REFERENCES

- 1. Alfarabi S., Al-Sulaiman. G. J., Basunbul. I. A., Baluch. M. H., and Ghaleb. B. N. (1994). Strengthening of initially loaded reinforced concrete beams using FRP plates. *ACI Structural Journal*. 91 (2), 160-168.
- Ali, N., Samad, A., Mohamad, N. and Jayaprakash, J. (2013) Shear Behaviour of Pre-cracked Continuous Beam Repaired using Externally Bonded CFRP Strips. *Procedia Engineering*. 53, 129-144.
- 3. Ali and Noorwirdawati . (2013). Shear Behavior of Pre-Cracked Continuous Beam Repaired Using Externally Bonded CFRP Strips. *Procedia Engineering* 53, 129-144.
- 4. Alkhrdaji, T., Nanni, A., Chen, G. and Barker, M. (1999). Upgrading the transportation infrastructure: solid RC decks strengthened with FRP. *Concrete International: Design and Construction*. 21 (10), 37-41.
- 5. Ariyachandra M R E F, Gamage J.C.P.H, Riadh Al-Mahaidi, Robin Kalfat, (2014) A theoretical approach to predict flexural capacity of anchored CFRP-strengthened concrete beams with transverse end U wraps.
- 6. Ashour AF, El-Refaie S.A. and Garrity, S.W. (2004). Flexural strengthening of RC continuous beams using CFRP laminates. *Cement & Concrete Composites*. 26, 765-775.
- Balamuralikrishnan, R., and C. Antony Jeyasehar. (2009). Flexural Behavior Of RC Beams Strengthened With Carbon Fiber Reinforced Polymer (CFRP) Fabrics. *TOCIEJ* 3.1. 102-109.
- 8. Blaschko, M., Niedermeier, R. and Zilch, K. . (1998). Bond failure modes of flexural members strengthened with FRP. *2nd International Conference on Composites in Infrastructure*, Tucson, Arizona.
- 9. Breveglieri, M., Aprile, A. and Barros, J. (2015). Embedded Through-Section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrups. *Composite Structures*. 126, 101-113.
- 10. Burgoyne. C. J. (1999). Advanced composites in civil engineering in

- Europe. *Journal of The International Association of Bridge and Structural Engineering* [online] 9 (4). Available from: www.iabse.ethz.ch/sei/backissues/abstracts.sei9904/burgoyne.pdf.
- Deniaud, C., and Chang, J.J.R. (1998). Shear Behavior of Reinforced Concrete T-Beams with Externally Bonded Fiber Reinforced Polymer Sheets. *ACI Structural Journal*. 3, 386-494.
- 12. Ding, Jun . (2014). The Effect Of CFRP Length On The Failure Mode Of Strengthened Concrete Beams. *Polymers 6.6* . 1705-1726
- 13. Ehsani, M.R., Saadatmanesh, H., and Al-Saidy, A. (1997). Shear Behavior of URM Retrofitted with FRP Overlays of Composites for Construction . *ASCE*. 1 (1), 17-25.
- 14. Esfahani, M., Kianoush, M., & Tajari. (2007). A. Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets. *Engineering Structures*. 29, 2428-2444.
- 15. Ferrier, E., Ennaceur, C., Bigaud, D. and Hamelin, P. (2001). Prestressed externally bonded FRP reinforcement for RC beams. *5th International Conference on FRP Reinforcement concrete Structures (FRPRCS-5)*, Cambridge, UK. 1, 271-280.
- 16. Jones, R., Swamy, R. N., and Charif, A. (1988). Plate separation and anchorage of reinforced concrete beams strengthened by epoxy –bonded steel plates. *The Structural Engineer*. 66 (5), 85-94.
- 17. Fathelbab, F.A., M.S. Ramadan, and A. Al-Tantawy. (2011). Finite Element Modeling Of Strengthened Simple Beams Using FRP Techniques: A Parametric Study. *Concrete Research Letters* 2. 2, 228-240.
- 18. Gao, B., Kim, J. and Leung, C. (2006). Strengthening efficiency of taper ended FRP strips bonded to RC beams. *Composite science and technology*. 66, 2257-2264.
- 19. Garden, H.N., and Hollaway, L.C. . (1998). An experimental study of the influence of plate end anchorage of carbon fiber composite plates used to strengthen reinforced concrete beams. *Composite Structures*. 42 (2), 175-88.

