature resemblance 

among the reference and matched templates. Therefore, unlike the conventional 

template matching, this novel adaptive template matching method can tolerate the 

structural deformations in matching image significantly and provide visually 

acceptable matching results. This is the major   improvement that has been suggested 

for the conventional template matching as a result of this research study, so that the 

templates from the angiograms can be adaptively matched with deformed vessel 

structures.         

The global motion stabilization phase of the proposed method can provide the 

expected content alignment of the vessel structure (foreground) among the frames. 

This can be visually judged by looking at the catheter engaged area of both original 

and stabilized frame sequences shown in Figure 3.15. The catheter engaged area is 

marked as a white square and according to the results, motion stabilized frames 

depict catheter engaged area in a fixed location. This happens as a result of 

reconstructing the frame by eliminating global motion. This frame reconstruction is 

done based on the calculated motion vector. Hence, it is possible to detect the larger 

motion gaps and eliminate them significantly. As a result of that, continuous and 

smooth contrast agent flow within the vessel structure is visualized starting from the 

catheter engaged point. Obtaining this visual correlation among the CCA frames can 
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be used for segmentation of blood vessels among the CCA frame sequence starting 

from a fixed seed point. Hence, the visual co-relation among the CCA frame 

sequence obtained as a result of this study can be considered as an improvement 

suggested for the coronary angiography image modality.       

Similar research work has been reported in a recent study and it has described global 

motion stabilization of CCAs using SIFT feature descriptor [57]. According to their 

study, the GMV has been determined based on SIFT feature matching between the 

two consecutive frames. It has been empirically observed that SIFT provides many 

miss-corresponding key point pairs in angiography as depicted in Figure 7.2. This 

illustration clearly emphasizes that most of the detected feature points are located in 

the background and that the detected feature points in vessel structures have not 

perform correct feature matching with the corresponding frame for all detected 

feature points. As a result of that, it provides erroneous GMVs for motion 

compensation.  

 

Literature has expressed the application of optical flow based approaches for motion 

stabilization in angiograms [58]. Optical flow based approaches can change the 

geometric representation of the structure of the CA tree during the transformations 

applied for motion compensation. This artifact is clearly depicted in Figure 7.3. 

 

Figure 7.2: SIFT feature matching. 
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Green lines in image (a) of Figure 7.3 represent the motion vectors calculated 

between the current frame and the previous frame and image (b) of the same image 

represents the motion stabilized frame. Comparing with the input frame this resulting 

frame emphasized the deformation in the viewport due to the transformation applied 

in motion compensation. As a result of that, the geometric representation of the 

vessel structure is changed and causes some obstructions in vessel segmentation 

phase.  

 

This proposed method works successfully with the camera motion free CCAs. Due to 

the camera motion, the template area can be shifted out from the view port in some 

matching instances and reconstruction of global motion reduction frame becomes 

highly difficult in such situations. Hence, it is necessary to input camera motion free 

CCA to this algorithm to obtain successful results. 

7.2 Discussion on segmentation results   

The vessel segmentation method that proposed in this study is mainly based on the 

spatial filtering and region growing approach. In order to perform the spatial 

filtering, Frangi’s vessel enhancement filter was used and image morphological 

operations were used with the region growing. This section will critically discuss 

about the significance of applying Frangi’s filter for the proposed segmentation 

method and the validation results of it.   

 

Figure 7.3: Effect of optical flow. 
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7.2.1 Application of Fangi’s filter  

Frangi’s filter will remove noise in digital images and improve the tubular structures 

in the digital image. Hence, it becomes the most important technique for determining 

the vesselness feature of the digital processing of angiograms. The theoretical 

foundation of the Frangi’s filter has been mentioned in section 2.5.2.  

Frangi’s filter is implemented based on the second order partial derivatives of the 

input image and it can be calculated by convoluting the input image with a Gaussian 

kernel. It produces the second order four directional images based on the gradient 

variation along the horizontal, vertical and two diagonal directions of the input image 

and section 4.2.2 has clearly mentioned about the implementation steps of it. It is 

important to note that the image noise will be eliminated significantly during this 

calculation because of Gaussian smoothing. 

Moreover, these resulting second order derivative images are used to determine the 

vesselness feature based on the Frangi’s filter and it is done by using the Eigen 

values obtained by calculating the Hessian matrix. Section 4.2.3 clearly mentioned 

about the implementation steps of the Frangi’s filter. Moreover, this filter removes 

the background anatomical structures such as ribs, diaphragm, spine and heart 

chambers recorded in the CCA frame to be processed. Hence, it will reduce the 

obstructions, which occur during the foreground extraction of the segmentation 

phase. This improvement is clearly depicted in Figure 7.4. Image (a) of Figure 7.4 

depicts a direct CCA frame and it depicts the diaphragm and spine as the background 

structures. Figure 7.4 (b) depicts the pre-processed CCA frame and it visualizes the 

enhanced background anatomical structures clearly.  Figure 7.4(c) depicts the second 

order derivative image (Gaussian smoothen image) of the same CCA frame depicted 

in image (a) and it highlights the vessel structures and the edges of the background 

anatomical structures only. Finally, Figure 7.4(d) depicts the Frangi’filtered results. 

