LOAD-INJECTED DC CURRENT IN DISTRIBUTION TRANSFORMERS

Ayesha Iroshani Herath

139561T

Degree of Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

June 2017

LOAD-INJECTED DC CURRENT IN DISTRIBUTION TRANSFORMERS

Herath Mudiyanselage Ayesha Iroshani Herath

139561T

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

June 2017

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the Supervisor:

Date:

ABSTRACT

Power electronic based loads and other non-linear loads on the utility system create small amounts of DC current on top of their normal AC current. Due to heavy proliferation of such loads on the present day utility system, the net DC current accumulated at the secondary of the distribution transformer is significant. This DC-current offsets the operating point of the magnetization characteristic for the iron core, and creates a severe asymmetry between the positive and negative half cycles of the magnetization current, both in magnitude and shape, owing to magnetic saturation. It directly affects the shape of input current, and also recreates a DC current at input with magnitude even higher than that present at the secondary.

This project is about investigating the effects on primary (supply) current due to DC current in the secondary of a transformer, and eliminating such effects altogether by diverting DC current away from the secondary with a suitable power electronic controller.

Investigations were carried out by simulations, after developing a model for the magnetization characteristic for the transformer, based on test data. Simulations were carried out in MATLAB for different combinations of AC and DC current in the secondary, and the results obtained were compared and discussed against the experimental observations made on the real transformer.

DC current diversion away from the transformer secondary was done by measuring the loaddemanded (or returned) DC current, and injecting (or absorbing) an equal DC current at the secondary terminals. This was a complex task because measuring a small DC current superimposed with a large AC current was not straightforward, and also injecting a small DC current accurately against a large AC voltage present across the transformer secondary was not straightforward. However, both these challenges were successfully overcome and an extremely good DC current diversion system developed. All details of the design are given and described in the report.

ACKNOWLEDGEMENT

This page is dedicated to convey my gratitude for those who were with me helping, encouraging and enriching my knowledge and also others who helped me in various ways. Therefore I take this opportunity to offer the thanks of honor to every person who gave me their guidance and assistance to achieve this goal.

First of all I would like to convey my heartiest gratefulness to my supervisor, Prof. J.P. Karunadasa for giving me warm welcome in knowledge-seeking quest, and guiding and assisting me by dedicating his valuable time.

Next, I would like to convey my warm appreciation to the Head of the Department of Electrical Engineering, Prof. N.K.Wickramarachchi, for allowing me to use the equipment and facilities in the Department, and to the Coordinator of the Electrical Installation Course, Dr.W.D.Prasad, for his admirable assistance.

Also, I would like to extend my sincere gratitude to the staff of the Electrical Machines Laboratory in the university for providing support to conduct laboratory experiments successfully.

Further, I wish to thank all members of the academic and non-academic staff of the Department of Electrical Engineering for helping me in numerous other ways to make my research a success

My special thank goes to the staff of the Arthur C Clark Institute of Modern Technology for giving permission and assistance for collecting practical data related to the project

Finally, I wish to accord my heartfelt gratitude to my parents, relatives and colleagues who supported and encouraged me in many ways throughout the project.

TABLE OF CONTENTS

DECLA	RATIO	N	i
ABSTR	ACT		ii
ACKNO	WLED	GEMENT	iii
TABLE	OF CO	NTENTS	iv
LIST OI	F FIGU	RES	vi
LIST OI	F TABL	.ES	viii
LIST OI	F APPE	NDICES	viii
1. INTR	ODUC	TION	
1.1	Proble	m Statement	1
1.2	Object	tives of the study	2
1.3	Resear	rch Methodology	2
2. LITE	RATU	RE REVIEW	3
		L INVESTIGATION OF THE EFFECTS OF DC CURRENT IN ATION OF A TRANSFORMER	7
3.1	DC Cı	arrent in a Sample Distribution System	7
3.2	Labora	atory Investigation of the Effect of DC Current in a Transformer.	8
	3.2.1	Magnetizing current at rated voltage	8
	3.2.2	Primary current on load	9
	3.3.3	Primary current on load with heavy DC current injected to the secondary	10
	3.3.4	Primary current on load with a small value of DC current injected at the secondary	
4. SIMU	JLATIC	ON OF THE EFFECTS OF DC CURRENT IN A TRANSFORM	ER
4.1		former Model	
	4.1.1.		
	4.1.2	Deriving magnetization characteristic for the core	
4.2		ation of magnetizing current at rated voltage	
4.3	Simulation of primary current on load		