- 20. Houssam A.T. (1997). The Durability characteristics of concrete beams externally bonded with FRP composite sheets. 351-358
- 21. Hawileh, R., Nawaz, W., Abdalla, J. and Saqan, E. (2015). Effect of flexural CFRP sheets on shear resistance of reinforced concrete beams. *Composite Structures*. 122, 468-476.
- 22. Jayaprakash, J., Abdul Aziz Abdul Samad, and Ashrabov Anvar Abbasvoch. (2009). Experimental Investigation On Shear Capacity Of Reinforced Concrete Precracked Push-Off Specimens With Externally Bonded Bi-Directional Carbon Fiber Reinforced Polymer Fabrics. *Modern Applied Science 3.7*.
- 23. Khalifa, A., Tumialan, G., Nanni, A. and Belarbi, A. (1999). Shear strengthening of continuous RC beams using externally bonded CFRP sheet. *American Concrete Institute, Proc., 4th International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS4)*, Baltimore, MD. 995-1008.
- 24. Khalifa, A. and Nanni, A. (2002). Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites. *Construction and Building Materials*. 16, 135-146.
- 25. Khan, Asad Ur Rehman, and Shamsoon Fareed. (2014). Behavior of Reinforced Concrete Beams Strengthened By CFRP Wraps With And Without End Anchorages. *Procedia Engineering*. 77, 123-130.
- 26. Li, L., Guo, Y., Liu, F. and Bungey, J. (2006). An experimental and numerical study of the effect of thickness and length of CFRP on performance of repaired reinforced concrete beams. *Construction and Building Materials*. 20 (10), 901-909.
- 27. Meier, U. (1995). Strengthening of Structures using Carbon Fibre/Epoxy Composites. *Construction and Building Materials*. 9, 431-351.
- 28. Morsy, A., El-Tony, E. and El-Naggar, M. (2015). Flexural repair/strengthening of pre-damaged R.C. beams using embedded CFRP rods. *Alexandria Engineering Journal*. 54 (4), 1175-1179.
- 29. Nanni, Antonio. (2000). FRP reinforcement for bridge structures. *Proc., Structural Engineering Conference*, The University of Kansas, Lawrence, KS. 5.

- 30. Nguyen-Minh, L. and Rovňák, M. (2015). Size effect in uncracked and precracked reinforced concrete beams shear-strengthened with composite jackets. *Composites Part B: Engineering*. 78, 361-376.
- 31. Norris, T., Saadatmanesh, H. and Ehsani, M. R. (1997). Shear and flexural strengthening of RC beams with carbon fibre sheets. *Journal of structural engineering*. 123 (7), 903-911.
- 32. Smith, S.T. and Teng, J.G. (2002). FRP-strengthened RC beams. *Review of debonding strength models. Engineering Structures*. 24 (4), 385-95.
- 33. Swamy, R. N. and P. Mukhopadhyaya. (1995). Role and effectiveness of nonmetallic plates in strengthening and upgrading concrete structures. *Non-metallic* (*FRP*) *Reinforcement for Concrete Structure*. 473-482.
- 34. Sujeeva Setunge. (2002). Project report on "Review Of Strengthening Techniques Using Externally Bonded Fiber Reinfornced Polymer Composites. Report 2002-005-C-01.
- 35. Sundarraja, M. and Rajamohan, S. (2009). Strengthening of RC beams in shear using GFRP inclined strips An experimental study. *Construction and building materials*. 23, 856-864.
- 36. Taerwe, L., Matthys, S., Pilakoutas, K., and Guadagnini, M. (2001). European activities on the use of FRP reinforcement, fib Task Group 9.3 and the on Fibre Crete network. *5th International Conference on FRP Reinforcement Concrete Structures (FRPRCS-5)*, Cambridge, UK, 1, 3-15.
- 37. Taljsten, B. (1997). Strengthening of beams by plate bonding. *Journal of Materials* in *Civil Engineering*. 9 (4), 206-212.
- 38. Täljsten, B. . (2003). Strengthening concrete beams for shear with CFRP sheets. *Construction and Building Materials*. 17 (1), 15-26.
- 39. Thomas, J., Kline, T., Emmons, P. and Kliger, H. (1996). Externally bonded carbon fiber for strengthening concrete. *Material for the new millennium: Proc. of the 4th Materials Engineering Conference*, Washington, D.C. 2, 924-930.
- 40. Tumialan, J. G. . (1998). Concrete cover delamination in reinforced concrete beam

strengthened with CFRP sheet. *MS thesis*, Department of Civil Engineering, University of Missouri-Rolla.

