CHAPTER SIX

6.1 Results

Several runs were made. The following results presented were obtained by running the
program for 325 generations.

The coefficients used in fitness function were;

Parameter Coefficient Declaration

Load 0.4 giving the idea of the amount
Over loaded

NoLines 0.35 giving the idea of number of
Non - over loading lines

TC 0.3 Total cost

L F 0.3 Line fitness

n 0.15 Number of under loaded lines

The average program run time for 325 generations have been around 9 minutes.

These are the results obtained for 10 ruans of program. Summery has been tabulated;

No | Tcost | Nlines | TLineLength | Nover Avg Nunder Avg
Overload

LoadLines | % LoadLines | UnderLoad%
11 3065 9 510 4 170.51 2 14
2| 3175 8 520 3 144.17 2 11.48
3| 3175 8 520 3 14418 2 16.27
41 3730 10 620 2 133 3 11.86
5| 5445 13 890 2 135.65 6 15.62
6| 5540 13 890 0 0 5 9.89
7| 5720 14 980 2 115.43 6 13.15
8| 6250 15 1090 0 0 6 13.74
9| 6330 15 1090 1 111.8 7 14.16
10 | 6475 15 1090 1 119.37 5 11.29

Using this type of result table designer can select suitable solution according to his
requirement.

Detailed No 1 result; N

69

From To Line Type
Lynx

Lynx

350 Oil Filled
300 XLPE
Lynx

1xZebra

Lynx

Bear

300 XLPE

PLWWRIPMN R — —
AN O\ B W

Total cost (in millions) = 3065
Total number of lines = 9
Total Line length (in km) =510

System Summary |

How many? How much? P (MW) Q (MVAR)
Buses 6 Total Gen Capacity 11100 -900.0 to +900.0
Generators 3 On-line Capacity 111.0 -900.0 to +900.0
Commited Gens 3 Generation (current) 770.0 118.5
Loads 5 Load 770.0 0.0
Branches 9 Losses(I"2 * Z) 0.00 118.53
Transformers 0 Branch Charging (inj) - 00
Areas 1 Shunt (inj) 0.0 0.0
Inter-ties 0 To 0
Voltage Magnitude 0.986 p.u. @ bus 4 1.000 p.u. @ bus 1
Voltage Angle -1.77 deg @bus 5 14.85 deg @ bus 6
P Losses (1"2*R) - 0.00 MW @linel-2
Q Losses (I"2*X) - 33.74 MVAR @ line 2-6
Bus Data |
Bus Voluage Generation Load
Mag(pu) Ang(deg) P(MW) Q(MVAR) P(MW) Q(MVAR)

1 1.000 0.000 70.00 13.48 90.00 0.00

2 0993 3715 - - 240.00 0.00

3 1.000 6.992 300.00 50.62 40.00 0.00

4 0986 3.409 - - 160.00 0.00

5 0992 -1.770 - - 240.00 0.00

6 1.000 143851 400.00 54.43 - -

Total: 770.00 118.53 770.00 0.00

Branch Data |
From To From Bus Injection To Bus Injection Loss (I"2 * Z)
Bus Bus P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAR)

1 2 -46.65 6.31 46.65 -3.25 0.000 3.06

70

Ry

15 26.65 7.17 -26.65 -6.29 0.000 0.88
23 -199.23 -17.39 199.23 28.94 0.000 11.55
2 4 3.50 4.80 -3.50 -4.75 0.000 0.05
2 5 81.93 4.92 -81.93 2.93 0.000 7.85
2 6 -172.84 10.92 172.84 22.81 0.000 33.74
3 5 131.43 16.83 -131.43 3.36 0.000 20.15
3.6 -70.66 485 70.66 485 0.000 9.71
4 6 -156.50 475 156.50 26.77 0.000 31.51

Total: 0.000 118.53

%10 Graph of Total Line Cost over Generations

2 1 1 L L 1 1
0 50 100 150 200 250 300 350
Graph of Total Fitness of populations over Generations
2200 T L] 1 | T L)
2100} J__—f'—J]
[V,
w PGS,
= 2000 v lib et g7 .
Q
-
jeool]
1800 1 1 1 1 1 1
1] 50 100 150 200 250 300 350

Generatians
Detailed No 2 result;

From To Line Type
1 2 300 XLPE
2 3 Lynx

2 4 300 XLPE
2 5 Lynx

3 4 1xGoat

3 5 Bear

4 6 1xZebra

5 6 Lynx

Total cost (in millions) =3175
Total number of lines =8
Total Line length (in km) =520

71

System Summary |

How many? How much? P (MW) Q (MVAR)

Buses 6 Total Gen Capacity 1110.0 -900.0 to +900.0

Generators 3 On-line Capacity 1110.0 -900.0 1o +900.0

Commited Gens 3 Generation (current) 770.0 176.2

Loads 5 Load 770.0 00

Branches 8 Losses(I1"2*Z) 0.0 176.23

Transformers 0 Branch Charging (inj) - 0.0

Areas 1 Shunt (inj) 0.0 0.0

Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Minimum Maximum

Volage Magnitude 0.974 p.u. @ bus 4 1.000 p.u. @ bus 1

Voltage Angle 0.00 deg @ bus 1 2487 deg @bus 6

P Losses (I"2*R) - 0.00 MW @line1-2

Q Losses (I"2*X) - 63.99 MVAR @ line 4-6

Bus Data |

Bus Voltage Generation Load

Mag(pu) Ang(deg) P(MW) Q(MVAR) P(MW) Q(MVAR)

1 1.000 0.000 70.00 12.60 90.00 0.00
2 0982 1.751 - - 240.00 0.00
3 1.000 11.136 3(
4 0974 9421 160.00 0.0
5 0976 4212 s 240.00 0.C
6 1.000 24866 4(
Total: 770.00 176.23 770.00 0.00

[Branch Data !

From To From Bus Injection To Bus Injection Loss (IN2 * Z)

Bus Bus P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAR)
1 2 -20.00 12.60 20.00 -11.77 0.000 0.84
2 3 -139.17 -4.32 139.17 27.46 0.000 23.14
2 4 -835.06 10.63 85.06 0.81 0.000 11.44
2 5 -35.77 5.46 35.77 -3.90 0.000 1.56
3 4 11.37 10.31 -11.37 -9.70 0.000 0.60
3 5 109.45 28.89 -109.45 -15.12 0.000 13.78
4 6 -233.69 889 233.69 55.09 0.000 63.99
5 6 -166.31 19.01 16631 4187 0.000 60.89

Total: 0.000 176.23

72

x 10 Graph of Total Line Cost over Generatians
? T Ll T T T L]
B _
g ° VA '
a4t %M 4
T »wWW ot |
2
0 1D[] 150 200 250 300 350
Graph of Total Fitness of populations over Generations
2400 . T T T T T
2300} I e
i 2200} /"_’—r—’—]
® 7
B 2100 e :
2000 // |
1900 1 1] 1 P 1
0 A0 100 150 200 250 300 350
Generations
Detailed No 3 result;
From To Line Typ
1 2 300 XLPE
2 3 Lynx
2 4 300 XLPE
2 5 Lynx
3 4 1xGoat
3 5 Bear
4 6 1xZebra
5 6 Lynx
Total cost (in millions) = 3175
Total number of lines =8
Total Line length (in km) = 520
System Summary |
How many? How much? P (MW) Q IMVAR)
Buses 6 Total Gen Capacity 11100 -900.0 to +900.0
Generators 3 On-line Capacity 11100 -900.0 to +900.0
Commited Gens 3 Generation (current) 770.0 176.2
Loads 5 Load 770.0 0.0
Branches 8 Losses(I"2 * 2) 0.00 176.23
Transformers 0 Branch Charging (inj) - 0.0
Areas 1 Shunt (in))) 0.0
Inter-ties 0 Total Inter-tie Flow 0.0 0.0

73

Minimum Maximum

Voltage Magnitude 0.974 pu. @ bus 4 1.000 p.u. @ bus 1
Voltage Angle 0.00 deg @bus | 2487 deg @bus6
P Losses (1"2*R) - 0.00 MW @ line1-2
Q Losses (1"2*X) - 63.99 MVAR @ line 4-6
Bus Data |

Bus Voltage Generation Load

Mag(pu) Ang(deg) P(MW) Q(MVAR) P(MW) Q(MVAR)

1 1.000 0.000 70.00 12.60 90.00 0.00
2 0.982 1.751 - - 240.00 0.00
3 1.000 11.136 300.00 66.67 40.00 0.00
4 0.974 9.421 - - 160.00 0.00
5 0976 4212 - - 240.00 0.00
6 1.000 24.866 400.00 96.96 - -

Total: 770.00 176.23 770.00 0.00

Branch Data |

From To From Bus Injection To Bus Injection Loss (I*2 * Z)
Bus Bus P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAR)

1 2 -20.00 12.60 20.00 -11.77 0.000 0.84
2 3 -139.17 -4.32 : 0 23.14
2 4 -85.06 0463 §85.06 0.81 0.000 11.44
2 5 -35.77 .46 35:77 9C 0.000 1.56
3 4 1137 0 0.60
3 5 10945 2889 -109.45 -15.12 0.000 13.78
4 6 -233.69 8.89 233.69 55.09 0.000 63.99
5 6 -166.31 19.01 166.31 4187 0.000 60.89

Total: 0.000 176.23

74

x 10 Graph of Total Line Cost over Generations

6 d
sl -
O il
|
- 4 M« -
3t J
|
2 I L 1 1 1
0 50 100 150 200 250 300 350
Graph of Total Fitness of populations over Generations
2400 T T T T T T
2300 -
& 2200 :
s
o 2100 4
P
2000 .
1900 : - : : : :
0 50 100 150 200 250 300 350
Generations
Detailed No 4 result,
From To Line Tyg
1 2 Lynx
1 5 350 Oil Filled
2 3 300 XLPE
2 4 350 Oil Filled
2 5 300 XLPE
2 6 Lynx
3 4 300 XLPE
3 5 300 XLPE
4 6 300 XLPE
5 6 Lynx
Total cost (in millions) = 3730
Total number of lines = 10
Total Line length (in km) = 620
System Summary |
How many? How much? P(MW) Q(MVAR)
Buses 6 Total Gen Capacity 1110.0 -900.0 10 +900.0
Generators 3 On-line Capacity 1110.0 -900.0 to +500.0
Commited Gens 3 Generation (current) 770.0 1129
Loads 5 Lload 770.0 0.0
Branches 10 Losses (I"2 * Z) 0.00 112.90
Transformers 0 Branch Charging (inj) - 00
Areas 1 Shunt (inj) 00 0.0
Inter-ties 0 Total Inter-tie Flow 0.0 0.0