Moreover, it has enhanced the tubular structures, which belong to the vessel network 

and the background structures have been greatly deemphasized in Figure 7.4 (d). 
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7.2.2 Discussion on segmentation results  

The statistical evaluation method of the proposed segmentation method is given in 

section 6.3. Additionally, Table 6.4, 6.5 and 6.6 enlist the statistical evaluation 

results of the proposed segmentation method in accordance with the selected 

angiography views. According to those results CX, LAD and RCA arteries are 

successfully segmented and consist of 92.25%, 94.13% and 94.55% segmentation 

accuracy respectively. Moreover, in relation to Table 6.7, this proposed segmentation 

method possesses 93.73% average segmentation accuracy for extracting the needed 

vessel regions. Furthermore, an average miss rate (ErrorFN) of 0.22 is reported with 

an extremely low fallout rate (ErrorFP) of 0.05%. Hence, it can be concluded that this 

proposed segmentation method completely extracts almost complete CAs vasculature 

 

Figure 7.4: Effect of Frangi’s filter. (a) direct CCA frame; (b) enhanced CCA 

frame; (c) Gaussian convolution result; (d) Frangi filtered image. 
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containing the input CCA frame. This factor is further proven by the visual results 

depicted in Figure 6.10, which are generated using the complete CCA case depicted 

in Figure 6.9.  

The result of the proposed segmentation method has been compared with the recent 

research study done by Lara et al [54]. They have proposed a semi automatic region 

growing segmentation method for extracting the angiography vessel structures and 

evaluation results of that study have proven that it has 87.58% of accuracy. However, 

the proposed segmentation method of this study possesses an accuracy level of 

93.73% and emphasizes the segmentation strength beyond the existing recent direct 

coronary angiography segmentation methods.  

Further, the empirical results have revealed that this proposed segmentation method 

failed to extract major vessels under the poor intensity conditions. Following 

requirements have been identified that cause some obstructions to obtain the 

successful segmentation results: (1) visualizing contrast agent flow within a lower 

intensity depth of input CCA, (2) projecting overlapped vessels to minimize the 

ambiguities of the structure, and (3) recording angiograms with noisy background 

during the angiography procedure; e.g. tolerance of quantum noise. Figure 7.5 (a) 

depicts a sample CCA frame, which contains a disconnected vessel tree from the 

catheter and Figure 7.5(b) depicts a CCA frame, which represents overlapped vessel 

tree. Having disconnected vessels in CCA frames does not segment the whole vessel 

tree beyond the disconnected point and overlapped vessels cause some ambiguities in 

recognizing the arterial branches separately.      

7.3 Discussion on results of vessel tracking and quantitative analysis   

Identification of vessel boundary, skeleton and the diameter are considered as the 

major factors for quantitative coronary analysis. Further, this information can be used 

to compute the anatomical variations of the selected vessel structure. The proposed 

vessel skeleton tracking algorithm (SPT algorithm) can track the marked vessels’ 

skeleton starting from the catheter engaged point to the end of the skeleton and the 

pixel tracking gap is equal to the single pixel width. Hence, it can track all pixel 

points along the vessel skeleton.  
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Further, these tracked points are used to calculate the vessel diameter and it is based 

on segmented vessel geometry. As a result of that, it can calculate the vessel 

diameter based on each and every pixel points according to the tracked vessel 

skeleton. Three visual illustrations depicted in Figure 5.7, 5.8 and 5.9 visualize the 

aforementioned facts clearly. Those figures have clearly depicted the detected vessel 

structural features such as boundary and skeleton and the diameter calculation 

through the tracked vessel skeleton of LAD, CX and RCA arteries consecutively. In 

addition to that, Figure 5.10 has labeled the computed vessel diameter along the 

vessel skeleton to prove the clinical supportability of this proposed quantitative 

coronary analysis method. The complete vessel diameter variation along the vessel 

skeleton is also depicted in Figure 6.11 (c) and the analysis of valleys in this 

diameter distribution signals the suspected areas within the processed arterial 

segment.  