41. Yoshizawa, H., Myojo, T., Okoshi, M., Mizukoshi, M. and Kliger, H. S. (1996). Effect of sheet bonding condition on concrete members having externally bonded carbon fiber sheet. Washington, D.C. 2, 1608-1616.

APPENDIX

APPENDIX - 1

Design calculation for the flexural failure.

Reference	Calculations	Output	
BS 8110:			
Part 1	Uniformly distributed self weight = 1*.125*.2*2400		
1985	kg		
3.4.4.4	= 0.589 kN/m		
	5 kN 5kN 600mm 600 mm 600 mm 50 mm M= bending moment due to self weight + bending moment due to point loads = (0.589*1.8²)/8 + 10*(1.8/6) = 3.24 kNm Assume main reinforcement bar diameter= 8 mm		
	Assume shear link bar diameter= 6 mm		
		Effective	
	Effective depth = d	depth= 163	5
	= 200-25-6-4	mm	
	= 165 mm		
	$K=M/bd^{2}f_{cu}$ $=3.24*10^{6}/125*165^{2}*30$ $=0.0317$		

K'=0.156, K<0.156; compression reinforcement not			
required			
z=d(0.5+ $\sqrt{(0.25-0.0317/0.9)}$)			
$=165(\ 0.5+\sqrt{(0.25-0.0317/0.9)}\)$			
= 159 mm < 0.95 d			
Since $f_{cu} = 30 \text{ N/mm}^2 \text{ and } f_y = 250 \text{ N/mm}^2$	Main	R/F	=
$As=M/(0.87 f_y z)$	2R8		
$=3.24*10^6/(0.87*250*159)$			
$=94 \text{ mm}^2$			
Main Reinforcement = 2R8 [2 mild steel bars]			
$As = 2*\pi r^2 mm^2$			
$=100.5 \text{ mm}^2$			

Reference	Calculations	Output		
BS 8110:	Take failure load under shear = 60 kN	Failure load		
Part- 1, 1985,	V= 60/2	under shear		
Cl: 3.4.5.2	=30 kN	=60 kN		
	Diameter of shear links = 6 mm			
	Effective depth = 165 mm			
	$v = V/b_v d$			
	$= 30*10^3/125*165$			
	= $\frac{1.4 \text{ N/mm}^2}{\text{elesser of } (0.8 \sqrt{f_{cu}}, \text{ or } 5 \text{ N/mm}^2)}$			
	= 1.4 1\(\frac{1.41\(\text{Imin}}{\text{Imin}}\) \(\text{Cesser of (0.6 \(\text{Vicu}\), \(\text{Of 3 1\(\text{Imin}\)}\)}\)			
	$v_c = 0.79(100 \text{ As/}(b_v d))^{1/3} (400/d)^{1/4} / \Upsilon_m$			
	$= 0.79(100*100.5/(125*165))^{1/3}(400/165)^{1/4}/1.25$			
Table 3.9	$= 0.62 \text{ N/mm}^2$			
	$v_c + 0.4 = 1.02 \text{ N/mm}^2 < v$			
	$A_{\rm sv} >= b_{\rm v} s_{\rm v} ({\rm v} - {\rm v}_{\rm c})/0.87 f_{\rm yv}$			
Table 3.8	$A_{sv} = 2*\pi*3^2 \text{ mm}^2$			
	$= \frac{57 \text{ mm}^2}{\text{S}_{\text{v}} <= 127 \text{ mm}}$			
	5V (= 127 mm			
	Minimum spacing of links = 0.75d = 124 mm			
	Spacing of links = 100 mm			
C1: 3.4.5.5	P/2 P/2			
C1 . 3.4.3.3	8 mm			
		Spacing of		
	$\begin{bmatrix} \Delta & \Delta \end{bmatrix}$ $\begin{bmatrix} \Delta & \Delta \end{bmatrix}$ shear	links		
	600 600 600 50 (125 mm*200	= 100 mm		
		_ 100 IIIII		