4.4	Simulation of primary current on load with heavy DC current injected to the secondary		
4.5	Simulation of primary current on load with small DC current injected to the secondary		
		SYSTEM OF ELIMINATING DC CURRENT AT THE POIN COUPLING (PCC)	
5.1	Syster	n Overview	32
5.2	DC Cu	urrent Sensor	32
	5.2.1	Transfer Function of DC Current Sensor	34
	5.2.2	Response of the DC current sensor	36
5.3	Power	Electronic Converter	38
	5.3.1	Switching frequency range for the Power Electronic Converter	40
	5.3.2	Transfer Function of Power Electronic Converter	41
	5.3.3	Response of the Power Electronic Converter	44
5.4	Closed	d Loop Compensator	45
	5.4.1	Transfer Function Model of Feedback Controller	47
	5.4.2	Tuning of closed loop compensator	48
6. OVE	RALL	PERFORMANCE OF THE CURRENT ELIMINATION SYSTI	EM 49
6.1	Case of 40% DC current in secondary produced by half wave rectification of load current		50
6.2	Case of 10% DC current (on top of 80% AC current) in the load, produced by half-wave rectification of part of the load current		53
6.3	Case of 1 A DC current (on top of 90% AC current) in the load produced by an ideal DC source at the load		
6.4	Case of -1 A DC current (on top of 90% AC current) in the load produced by an ideal DC source at the load		
7. CON	CLUSI	ON	63
REFER	ENCE I	LIST	66
APPEN	DICE A	: MATLAB CODES	67

LIST OF FIGURES

Figure 2.1:	Grid-tie inverter configuration using line frequency transformer	4
Figure 2.2:	Blocking DC current with an AC capacitor	4
Figure 2.3:	Half bridge inverter	5
Figure 2.4:	Transformerless interconnection	5
Figure 2.5:	DC offset sensor	6
Figure 2.6:	DC offset controller	6
Figure 2.7:	HF Transformer Interconnection	6
Figure 3.1:	Point of measurement in sample distribution system	7
Figure 3.2:	Power and Energy data in the sample distribution system	7
Figure 3.3:	DC current measurement in phase 1, 2 and 3	8
Figure 3.4:	Test schematic for the test 1	8
Figure 3.5:	Tested magnetizing current (I _m) at rated input voltage	9
Figure 3.6:	Test schematic for the test 2	9
Figure 3.7:	Primary current (Iin) & voltage (Vin) waveforms on load	10
Figure 3.8:	Test schematic for the test 3	10
Figure 3.9:	Tested primary current and voltage with 40% DC current in the	
	secondary, created by rectification of 90% full load (resistive) curren	t at
	rated input voltage	11
Figure 3.10:	Test schematic for the test 4	12
Figure 3.11:	Tested primary current and voltage with 10% DC current at 90% loa	ad
	(resistive) at rated input voltage	13
Figure 4.1:	Transformer model	14
Figure 4.2:	No load model	16
Figure 4.3:	Magnetization characteristic for the transformer core	17
Figure 4.4:	Simulated magnetizing current at rated input voltage	19
Figure 4.5:	Simulated and tested magnetizing current at rated input voltage	20
Figure 4.6:	Simulated transformer equivalent circuit	20
Figure 4.7:	Simulated primary current with 90% load (resistive) at rated voltage	22
Figure 4.8:	Input voltage for the case of 90% load (resistive)	22
Figure 4.9:	Simulated and tested primary current with 90% load (resistive) at ra	ted
	input voltage	23
Figure 4.10:	Simulated transformer equivalent circuit	23
Figure 4.11:	Simulated primary current with 40% DC current in the secondary,	
	created by rectification of 90% full load (resistive) current at rated in	put
	voltage	25

