INVESTIGATION ON PERFORMANCE OF HEAVILY CRACKED CONCRETE BEAM STRENGTHENED WITH CARBON FIBER REINFORCED POLYMER (CFRP) SHEETS

Prasad Dhammika Dharmaratne

(138731 H)

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Engineering in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

December 2017

DECLARATION

I declare that, this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

P D Dharmaratne	Date:		
The above candidate has carried out research for the Mas supervision.	sters Dissertation	ı under	my
Dr.(Mrs). G.C.P.H. Gamage		Date	
Dr.(Mrs). D. Nanayakkara		Date	

ACKNOWLEDGEMENT

There are many individuals, who deserve acknowledgement for their contribution towards successful completion of this research.

First, I would like to express my gratitude to my supervisors, Dr. (Mrs.) J.C.P.H N Gamage and Dr. (Mrs.) D Nanayakkara for their valuable advice, guidance and assistance throughout the entire period of study. I am much grateful for sharing their knowledge and expertise on this field.

I am much grateful to the Head of the Department of Civil Engineering, the Course Coordinator of Master of Structural Engineering, the staff of the Department of Civil Engineering and the staff of the structural laboratory for their valuable guidance and co-operation related to all experimental works. The assistance rendered by undergraduate students Mr. Hashan Dissanayake and Miss Pamudi Ekanayake for the experimental works also gratefully acknowledged and I would like to thank to Eng (Mr.) V Aththanayake, Airow solutions(Pvt) Ltd and Mr. G M Karunarathne for their supports to make the project successful.

Secondly, my sincere acknowledgement is towards my employer, Keangnam Lanka (Pvt) Ltd for granting leaves to follow this course and other assistances provided for my research works.

My very special thanks go to my dearest wife Nilakshi for her continuous encouragement and assistance during the entire period. My research would never be successful without her tremendous support.

Lastly, there are many friends and colleagues who have not been personally mentioned here that I am much indebted to their contribution at various stages of the research to make it successful.

ABSTRACT

Repair and retrofit of existing structures especially buildings, bridges, water tanks etc., have been amongst the most significant challenges in Civil Engineering. In the past construction was evolved from thousands of years back with various construction materials such as rocks, clay bricks and timber etc. There after concrete was introduced as a sustainable construction material which is most suitable than that of previously used materials.

Although concrete has high compressive strength, it is very weak in tension and become brittle under tensile loads. Because of these reasons, Engineers moved to reinforced concrete structures. Since concrete structures are long lasting structures, carrying out the rehabilitation work of existing structures becomes more vital.

Nowadays, there are different kind of problems were encountered in construction field due to original design, construction errors or poor construction supervision, damages of earthquakes etc.. That needs to be retrofitted to meet the demand usage in a more economic and effective ways. The techniques based on the externally bonded Fiber Reinforced Polymer (FRP) materials is one of the most widely application for retrofitting existing damaged structures.

The use of Carbon Fiber Reinforced Polymer (CFRP) in strengthening reinforced concrete structures has become popular retrofit technique. The technique of strengthening reinforced concrete structures by externally bonded CFRP fabric was started in 1980s and has attracted researchers around the world wide.

The aim of this research is to investigate the flexural behavior of pre cracked and non-cracked reinforced concrete beams going to be strengthened with different configurations of Carbon Fiber Reinforcement Polymer layers.

12 Nos. of Reinforced concrete beams of the width 125mm, depth 200mm and length of 1900mm were prepared and tested for this investigation. Beams were tested in accordance with ASTM C78 guidelines

Beams consist of different CFRP arrangements such as non-anchored CFRP sheet, CFRP sheet with end anchors and CFRP sheet with end and intermediate anchors at cracked locations.

FRP can be bonded to reinforced concrete elements using different methods such as external bonding, wrapping and near surface mounting. FRP sheets can be sticked to the tension face of a structural element to provide flexural strength or sticked along the web of a beam to provide shear strength.

Observation shows that increment of flexural capacity is in between 81% to 110% in beams those strengthened with CFRP sheets with respect to non-strengthened beams. Highest strength gained was observed in cracked beams strengthened with CFRP with end anchors and intermediate anchors. Similar behavior was observed in non-anchored CFRP strengthened cracked and non-cracked beams. However the flexural capacity was high in CFRP strengthened cracked beams. All the cracked beams failed in debonding. But some non-cracked beams failed by rupture of CFRP.

At the end of this dissertation, presents the experimental procedure, results, analysis and conclusion.