75

N

Minimum Maximum
Voltage Magnitude 0990 pu. @ bus 4 1.000 p.u. @ bus 1
Voltage Angle 0.00 deg @bus! 12.14 deg @ bus 6
P Losses (I"2*R) - 000 MW @ line 1-2
Q Losses (1"2*X) - 29.65 MVAR @ line 2-6
Bus Data |
Bus Voltage Generation Load
Mag(pu) Ang(deg) P(MW) Q(MVAR) P(MW) Q (MVAR)
1 1.000 0.000 70.00 23.99 90.00 0.00
2 0.991 1512 - - 240.00 0.00
3 1.000 8.651 300.00 32.50 40.00 0.00
4 0.990 1953 - - 160.00 0.00
5 0995 0.017 - - 240.00 0.00
6 1.000 12.142 400.00 56.41 - -
Total: 770.00 112.90 770.00 0.00

Branch Data

From To From Bus Injection To Bus Injection Loss (1"2 * Z)
Bus Bus P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAR)
1 2 -18.95 6.82 8.95 6.26 0.00 0.56
1 5 ‘105 17.17 n,\.';; i >4 vy 008
2 3 -98.52 -1.04 98.52 % 12.36
2 4 -22.06 337 2206 3.20 0.000 0.17
2 35 20.58 -3.04 -20.58 3.59 0.000 0.55
2 6 -158.95 6.97 158.95 22.67 0.000 29.65
3 4 41.98 6.17 -41.98 -1.21 0.000 495
3 35 119.50 1294 -119.50 5.12 0.000 18.06
4 6 -140.08 441 140.08 20.65 0.000 2506
5 6 -10097 837 100.97 13.09 0.000 21.46
Total: 0.000 112.90

76

«1a° Graph of Total Line Cast aver Generations

B T L] T L] L L} L
B h I ’l E 1 4
o A L'\/\
i ‘ M&MM
2 1 It I 1 L i 1
0 50 100 1580 200 250 300 350 400
Graph af Total Fitness of papulatians aver Generations
2200 T T T T T T r —
2150} ,r-f’f,— .
W 2100 - J]
=
B 2050 | e -
2000 //_"J .
1950 L 1 1 1 1 I\ B
0 50 100 150 200 250 300 350 400

Generalions

Detailed No 5 result;
From To Line Type

300 XLPE
350 Oil Fillec
Lynx

Lynx

Lynx

300 XLPE
300 XLPE
300 XLPE
Lynx

300 XLPE
300 XLPE
1xZebra
300 XLPE

WA B WWWRID NN — — —
[3=, NV, B NV TN -G, SRV I SN US JEV, T PO (8]

Total cost (in millions) = 5445
Total number of lines = 13
Total Line length (in km) = 890

System Summary |

How many? How much? P (MW) Q (MVAR)
Buses 6 Total Gen Capacity 1110.0 -900.0 1o +900.0
Generators 3 On-line Capacity 1110.0 -900.0 to0 +900.0
Commited Gens 3 Generation (current) 770.0 93.9
Loads 5 Load 770.0 0.0
Branches 13 Losses (I"2 * Z) 0.00 93.92
Transformers 0 Branch Charging (inj) - 0.0

S

PN

77

N

Areas 1 Shunt (inj) 0.0 0.0

Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Minimum Maximum

Voltage Magnitude 0.991 pu. @bus 4 1.000 p.u. @ bus 1

Voltage Angle -333deg @bus 5 732deg @busb

P Losses (I"2*R) - 000 MW @ line 1-2

Q Losses (1°2*X) - 23.97 MVAR @ line 4-6

Bus Data |

Bus Voltage Generation Load

Mag(pu) Ang(deg) P(MW) Q(MVAR) P (MW) Q(MVAR)

1 1.000 0.000 70.00 15.29 90.00 0.00
2 0993 -2.573 - - 240.00 0.00
3 1.000 2.609 300.00 28.77 40.00 0.00
4 0.991 -2.067 - - 160.00 0.00
5 0993 -3.327 - - 240.00 0.00
6 1.000 7318 400.00 4986 - -
Total: 770.00 93.92 770.00 0.00
Branch Data |
From To From Bus Injection To Bus Injection Loss ("2 * Z)
Bus Bus P(MW) Q \ ,) (R) P(MW) Q(MVAR)
1 2 29.71 55 29,71 +4.1¢ 00 1.37
1 3 -99.83 100 4.55
1 5 50.12 7.47 -50.12 -4.351 0.000 295
2 3 <7797 -2.79 7797 9.89 0.000 7.10
2 4 -6.30 1.23 630 -1.17 0.000 0.06
2 5 10.38 -0.25 -1038 0.39 0.000 0.14
2 6 -136.41 599 136.41 17.66 0.000 23.65
3 4 29.38 447 -29.38 -2.04 0.000 243
3 5 89.31 10.64 -89.31 -1.34 0.000 9.30
3 6 -36.48 1.50 3648 150 0.000 3.00
4 5 8.66 -0.73 -8.66 092 0.000 0.19
4 6 -145.58 393 145.58 20.04 0.000 2397
5 6 -81.53 454 81.53 10.67 0.000 15.21

Total: 0.000 9392

% 10 Graph of Total Line Cost aver Generations

? T T T T T T
M) -
=g ‘m\M 1
f ‘M%WW
4 4
3 A 1 I | 1 1
0 50 100 150 200 250 300 350
Graph of Total Fitness of populations over Generations
2050 T Ll rr’l——’_J—l_‘J_ L
w 2000 rf_J—/f b
w
©
k=]
= 1850 + .
1900 1 1 A 1 I 1}
0 50 100 150 200 250 300 350
Generations
Detailed No 6 result;
From To Line Typ
1 2 1xZebra
1 3 300 XLPE
1 S Lynx
2 3 300 XLPE
2 4 Lynx
2 5 350 Oil Filled
2 6 2xZebra
3 4 300 XLPE
3 S 300 XLPE
3 6 300 XLPE
4 S Lynx
4 6 1xGoat
5 6 300 XLPE
Total cost (in millions) = 5540
Total number of lines = 13
Total Line length (in km) = 890
System Summary |
How many? How much? P(MW) Q(MVAR)
Buses 6 Total Gen Capacity 1110.0 -900.0 to +900.0
Generators 3 On-line Capacity 1110.0 -900.0 to +900.0

79

Commited Gens 3 Generation (current) 770.0 948
Loads 5 Load 770.0 0.0
Branches 13 Losses (I”2 * Z) 0.00 94 84
Transformers 0 Branch Charging (inj) - 0.0
Areas 1 Shunt (inj) 0.0 0.0
Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Minimum Maximum
Voltage Magnitude 0.991 p.u. @ bus 4 1.000 p.u. @ bus 1
Voltage Angle -138 deg @bus5 828 deg @busb6
P Losses (I"2*R) - 000 MW @ line 1-2
Q Losses (112*X) - 27.91 MVAR @ line 2-6
Bus Data
Bus Voltage Generation Load
Mag(pu) Ang(deg) P(MW) Q(MVAR) P(MW) Q(MVAR)
1 1.000 0.000 7000 1440 90.00 0.00
2 0.993 -0.734 - - 240.00 0.00
3 1.000 5.787 30000 3105 40.00 0.00
4 0.991 -0.505 - - 160.00 0.00
5 0.993 -1.385 - - 24000 0.00
6 1.000 8.277 400.00 49.38 - -
Total: 770.00 9484 770.00 0.00
Branch Data |
From To From Bus Injecti To Bu 2*2z
Bus Bus P(MW) Q(MV (MW) W) Q (MVAR)
1 2 9.55 5.52 -9.55 -5.36 0.000 0.16
1 3 -50.42 2.55 50.42 2.55 0.000 5.10
1 5 20.87 6.33 -20.87 -5.79 0.000 0.55
2 3 -90.20 -0.63 90.20 10.95 0.000 1032
2 4 -285 1.00 285 -0.99 0.000 0.01
2 5 39.30 -0.74 -39.30 1.18 0.000 045
2 6 -176.70 5.72 176.70 22.18 0.000 2791
3 4 39.51 5.32 -39.51 -0.95 0.000 437
3 5 99.18 11.81 -99.18 0.66 0.000 1247
3 6 -19.31 0.42 19.31 0.42 0.000 0484
4 5 6.57 -0.67 -6.57 0.77 0.000 0.10
4 6 -129.92 261 129.92 17.41 0.000 20.02
5 6 -74.07 3.17 74.07 9.37 0.000 1254

Total: 0.000 94.84

80

Tatal FF

TLC
Ww &~ 1 O~ m

2100
2050
2000
1950
1900

1850
g

x 10°

Graph of Total Line Cost aver Generatians

T

oy,

i T T T

L T

0 50

100

180 200 250 300 350

Graph of Total Fitness of populations over Generations

T
\

T T T T

a0

Detailed No 7 result;

From

N B B WWIRIN NN = —

To

UM AN O R WO B W

Line Type

300 XLPE
Lynx

300 XLPE
1xZebra
Lynx
1xZebra
Lynx

350 Oil Filled
Lynx

300 XLPE
Lynx

300 XLPE
300 XLPE
300 XLPE

Total cost (in millions) = 5720
Total number of lines = 14
Total Line length (in km) = 980

100

150 200 250 300
Generations

350

81

System Summary

How many?
Buses
Generators
Commited Gens
Loads

Branches
Transformers
Areas

Inter-ties

—
cmoPYuwwao

How much?