Figure 4.12:	Input voltage for the case of with 40% DC current in the secondary	26
Figure 4.13:	Simulated and tested input current with 40% DC current at the	
	secondary, created by rectification of 90% full load (resistive) current	t at
	rated input voltage	26
Figure 4.14:	Simulated input current and voltage with 40% DC current at the	
	secondary, created by rectification of 90% full load (resistive) current	t at
	rated input voltage	27
Figure 4.15:	Simulated transformer equivalent circuit with small DC current	27
Figure 4.16:	Simulated input current with 10% DC current at 90% load (resistive)	at
	rated input voltage	30
Figure 4.17:	Simulated input voltage for the case of 10% DC current at 90% load	
	(resistive)	30
Figure 4.18:	Simulated and tested input current with 10% DC current at 90% load	
	(resistive) at rated input voltage	30
Figure 4.19:	Simulated input current and voltage with 10% DC current at 90% loa	d
	(resistive) at rated input voltage	31
Figure 5.1:	Proposed arrangement of DC current cancellation system at PCC	32
Figure 5.2:	DC current detector circuit	33
Figure 5.3:	Functionality of DC current detector	34
Figure 5.4:	DC current detector circuit	34
Figure 5.5:	MATLAB simulation model with 1.25 V (DC) on top of 400 V (AC)	at
	sensor input	37
Figure 5.6:	Response of the current Sensor for step input of 1.25 V DC	
	superimposed with 400 V (AC)	37
Figure 5.7:	Sensor output for 1.25 V DC step input without AC	38
Figure 5.8:	Circuit of Power Electronic Converter	39
Figure 5.9:	Equivalent power-circuit of the DC injection system	40
Figure 5.10:	Schematics of Power Electronic Converter with Hysteresis Controller	r
	function to derive transfer function	42
Figure 5.11:	Step response of current controller and power electronic converter	43
Figure 5.12:	Exponential approximation to step response of current controller and	
	power electronic converter	43
Figure 5.13:	MATLAB simulation model of Converter, hysteresis Current control	ler
	and transformer	44
-	Step response of output current of the power electronic converter	45
e	Details of Feedback current controller	45
Figure 6.1:	MATLAB simulation model for the complete system	49
Figure 6.2:	System schematic for 40% DC current in in the load produced by half	f
	wave rectification of load current	50
Figure 6.3:	Half-wave rectified load current waveform	51
Figure 6.4:	Output of the DC current sensor	52

Figure 6.5:	DC current injected to the load by the power electronic converter	52
Figure 6.6:	Final current in the transformer secondary	53
Figure 6.7:	System schematic for 10% DC current (on top of 80% AC current)	in
	the load produced by half wave rectification of part of the load curr	ent
		54
Figure 6.8:	Load current waveform with 10% DC on top of 80% AC	55
Figure 6.9:	Output of DC current sensor	55
Figure 6.10:	DC current injected to the load by the power electronic converter	56
Figure 6.11:	Final current in the transformer secondary	56
Figure 6.12:	System schematic for 1A DC current (on top of 90% AC current) in	1 the
	load produced by an ideal current source	57
Figure 6.13:	Load current waveform with 1A DC on top of 90% AC current	58
Figure 6.14:	Output of DC current sensor	58
Figure 6.15:	DC current injected to the load by the power electronic converter	59
Figure 6.16:	Final current in the transformer secondary	59
Figure 6.17:	System schematic for -1A DC current (on top of 90% AC current) i	in the
	load produced by an ideal current source	60
Figure 6.18:	Load current waveform with -1A DC on top of 90% AC current	61
Figure 6.19:	Output of DC current sensor	61
Figure 6.20:	DC current injected to the load by the power electronic converter	62

LIST OF TABLES

Table 1.1:	Limits of DC current injection permitted by different countries for grid-ti	ie
	inverters (LV system)	3
Table 5.1:	Converter output current parameters for different integral gain values 4	8

LIST OF APPENDICES

Table A.1: MATLAB code for simulation of input current on open circuit	67
Table A.2: MATLAB code for simulation of input current with load on secondary	r. 68
Table A.3: MATLAB code for simulation of input current with heavy DC current	
injected to the secondary	69
Table A.4: MATLAB code for simulation of input current with small DC current	
injected to the secondary	70