Determining the percentage of stenosis diameter is another key assessment in 

quantitative coronary analysis and is addressed in this research study. Figure 6.12, 

6.13 and 6.14 have emphasized this aspect clearly. Clinically approved stenosis areas 

detected in RCA, CX and LAD arteries are highlighted in image (a) of Figure 6.12, 

6.13 and 6.14. Graphs depicted in image (c) of Figure 6.12, 6.13 and 6.14 represent 

 

Figure 7.5: Constraints affected for segmentation phase. (a) vessel 

disconnections; (b) vessel overlapping. 
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the variation of vessel diameter along the marked diseased region. According to the 

results, average diameter at the stenosis starting point (Avg(D))  and the minimum 

diameter (Min(D)) of these illustrated CAs are as follows; RCA: Avg(D)  = 15 pixel 

points , Min(D) = 7 pixel points; CX: Avg(D)  = 8 pixel points , Min(D) = 3 pixel 

points; LAD: Avg(D)  = 11 pixel points , Min(D) = 2 pixel points. Apart from that, 

graphs shown in image (d) of Figure 6.12, 6.13 and 6.14 indicate the percentage of 

stenosis diameter variation along the marked diseased region. According to the 

results, the maximum percentage stenosis diameter at the minimum diameter point 

(Min(D)) of these illustrated CAs are as follows; RCA = 56.42%, CX = 59.3% and 

LAD = 81.11%. According to these results, RCA and CX arteries have moderate 

severe stenosis and LAD artery has severe stenosis.  

The clinical supportability of the image processing system implemented in the 

existing commercial angiography machine has been analyzed and the image 

processing system used by the Philips Medical Systems has been used for this study. 

Similar to the method proposed in this study, those commercial systems have been 

implemented with semi-automatic segmentation and quantification method. 

However, some of the failures that occur in segmentation processes have been 

identified by it and those failures cause some obstructions in calculations. Figure 7.6 

has illustrated two scenarios of observed failures that exist in the aforementioned 

image processing systems of the selected angiography machine.  

Further, it is important to highlight that the objective analysis results of this proposed 

method totally depend on the segmentation accuracy because the SPT algorithm and 

VDC algorithm have been implemented upon the segmented vessels’ structure and 

geometry. Though the proposed segmentation method provides high segmentation 

accuracy for segmentation of all three types of main CA, accuracy of the proposed 

quantitative analysis methods have been improved.         

Affectivity between the subjective analysis and objective analysis of the detected 

stenosis can be clearly compared using the results enlists in Appendix D. It has 

emphasized the overestimations and underestimations occurred in subjective stenosis 

assessment compared to the objective assessment results. According to that, in the 
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selected dataset, there are 25 CCA cases, which have been reported as 

overestimations and 8 cases, which have been reported as underestimations 

compared to the objective assessment results. Additionally, there were 5 cases 

marked as total occluded stenosis in the subjective assessment and this severity level 

has been changed in objective analysis approach. 13 cases out of the data set have 

been categorized in to the same severity level during the objective assessment, which 

represents 39% of the selected patient cases.  Summary of stenosis analysis results 

depicted in Figure 6.15 also emphasizes this matter further and according to the 

graph, a large number of CCA cases are ranked in the moderate severity level and the 

number of CCA cases, which are ranked under the total occlusion and sever 

categories is minimal. Hence, it emphasizes the importance of having an accurate 

objective stenosis assessment method in interventional cardiology, because most of 

the subjective assessment results are erroneous.      

 

Haris et al. mentioned the application of circular filtering for local search to track the 

CA vasculature in their research study [84]. Further, it has been declared that the 

vessel diameter can be extracted by calculating the greatest axis of the modeled 

 

Figure 7.6: Drawbacks in image processing systems of commercial angiography 

machines. (a) incorrect boundary detection of vessels; (b) segmenting background 

structures as foreground (arrow heads indicate the problematic region, 

Manufacturer: Philips Medical Systems.). 
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ellipse in circular filtering that better adjust with the pixels located at the vessel 

border. This approach is erroneous because the diameter line drawn based on 

opposite two vessel boundary intersection points are not perpendicular to the vessel 

centerline. Moreover, it is disparate from the proposed method of this study because 

it cannot produce diameter values for single pixel gaps along the vessel central line.   

Active contour model based vessel segmentation method has been proposed by Lin 

and Ching [26]. In this study, they have used GVF to locate the medial axis of the 

vessel. It calculates the vessel diameter by modeling the perpendicular lines to 

opposite side boundaries after detecting medial axis of the vessel. However, some 

awkward results are produced when the snake model is used to obtain the correct 

medial axis of the vessel. Instead of snake model, image thinning has been used in 

this study for detection of the medial axis of the selected vessel segment. It provides 

accurate results for diameter calculation because the proposed segmentation method 

possesses high segmentation accuracy. 