Total Gen Capacity
On-line Capacity
Generation (current)
Load

Losses (I"2 * Z)
Branch Charging (inj)
Shunt (inj)

Total Inter-tie Flow

Minimum

P(MW) Q(MVAR)
11100 -900.0 10 +900.0
1110.0 -900.0 to +900.0

770.0 997
770.0 0.0
0.00 99.69
- 00
0.0 0.0
0.0 0.0
Maximum

Voltage Magnitude
Voltage Angle

P Losses (I*2*R)
Q Losses (1'2*X)

Bus Data
Bus Voltage
Mag(pu) Ang(deg)

0992 p.u. @bus 4
-238deg @bus4

1.000 p.u. @ bus 1
720 deg @bus6
000 MW @ line 1-2

- 22.18 MVAR @ line 4-6

Generation

Load

P(MW) Q(MVAR) P(MW) Q(MVAR)

1 1.000 0.000 70.00 22.50 90.00 0.00
2 0992 -1856 - - 24000 0.00
3 1.000 5.506)0).0)
4 0992 -2.384 - 160.00, . 0O
5 0993 -2.273 - 1
6 1.000 7.195 400.00 23
Towal: 770.00 99.69 77000 0.00
Branch Data |
From To From Bus Injection To Bus Injection Loss (1”2 * Z)
Bus Bus P(MW) Q(MVAR) PMW) Q(MVAR) P(MW) Q(MVAR)
1 2 2143 536 -2143 -462 0.000 0.73
1 3 -52.15 251 52,15 251 0.000 5.02
1 4 20.63 4.55 -20.63 -3.65 0.000 0.89
1 5 3548 7.23 -3548 -5.78 0.000 1.46
1 6 -4538 285 4538 285 0.000 5.71
2 3 -114.58 0.65 11458 14.14 0.000 1479
2 4 6.58 055 -6.58 -0.49 0.000 0.06
2 5 2519 -0.84 -25.19 1.02 0.000 0.18
2 6 -13577 426 13577 17.28 0.000 2154
3 5 107.51 13.11 -107.51 1.55 0.000 14.66
3 6 -1424 021 14.24 0.21 0.000 042
4 5 -0.76 -0.39 0.76 0.39 0.000 0.00
4 6 -132.03 453 132.03 17.65 0.000 22.18
5 6 -72.58 281 7258 9.23 0.000 1205
Total: 0.000 99.69

82

% 10 Graph of Tatal Line Cost aver Generations

8 1 4 1 1

’F WWMW — Mx

5F -
4 1 N3 1 1 1 1
0 50 100 150 200 250 300 350
Graph of Total Fitness of populations over Generations
2050 T L) T T T Ll
-’J—‘I—'—’
2000 + — .
= 1950} .
k= e
1800 b~ 7
1850 1]] 1 1 1
0 50 100 150 - 200 250 300 350

Generations

Detailed No 8 result;
From To Line Type

500 XLPE
300 XLPE
300 XLPE
300 XLPE
Lynx

Lynx

300 XLPE
300 XLPE
300 XLPE
Lynx
1xZebra
Lynx

Lynx

300 XLPE
Lynx

NR A WLWWR KN — ————
AN MOV A ONWD BAWOYWV B WL

Total cost (in millions) = 6250
Total number of lines = 15
Total Line length (in km) = 1090

83

System Summary |

How many? How much? P(MW) Q(MVAR)
Buses 6 Total Gen Capacity 11100 -900.0 to +900.0
Generators 3 On-line Capacity 11100 -900.0 to +900.0
Commited Gens 3 Generation (current) 770.0 93.4
Loads 5 Load 770.0 0.0
Branches 15 Losses (I"2 * Z) 0.00 93.37
Transformers 0 Branch Charging (inj) - 0.0
Areas 1 Shunt (inj) 0.0 00
Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Minimum Maximum
Voltage Magnitude 0.994 p.u. @bus 4 1.000 p.u. @ bus 1
Vollage Angle -2.09 deg @bus 5 7.75deg @bus6
P Losses (I"2*R) - 0.00 MW @ line 1-2
Q Losses (I"2*X) - 19.45 MVAR @ line 2-6
Bus Data |
Bus Voltage Generation Load

Mag(pu) Ang(deg) P(MW) Q(MVAR) PMW) Q(MVAR)

1 1.000 0.000 70.00 22.52 90.00 0.00

2 0995 -1.213 - - 240.00 0.00

3 1.000 4896 0.00

4 0994 -1014 160.00).00

5 0994 -2.089 : 240.00).00

6 1000 7.749 -

Total: 770.00 93.37 770.00 0.00

Branch Data |

From To From Bus Injection To Bus Injection Loss (I"2 * Z)
Bus Bus P (MW) Q (MVAR) P(MW) Q MVAR) P(MW) Q(MVAR)
1 2 33.75 8.61 -33.75 -7.85 0.000 0.76
1 3 -4267 182 42,67 182 0.000 3.65
1 4 879 325 -8.79 -3.07 0.000 0.18
1 5 2898 5.53 -2898 -4.44 0.000 1.09
1 6 -4885 3.31 48385 3.31 0.000 6.62
2 3 -92.06 046 9206 9.39 0.000 985
2 4 -2.29 0.80 229 -0.79 0.000 0.01
2 5 1209 097 -1209 0.78 0.000 0.19
2 6 -12398 5.62 12398 13.83 0.000 19.45
3 4 4044 460 -40.44 -0.40 0.000 4.9
K 10887 1227 -108.87 1.05 0.000 13.32
3 6 -2404 0.60 2404 0.60 0.000 120
4 5 8.05 003 -805 0.12 0.000 0.15
4 6 -121.10 4.23 121.10 1436 0.000 18.59
5 6 -82.02 4.06 8202 10.08 0.000 14.14

Total: 0.000 93.37

¥ 10 Graph of Tatal Line Cost over Generations

7.5 T ¥

TLC

I LU (WY

s 1 1

MMV\(\WJMMWM\.M]

0 50 100 160

250 300 350

Graph of Total Fitness of populations over Generations

2100 T T

2050

T

2000 -~

1950 [/—f_’

Total FF
\

T

1900 .
0

Detailed No 9 result;

From To Line Type
350 Oil Fille
300 XLPE
300 XLPE
Lynx

Lynx

500 XLPE
300 XLPE
300 XLPE
500 XLPE
Lynx

Lynx

300 XLPE
Lynx
1xZebra

Lynx

N oH B WL W NI = ==
AN L AN OB LN R WD

Total cost (in millions) = 6330
Total number of lines = 15
Total Line length (in km) = 1090

System Summary

How many? How much?

Buses 6
Generators 3
Commited Gens 3
5
5

Total Gen Capacity
On-line Capacity
Generation (current)
Load

Losses (IM2 * Z)

Loads
Branches 1

50 100 150
Generations

200 250 300 350

SN

|
P(MW) Q(MVAR)

1110.0 -900.0 to +900.0
1110.0 -900.0 to +900.0
770.0 68.3
770.0 0.0
0.00 68.28

85

Transformers 0 Branch Charging (inj)
Areas 1 Shunt (i)
Inter-ties 0 Total Inter-tie Flow
Minimum

Voltage Magnitude 0.996 p.u. @ bus 5
Voliage Angle -2.50 deg @bus §
P Losses (1"2*R) -
Q Losses (I712*X) -
Bus Data |
Bus Voliage Generation
Mag(pu) Ang(deg) P(MW) Q(MVAR)

1 1.000 0.000 70.00 16.09

2 0998 0078 - -

3 1000 3.585 300.00 20.92

4 09% -1361 - -

5 099 -2.496 - -

6 1000 5430 400.00 31.27

Total 770.00 68.28

Branch Data
From To From Bus Inje 1 Bus Inj
Bus Bus P(MW) Q(MVAR) P(MW) (

1 2 -3.98

1 3 -31.27 0.98 3127

1 4 11.83 2.15 -11.83

I 5 37.71 4.55 -37.71

1 6 -34.29 1.63 3429

2 3 -117.37 -0.86 117.37

2 4 16.54 1.34 -16.64

2 5 35.69 237 -35.69

2 6 -178.96 3.91 178.96

3 4 33.95 3.05 -3395

3 5 91.73 8.60 -91.73

3 6 -14.31 0.23 1431

4 5 8.54 0.20 -8.54

4 6 -106.11 2.69 106.11

5 6 -66.33 2.53 66.33

- 0.0

0.0 0.0

0.0 0.0
Maximum

1.000 p.u. @ bus 1
543 deg @bus6

0.00 MW @ line 1-2
16.74 MVAR @ line 2-6

Load
P(MW) Q(MVAR)
90.00 0.00
240.00 0.00
40.00 0.00
160.00 0.00
240.00 0.00
770.00 0.00

0.98
-1.86
-2.89
1.63
8.06
-0.92
-0.77
12.83
-0.12
1.16
0.23
-0.03
9.92
6.67

Total:

_oss (I"2 * Z)

(MW) Q (MVAR)

000 0.02
0.000 1.96
0.000 0.29
0.000 1.66
0.000 3.25
0.000 7.20
0.000 0.42
0.000 1.61
0.000 16.74
0.000 2.94
0.000 9.76
0.000 0.46
0.000 0.17
0.000 12.61
0.000 9.20

0.000 68.28

86

% 10 Graph of Total Line Cost aver Generations

8 T T 1 T Ll T
7r f\W\‘l .
9 Wy
= M\WMWMMWM |
5 E
4 1 | | 1 B 1
0 50 100 160 200 250 300 350
Graph of Total Fitness of papulations aver Generations
2050 T T 1 T T T
f—‘_-'—'_‘_—’—_
. 2000 } rJ/_—_"—/_/—I]
L
=
=]
= 1950+]
1900 —1 1 1 (1 1 —L
0 50 100 180 200 250 300 350

Generations

Detailed No 10 result;

From To Line Tyj

Lynx

500 Oil Filled
300 XLPE
Lynx

Lynx

Lynx

300 XLPE
300 XLPE
300 XLPE
300 XLPE
1xGoat
Lynx

300 XLPE
Lynx
1xZebra

LR DWW LW NN — — — o —
AN UL AN P NN DWWV P WD

Total cost (in millions) = 6475
Total number of lines = 15
Total Line length (in km) = 1090

System Summary

87

How many? How much? P (MW) Q (MVAR)