APPENDIX - 2 Expected Theoretical Calculations

Reference	Calculations	Output				
	Beam Parameters					
	Span of the beam	= 1900 mm				
	Overall depth	= 200 mm				
	Breadth	= 125 mm				
	Grade of concrete	$=30 \text{ N/mm}^2$				
	Top Reinforcement	= 8mm ø mild steel				
	Bottom Reinforcement= 8m	m ø mild steel				
	Stirrups	= 6mm ø mild steel				
	Grade of mild steel	$= 250 \text{ N/mm}^2$				
	Cover	= 25 mm				
	Effective depth	=200-25-6-4				
		= 165 mm				
BS 8110:	Flexural Capacity					
Part 1: 1985	Flexural capacity was calcul	ated as follows				
	As = Tension Reinforcem					
	f _y = Yield stress of Reini					
	x = Depth to the neutral	axis				
	b = Breadth of the beam	1				
	f_{cu} = Compressive streng	th of concrete				
	= The average 28 d	ays concrete compressive				
	strength from Appendix- 2					
	$= 35.3 \text{ N/mm}^2$					

Compressive force in concrete	$= 0.9 \times 0.67 \times X \text{ xb} \times$
fcu	

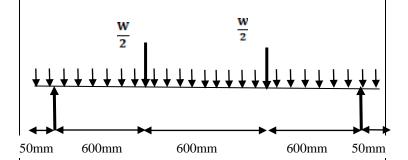
Tensile force in steel = 0.87As f_y

Considering beam to be singly reinforcement,

Tensile force of the beam = Compressive strength of the beam

$$0.87 \text{As} \times \text{fy} = 0.9 \times 0.67 \times x \text{ xb} \times \text{fcu}$$

 $0.87 \times \pi \times 4^2 \times 2 \times 250 = 0.9 \times 0.67 \times 125 \times 35.3 \times x$
 $x = 8.21 \text{ mm}$

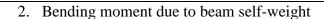

Lever arm (Z)
$$= d - (0.45x)$$
$$= 165 - (0.45 \times 8.21)$$

= 161.3 mm

Flexural capacity
$$= F_t \times Z$$

$$= \pi \times 4^2 \times 2 \times 250 \times 161.3$$

= 4.04 kNm



Expected flexural capacity of beam

1. Bending moment due to W/2 point loads

Maximum moment will be occurred between point loads,

Moment, M = $\frac{w}{2}$ (x - 0.05) - $\frac{w}{2}$ (x - 0.65)

[0.050 m < x < 1.850 m]

Moment,
$$M = \frac{wl}{2} (x - 0.05) - \frac{wx^2}{2}$$

For maximum moment,

$$\frac{dM}{dx} = 0$$

Therefore x = 1/2 = 0.95 m

By principal of super position,

Moment for total load =
$$\frac{wl}{2}(x - 0.05) - \frac{wx^2}{2}$$
 +

$$\frac{w}{2}(x-0.05)-\frac{w}{2}(x-0.65)$$

Therefore maximum moment

$$M_{max} = 0.3W + 0.40375w$$

According to the previous calculation, Flexural capacity of the beam = 4.02 kNm

At failure, 0.3W + 0.40375w

BS8110: Part

1: 1985

Table 3.9

$$=4.04$$

-4.04 $0.3W + 0.40375 \times 0.125 \times 0.2 \times 2.4 \times 9.81 = 4.04$

$$W = 12.7 \text{ kN}$$

Hence expected failure load under flexure =12.7 kN

Expected shear capacity of beam

$$v_c = 0.79 \times \left(\frac{100 As}{bv \times d}\right)^{1/3} \times \left(\frac{400}{d}\right)^{1/4} \times \left(\frac{fcu}{25}\right)^{1/3} \times \frac{1}{rm}$$

 v_c = Design shear stress of concrete

As = Req. Tension Reinforcement

 f_{cu} = Compressive strength of concrete

 b_v = breadth of section

 $\gamma_{\rm m}$ = safety factor for materials (taken as 1.15)