7.4 Way forward to determine the functional significance  

Determining the stenosis severity based on the functional significance is another 

novel approach that can be considered based on the quantitative results obtained 

from this study. According to the vessel physiology, the amount of blood that flow 

through the blood vessel (also known as blood flow – q) depends on the pressure 

gradient (Δp) of the blood vessel and the resistance (R) as shown in the equation 

(7.1). 

ݍ ൌ
∆

ܴ
 

Where;  

ܴ ൌ
1

ସݎ
 

(7.1)
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Where, r indicates the radius of the vessel. In accordance with equation (7.1) the 

blood flow increases when the resistance decreases and vice versa. Alternately, the 

resistance is increases when the radius decreases and vice versa. Hence, it can be 

stated that the blood flow resistance is low and therefore the blood flow is high 

before the stenosis area. Moreover, the blood flow resistance is high and blood flow 

is low within the stenosis area. Graph shown in Figure 7.7 clearly emphasizes this 

aspect. It has indicated the blood flow resistance variation along the skeleton points 

of the clinically approved stenosis region shown in Figure 6.14 (a). Here the 

calculated flow resistance is normalized within the range 0-100 to represent it with 

the distribution of stenosis diameter percentage. This graph clearly represents the 

increasing of flow resistance when the percentage of stenosis increases and 

decreasing of flow resistance when the percentage of stenosis decreases. Based on 

these results, it is possible to implicitly detect the co-relation between the blood flow 

variation within the arteries and diameter of the lumen. 

 

Flow velocity defines how fast blood is flowing within the arteries and it is the best 

measurement to determine the functional significance of the arteries. Moreover, the 

blood flow velocity (v) relates with the blood flow (q) and total cross sectional area 

(a) of the artery as shown in the equation (7.2);  

Figure 7.7: Flow resistance in stenosis region. 
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 (7.2)

The flow velocity can be defined as the distance that the contrast agent floods per 

unit time. The runtime of the angiogram is a known factor and the distance that the 

contrast agent floods can be determined as the length of the skeleton increased 

throughout the frame sequence. Based on this approach the flow velocity of the 

contrast agent flooding within the angiogram can be determined through an image 

processing approach. However, it has been realized that only 6- 15 frames are 

responsible in representing the contrast agent flooding within the complete CA 

vasculature. This will be insufficient to determine the flow velocity at each point 

along the skeleton of the CA being processed and it is not practical to increase the 

frame rate to obtain additional frames to approximate the flow velocity for each and 

every point of the vessel skeleton due to the patient being exposed for high radiation. 

However, it is apparent that there is great potential to apply the algorithms 

implemented in this study to determine the functional significance of the CAs by 

using the image modalities like biplane angiography. In biplane angiography, the 

traditional angiography procedure is used and additionally, it produces the images of 

the CAs in multiple angles. Using the images provided by all of those angles it is 

possible to construct the three dimensional representation of the CA network and 

more accurately determine the functional features using the three dimensional 

anatomical information. This scenario could be worked out in the future extensions 

of this current research study.         

7.5 Summary  

This chapter critically discussed about the significant aspects of the proposed method 

and the validation results of it. Initially the important aspects of frame enhancement 

and frame alignment stages of pre-processing phase were elaborated. The importance 

of implementing the segmentation method based on Frangi’s filter and its evaluation 

results have been discussed subsequently in the chapter. Moreover, the chapter has 

emphasized the clinical supportability and usability of the proposed quantitative 

coronary analysis phase. Finally, the potential of using the obtained quantitative 

results for determining the functional features of the CAs had been mentioned.  
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CHAPTER 8  

CONCLUSION AND RECOMMENDATIONS  

This study introduces a quantitative coronary analysis method by using a computer 

vision technique to objectively assess CA disease. In order to achieve the research 

objectives the proposed method consists of four major implementation phases 

namely; pre-processing, segmentation, vessel tracking and quantitative analysis. All 

the stated research objectives have been successfully implemented and validated. 

Following sections elaborate the progress and completion of the research objectives 

and future research activities.      

Enhancement of the CCA for better visualizing the CA vasculature: 

Within the pre-processing phase, homomorphic filter based frame enhancement 

technique was presented and empirical results have proven that it provides better 

contrast to visualize the CA tree apart from some of the widely accepted 

conventional approaches like CLAHE and adaptive threshold. Moreover, the direct 

CCA frames were further improved to obtain the visual alignment of the arterial flow 

visualized in the CCA frames sequence by removing the global motion artifact. The 

proposed method was implemented based on improved template matching that can 

adapt to the vessel deformations. According to the results, a template matching 

accuracy of 97.45% is reported while conventional template matching has an 

accuracy of 91.76% in angiography domain. 