Buses 6 Total Gen Capacity 1110.0 -900.0 to +900.0
Generators 3 On-line Capacity 1110.0 -900.0 t0 +900.0
Commited Gens 3 Generation (current) 770.0 86.7
Loads 5 Load 770.0 0.0
Branches 15 Losses (I"2 * Z) 0.00 86.69
Transformers 0 Branch Charging (inj) - 0.0
Areas 1 Shunt (inj) 00 0.0
Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Minimum Maximum
Voltage Magnitude 0.994 pu. @bus 4 1.000 p.u. @ bus 1
Voltage Angle -3.55deg @bus S 599deg @bus6
P Losses (1"2*R) - 000 MW @ line 1-2
Q Losses (1"2*X) - 19.41 MVAR @ line 2-6
Bus Data
Bus Voltage Generation Load
Mag(pu) Ang(deg) P(MW) Q(MVAR) P(MW) Q(MVAR)
1 1.000 0.000 70.00 19.68 90.00 0.00
2 0994 -2963 - - 240.00 0.00
3 1.000 2352 300.00 25.06 40.00 0.00
4 0994 -2.349).00 00
5 0994 -3.548 - 240.00 00
6 1.000 5.991 40000, .. .41.95 -
Towal: 770.00 86.69 770.00 0.00
Branch Data |
From To From Bus Injection To Bus Injection Loss (I"2 * Z)
Bus Bus P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAR)
1 2 37.23 5.37 -37.23 -3.42 0.000 195
1 3 -93.27 1.91 93.27 1.91 0.000 383
1 4 20.37 3.53 -20.37 -2.68 0.000 0.85
15 53.50 6.89 -53.50 -3.54 0.000 335
1 6 -37.81 1.98 37.81 1.98 0.000 3.96
2 3 -80.06 -1.54 80.06 9.01 0.000 746
2 4 -7.05 0.13 7.05 -0.05 0.000 0.08
2 5 8.08 -0.01 -8.08 0.10 0.000 0.08
2 6 -123.75 485 123.75 14.56 0.000 1941
3 4 29.62 3.48 -29.62 -1.03 0.000 245
3 5 87.71 9.68 -87.71 -0.61 0.000 9.07
3 6 -30.66 0.97 30.66 0.97 0.000 195
4 5 8.27 0.00 -8.27 0.17 0.000 0.17
4 6 -12534 3.76 12534 14.55 0.000 1831
5 6 -82.44 3.89 82.44 9.89 0.000 13.78

Total: 0.000 86.69

x 10 Graph of Tatal Line Cost aver Generations

8 T T T T ¥ T
7r 1‘ -
S f
- { Mwhﬁmwmmw
5 E
4 1 1] 1 Il 1
0 50 100 150 200 250 300 350
Graph of Total Fitness of populations over Generations
2100 T Ll T 1 T Ll
2050 /j/_/_,_*p/’ i
w
w
= 2000 /_/ .
o
’_
1950 .
1900 1 1 1 1 1 1
Q 50 100 150 200 250 300 350

Generations

When this program run for different population sizes and different number of generations
the result given by the program has some problems like increasing the number of over
loaded line, under loaded ness of the final results. By
analyzing the following results that can be venfied.

Detailed No 11 result;
Population size=40 and Number of generations=325

From To Line Type

1 2 300 XLPE
1 3 300 XLPE
1 5 1xZebra

2 3 Lynx

2 4 Lynx

2 5 1xGoat

3 5 Lynx

3 6 300 XLPE
4 5 300 XLPE
4 6 Bear

Total cost (in millions) = 3970
Total number of lines = 10
Total Line length (in km) = 640

89

Newton's method power flow converged in 4 iterations.

| System Summary

Converged in 0.01 seconds

How many? How much? PMW) Q(MVAR)

Buses 6 Total Gen Capacity 1110.0 -900.0 to +900.0

Generators 3 On-line Capacity 1110.0 -900.0 to +900.0

Commited Gens 3 Generation (current) 770.0 207.2

Loads 5 Load 770.0 0.0

Branches 10 Losses (I"2 * Z) 0.00 207.21

Transformers 0 Branch Charging (in)) - 0.0

Areas 1 Shunt (inj) 0.0 0.0

Inter-ties 0 Total Inter-tie Flow 0.0 0.0

Minimum Maximum

Voltage Magnitude 0.963 pu. @bus 4 1.000 p.u. @ bus 1

Voltage Angle 2.12deg @bus 5 2338 deg @ busb

P Losses (I"2*R) 000 MW @ line 1-2

Q Losses (I"2*X) 1 93.98 MVAR @ line 4-6

| Bus Data |

Bus Voltage Generation Load

Mag(pu) Ang(deg) P (MW) Q(MVAR) PMW) Q(MVAR)
1 1.000 0.000 70.00 33.21 90.00 0.00
2 0.981 -1.702 - - 240.00 0.00
3 1.000 8.310 300.00 78.04 40.00 0.00
4 0.963 43867 - - 160.00 0.00
5 0.984 -2.123 - - 240.00 0.00
6 1.000 23.379 400.00 95.96 - -

Total: 770.00 207.21 770.00 0.00

90

| Branch Data |

From To
Bus

Bus

B BWW RN N/

Total FF

[« WV, W« WV IV N SRV RV VS

From Bus Injection To Bus Injection Loss (I"2 * Z)
P(MW) Q(MVAR) PMW) Q(MVAR) P(MW) Q (MVAR)

19.43 12.83 -19.43 -12.02 0.000 0.81
-72.27 5.25 72.27 5.25 0.000 10.50
32.84 15.12 -32.84 -13.67 0.000 1.45
-148.34 -3.06 148.34 29.36 0.000 26.30
-78.33 17.34 78.33 -8.12 0.000 9.23

6.09 -2.26 -6.09 231 0.000 0.05

154.94 28.15 -154.94 0.36 0.000 28.52
-115.54 15.28 115.54 15.28 0.000 30.56

46.13 -5.19 -46.13 11.00 0.000 5.81
-284.46 13.31 284.46 80.67 0.000 93.98

Total: 0.000 207 21

Graph of Total Ling Cost over Generatians

a L T T v T
: W ‘ :
S 4 u .
= WW' x { £
| RAVCTEE R N2TLY ,\‘ Wi
2r o]
D 1 L —_— - L L
0 50 100 150 200 250 300 350
Graph of Tats! Fitness of populations over Generations
7000 L T T L) L L
—
B500 - //_/_r’ 4
6000 |- - .
5500 | T]
v—’(—-“—’—
5000 — " -
4500 1 1 1 —_ 1 1
0 50 100 150 200 250 300 350

Generations

Detailed No 12 result;
Population size=20 and Number of generations=1000

From

H W N -

N U LW

To

Line Type

Lynx
Lynx
300 XLPE
300 XLPE

91

5 6 Lynx

Total cost (in millions) = 1600
Total number of lines =5

Total Line length (in km) = 290

Newton's method power flow converged in 4 iterations.

| System Summary |

Converged in 0.00 seconds

How many? How much? PMW) Q(MVAR)

Buses 6 Total Gen Capacity 1110.0 -900.0 to +900.0

Generators 3 On-line Capacity 1110.0 -900.0 to +900.0

Commited Ger.s 3 Generation (current) 770.0 2414

Loads 5 Load 770.0 0.0

Branches 5 Losses (I"2 * Z) 0.00 241.42

Transformers 0 Branch Charging (inj) - 0.0

Areas 1 Shunt (inj) 0.0 0.0

Inte-r_ties 0 Tntal Inter-tie Flaw N 0 OO
Mipimum Maximum

Voltage Magnitude 0.958 p.u. @ bus 2 1.000 p.u. @ bus 1

Voltage Angle -13.91deg @bus2 32.24 deg @ bus 6

P Losses (I"2*R) - 0.00 MW @ line 1-5

Q Losses (I"2*X) - 133.07 MVAR @ line 5-6

| Bus Data |

Bus Voltage
Mag(pu) Ang(deg)

Generation Load
PMW) Q(MVAR) P (MW) Q (MVAR)

1 1.000 0.000 70.00 28.11 90.00 0.00 S
2 0958 -13911 - - 240.00 0.00 g
3 1.000 2.842 300.00 98.14 40.00 0.00
4 0979 20453 - - 160.00 0.00
5 0.968 1.362 - - 240.00 0.00
6 1.000 32.242 400.00 115.17 - -
Total: 770.00 24142 770.00 0.00

92

| Branch Data |

From To From Bus Injection To Bus Injection Loss ("2 * Z)
Bus Bus PMW) Q(MVAR) PMW) Q(MVAR) P(MW) Q (MVAR)
1 5 -20.00 28.11 20.00 -26.74 0.000 1.37
2 3 -240.00 0.00 240.00 72.24 0.000 72.24
3 5 20.00 25.90 -20.00 -24.56 0.000 1.34
4 6 -160.00 0.00 160.00 33.39 0.000 33.39
5 6 -240.00 51.30 240.00 81.77 0.000 133.07
Total: 0.000 24142
x 10° Graph of Total Line Cost over Generations
8)) 1) T T L) T T

L 1 1 1

U 100 JU JUU Sud]9 8 auld 700 BUD 900 1UDD

Graph of Total Fitness o er Generations

ZBDU 1 T L

2600 +]
- 2400 .
®
° 2200 - ; -

—a—-"'"—’——"—’—"—‘__'
2000 e .
1800

Q0 100 200 300 400 A00 6BO0 700 800 900 1000
Generations

6.2 Conclusion

The research reported in this thesis clearly demonstrates that a GA approach to a
Transmission Network Planning problem is both feasible and advantageous. It provides
to optimize several parameters in the same time.

Furthermore, it allows the representation of non-linearities which are hard to include in
pure mathematical programming methods; in fact, the existence of non-linearities

93

enhances the advantages of using GA against pure mathematical programming. These
non-linearities arise not only from the non-linear character of objective functions and
constraints but also from the discrete nature of many aspects of the distribution planning
problem. These in some cases could lead to a non-convex domain, but GA are able to
deal with such environments and can detect local minima or even “islands” of solutions.