93

$$A_s = \pi \times 16 \times 2$$

= 100.53 mm²
 $b_v = 125 \text{ mm}$
 $v_c = 0.659 \text{ N/mm}^2$

Shear taken by stirrups $(v_{fv}) = \frac{Asv \times fy}{bv \times sv}$

 s_v = space between shear link reinforcement

 A_{sv} = Total cross section of links at neutral axis

$$A_s = \pi \times 9 \times 2$$
$$= 56.5 \text{ mm}^2$$

 $S_v = 120mm$

 $v_{fv} = 0.942 \text{ N/mm}^2$

Expected total shear capacity =
$$0.659 + 0.942$$

= 1.601 N/mm^2

Maximum shear force is at the support,

Shear force due to applied load = $\frac{W}{2}$

Shear force due to self-weight $=\frac{wl}{2} - 0.05 \times w$

Therefore,

$$S_{\text{max}} = \frac{w}{2} + 0.125 \times 0.2 \times 2.4 \times 9.81 \times (1.9/2 -0.05)$$
$$= \frac{w}{2} + 0.52974$$

$$S_{max}$$
 = Design shear stress of the concrete beam
= 1.601 x 125 x 200 x 10⁻³
= 40.05 kN
 $\frac{w}{2}$ + 0.52974= 40.05
 $W = 79kN$

Hence expected failure load under shear =79 kN

APPENDIX – 3 Concrete compressive strength test results

	Date of cast	Date of test	Compressive
			strength (N/mm²)
C1	28/11/2015	28 days after cast	35.48
C2		28 days after cast	37.54
C3		28 days after cast	34.35
C4		28 days after cast	34.3
C5	30/11/2015	28 days after cast	36.67
C6		28 days after cast	34.45
C7	1/12/2015	28 days after cast	37.82
C8		28 days after cast	29.48
С9	3/12/2015	28 days after cast	36.04
C10		28 days after cast	36.76
		Average	35.29
		compressive	
		strength	
		Standard	2.414
		deviation	

APPENDIX - 4 Comparison between experimental moment and theoretical moment Non Cracked Beam

	Experime	Experimental Moments		Theoritical Moments				
Beam Notation	Ultimate Failure Load(kN)	Max Moment (0.3W+.40375w) /(kNm)	Flexural component from steel /Mns (kNm)	CFRP component for bending /Mnf (kNm)	U wrap component for bending / FL(d-k/2) / (kNm)	Theoritical Values / (kNm)	% increment of Moment capacity w.r.t Experimenta moments	Average Increment %
F1	17.00	5.34	2.736	4.753	0.000	7.489	40.30	30%
F2	20.00	6.24	2.736	4.753	0.000	7.489	20.06	30%
IN1	35.00	10.74	2.736	4.753	11.400	18.889	75.91	76
IN2	27.00	8.34	2.736	4.753	0.000	7.489	-10.18	-10
M1	27.00	8.34	2.736	4.753	11.400	18.889	126.55	123%
M2	28.00	8.64	2.736	4.753	11.400	18.889	118.68	123%

Cracked Beam

	Experimental Moments		Theoretical Moments					
Beam Notation	Ultimate Failure Load(kN)	Max Moment (0.3W+.40375w) /(kNm)	Flexural component from steel /Mns (kNm)	CFRP component for bending /Mnf (kNm)	U wrap component for bending / FL(d-k/2) / (kNm)	Theoritical Values / (kNm)	% increment of Moment capacity w.r.t Experimenta moments	Average Increment %
CF1	22.75	7.063	3.141	4.753	0.000	7.894	11.77	2%
CF2	28.00	8.638	3.141	4.753	0.000	7.894	-8.61	270
CFE1	21.50	6.688	3.141	4.753	7.630	15.524	132.13	106%
CFE2	28.00	8.638	3.141	4.753	7.630	15.524	79.72	100%
CFI1	28.00	8.638	3.141	4.753	7.630	15.524	79.72	1650/
CFI2	14.00	4.438	3.141	4.753	7.630	15.524	249.82	165%

W-Failure load under flexture/(kN)

w-Beam self weight/(kN/m)