Segmentation of the CA vasculature for extracting the luminal information: 

The content aligned enhanced CCA frames produced within the pre-processing phase 

would extend the research further to obtain the co-related segmented CAs recorded 

in the CCAs. In order to achieve that, a novel vessel segmentation method has been 

proposed. It is based on Frangi’s vessel enhancement filter and a region growing 

segmentation method known as flood fill. Frangi’s filter is empirically proven and is 

a strongly recommended filter for vessel enhancement. The main vessel regions 

recorded in the CCA were completely segmented through this proposed method. 

Moreover, the experimental results have successfully proven that this proposed 



187 
 

segmentation method possess average segmentation accuracy of 93.73% and a lower 

fallout rate, which is 0.053. 

Development of an algorithm for detecting uniformly deposited atherosclerotic 

plaque within a predefined region of the CA captured from the CCAs: 

Two new algorithms have been implemented for vessel path tracking (SPT 

algorithm) and vessel diameter calculation (VDC algorithm) for detection of 

uniformly deposited atherosclerotic plaque within a predefined region of the CA. The 

proposed method is based on line-tracking and segmented vessel’s geometry. It can 

compute the diameter of the selected vessel starting from the catheter engaged point 

and the stenosis diameter percentage. LAD, RCA and CX arteries recorded in the 

CCA were validated through this proposed method and experimental results have 

successfully proven its clinical supportability and usability.    

Visualizing the severity level of the plaque detected as a supportive tool for 

making treatment decisions: 

The quantitative analysis phase of the proposed method is the important component 

to achieve this study objective. The implemented coronary analysis algorithms can 

visualize the diameter variation along the processed vessel structure. Further, it 

visualizes the stenosis diameter percentage within the diseased vessel segments. 

Therefore, the algorithms developed in this research study can be used to compare 

the subjectively determined stenosis severity during the cardiac clinical procedures 

as a supportive tool.  

Based on the results and discussion of this study, it can be concluded that this 

proposed methodology improves the angiography modality and permits to extract the 

quantitative details of the CA vasculature. Moreover, the proposed frame 

enhancement method could be able to eliminate the visual degradations recorded in 

the CCAs significantly and provides the visually enhanced, uniformly illuminated, 

better contrast images as the output. Adaptive template matching based motion 

stabilization method proposed in this study can reduce the global motion recoded in 

the CCA frames significantly and improve the visual alignment of the vessel 
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structures among the frame sequence of the CCA frames. This feature is greatly 

important to automatically determine the seed point for vessel skeleton tracking in 

the quantitative coronary analysis phase of the proposed method. Moreover, the 

proposed segmentation method can extract the complete vasculature depicted in the 

frame sequence of the CCA to be processed and the proposed quantitative analysis 

phase can calculate the vessel diameter along the mark vessel skeleton for a single 

pixel gap.               

Future work   

The quantitatively analyzed anatomical features such as vessel diameter, boundary 

and skeleton can be used for assessing the functional significance of the CAs. The 

potential of such an implementation has been clearly elaborated in section 7.4. 

However, it has been realized that the number of frames that can be extracted from 

the direct angiography for determining the functional significance is minimal. 

Moreover, it has been observed that there are only 6-15 frames, which are 

responsible for representing the contrast agent flooding within the complete CA 

vasculature in angiography, which is inadequate to determine the functional 

significance of CAs.  

It is possible to extend this research towards a different angiography technique such 

as biplane angiography because it provides more views of CA vasculature under 

different angles. Hence, it has the potential to model the whole CA network in three-

dimensional space and to determine the internal flow variation based on the concepts 

of computer vision, vessel physiology and fluid dynamics. Therefore, it can be 

concluded that the results provided by this study lay the foundation to implement a 

mechanism to determine the functional significance of the segmented vessel regions 

based on the flow velocity and it could be the next extension of this research.  
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APPENDIX A: STRENGTH AND LIMITATION ANALYSIS OF 

CARDIAC MEDICAL IMAGE MODALITIES 

Image Modality  Strength  Limitations 

Stress echo-
cardiography 

It is a low cost method. 

Global and regional left and 
right ventricular systolic 
function, valvular disease and 
hemodynamic can be assessed 
quickly and with reasonable 
accuracy.  

 

A proportion of patients have 
inadequate or suboptimal images.  

The success of imaging varies from 
laboratory to laboratory and 
dependent on the sonographer 
expertise, physicians' proficiency 
and tolerance for technically 
difficult studies (e.g., obese 
patients).  

In approximately 10–20% of 
examinations, two or more of 16 
(or 17) myocardial segments may 
not be well visualized.  

SPECT Provides physiological 
information through functional 
imaging.   