The result of a GA are a generation of solutions filtered through the struggle for survival.
Therefore, many interesting and valuable exercises on comparisons and trade offs may be
executed, helping the planner to gain insight on the problem he is faced with and
allowing field for better decisions to be taken.

Since GA program starts with randomly generated solutions and ad all other operations

randomly, we can obtained several different results for the same problem. So can select
the best among them.

94

DDETVRTIYYNW LA
VP U VIR S UJ T WiV

MATPOWER

A MATLAB™ Power System Simulation Package

Version 2.0
‘December 24, 1997

User’s Manual

Ray D. Zimmerman Deqiang (David) Gan
rz10@cornell.edu degiang(@ee.cornell.edu

© 1997 Power Systems Engineering Research Center (PSERC)
School of Electrical Engineering, Cornell University, Ithaca, NY 14853

95

mailto:rzlO@cornell.edu

1 Introduction

What is MATPOWER?

MATPOWER 1s a package of Matlab m-files for solving power flow and optimal power
flow problems. It 1s intended as a simulation tool for researchers and educators which
will be easy to use and modify. MATPOWER is designed to give the best performance

possible while keeping the code simple to understand and modify. The MATPOWER
home page can be found at:

http://www.pserc.cornell.edu/matpower/matpower.html
Where did it come from?

MATPOWER was developed by Ray Zimmerman and Deqiang Gan of PSERC at Comell
University (http://www.pserc.comell.edu/) under the direction of Robert Thomas. The
initial need for Matlab based power flow and optimal power flow code was bom out of
the computational requirements of the PowerWeb project

(see http://www.pserc.comell.edu/powerweb/).

Who can use it?

MATPOWER 1s free. Anyone may use it. Anyone may modify it for their own use as long

as the original copyright notices remain in place. Please don’t distribute modified
versions of
MATPOWER without*

2 Getting Started

2.1 System Requirements

To use MATPOWER you will need a Mac, UNIX machine, or PC with:
e Matlab 4 or higher (available from The MathWorks)
o Matlab Optimization Toolbox (available from The MathWorks:)

2.2 Installation

Step 1. Go to the MATPOWER home page:and follow the download instructions.

Step 2: Unpack the archive using the appropriate software for your machine (Stuffit
Expander for Mac, gunzip and tar for UNIX, pkzip, WinZip, etc. for PC).

Step 3: Copy all of the m-files in the MATPOWER distribution to a location in your
Matlab path.

1 See http://www.mathworks.com/
2http://www pserc.comell.edu/matpower/matpower.html

96

http://ww%3ev.pserc.cornelLedu/matpovver/matpower.html
http://www.pserc.comell.edu/
http://www.pserc.comell.edu/powerweb/
http://www.mathworks.com/

2.3 Running a Power Flow

To run a simple Newton power flow on the default 9-bus system specified in the file
case.m, with the default algorithm options, at the Matlab prompt, type:

>> runpf

To run a power flow on the 118-bus system whose data is in case118.m, type:

>> runpf ('casell8')
2.4 Running an Optimal Power Flow

To run an optimal power flow on the default 9-bus system specified in the file case.m,
with the default algorithm options, at the Matlab prompt, type:

>> runopf

To run an optimal power flow on the 30-bus system whose data is in case30.m, type:

>> runopf ('case30')

To run an optimal power flow on the same system, but with the option for MATPOWER
to shut down (decommit) expensive generators type:

>> runuopf ('case30

2.5 Getting Help

As with Matlab’s built-in functions and toolbox routines, you can type help followed by

the name of a command or m-file to get help on that particular function. Nearly all of
MATPOWER’s m-files have such documentation. For example, the help for runopf
looks like:

>> help runopf

RUNOPF Runs an optimal power flow.

[baseMVA, bus, gen, gencost, branch, f, success, et] =

runopf (casename, mpopt, fname)

Runs an optimal power flow where casename is the name of the m-file
(without the .m extension) containing the opf data, and mpopt is a
MATPOWER options vector (see ‘'help mpoption' for details). Uses default
options if 2nd parameter is not given, and 'case' if lst parameter

is not given. The results may optionally be printed to a file (appended
if the file exists) whose name is given in fname (in addition to
printing to STDOUT). Optionallv returns the final values of baseMVA,
bus, gen, gencost, branch, f, success, and et.

MATPOWER also has many options which control the algorithms and the output. Type:

97

-

>> help mpoption
and see Section 3.5 for more information on MATPOWER's options.
3 Technical Reference

3.1 Data File Format

The data files used by MATPOWER are simply Matlab m-files which define and return
the variables baseMVA, bus, branch, gen, area, and gencost. The bus, branch, and gen
variables are matrices. Each row in the matrix corresponds to a single bus, branch, or
generator, respectively. The columns are similar to the columns in the standard IEEE and
PTI formats. The details of the specification of the MATPOWER case file can be found in
the help for case.m:

>> help case

CASE Defines the power flow data in a format similar to PTI.

[baseMVA, bus, gen, branch, area, gencost] = case

The format for the data is similar to PTI format except where noted.
An item marked with (+) indicates that it is included in this data

but is not part of the PTI format. An item marked with (-) is one that
is in the PTI format but is not included here.

Bus Data Format
1 bus number (1

2 bus type
PQ bus 1
PV bus = 2

reference bus = 3
isolated bus = 4
Pd, real power demand (MW)
Qd, reactive power demand (MVAR)
Gs, shunt conductance (MW (demanded?) at V =
Bs, shunt susceptance (MVAR (injected?) at V
area number, 1-100
Vm, voltage magnitude (p.u.)
9 Va, voltage angle (degrees)
(-) {bus name)
10 baseKV, base voltage (kV)
11 zone, loss zone (1-999)
(+) 12 maxVm, maximum voltage magnitude (p.u.)
(+) 13 minVm, minimum voltage magnitude (p.u.)

1.0 p.u.)
= 1.0 p.u.)

0 oW

Generator Data Format
1 bus number

(-) (machine identifier, 0-9, A-2)
2 Pg, real power output (MW)
3 Qg, reactive power output (MVAR)
4 QOmax, maximum reactive power output (MVAR)
5 Qmin, minimum reactive power output (MVAR)
6 Vg, voltage magnitude setpoint (p.u.)

(-) (remote controlled bus index)

98

]

(-)

7 mBase, total MVA base of this machine, defaults to baseMVA
(machine impedance, p.u. on mBase)

(step up transformer impedance, p.u. on mBase)

(step up transformer off nominal turns ratio)

8 status, 1 - machine in service, 0 - machine out of service
(% of total VARS to come from this gen in order to hold V at
remote bus centrolled by several generators)

9 Pmax, maximum real power output (MW)

10 Pmin, minimum real power output (MW)

Branch Data Format

(-)

1 £, from bus number
2 t, to bus number
(circuit identifier)
r, resistance (p.u.)
x, reactance (p.u.)
b, total line charging susceptance (p.u.)
rateA, MVA rating A (long term rating)
rateB, MVA rating B (short term rating)
rateC, MVA rating C (emergency rating)
ratio, transformer off nominal turns ratio (= 0 for lines)
(taps at 'from' bus, impedance at 'to' bus, i.e. ratio = VE / Vt)
10 angle, transformer phase shift angle (degrees)
(Gf, shunt conductance at from bus p.u.)
(Bf, shunt susceptance at from bus p.u.)
(Gt, shunt conductance at to bus p.u.)
(Bt, shunt susceptance at to bus p.u.)
11 initial branch status, 1 in service, 0 - out of service

W oUW

(+) Area Data Form:

1 i, area number
2 price_ref bus, reference bus for that area

(+) Generator Cost Data Format

NOTE: If gen has n rows, then the first n rows of gencost contain
the cost for active power produced by the corresponding
generators. If gencost has 2*n rows then rows n+l to 2*n contain
the reactive power costs in the same format.

1 model, 1 - piecewise linear, 2 - polynomial
2 startup, startup cost in US dollars

3 shutdown, shutdown cost in US dollars

4

n, number of cost coefficients to follow for polynomial

(or data points for piecewise linear) total cost function ~. ' -
5 and following, cost data, piecewise linear data as: pf/;\“"

x0, y0, x1, y1, x2, y2, 2

and polynomial data as, e.g.:

c2, ¢cl, cO

where the polynomial is ¢0 + cl*P + c2*P*2

3.2 Power Flow

MATPOWER has three power flow solvers. The default power flow solver is based on a
standard Newton’s method [11] using a full Jacobian, updated at each iteration. This
method 1s described in detail in many textbooks. The other two power flow solvers are

99

variations of the fast-decoupled method [9]. MATPOWER implements the XB and BX
vanations as described in [1]. Currently, MATPOWER’s power flow solvers do not
include any transformer tap changing or feasibility checking capabilities.

Performance of the power flow solvers should be excellent even on very large-scale
power systems, since the algorithms and implementation take advantage of Matlab’s
built-in sparse matrix handling. On a Sun Ultra 2200, MATPOWER solves a 9600-bus
test case in about 10 seconds, and a 38400 bus case in about 50 seconds.

3.3 Optimal Power Flow

MATPOWER includes two solvers for the optimal power flow (OPF) problem. The first is
based on the constr function included in Matlab’s Optimization Toolbox, which uses a
successive quadratic programming technique with a quasi-Newton approximation for the
Hessian matrix. The second approach is based on linear programming. It can use the LP
solver in the Optimization Toolbox or other Matlab LP solvers available from third
parties.

The performance of MATPOWER’s OPF solvers depends on several factors. First, the
constr function uses an algorithm which does not exploit or preserve sparsity, so it is
inherently limited to small power systems. The LP-based algonthm, on the other hand,
does preserve sparsity. However, the LP-solver included in the Optimization Toolbox
does not exploit this sparsity. In fact, the LP-based method with the default LP solver

performs worse than the constr-based method, even on small systems. Fortunately, there
are LP-solvers available from third parties which do exploit sparsity. In general, these
yield much higher pe Jne 1 , called bpmpd [7] (actually a QP-

solver), has proven to be robust and efficient.

It should be noted, however, that even with a good LP-solver, MATPOWER’s LP-based
OPF solver, unlike it’s power flow solver, is not suitable for very-large scale problems.
Substantial improvements in performance may still be possible, though they may require
significantly more complicated coding and possibly a custom LP-solver. On a Sun Ultra

2200, the LP-based OPF solver using bpmpd solves a 30-bus system in under 4 seconds
and a 1 18-bus case in under 25 seconds.

