Bibliography

- 1. Akthar S., De P.P., De S.K., (1986). Applied Polymer Science, 32.
- Amuthakkannan P., Manikandan V., Jappes J.T. and Uthayakumar M. (2013).
 Effect of Fiber Length and Fiber Content on Mechnical Properties of short Basalt Fiber Reinforced Polymer Matrix Composites. *Material Physics and Mechanics*.
- 3. Bijarimi M., Z. H. (2010). Mechanical Properties of Industrial Tyre rubber compound. *Journal of Applied Science*.
- 4. De S.K., W. J. (1996). Short Fibre-Polymer Composites. In W. J. De S.K.. Woodhead Publishing Ltd.
- 5. Derriger D.C. (1971). HRM Bonding system. Rubber world.
- 6. Dunnom, D. (1967). Hi-Sil Bulletin (PPG Ind. Inc).
- Egwaikhide A.P., O. F. (2013). Rheological and Mechanical properties of natural rubber compounds filled with carbonized palm kernel husk ans carbon black. Science Journal of Chemistry.
- 8. Fediuc D.O., B. M. (2013). Compression Modulus of Elastomers. *Buletinul Institutului Politehnic*.
- 9. Foldi, A. (1996). *Design Consideration and end-use application of short fiber filled rubber and thermoplastic elastomers.* Woodhead Publishing Limited.
- 10. Karak N., G. B. (2000). Effect of compounding ingredients of a tyre tread of NR based compound on physical properties, special reference to hardness. *Indian Journal of Chemical Technology*, 91-99.
- 11. Kavita Agarwal, D. S. (2002). Short Fibre and Particulate-reinforced Rubber Composites. *Defence Science Journa*, 337-346.
- 12. King Chang Kee, S. G. (1990). Pollimo, 14.

- 13. Lauke, S.-Y. F. (1996). Effect of Fiber Length and Fiber orientation distribution on the tensile strength of short fiber reinforced polymer. *Composites Secience and Technology*.
- 14. Lee D.J. and Ryu. (2008). The influence of fiber aspect ratio on the tensile and tear properties of short fiber reinforced rubber. *School of Mechnical Engineering*.
- 15. Lee Y.H., L. S. (2002). Characterization of fiber orientation in short fiber reinforced composites with an image processing technique. *Mat Res Innovat*.
- 16. Li Chen, L. B. (1989). Fuhe Cailiao Xuebao, 79.
- 17. Meissner N. and Rzymski W. (2013). Use of Short Fibers as a Filler in Rubber Compound. *Autex Research Journal*.
- 18. Monthey, S. (2013). Using predispersed fibers to improve OTR tires. *Rubber & Plastics News*.
- 19. Mower T.M and Li V.C. (1987). Fracture Characterization of Random short Fiber Reinforced Thermoset Resin Composites. *Engineering Fracture Mechanics*, 593-603.
- 20. Norman R.E. and Robertson D.A. (2003). The Effect of Fiber Orientation on the Toughening of Short Fiber-Reinforced Polymers.
- 21. Ramayya A.P., C. S. (1986). Applied Polymer Science, 32.
- 22. Rios S.R., C. a. (2001). Potential of Particle and Fiber Reinforcement of tyre tread elastomers.
- 23. Seema A., K. S. (2005). Effect of an Epoxy-Based Bonding Agent on the Cure Characteristics and Mechanical Properties of short-nylon fiber Reinforced Acrylonitrile-Butadiene Rubber composites. Wiley InterScience.
- 24. Senapati A.K., N. G. (1988). International Journal of Polymer Master, 12.

- 25. Shirazi M and Noodermeer W.M. (2010). Tire Tread Reinforcerment with short Aramid fibers. *Tire Technology Inernational*.
- 26. Soltani S., N. G. (2010). Mechanical and Rheological Properties of Short Nylon Fibre NR/SBR Composites. *Rubber Res*.
- 27. Suhara F., K. S. (1998). Polym. Plast. Technol. Eng., 241.
- 28. Todd M.M. and Victor C. (1987). Fracture Characterization of Random short fiber reinforced Thermoset resin composites. *Engineering Fracture Mechanics*, 593-603.
- 29. Tsimpris C.W. and Mroczkowski T.S. (2004). Engineered Elastomer for Tire Reinforcement. *Dupont The miracles of Science*.
- 30. Zafarmehrabian R., G. S. (2012). The Effects of Silica/Carbon Black ratio on the Dynamic properties of the Tread compound in Truck Tires. *E-Journal of Chemistry*.
- 31. Zhou Y.H., C. T. (1993). Macromol Rep, 30.

APPENDIX 1

MATERIAL SPECIFICATION

Natural Rubber

Natural rubber was taken under the following specification

Mooney viscosity [ML(1+4) at 100 C]	80 +/-15
% Dirt content by mass (Max.)	0.05
% of Volatile material by mass (Max.)	0.8
% of Nitrogen by mass (Max.)	0.6
% of Ash by mass (Max.)	0.5
Initial Wallace Plasticity (Po) * Range (Min.)	30
Plastic Retention Index (PRL) (Min.)	70

Short Nylon fiber

Materiel is nylon 6. It was obtained from the approved supplier. The material was cut to approximately 6 mm. Specification of nylon material is as follows.