Can detect metabolic activity 
blood flow,  intrinsic lesion 
localization  

 

Gamma emissions harmful to the 
patients.  

Non-hybrid devices have poor 
spatial resolution. 

Tissue boundaries are ill-
determined  

Longer scanning duration, 
exceeding 30-40 minutes   

PET It allows study of body 
functions and can help 
physicians detect alterations in 
biochemical processes that 
imply the possibility of   
diseases before changes in 
anatomy are detected using 
other imaging tests, such as CT 
or MRI. As the radioactivity is 
very short-lived, patients’ 
exposure to radiation is low.  

Time-consuming. 

The resolution of structures of the 
body with nuclear medicine may 
not be as clear as with other 
imaging techniques, such as CT or 
MRI.PET scanning can give false 
results if chemical balances within 
the body are not normal.A person 
who is very obese may not fit into 
the opening of a conventional 
PET/CT unit. 
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Image Modality  Strength  Limitations 

Cardiac MRI MRI does not have any 
ionizing radiation, thus 
permitting its use in children 
and pregnant women.  

It can produce high resolution 
and 3D images of the cardiac 
chambers and thoracic vessels. 

Unlike echocardiography, MRI 
can produce images of 
cardiovascular structures 
without interference from 
adjacent bone or air, which 
limits echocardiography.  

MRI is also less operator 
dependant than 
echocardiography.Velocity 
encoded techniques permit 
measurement of blood flow. 

MRI does not have the 
weakness of geometric 
assumptions (as do 
angiography and 2D echo-
cardiography) in assessing 
ventricular volumes. 

MRI requires more patient 
cooperation than other tests and 
claustrophobic patients may not be 
able to undergo the exam.  

The duration of examination is 
significantly longer compared with 
CT.  

Installation and operation of MRI 
equipment is costly. 

MRI has less spatial resolution than 
CT, which limits the evaluation of 
small structures such as the CAs. 

MSCT Small and rapidly moving 
anatomic structures could be 
visualized with good image 
quality. Coronary CT 
angiography investigation 
allows the accurate detection of 
CA stenosis. 3D imaging 
provides a real coronary 
mapping mode using 3D 
volume rendering.Cardiac CT 
has the potential to visualize 
earlier stages of coronary 
atherosclerosis.CT provides for 
accurate assessment of general 
cardiac morphology.  

Compared to other diagnostic tests, 
CT scans deliver a relatively high 
dose of radiation to the patient.  

Allergic Reaction due to the 
contrast agents. 
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Image Modality  Strength  Limitations 

X-ray angiography Provide excellent visualizations 
of CA vasculature.  

Low cost.  

It consists of some visual artifacts, 
which causes degradations such as; 
non-uniform illumination, noise. 

It provides only two dimensional 
images. 

Difficult to quantitatively analyze 
the CAs lumen. Subjective analysis 
leads to over estimations and under 
estimations of detected stenosis. 

IVUS IVUS enables a physician to 
detect inside the artery with a 
camera-like device.  

IVUS can quantify the 
percentage of narrowing and 
give insights into the nature of 
the plaque.  

 

 

 

Some artifacts that occur during 
imaging causes erroneous results; 
e.g. ring-down artifact, nurd. 

The real three-dimensional 
geometry can hardly be obtained.  

IVUS is normally applied to a short 
segment of the vessel to 

minimize complications in the 
catheterization procedure, and it is 
almost impossible to image every 
branch of the coronary tree in order 
to recover the complete shape. 

OCT Provides accurate measurement 
of the structures in the 
vasculature than IVUS. 

Images contain broad dynamic 
range and high resolution. 

It can be used to determine the 
morphology of detected 
plaques.  

The real three-dimensional 
geometry can hardly be obtained.  

OCT is normally applied to a short 
segment of the vessel to 

minimize complications in the 
catheterization procedure, and it is 
almost impossible to image every 
branch of the coronary tree in order 
to recover the complete shape. 

FFR Provides accurate 
measurements of the stenosis 
based on the functional 
significance.   