OPF Formulation

The OPF problem solved by MATPOWER is a “smooth” OPF with no discrete variables
or controls. The objective function is the total cost of real and/or reactive generation.
These costs may be defined as polynomials or as piecewise-linear functions of generator
output. The problem is formulated as follows:

min
Pets D fi(Pe) + £ (Q)

such that ...
Pgi— PLi— P(VV,0)=0 (active power balance equations)

100

Qei—Q0ui—Q(V8)=0 (reactive power balance equations)

SI<sm™ (apparent power flow limit of lines, from side)
S; < 8™ (apparent power flow limit of lines, fo side)
yrr S Vi (bus voltage limits)

PI™ < Pg< PR (active power generation limits)

;‘}‘“ < Q< O (reactive power generation limits)

Here fii and fu are the costs of active and reactive power generation, respectively, for
generator / at a given dispatch point. Both fi: and fo are assumed to be a polynomial or
piecewise-linear functions. The problem can be written more compactly in the following
form:

min f(x,)

such that ...

gx)<0
where fand g are non-linear functions.

Optimization Toolbox Based OPF Solver (constr)

The first of the two OPE solvers in MATPOWER 1s based on the constr non-linear
constrained optimization function in Matlab’s Optimization Toolbox. The constr
function and the algorithms it uses are covered in the Optimization Toolbox manual [5].
MATPOWER provides constr with two m-files which it uses during for the
optimization. One computes the objective function, £, and the constraint violations, g, at a
given point, x, and the other computes their gradients gf7 dx and 0g/ Ox .

MATPOWER has two versions of these m-files. One set is used to solve systems with
polynomial cost functions. In this formulation, the cost functions are included in a
straightforward way into the objective function. The other set is used to solve systems
with piecewise-linear costs. Piecewise-linear cost functions are handled by introducing a
cost variable for each piecewise-linear cost function. The objective function is simply the
sum of these cost vanables which are then constrained to lie above each of the linear
functions which make up the piecewise-linear cost function. Clearly, this method works
only for convex cost functions. In the MATPOWER documentation this will be referred to
as a constrained cost vanable (CCV) formulation.

The algorithm codes 100 and 200, respectively, are used to identify the constr-based
solver for polynomial and piecewise-linear cost functions. If algorithm 200 is chosen for
a system with polynomial cost function, the cost function will be approximated by a
piecewise-linear function by evaluating the polynomial at a fixed number of points
determined by the options vector (see Section 3.5 for more details on the MATPOWER

101

options). It should be noted that the constr-based method can also benefit from a

superior QP-solver such as bpmpd. See Appendix A for more information on LP and QP-
solvers.

LP-Based OPF Solver (LPconstr)

Linear programming based OPF methods are in wide use today in the industry. However,
the LPbased algorithm included in MATPOWER is much simpler than the algorithms
used in productiongrade software.

The LP-based methods in MATPOWER use the same problem formulation as the constr-
based methods, including the CCV formulation for the case of piecewise-linear costs. The
compact form of the OPF problem can be rewritten to partition g into equality and
inequality constraints, and to partition the vanable x as follows:

min f(x,)

such that ...

gi(x1 ,x2) = 0 (equality constraints)
g2(x1, x2) < 0 (inequality constraints)

where x1 contains the system voltage magnitudes and angles, and x2 contains the generator
real and reactive power, outputs (and corresponding cost variables for the CCV
formulation). This is a general non-line ng problem, with the additional
assumption that the equality constraints can be used (o solve for xi, given a value for x2.
The LP-based OPF solver is implemented with a function Lpconstx, which is similar to
constr 1n that it uses the same m-files for computing the objective function, constraints,
and their respective gradients. In addition, a third m-file (1pegslvr.m) is needed to solve
for x1 from the equality constraints, given a value for x2. This architecture makes it
relatively simple to modify the formulation of the problem and still be able to use both
the constr-based and LP-based solvers.

The algorithm proceeds as follows, where the superscripts denote iteration number:
Step 0: Set iteration counter £ <0 and choose an appropriate initial value,

call 1t x20, for xa.
Step 1: Solve the equality constraint (power flow) equations gi(xu, x2) = 0 for xu.
Step 2: Linearize the problem around xx, solve the resulting LP for Ax.

such that ...

102

q&{%g }Axs-g&k)

-A<Ax<A

4
x=x

Step 3: Set k «k +1, update current solution xk= xt-1+ Ax .

Step 4: If xxmeets termination criteria, stop, otherwise go to step 5.

Step 5: Adjust step size limit A based on the trust region algorithm in [3], go to step 1.
The termination criteria 1s outlined below:

oL_of o

.—< tolerance:
ox Ox Ox

g(x) < tolerance:
Ax < tolerances

Here A1s the vector of Lagrange multipliers of the LP problem. The first condition
pertains to the size of the gradient, the second to the violation of constraints, and the third
to the step size. More detail can be found in [4].

Quite frequently, the value of xk given by step 1 is infeasible and could result in an
infeasible LP problem. In such cases, a slack variable is added for each violated
constraint. These slack variables must be zero at the optimal solution.

The LPconstr function implements the following three methods:
o sparse formulation with full set of inequality constraints
e gparse formulation witl i] tive Constraint Search)

o dense formulation with relaxed constraints (iCS) [10]

These three methods are specified using algorithm codes 160, 140, and 120, respectively,
for systems with polynomial costs, and 260, 240, and 220, respectively, for systems with
piecewise-linear costs. As with the constr-based method, selecting one of the 2xx
algorithms for a system with polynomial cost will cause the cost to be replaced by a
piecewise-linear approximation.

In the dense formulation, some of the variables x1 and the equality constraints g are
eliminated from the problem before posing the LP sub-problem. This procedure is
outlined below. Suppose the LP sub-problem is given by:

minc” -Ax

such that ...

A-Ax<b
~A<Ax<A

If this 1s rewritten as:

min ¢! -Axi+cl -Ax
such that ...

103

A, Ax, + A, Ax, = b,

Ay Ax, + Ay Ax, =0,

-A<Ax<A

Where A1 1s a square matrix, Axican be computed as:

Axi= A7 (b, — A,.Ax,)

Substituting back in to the problem, yields a new LP problem:

min(—c| 4] A, +cl).Ax,
such that ...

A Ax, + A, Ax, = b,

AZ] 'Al-ll (bl - Alexz) + Azz -sz < bl
-4 < Al.ll(b — 4,Ax,) A,
-A2Z5 Ax2E A

This new LP problem is smaller than the original, but it is no longer sparse. As mentioned
above, to realize the full potential of the LP-based OPF solvers, it will be necessary to
obtain a good LP-solver, such as bpmpd. See Appendix A for more details.

304 Unit Decommi‘ L (AbQUT LI

The standard OPF formul lescribed I us section has no mechanism for
completely shutting down generators which are very expensive to operate. Instead they
are simply dispatched at their minimum generation limits. MATPOWER includes a unit
decommitment algorithm which allows 1t to shut down these expensive units. The
algorithm is based on a simplified version of the decommitment technique proposed in

[6].

The algorithm proceeds as follows:

Step 0: Assume all generators are on-line with all generator limits in place.

Step 1: Solve a normal OPF.

Step 2: If the OPF converged to a feasible solution and the objective function decreased
from the previous iteration (or if this is the first iteration), go to step 3, otherwise
g0 to step 4.

Step 3: Compute a decommitment index for each generator i as follows:

di=f(P:)—\i- P
where Piis generator i’s dispatch computed by the OPF, f:is the cost of operating
at Pi, and A 1s the Lagrange multiplier on the real power equality constraint at the
bus where generator i is located. Continue with step 5.
Step 4: Return to the previous commitment and set dkto zero (to eliminate it from
consideration).
Step 5: Find the generator k£ with the smallest decommitment index. If dkis negative, shut

104

Down generator k and return to step 1. If dkis positive, stop.

3.5 MATPOWER Options

MATPOWER uses an options vector to control the many options available. It 1s similar to
the options vector produced by the foptions function in Matlab’s Optimization
Toolbox. The primary difference is that modifications can be made by option name, as
opposed to having to remember the index of each option. The default MATPOWER
options vector is obtained by calling mpoption with no arguments. So, typing:

>> runopf ('case30', mpoption)

is another way to run the OPF solver with the all of the default options.

The MATPOWER options vector controls the following;:
power flow algorithm

power flow termination criterion

OPF algorithm

OPF default algonithms for diffi

OPF cost conversion parameters

OPF termination criterior

verbose level

printing of results

@ © © 6 o o o o

The details are given below:
>> help mpoption
MPOPTION Used to set and retrieve a MATPOWER options vector.

opt = mpoption
returns the default options vector
opt = mpoption{namel, valuel, name2, value2, ...)
returns the default options vector with new values for up to 7
options, name# is the name of an option, and value# is the new
value. Example: options = mpoption('PF_ALG', 2, 'PF_TOL', le-4)
opt = mpoption(opt, namel, valuel, name2, value2, ...)
same as above except it uses the options vector opt as a base
instead of the default options vector.
The currently defined options are as follows:

idx - NAME, default description [options]

105

‘.

power flow options

1 - PF_ALG, 1 power flow algorithm
[1 - Newton's method
[2 - Fast-Decoupled (XB version)
[3 - Fast-Decoupled (BX version)

2 - PF_TOL, le-8 termination tolerance on per unit
P & Q mismatch

maximum number of iterations for
Newton's method
maximum number of iterations for
fast decoupled method

3 - PF_MAX_IT, 10
4 - PF_MAX_IT FD, 30

OPF options
11 - OPF_ALG, 0 algorithm to use for OPF
[(see README for more info on formulations/algorithms)
[The algorithm code = F * 100 + S * 20, where
[F specifies one of the following OPF formulations
[1 - standard (polynomial cost in obj fcn)]
[2 - CCV (constrained cost variables)
(S specifies one of the following solvers
[0 - 'constr' from Optimization Toolbox
[1 - Dense LP-based method
[2 - Sparse LP-based method w/relaxed constraints]
[3 - Sparse LP-based method w/full constraints
(This yields the following 9 codes:
(0 - choose appropriate default from OPF_ALG POLY
[or OPF_ALG_PWL
[100 - standard formulation, constr
[120 - al L Yd roxrmulatctlion, . Aerns LP
(LP (relaxed)]
[LP (full)
[
[
(
(
P

