S.S.L.D.Chinthaka

(138729 J)

Degree of Master of Engineering in Structural Engineering Designs

Department of Civil Engineering

University of Moratuwa Sri Lanka

August 2017

Seethagala Subasinghage Lahiru Dulan Chinthaka

(138729 J)

Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Engineering in Structural Engineering Design

Department of Civil Engineering

University of Moratuwa Sri Lanka

August 2017

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and believe it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

S.S.L.D.Chinthaka Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Dr. K. Baskaran Date:

ABSTRACT

Box culverts are the highest in numbers from the list of structures in highway construction because of their advantages such as low ground bearing capacity requirement, low maintenance requirement and easy construction compared to bridge structures.

Box culverts in Sri Lanka are not standardized. People are still keep designing box culverts consuming lots of engineers valuable time, which can be used productively for the development process of the country. This research investigates typical box culverts that are used in Sri Lanka and then develops standard charts for various size box culverts with different overburden.

This study is carried out using numerical methods for different box culvert opening sizes with $1.5 \times 1.5 \, \text{m}$, $2.0 \times 2.0 \, \text{m}$ and $3.0 \times 3.0 \, \text{m}$

This dissertation presents analysis and design results of box culverts of varying numerical models of size 1.5x1.5m, 2.0x2.0m and 3.0x3.0m internal size with slab/wall thickness from 200mm to 400mm with 50mm gap as appropriate, for overburden of 0.5m, 1.0m, 2.0m, 4.0m, 6.0m, 8.0m and 10.0m

Total number of structures analyzed was 120

Final results are presented in both tabulated and graphical format

Observation shows that internal forces in the element of box culvert is less sensitive to bearing capacity of ground for thicker bases but sensitive for thin bases.

Every box culvert of given size and over burden has its own optimum thickness.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my research supervisor Dr.K.Baskaran, Senior Lecturer, Department of Civil Engineering, University of Moratuwa, Sri Lanka for his guidance, suggestions and continuous support throughout my M.Eng. research work.

I am also much grateful to the Head of the Department of Civil Engineering, the Course Coordinator of Master of Structural Engineering, and the staff of the Department of Civil Engineering for their valuable guidance and cooperation given in many ways.

I also extend my sincere gratitude towards my employer, Road Development Authority (RDA) for granting leave to follow this course and other assistances provided for my research works. I would like to take this opportunity to convey my sincere gratitude to Mr.L.V.S.Weerakoon (Project Director, Central Expressway Project, RDA), Dr.Ruwan (Head, Structural design office, Central Expressway Project, RDA), for the assistance extended to me in numerous ways throughout, and Dr.Naveed Anwar (AIT,Thailand/International Consultant for Central Expressway Structural design works) for the guidance given in finite element modelling. Finally, I thank for all my colleagues and family members for the valued cooperation and encouragement received to complete my M. Eng. Program successfully.

TABLE OF CONTENT

DECLARA'	TION	i
ABSTRAC	Γ	ii
ACKNOWI	LEDGEMENT	iii
TABLE OF	CONTENT	iv
LIST OF FI	GURES	vi
LIST OF TA	ABLES	ix
LIST OF SY	YMBOLS AND ABBREVIATIONS	X
1 INTRO	DDUCTION	1
1.1 Ba	ckground	1
1.2 Ai	m and Objectives	2
1.3 Sco	ope and Limitation of Study	2
1.4 Th	esis Outline	2
2 LITER	ATURE REVIEW	3
2.1 Gu	ideline for Selecting Analysing Parameters	3
2.1.1	Horizontal earth pressure coefficient	3
2.1.2	Super impose dead load	5
2.1.3	Soil sub grade reaction	8
2.1.4	Vertical live load	9
2.1.5	Traction load	10
2.1.6	Surcharge load	11
2.2 Gu	idelines for selecting design parameters and design equations	11
2.2.1	Design for bending	11
2.2.2	Design for shear	13
2.2.3	Design for crack width	14

	2.2	4	Design for thermal and shrinkage	15
	2.2	5	Minimum requirement	17
	2.3	Sur	mmary	17
3	MI	ЕТН	ODOLOGY	18
	3.1	Fix	ing geometry	18
	3.1	.1	Culvert cross section	18
	3.1	.2	Length of culvert	18
	3.2	Cat	egorization of box culverts depending on geometry and sizes	19
	3.3	Nu	merical model development	20
	3.4	Dat	a collection	21
	3.4 cul	·.1 vert)	Study 1 (Effect of soil bearing capacity on structural design of	f box
	3.4	ŕ	Study 2 (Optimizing the box culvert)	21
	3.5	Des	sign approach	21
	3.5	.1	Design for bending	21
	3.5	5.2	Design for shear	22
	3.5	3.3	Design for crack width	22
	3.5	.4	Design for thermal and shrinkage	22
	3.5	5.5	Minimum requirement	23
4	RE	SUL	TS AND DISCUSSION	24
	4.1	Effe	ect of soil bearing capacity on structural design of box culvert	24
	4.1	.1	Input data for the numerical model	24
	4.1	.2	Output from numerical model	24
	4.1	.3	Data interpretation	26
	4.1	.4	Discussion	27
	12	Ont	timizing the hov structure	28