TABLE OF CONTENTS

DECLA	ARATION	i
ACKN(OWLEDGEMENT	ii
ABSTR	RACT	iii
TABLE	E OF CONTENTS	V
LIST O	OF FIGURES	vii
LIST U	OF TABLES	XX1
LIST O	OF ABBREVIATIONS	xii
LIST O	OF APPENDICES	xiii
1. IN	TRODUCTION	1
1.1.	Background	1
1.2.	Objective	2
1.3.	Methodology	3
1.4.	Outline	3
2. LI	ITERATURE REVIEW	5
2.1.	General	5
2.2.	Externally Bonded Reinforcement (EBR)	
2.3.	Flexural strengthening of beams	
2.4.	Shear strengthening of beams	
2.5.	Pre- Cracked beams	15
2.6.	Failure modes	15
2.7.	Summary of strengthening techniques	18
2.8.	Significance of shear span to depth ratio on failure mode	19
2.9.	Effect of end anchors installation	19
2.10.	. Effect of length of CFRP on failure mode	20
2.11.	. Durability of adhesive used for bonding between concrete and CFRP	20
2.12.	. Summary of literature review	21
2.13.	. Research gap identification and needs	22

3.	EX	RPERIMENTAL PROCEDURE	24
	3.1.	Introduction	24
	3.2.	Specimen Details	24
	3.3.	Properties of Materials	25
	3.4.	Methodology	28
	3.5.	Summary	37
4.	RF	ESULTS AND ANALYSIS	38
	4.1.	General	38
	4.2.	Test results of control beams	38
	4.3.	Non-cracked concrete beams strengthened with CFRP	40
	4.4.	Pre-cracked reinforced concrete beams strengthened with CFRP	50
	4.5.	Test results analysis of non-cracked (Control) strengthened beams	58
	4.6.	Test results analysis of pre-cracked strengthened beams with control beams	60
	4.7.	Deflection	62
	4.8.	Failure Pattern	67
5.	TH	IEORITICAL ANALYSIS	69
	5.1.	Introduction	69
	5.2.	ACI 440 design guidelines	
	5.3.	Procedure to calculate the moment capacities of non-anchored CFRP strengthened beams	
	5.4.	Procedure to calculate the moment capacity of anchored CFRP concrete beams with end U-wraps	71
	5.5.	Theoretical calculation	72
	5.6.	Summary of theoretical analysis	78
	5.7.	Comparison of Experimental values with theoritical values	78
6.	CC	ONCLUSION AND RECOMMENDATION	80
	6.1.	Introduction	80
	6.2.	Conclusion	80
	6.3.	Recommendations	81
DE	ם מומוי	DENICES	92

88	APPENDIX
88	APPENDIX - 1
91	APPENDIX - 2
95	APPENDIX – 3
96	APPENDIX - 4

LIST OF FIGURES

Figure 2.1: CFRP external bonding on beams to enhance flexural strength	8
Figure 2.2: FRP rupture	15
Figure 2.3: Concrete compression failure .	16
Figure 2.4: Diagonal shear crack at CFRP sheet end	16
Figure 2.5: CFRP sheet interfacial de-bonding .	16
Figure 2.6: CFRP sheet with concrete cover separation	17
Figure 2.7: Crack propagation parallel to bonded plate	17
Figure 3.1: Reinforcement arrangement of beam	25
Figure 3.2: Concrete compressive strength test	29
Figure 3.3: Prepared formwork arrangement with R/F cage and casted beam	29
Figure 3.4: Beam testing using Amsler machine	30
Figure 3.5: Crack filling	30
Figure 3.6: Air compressor	31
Figure 3.7: Sand blasting	31
Figure 3.8: Concrete surface after surface preparation	32
Figure 3.9: 'F1' and 'F2' beams	33
Figure 3.10: 'IN1' beam with U wrap end anchorage	34
Figure 3.11: 'IN2' beam without U wrap end anchorage	34
Figure 3.12: 'M1' and 'M2' beams with U wrap anchorage	34
Figure 3.13: "CF" beams	35
Figure 3.14: "CFE" beams	35
Figure 3.15: "CFI" beams	36
Figure 3.16: Installation of dial gauges	36
Figure 3.17: Fixed dial gauge to beam	37