The pressure wire used for the FFR 
is costly.  
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APPENDIX B: PSEUDO CODE OF SKELETON PATH 

TRACKER   

Skeleton Path Tracker (seedPoint) 

BEGIN 

skeletonPointArray [] 

taggedPointArray[] 

candidateKeyArray[] 

candidateKeyDensityArray[] 

trackingStatus 1 

kpCount, taggedCount, candidateCount, candidateDensityCount 0 

currentSeedPoint  seedPoint 

skeletonPointArray[kpCount]  currntSeedPoint 

WHILE (trackingStatus ==1) 

    FOR EACH 8 neighbors of currentSeedPoint 

        IF (pixelValue == 255 && notVisited && notTagged) THEN 

            skeletonPointArray[++kpCount]  neighborPoint  

            candidateKeyArray[candidateCount++]  neighborPoint 

       END IF 

    END FOR 

    IF (candidateCount == 0) THEN  

        taggedPointArray [++taggedCount] currentSeedPoint 

        trackingStatus 0 

    ELSE IF (candidateCount == 1) THEN 
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        taggedPointArray [++taggedCount] currentSeedPoint 

        currentSeedPoint  candidateKeyArray[0] 

        re-set candidateKeyArray 

    ELSE 

        FOR EACH candidateKey point in candidateKeyArray 

            count 0 

            FOR EACH 8 neighbors of candidateKey point in candidateKeyArray[] 

                IF (pixelValue == 255 && notTagged && !currnetSeedPoint) THEN 

                    count++ 

                    candidateKeyDensityArray [candidateKeyDensityCount++]  count 

                END IF  

            END FOR 

        END FOR             

    max 0; 

    maxIndex 0; 

    FOR (n  0; n< candidateCount) 

        IF(max<= candidateKeyDensityArray[n]) THEN 

            max  candidateKeyDensityArray[n] 

            maxIndex  n 

        END IF 

    END FOR 

    taggedPointArray [++taggedCount] currentSeedPoint 

    FOR(n  0; n< candidateCount) 
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        IF( n!= maxIndex) THEN 

            taggedPointArray [++taggedCount] candidateKeyArray[n] 

        END IF 

    END FOR 

    currentSeedPoint  candidateKeyArray[maxIndex] 

    re-set candidateKeyArray 

END WHILE 

END  

Note: 

notVisited indicates that the pixel point is not exists in skeletonPointArray[] and 
notTagged indicates that the pixel point is not exists in taggedPointArrayp[]. 

Following section elaborates the execution steps of Skeleton Path Tracker algorithm 
by using a sample skeleton image.  
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Example:  

Following Figure A depicts a sample skeleton image and seed point is given as [5,2]. 

Arrow head in the Figure A indicates the tracking direction. Table A enlists the steps 

of the proposed Skeleton Path Tracker algorithm and each column in the table 

represents the values, which are manipulated in accordance with the execution steps.      

 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 

Figure A – Sample skeleton image 

 

Skeleton Point 
Array 

[5,2] [4,3] [3,4]  [4,4] [2,5]  [3,5] [1,6] 

 

Tagged Point Array  
 

[5,2] [4,3] [4,4] [3,4] [3,5] [2,5] [1,6] 
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Table A: Steps of the proposed Skeleton Path Tracker algorithm 

Iterations 
 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Current seed 
point 

[5,2] [4,3] [3,4] [2,5] [1,6] 

White 
colored 8 
Neighbors   

[4,3] [5,2][3,4] 
[4,4] 

[4,3] [4,4] 
[2,5] [3,5] 

[3,4] [3,5] 
[1,6] 

[2,5] 

Key Found 
status  

0 1,0,0 1,1,0,0 1,1,0 1 

Tagged status 0 1,0,0 1,1,0,0 1,1,0 1 
Add to 
Skeleton 
Point array 

[4,3] [3,4] [4,4] [2,5] [3,5] [1,6] - 

Selected  
Candidate 
Key Points 

[4,3] [3,4] [4,4] [2,5] [3,5] [1,6] - 

Selected 
Candidate 
Key count 

1 2 2 1 0 

Case Number 2 3 3 2 1 
End tracking  No  No No No Yes 
Candidate 
Density count 

- 3,2 2,1 -  

Maximum 
density value 

- 3 2 -  

Maximum 
density index 

- 0 0 -  

Tagged   
current seed 
point and 
non- 
maximum 
density  
Candidate 
Key points  

[5,2] [4,3], [4,4] [3,4][3,5] [2,5] [1,6] 

Next seed 
point  
maximum 
indexed 
Candidate 
Key point  

[4,3] [3,4] [2,5] [1,6] - 
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Following diagrams visually illustrate the skeleton path tracking progress according 

to the iterations. Gray colored pixel depicts the seed point. Yellow colored pixels 

represent the tracked key points. Orange colored pixels represent the tagged 

candidate pixels. Arrow head in each diagram indicates the tracking direction.       

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 1 

 
 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 2 

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 3 

 
 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 4 

 
 0 1 2 3 4 5 6 7
0         
1         
2         
3         
4         
5         
6         
7         

 
Iteration 5 

 
 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         

 
End of tracking 
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APPENDIX C: VISUAL ILLUSTRATIONS OF PROCESSING 

STEPS   

The visual illustrations of the processing steps of the proposed methodology have 

been presented in this section. A sample CCA of RCA recorded under LAO cranial 

view has been selected and it consists of 10 frames to be processed.  