	4.2	2.1 Box culvert of 1.5 m x 1.5 m	29
	4.2	2.2 Box culvert of 2.0 m x 2.0 m	36
	4.2	2.3 Box culvert of 3.0 m x 3.0 m	43
	4.3	Optimum thickness of box culvert	50
5	CO	ONCLUSION AND RECOMMENDATION	52
	5.1	Conclusion	52
	5.2	Recommendation for future research	52
	5.3	How to follow proposed design chart	53
RE	EFERI	RENCES	55

LIST OF FIGURES

Figure 1: Illustration of active and passive pressure (Bowels, 1997)	3
Figure 2: Variation of bending moment with cushion for top slab (Pavan &	Tande,
2015)	4
Figure 3: Embankment culvert (Lawson et al, 2010)	5
Figure 4: Trench culvert (Lawson et al, 2010)	6
Figure 5: Negative soil arching (Lawson et al, 2010)	6
Figure 6: Positive soil arching (Lawson et al, 2010)	7
Figure 7: Factor for negative arching effect (BD31/01, 2001)	7
Figure 8: Modulus of subgrade reaction (Bowels, 1997)	8
Figure 9: Loading curve HA udl (BS5400:Part2, 2006)	9
Figure 10: HB vehicle wheel arrangement (BS5400:Part2, 2006)	10
Figure 11: Stress strain curve for reinforcement (Clark, 1983)	12
Figure 12: Stress strain curve for concrete (Clark, 1983)	12
Figure 13: Culvert cross section	18
Figure 14: Culvert longitudinal section	19
Figure 15: Numerical model flow chart	20
Figure 16: Variation of top slab span M/M_{200} with bearing capacity of ground	26
Figure 17: Variation of bottom slab span $M/M_{\rm 200}$ with bearing capacity of grounds	nd26
Figure 18: Critical locations for flexural design	28
Figure 19: Critical location for shear design	28
Figure 20: Box culvert 1.5x1.5 with 0.5m fill	29
Figure 21: Box culvert 1.5mx1.5m with 1m fill	30
Figure 22: Box culvert 1.5mx1.5m with 2m fill	31
Figure 23: Box culvert 1.5mx1.5m with 4m fill	32
Figure 24: Box culvert 1.5mx1.5m with 6m fill	33
Figure 25: Box culvert 1.5mx1.5m with 8m fill	34
Figure 26: Box culvert 1.5mx1.5m with 10m fill	35
Figure 27: Box culvert 2.0mx2.0m with 0.5m fill	36
Figure 28: Box culvert 2.0mx2.0m with 1m fill	37
Figure 29: Box culvert 2.0mx2.0m with 2m fill	38

Figure 30: Box culvert 2.0mx2.0m with 4m fill
Figure 31: Box culvert 2.0mx2.0m with 6m fill
Figure 32: Box culvert 2.0mx2.0m with 8m fill
Figure 33: Box culvert 2.0mx2.0m with 10m fill
Figure 34: Box culvert 3.0mx3.0m with 0.5m fill
Figure 35: Box culvert 3.0mx3.0m with 1m fill
Figure 36: Box culvert 3.0mx3.0m with 2m fill
Figure 37: Box culvert 3.0mx3.0m with 4m fill
Figure 38: Box culvert 3.0mx3.0m with 6m fill
Figure 39: Box culvert 3.0mx3.0m with 8m fill
Figure 40: Box culvert 3.0mx3.0m with 10m fill
Figure 41: Variation of optimum width to thickness (W/t) ratio against soil cover
thickness H'51

LIST OF TABLES

Table 1: Design crack width (BS5400:Part4, 1990)	14
Table 2: Restraint factor (BD28/87, 1987)	16
Table 3:T1 Values for Sri Lanka	17
Table 4: T2 Values for Sri Lanka	17
Table 5: Culvert types	19
Table 6: Restrained factors used for calculation	23
Table 7: Top slab span bending moment (BM) (kNm/m)	25
Table 8: Bottom slab span bending moment (BM) (kNm/m)	25
Table 9: Optimum thicknesses for 1.5mx1.5m box culvert	50
Table 10: Optimum thicknesses for 2.0mx2.0m box culvert	50
Table 11: Optimum thicknesses for 3.0mx3.0m box culvert	50

LIST OF SYMBOLS AND ABBREVIATIONS

ESE Extension of Southern Expressway OCH Outer Circular Highway CEP Central Expressway Open Application Programming Interface OAPI CSi Computers and Structures.Inc. Coefficient of Active earth pressure Ka Coefficient of Passive earth pressure Kp Ko Coefficient of at rest earth pressure Friction angle of soil φ Depth from ground to point under consideration D β Super imposed dead load factor Ks Subgrade reaction SF Factor of safety B.C Allowable bearing capacity Kt Traction factor F Traction force H' Height of soil cover W Internal width of culvert Η Internal height of culvert Wall/Base/Top slab thickness t

- $L_L \qquad \ \, \text{Overall length of structure perpendicular to wall}$
- L Length of culvert
- M Bending moment
- M₂₀₀ Bending moment at 200kN/m² bearing capacity