Figure 4.1: Load Vs. deflection of control beams
Figure 4.2: Crack patterns in control beams
Figure 4.3: Failure mechanism of beam type F1
Figure 4.4: Schematic diagram of loading arrangement
Figure 4.5: Load Vs. deflection of beam type F1 beam type F241
Figure 4.6: Failure mechanism of beam type F2
Figure 4.7: Load Vs. deflection of beam type F2
Figure 4.8: Failure mechanism of beam type "IN 1"
Figure 4.9: Load Vs. deflection of beam type "IN1"
Figure 4.10: Failure Mechanism of beam type "IN 2"
Figure 4.11: Delamination end of CFRP sheet
Figure 4.12: Load Vs. deflection of beam type "IN2"
Figure 4.13: Failure mechanism of beam type M1
Figure 4.14: Delamination of U wrap end anchors
Figure 4.15: Load Vs. deflection of M1
Figure 4.16: M2 beam after loading
Figure 4.17: Large flexural cracks appeared at the middle of beam46
Figure 4.18: Load vs. deflection of M2
Figure 4.19: Percentage Strength gain Vs. bond arrangement
Figure 4.20: Average load Vs. average mid span deflection
Figure 4.21: Delamination of end CFRP
Figure 4.22: Load Vs deflection of CF1
Figure 4.23: CF2 beam after loading
Figure 4.24: Load Vs. deflection of CF2 beam
Figure 4.25: CFE1 beam after loading

Figure 4.26: Load Vs. deflection of CFE1
Figure 4.27: CFE2 Beam after loading
Figure 4.28: Load Vs. deflection of CFE2 beam
Figure 4.29: CFI1 beam after loading
Figure 4.30: Load Vs. deflection of CFI1
Figure 4.31: CFI2 beam after loading
Figure 4.32: Load Vs. deflection of CFI2 beam
Figure 4.33: IN2 type beam with IN1 type beam
Figure 4.34: IN2 type beam with F type beam
Figure 4.35: M type beam and IN1 type beam
Figure 4.36: Failure loads of cracked beams before and after strengthening61
Figure 4.37: Bending moment diagram for 4 points load test
Figure 4.38: Deflection vs. load graph for control beams
Figure 4.39: Deflection vs. load graph for strengthened pre-cracked beams63
Figure 4.40: Maximum deflection at failure, before and after strengthening64
Figure 4.41: Deflection vs. load graph for pre-cracked and control beams64
Figure 4.42: Deflection vs. load graph for CFE1
Figure 4.43: Deflection vs. load graph for CFE2
Figure 4.44: Deflection vs. load graph for CFI1
Figure 4.45: Deflection vs. load graph for CFI2
Figure 4.46: Deflection of beams with 0.3mm crack propagate and ultimate failure loads
Figure 4.47: Crack distribution of CFRP strengthened pre-cracked beams68
Figure 5.1: Schematic diagram of forces and dimensions of anchored CFRP - concrete beam with end U wraps

LIST OF TABLES

Table 2.1: Summary of strengthening techniques .	18
Table 3.1: Material properties of CFRP sheets.	25
Table 3.2: Material properties of epoxy grout	26
Table 3.3: Technical data of epoxy resin.	27
Table 3.4: Physical parameters of epoxy resin	27
Table 3.5: Mix proportion of concrete.	28
Table 3.6: Summary of non-cracked beam specimens	33
Table 3.7: CFRP arrangements in heavily cracked beams	35
Table 4.1: Results of control beams	38
Table 4.2: Summary of failure modes of beam specimens	48
Table 4.3: Percentage strength gained in non-cracked beams relative to control beams	49
Table 4.4: Summary of CFRP arrangement in heavily cracked beams	51
Table 4.5: Summary of failure modes of beam specimens.	57
Table 4.6: Percentage strength gain in cracked beams relative to control beams	58
Table 4.7: Failure load of pre-cracked beams with control beams	62
Table 5.1: The summarized calculation procedure of moment capacity in accordance with ACI guidelines	70

LIST OF ABBREVIATIONS

CFRP Carbon Fiber Reinforced Polymer

EB Externally Bonded

ETS Embedded Through Section
FRP Fiber Reinforced Polymer

NSM Near Surface Mounted

As Area of tension reinforcement

Asv Area of links at neutral axis level

 $\begin{array}{cc} b & & \text{Effective breadth of section} \\ b_v & & \text{Breadth of section for shear} \end{array}$

d Effective depth of the tension reinforcement

f_{cu} Characteristic strength of concrete

 f_{yv} Characteristic strength of links f_y Characteristic strength of links

M Design ultimate resistance moment

Spacing of link along the member

v_c design shear strength of concrete

LIST OF APPENDIX

Appendix	Description	Page
Appendix-1	Design calculation for the flexural failure	88
Appendix-2	Expected Theoretical Calculation	91
Appendiz-3	Concrete compressive strength test results	95
Appendiz-4	Comparison between experimental	96
	moment and theoretical moment	