Original frames (f0(x,y)) of the selected video  

Enhanced Frames (f3(x,y))  

Following are the uniformly illuminated normalized frames.  
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Aligned Frames (f4(x,y)) 

Following set of frames can be obtained after reduction of global motion from the 

enhanced frames.  

Background subtraction (f5(x,y)) 

Following set of frames can be obtained after subtracting the created mask image 

from each and every aligned frame. As a consequence of the operation the 

foreground area has been emphasized.   
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Foreground enhanced frames (f6(x,y)) 

Application of Frangi’s vessel enhancement filter emphasizes the tubular structures 

of the CCAs and can be used to determine the vesselness feature of the frames.  

Overlapped and normalized frames (f7(x,y)) 

Following frames are obtained as a result of application of structure filling and 

normalization operations. These operations improve the special coherence of the 

vessel structures and represent them with uniform intensity.   
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Foreground extracted frames (f8(x,y)) 

Following frames provide visual illustrations to emphasize the segmentation results 

of the processed CCA.  

Vessel isolation (f9(x,y)) 

The root arterial segments of the RCA selected to be isolated have been depicted in 

the frames.   
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Skeleton (fs(x,y)) 
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APPENDIX D: RESULTS OF CLINICAL FEASIBILITY 

ANALYSIS OF PROPOSED METHOD   

Following table enlists the results of the clinical feasibility analysis of the proposed 

method. Selected CCA are listed in CCA case ID column and the English letter of 

each case indicates the name of the diagnosed CA. Hence, ‘R’ indicates the RCA, ‘L’ 

indicates LCA and ‘C’ indicates the CX artery. Subjective analysis results are 

directly extracted from the clinical reports, which belong to these patient cases and 

objective analysis results are computed by the quantitative coronary analysis method 

proposed in this study. Severity level of both subjective results and objective results 

are determined according to the criteria mentioned in section 6.4.2.   

CCA 
case 
ID 

Subjective 
Analysis 
Result  

Severity 
Level 

Objective 
Analysis Result

Severity 
Level 

Stenosis 
Location 

3883R 90 Severe 79.18 Severe Mid 

4233R 90 Severe 57.47 Moderate Proximal 

4538R 99 Total  
Occlusion 

75.60 Severe Mid 

4585R 70 Moderate  74.19 Moderate Mid long 
lesion 

4782R 90 Severe 60.00 Moderate Proximal mid 
long lesion 

4837R 40 Minimal 65.20 Moderate Diffuse disease

5088R 90 Severe  57.29 Moderate Proximal 

5339R 95 Severe  79.83 Severe Proximal 

5371R 50 Moderate  44.19 Minimal Proximal 

5438R 70 Moderate  59.36 Moderate Mid 

5713R 99 Total  
Occlusion 

72.33 Moderate Mid 



216 
 

CCA 
case 
ID 

Subjective 
Analysis 
Result  

Severity 
Level 

Objective 
Analysis Result

Severity 
Level 

Stenosis 
Location 

4234L 99 Total  
Occlusion 

54.98 Moderate Mid culprit 
lesion 

4585L 40 Minimal 38.90 Minimal Mid 

4645L 90 Severe 66.80 Moderate Proximal  

4646L 40 Minimal 62.49 Moderate Proximal  

5084L 99 Total  
Occlusion 

71.15 Moderate Mid 

5088L 90 Severe 20.00 Minimal Proximal  

5106L 90 Severe 64.09 Moderate Proximal  

5233L 70 Moderate  65.00 Moderate Proximal  

5328L 80 Severe 88.55 Severe Mid 

5339L 70 Moderate  35.71 Minimal After d1 

5371L 40 Minimal 33.67 Minimal Proximal  

5438L 99 Total  
Occlusion 

54.70 Moderate Proximal  

5473L 90 Severe 82.00 Severe Proximal  

5556L 50 Moderate  68.60 Moderate Proximal  

4233C 70 Moderate  30.28 Minimal Proximal 

4434C 70 Moderate  49.53 Minimal Obtuse 
marginal  

4645C 70 Moderate  52.60 Moderate Proximal 

4646C 65 Moderate  55.87 Moderate Ostial  

4650C 70 Moderate  78.25 Severe Proximal 

4969C 60 Moderate  56.69 Moderate Proximal 
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CCA 
case 
ID 

Subjective 
Analysis 
Result  

Severity 
Level 

Objective 
Analysis Result

Severity 
Level 

Stenosis 
Location 

5067C 45 Minimal 50.42 Moderate Proximal 

5556C 50 Moderate  52.30 Moderate Proximal 
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