Breaking Strength – 1260D2 (Min.)	20.5 kg
Elongation at Break	+/-25
Twist Cable S	370 +/- 25 T/m
Twist Ply Z	375 +/- 25 T/m
Breaking Strength – 1890D2 (Min.)	30.5 kkg
Elongation at Break	+/-25
Twist Cable S	300 +/- 25 T/m
Twist Ply Z	305 +/- 25 T/m

1st Stage Chemicals

i. Carbon Black

Carbon black was taken from our approved supplier and it has the following specification:

DPB absorption (cm ³ /100g)	115-125
Loading adsorption number (mg/g)	85-89
Pour Density (Kg/m ³)	315-370
Fines Content (%)	10 max.
Ash (Max.) (%)	0.5

ii. Zinc Oxide

Zinc oxide used in the study was procured from approved supplier with the has following specification

% of Moisture (Max)	0.5
% of Pbo (Max)	0.15
% of Purity (Min)	99.5
% of Sieve Residue (max) 45 Micron (325 mesh)	0.25
% of Loss on Ignition (Max)	0.6

iii. Stearic Acid

Steric Acid was obtained from approved supplier with the following specification:

Acid Value (mg,KOH/g)	190-215
Iodine Value (Max) (g,100g)	5
% of Fatty acid C18 (Min)	32

iv. 6PPD

6PPD was taken from approved supplier with the following specification:

% of Ash Content (max)	0.2
Melting point (min) °C	44
% of Active Ingredient (min)	97
% of Heat loss (max)	0.5

v. HS

% of Ash Content (Max.)	0.3
Softening point °C	83-93
% of Active ingredient (Min)	88

Kinematic viscosity @ 100° C cSt	20-32
Aniline point °C	86-94
Density @ 15.0c g/ml	0.930-0.950
Benzo (a) pyrene (BaP) (Max. ppm)	1
Sum 8 PAH's (Max. ppm)	10
Flash Point (Min.) °C	210

vii. RESORCINE 80 SBR

% of Resorcinol Content	77-81
Density (g/cm3)	1.17-1.25

viii. SILICA

BET Surface Area (m²/g)	160-195
% of Moisture	4 - 7
% of SiO2, on anhydrous basis (Min.)	98
% of SiO2 (bsed on dry basis, 105 C for 1.5 hrs) (M	Iin.) 93
% of Salt as Na2SO4	< 1.5
% of 20 mesh sieve residue (Min.)	65
% of 80 mesh sieve residue (Min.)	75

2nd Stage Chemicals

i. SULPHUR	
% of Sieve Residue (325mesh), (Max.)	10
% of Moisture (Max.)	0.5
% of Purity (Min.)	99.5
ii. TBBS	
% of Purity (Min.)	95
% of Ash Content (Max.)	0.5
Melting point (Min.) °C	103
% of Loss of heating (Max.)	1
% of Free amine (Max.)	0.5
iii. PVI	
Ш, ГУІ	
% of Active ingredient content (Min)	95
	95 0.2
% of Active ingredient content (Min)	
% of Active ingredient content (Min) % of Ash Content (Max.)	0.2
% of Active ingredient content (Min) % of Ash Content (Max.) % Drying loss (Heat loss)	0.2 0.4
% of Active ingredient content (Min) % of Ash Content (Max.) % Drying loss (Heat loss) Melting point °C	0.2 0.4 88
% of Active ingredient content (Min) % of Ash Content (Max.) % Drying loss (Heat loss) Melting point °C	0.2 0.4 88
% of Active ingredient content (Min) % of Ash Content (Max.) % Drying loss (Heat loss) Melting point °C % of Volatile matter (Max.)	0.2 0.4 88
% of Active ingredient content (Min) % of Ash Content (Max.) % Drying loss (Heat loss) Melting point °C % of Volatile matter (Max.) iv. HMT	0.2 0.4 88 0.5
% of Active ingredient content (Min) % of Ash Content (Max.) % Drying loss (Heat loss) Melting point °C % of Volatile matter (Max.) iv. HMT % of Hexamethylene tetramine	0.2 0.4 88 0.5

APPENDIX 2

Mixing cycle of Compounding trials

First Stage Mixing

Figure A 2.1: 0phr Fiber content

Figure A 2.2: 1 phr Fiber content

Figure A 2.3: 1.5 phr Fiber content

Figure A 2.4: 2 phr Fiber content

Figure A 2.5: 2.5 phr Fiber content

Figure A 2.6: 3 phr Fiber content

Figure A 2.7: 5 phr Fiber content

Second Stage Mixing

Figure A 2.8: 0 phr Fiber content

Figure A 2.9: 1 phr Fiber content

Figure A 2,10: 1.5 phr Fiber content

Figure A 2.11: 2 phr Fiber content

Figure A 2.12: 3 phr Fiber content

Figure A 2.13: 10 phr Fiber content

Figure A 2.14: 15 phr Fiber content

Figure A 2.15: 20 phr Fiber content

APPENDIX 3

MINITAB RESULT SHEET

Figure A 3.1: Tensile test Results (Longitudinal or parallel to fiber oriented direction)

Figure A 3.2: Tensile test Results (Transvers or perpendicular to fiber oriented direction)

Figure A 3.3: Tearing test Results (Longitudinal or parallel to fiber oriented direction)

Figure A 3.4: Tearing test Results (Transvers or perpendicular to fiber oriented direction)

Figure A 3.5: Cut & Chip test Results (Average Weight loss)

Figure A 3.6: Cut & Chip test Results (Average Diameter loss)

Figure A 3.7: Abrasion test Results

Figure A 3.8: Compression test Results