200 T ONALYV O LUkIIdAaLLaUVLL, LUllo WL]

140 - tandara formulation, spa
160 - -andard: formula

L W

220 - CCV formulation, dense LP
240 - CCV formulation, sparse LP (relaxed)
260 - CCV formulation, sparse LP (full)
12 - OPF_ALG_POLY, 100
polynomial cost functions
13 - OPF_ALG_PWL, 200

piece-wise linear cost functions
14 - OPF_POLY2PWL PTS, 10

piece-wise linear costs

number of equality constraints

0 => 2*nb, set by program, not a
user option)

16 - OPF_VIOLATION, 5e-6 constraint violation tolerance
17 - CONSTR_TOL_X, le-4 termination tol on x for ‘'constr’

18 - CONSTR _TOL_F, le-4 termination tol on F for 'constr'

19 - CONSTR MAX IT, 0

15 - OPF_NEQ, 0

[0 => 2*nb + 150
20 - LPC_TOL_GRAD, 3e-3 termination tolerance on gradient
for 'LPconstr’
termination tolerance on x (min
step size) for 'LPconstr’
maximum number of iterations for
'LPconstr’

21 - LPC_TOL X, 5e-3

22 - LPC_MAX IT, 1000

default OPF algorithm for use with
default OPF algorithm for use with

number of evaluation points to use
when converting from polynomial to

max number of iterations for 'constr’

]

106

23 - LPC_MAX RESTART, 5 maximum number of restarts for

'LPconstrx!

output options

31 - VERBOSE, 1

{
(
{
{

32 - OUT_

[

[

[

[

[
33 - OUT_
34 - OUT_
35 - OUT_
36 - OUT_
37 - OUT_
38 - OUT_

amount of progress info printed
0 print no progress info
1 - print a little progress info
2 - print a lot of progress info
3 - print all progress info
ALL, -1 controls printing of results
-1 - individual flags control what prints 1
0 - don't print anything
(overrides individual flags, except OUT_RAW)
1 - print everything
(overrides individual flags, except OUT_RAW)

SYS_suM, 1 print system summary [0 or 1
AREA_SUM, 0 print area summaries [0 or 1
BUS, 1 print bus detail [0 or 1
BRANCH, 1 print branch detail [0 or 1
GEN, 0 print generator detail [0 or 1
(OUT_BUS also includes gen info)
ALL_LIM, -1 control constraint info output

e et bt bd b ot e e

[-1 - individual flags control what constraint info prints]
[0 - no constraint info (overrides individual flags)]
[1 - binding constraint info (overrides individual flags)

[2 - all constraint info (overrides individual flags)
39 - OUT_V_LIM, 1 control output of voltage limit info

[0 - don't prirs]

[1 - print biflding constraints. only

[2 - print all nstraints

[(same opticns for OUT_LINE LIM, OUT_PG_LIM, OUT_QG_LIM)

]

40 - OUT_LINE LIM, 1 control output of line limit info
41 - OUT_PG_LIM, 1 control output of gen P limit info
42 - OUT_QG_LIM, 1 control output of gen Q limit info

43 - OUT_RAW, 0

print raw data for Perl database
interface code [0 or 1]

A typical usage of the options vector might be as follows:
Get the default options vector:

>> opt =

mpoption;

Use the fast-decoupled method to solve power flow:

>> opt =

mpoption(opt, 'PF _ALG', 2);

Display only system summary and generator info:

>> opt =

mpoption(opt, 'OUT_BUS', 0, 'OUT_BRANCH', 0, 'OUT_GEN',

Show all progress info:

>> opt =

mpoption{opt, 'VERBOSE', 3);

1);

107

’/‘/, .

'\

Now, run a bunch of power flows using these settings:
>> runpf ('case57', opt)
>> runpf ('casell8', opt)
>> runpf ('case300', opt)

3.6 Summary of the Files

Documentation files:

README - basic intro to MATPOWER
CHANGES - modification history of MATPOWER
manual .pdf - PDF version of the MATPOWER User’s Manual

(requires Adobe Acrobat Reader)

Input data files:

cdf2matp.m - a stand-alone m-file which reads IEEE CDF formatted
data and outputs data in MATPOWER's case.m format

case.m - same as case9.m

case9.m - a 3 generator, 9 bus case

case30.m - a 6 generator, 30 bus case

case57.m - IEEE 57-Bus case

casell8.m - IEEE 118-Bus case

case300.m - IEEE 300-Bus case

case9Q.m - case9.m, with costs for reactive generation

case30Q.m - case30.m, with costs for reactive generation

case30pwl.m

case30 inear cost function

Source files used by all algornthms:
bustypes.m

dSbus_dv.m
ext2int.m
idx_brch.m
idx bus.m
idx_gen.m
int2ext.m
makeSbus.m
makeYbus.m builds Ybus matrix
mpoption.m - sets MATPOWER options
printpf.m - prints output

computes partial derivatives for Jacobian

Other source files used by PF (Power Flow):

fdpf.m - implements fast decoupled power flow
newtonpf.m - implements Newton's method power flow
pfsoln.m

runpf.m - main program for running a power flow
makeB.m

Other source files used by OPF (Optimal Power Flow):
dAbr_dv.m - computes partial derivatives of apparent power flows

dSbr_dv.m - computes partial derivatives of complex power flows
fg_names.m

108

fun ccv.m - computes obj fcn and constraints for CCV formulation
fun_std.m computes obj fcn and constraints for standard formulation
grad_ccv.m computes gradients for standard formulation

grad std.m computes gradients for standard formulation

idx_area.m

idx_cost.m

opf.m - implements main OPF routine

opfsoln.m

opf_form.m

opf_slvr.m

poly2pwl.m

pgcost.m

runopf.m - main program for running an optimal power flow
totcost.m - computes cost

The following are used only by the LP-based OPF algorithms:
LPconstr.m
LPegslvr.m
LPrelax.m
LPsetup.m

Other source files used by UOPF (Unit decommitment/OPF):

(21l files from OPF, except runopf.m)
uopf.m - implements decommitment heuristic
runuopf.m - main program for running OPF with decommitment algorithm

Files for use with the bpmpd LP/QP-solver

bpmpd/ lp.m-replacement for Optimization Toolbox lp.m
bpmpd/qgp.m-replacement for Optimization Toolbox gp.m (used by constr.m)

4 Acknowledgments

The authors would like to acknowledge contributions from several people. Thanks to
Carlos Murillo-Sanchez for suggesting the CCV formulation for handling piecewise
linear costs in the OPF, for his help on the decommitment algorithm, and for creating the
Matlab MEX interface to the bpmpd LP and QP solver. Thanks to Chris DeMarco, one of
our PSERC associates at the University of Wisconsin, for the technique for building the
Jacobian matrix. Our appreciation to Bruce Wollenberg for all of his suggestions for
improvements to version 1. The enhanced output functionality in version 2.0 are
primarily due to his input. Thanks also to Andrew Ward for code which helped us verify
and test the ability of the OPF to optimize reactive power costs. Last but not least, we’d
like to acknowledge the input of Bob Thomas throughout the of development of
MATPOWER here at PSERC Comell.

109

A
L

TYEI T " RTEN Y Y7 -y

D TUINAVR AR

Genetic Algorithms: Diophantine Equation Solver

This is a C++ program that solves a diophantine equation using genetic algorithms

CDiophantine

Firstly the class header (note for formatting reasons, a lot of the documentation is
taken out):

#include <stdlib.h»>
#include <time.h>

#define MAXPOP 25

struct gene {
int alleles|[4];
int fitness;
float likelihood;

// Test for equality.
operator==(gene gn) {
for (int i=0;i<4;i++) {

if (gn.alleles{i] != alleles([i]) return false;

return true;

class CDiophantine ({
public:
CDhiophantine (int, int, int, int, int);
int Solve();

// Returns a given gene.
gene GetGene(int i) { return population(i];}

protected:
int ca,cb,cc,cd;
int result;
gene population [MAXPOP] ;

int Fitness(gene &);

void GeneratelLikelihoods() ;
float MultInv() ;inverse.
int CreateFitnesses() ;

110

void CreateNewPopulation() ;
int GetIndex(float val);

gene Breed(int pl, int p2);

}i
Firstly you notice that there are two structures, the gene structure and the actual
CDiophantine class. The gene structure is used to keep track of the different solution

sets. The population generated is a population of genes. The gene structure keeps
track of its own fitness and likelihood values itself

Fitness function

The fitness functions calculate the fitness of each gene. In our case the fitness
function is the difference between the calculated value of the gene and the result we
want. This class uses two functions, one that calculates all the fitnesses and another
smaller one (you should probably make the function inline) to calculate it per gene.

int CDiophantine::Fitness(gene &gn) {
int total = ca * gn.alleles[0] + cb * gn.alleles[1]
+ cc * gn.alleles[2] + cd * gn.alleles([3];

return gn.fitness

int CDiophantine::CreateFitnesses() {
float avgfit = 0;
int fitness = 0;
for(int i=0;i<MAXPOP;i++) {
fitness = Fitness(population[i]);
avgfit += fitness;

if (fitness == 0) {
return i;
}
}
return 0;

}

Note that if the fitness is zero, then a solution has been found - so return the index.
After we calculate the fitnesses, we then have to calculate the likelihoods of the
gene's being chosen.

Likelihood functions
We calculate the likelihood by first calculating the sum of the multiplicative inverses,
then by dividing the inverse of the fitnesses by that value. When the likelihoods are

111

calculated though, the likelihoods are cumulative - this makes calculating the parents
easy.

E ‘Chromosome

Likelihood
H— 1 (1/84)/0135266 880%
§ 2 ‘ i (1/24)/0.135266 = 30.8%
| Ty | :'"("i)'é65}6‘.’i’éé'éé"e”"l""z"éf&b};”g
4 (1/133)/0135266=556%
! ,,,,,, 5 (1/28)/0135266=264%

In program though, with the same initial values, the likelihoods would be
cumulatively added - imagine it like the percentage of a pie chart. The first gene is
from O to 8.80%, the next goes to 39.6% (because it starts from 8.8). The likelihood
table would look like this:

| Chromosome Likelihoo&'(smi = 0.135266)

{ 2 (1/24)/smi = 39.6% (30.6+8.8)

: """" 3 198N e — £0O0/ (28 4+39, 6)

o 4 0 '”}{'('I'u;,} smi = 73.56% (5.56+68)
s w” /28)/ (26.4+73.56)

The last value will always be 100 (in tha above example, it isn't due to rounding).
Now with the theory of it, let's look at the code. The code is very simple - note
though that a type cast to float is required on the fitness value so that integer
division doesn't occur. There are two functions, one to calculate the smi, and another
to generate all the likelihoods.

float CDiophantine::MultInv() { RSN
float sum = 0; “
e

for (int i=0; i<MAXPOP;i++) { -
sum += 1/ ((float)population([i].fitness); RO

}

return sum;

void CDiophantine: :GenerateLikelihoods () {
float multinv = MultlInv() ;

112

float last = 0;
for (int i=0;i<MAXPOP;i++) {
population(i] .likelihood = last
= last + ((1/((float)population[i].fitness) / multinv) * 100);

}

Ok, so now that we have the fitness and likelihoods values all set up, it's time to do
some breeding!

Breeding Functions

The breeding functions are composed of three functions, one to get the gene index
corresponding to a randomly generated number between 0 and 100, a function to
actually calculate the crossover of two genes, and a main function to create the new
population. We'll take the functions one at a time, seeing how they call each other.
Here is the main breeding function:

void CDiophantine::CreateNewPopulation() {
gene temppop [MAXPOP] ;

for(int i=0; i<MAXPOP;i++) {
int parentl = 0 2 0, i i 0;
while (parentl == parent2 || oulation [parentl]

cin | Pl IS

== population [parent2])
parentl = GetIndex((float) (rand() % 101));
parent2 = GetIndex((float) (rand() % 101));
if (++iterations > (MAXPOP * MAXPOP)) break;

temppop(i] = Breed(parentl, parent2); // Create a child.

for (i=0;i<MAXPOP;i++) population[i] = temppop[il];
}
So, we firstly create a temporary population of genes. Then we loop through all the
genes. Now, when choosing genes we don't want the genes to be the same (no point
mating with yourself :), and we don't need the genes to be the same either (that is
where the operator== from the gene structure comes in handy). In choosing a
parent, we generate a random riumber, then call the GetIndex function. GetIndex

uses the idea of the cumulative likelihoods and merely iterates through the genes
until it find the gene that contains that number:

int CDiophantine::GetIndex(float val) {
float last = 0;

113

for (int i=0;i<MAXPOP;i++) {
if (last <= val && val <= population(i] .likelihood) return i;
else last = population(i].likelihood;

}

return 4;

}

Returning to the CreateNewPopulation() function, you can also see that if the
number of iterations exceeds MAXPOP squared, it will take any parents. After parents
are chosen, we breed them, by passing the indices up to the Breed function. The
Breed function returns a gene, which is put in the temporary population. Here's the
code:

gene CDiophantine: :Breed(int pl, int p2) {
int crossover = rand() % 3+1;
int first = rand() % 100;

gene child = populationl(pl];

int initial = 0, final = 3;
if (first < 50) initial = crossover;
else final = crossover+l;

for(int i=initial;i
child.alleles[i population[p2] .alleles
if (rand() % 101 < child:all and () % (result + 1);

]
[N
—

return child;
}
Firstly we determine the crossover point. Now remember, we don't want the
crossover to be the first or the last, because that entails copying over all or none of
the second parent - pointless. We then create a random number that will determine
when the first parents takes the initial crossover or not. The rest is self-explanatory -
you can see that I've added a tiny mutation factor to the breeding. There's a 5%
chance that a new number will occur.

And finally...

Now we can look at the Solve() function. It merely calls the above functions
iteratively. Note that we test whether the function managed to find a result on the
initial population - this is unlikely,

int CDiophantinz::Solve() {
int fitness = -1;

114

// Generate initial population.
srand ((unsigned) time (NULL)) ;

for(int i=0;i<MAXPOP;i++) {
for (int j=9;j<4;j++) {
population([i] .alleles[j] = rand() % (result + 1);

if (fitness = CreateFitnesses()) {
return fitness;

int iterations = 0;
while (fitness != 0 || iterations < 50) {
GenerateLikelihoods{) ;
CreateNewPopulation () ;
if (fitness = CreateFitnesses())
return fitness;

iterations++;

return -1;

v, :

-5
®
,J
1

'G .‘: 4“ uv.) A\
Ay A
1 Ju— w i
K'Z w‘;... R g/
% $

N e - V ,’,//‘
k\\\LIBRARY f\?‘ <G

hh e ST S g

115

REFERENCES

[1] www.generationd.org/coevolution.shtm]

[2] www.generation$.org/biles.shtml

[3] www.generation$.org/ga.shtml

[4] www.generationd.org/ga_math.shtml

(5] www.generation$.org/diophantine_ga.shtml

[6] www . pmsi.fi/gafxmpa.htm

AN

[8] www.shef ac.uk/uni/projects/gaipp/controll.html

[9] www.shef.ac.uk/uni/projects/gaipp/sched.html

[10] www.nd.com/products/genetic.htm

http://www.generarion5.org/coevolutioD.shtml
http://www.generation5.org/biles.shtml
http://www.generation5.org/ga.shtml
http://www.generation5.org/ga_math.shtml
http://www.generation5.org/diophantine_ga.shtml
http://www.pmsi.fr/gaf3onpa.htm
http://www.shef.ac.uk/uni/projects/gaipp/mogas.html
http://www.shef.ac.uk/uni/proiects/gaipp/controll.html
http://www.shef.ac.uk/uni/proiects/gaipp/sched.html
http://www.nd.com/products/genetic.htm

[11] www.nd.com/products/genetic/whatisga htm

[12] www.nd.com/products/genetic/apps.htm

[13] www.cs.rochester.edu/users/faculty/leblance/cscl73/genetic-algs/example.html

[14] http://online.cen.uiuc edu/webcourses/ge485/index.html?intro.html&2

[15] www.lalena.com/ai/tsp/

[16] www.esatclear.ie/~rwallace/lithos.html

[17] http://cs.felk.cvut.cz/~xobitko/ga/ment

[18] www.pserc.comell.edu/matpower/matpower.html

[19] http://www.isis.ecs.soton.ac.uk/isystems/evolutionary/evol/

[20] www.pmsi.fr/gainita.htm

[21] Distributed GENESIS User’s Guide — Version 1.0

[22] Ceylon Electricity Board — Long Term Transmission Development Studies 2001 -
2010.

http://www.Ddxom/products/geDetic/wbatisga.htm
http://www.nd.com/products/genetic/apps.htm
http://www.cs.rochester.edu/users/faculty/leblance/cscl73/genetic-algs/example.html
http://online.cen.uiuc.edu/webcourses/ge485/index.html?intro.html&2
http://www.lalena.com/ai/tsp/
http://www.esatclear.ie/~rwallace/lithos.html
http://cs.felk.cvut.cz/~xobitko/ga/menu.html
http://www.pserc.cornell.edu/matpower/matpower.html
http://www.isis.ecs.soton.ac.uk/isystems/evolutionary/evol/
http://www.pmsi.fr/gainita.htm

[23] Interactive Transmission Network Planning Using a Least-Effort Criterion — [EEE
Transaction on power Apparatus and Systems, Vol. PAS-101, No.10, October 1982.

[24] Transmission Network Planning Using Linear Programming — IEEE Transaction on
power Apparatus and Systems, Vol. PAS-104, No.2, February 1985.

[25] Application of Sensitivity Analysis of Load Supplying Capability to Interactive
Transmission Expansion Planning - IEEE Transaction on power Apparatus and Systems,
Vol. PAS-104, No.2, February 1985.

[26] A Zero-One Implicit Enumeration Method for Optimizing Investments in
Transmission Expunsion Planning - IEEE Transaction on Power Systems, Vol. 9, No 3,
August 1994,

[27] Large Scale Transmission Network Planning Usi)ptimization and Heuristic
Techniques - IEEE Transaction on Power Systems, Vol. 10, No 4, August 1995.

[28] A Hierarchical Decomposition Approach for Transmission Network Expansion
Planning - IEEE Transaction on Power Systems, Vol. 9, No 1, February 1994.

[29] Chopin, A Heuristic Model for Long Term Transmission Expansion Planning -
IEEE Transaction on Power Systems, Vol. 9, No 4, November 1994.

[30] Hybrid Mathematical and Rule-based System for Transmission network Planning
in Open Access Schemes — [EE Proceedings online no. 20010432.

[31] Genetic Algorithms in optimal Multistage Distribution Network Planning — IEEE
Transactions on Power Systems, Vol. 9, No. 4, November 1994,

[32] A Practical Schema Theorem for Genetic Algorithm Design and Tuning — David E.
Goldberg and Kumiara Sastry — IIGAL.

[33] The Practitioner’s Role in Competent Search and Optimization Using Genetic
Algonthms — Patrick M. Reed, Barbara S. Minsker and David E. Goldberg.

[34] Making Genetic Algorithms Work in the Real World: Guidelines from Competent
GA Theory — Patrik Reed and Barbara Minsker.

[35] Designing a Competent Simple genetic Algorithm for Search and Optimization —
Patrick Reed, Barbara Minsker and David E. Goldberg.

[36] Generator Maintenance Scheduline of Electric Power Systems Using Genetic
Algorithms with Integer Representation — K.P. Dahal, J.R. McDonald — Centre for
Electrical Power Engineering, University of Strathclyd asgow, UK.

[37] Application of GA and Mathematical Models in Long Sea Outfall Designing and
Concentration Predictions — B.N.S. Lankasena, N. Ratnayake and M. Indralingam.

[38] Optimization for Engineering Design, Algorithms and Examples — Kalyanmoy Deb

