Development of an Intelligent Vision Enhanced Multimodal Human-Robot Interaction for Service Robots in Domestic Environment

Pilippu Hewa Don Arjuna Shalitha Srimal

(168052E)

Thesis submitted in partial fulfillment of the requirements for the degree

Masters in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

August 2017

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above	candidate	has	carried	out	research	for	the	M.Sc.	thesis	under	my
supervision.											

Date:

Signature of the Supervisor: Date:

(Dr. A.G.B.P. Jayasekara)

Signature:

Abstract — In the recent past, domestic service robots have come under close scrutiny among researchers. When collaborating with humans, robots should be able to clearly understand the instructions conveyed by the human users. Voice interfaces are frequently used as a mean of interaction interface between users and robots, as it requires minimum amount of work overhead from the users. However, the information conveyed through the voice instructions are often ambiguous and cumbersome due to the inclusion of imprecise information. The voice instructions are often accompanied with gestures especially when referring objects, locations, directions etc. in the environment. However, the information conveyed solely through gestures is also imprecise. Therefore, it is more effective to consider a multimodal interface rather than a unimodal interface in order to understand the user instructions. Moreover, the information conveyed through the gestures can be used to improve the understanding of the user instructions related to object placements.

This research proposes a method to enhance the interpretation of user instructions related to the object placements by interpreting the information conveyed through voice and gestures. The main objective of this system is to enhance the correlation between the user expectation and the placement of the object by interpreting uncertain information included in user commands. Furthermore, several human studies have been carried out in order to understand the factors that may influence and their level of influence on the object placement. The proposed system is capable of adapting and understanding, according to the spatial arrangement of the workspace of the robot as well as the position and the orientation of the human user. Fuzzy logic system is proposed in order to evaluate the information conveyed through these two modalities while considering the arrangement, size and shape of the workspace. Experiments have been carried out in order to evaluate the performance of the proposed system. The experimental results validate the performance gain of the proposed multimodal system over the unimodal systems.

Keywords- Human Robot Interaction, Natural Language Understanding, Deictic Gestures, Fuzzy Spatial Terms

ACKNOWLEDGMENTS

It is with great pleasure that I acknowledge the assistance and contribution of all the people who helped me to successfully finish my Master's thesis.

First, I extend my sincere gratitude to my research supervisor Dr. Buddhika Jayasekara who provided me with his continuous support and assistance throughout the course of this thesis. Without his advices and encouragement, this thesis would never have been accomplished. I also would like to thank my progress review committee members, Dr. Chandima Pathirana and Dr. Ruwan Gopura for delivering their guidance and valuable comments for successfully continuing my thesis work throughout the past year.

I specially acknowledge the efforts put into reviewing this thesis by Prof. Nalin Wickramarachchi and Prof. Chandimal Jayawardena and thankful for the comments and suggestions.

I would not have been able to complete this thesis successfully, if it was not for the overwhelming assistance given by the individuals in my research group. I sincerely thank and appreciate Viraj Muthugala, Chapa Sirithunge and Sajila Wickramarathne for their support and suggestions in pursuing my Masters thesis.

Also, my appreciation goes to the staff and all of my friends in the Department of Electrical Engineering for their invaluable support, specially in taking part in the conducted experiments and surveys.

Finally, I would like to extend my deepest gratitude to my family. The blessings of my mother, father and sister undoubtedly helped me in making this endeavor a success.

This work was supported by University of Moratuwa Senate Research Grant Number SRC/CAP/16/03.

TABLE OF CONTENTS

D	eclar	ation	i
\mathbf{A}	bstra	act	ii
\mathbf{A}	ckno	wledgments	iii
Ta	able (of Contents	viii
Li	st of	Figures	xii
Li	st of	Tables	xiii
1	Intr	roduction	1
	1.1	Problem Statement	3
	1.2	Thesis Overview	3
2	${ m Lit}\epsilon$	erature Review	5
	2.1	Human-like Robotic Assistants	5
	2.2	Human Robot Interaction Methods	7
	2.3	Understanding Uncertain Information	8
		2.3.1 Uncertainty in Spatial Terms	9

	2.4	Summ	ary of Literature Review	10
3	Hur	nan St	cudies on Understanding Behavioral Concepts	13
	3.1	Under	standing of Spatial Terminology	15
		3.1.1	Arrangement	17
		3.1.2	Procedure and Metrics	17
		3.1.3	Analyzing of Data	18
		3.1.4	Results and Discussion	18
	3.2	Effect	of the User Location and Orientation	19
		3.2.1	Arrangement	19
		3.2.2	Procedure and Metrics	19
		3.2.3	Analyzing of Data	23
		3.2.4	Results and Discussion	23
	3.3	Effect	of the Surface Area	24
		3.3.1	Arrangement	24
		3.3.2	Procedure and Metrics	25
		3.3.3	Analyzing of Data	26
		3.3.4	Results and Discussion	26
	3.4	Effect	of the Table Shape	29
		3.4.1	Arrangement	29
		3.4.2	Procedure and Metrics	29
		3.4.3	Analyzing of Data	29

		3.4.4	Results and Discussion	32
	3.5	Effect	of the Objects on the Table	32
		3.5.1	Arrangement	33
		3.5.2	Procedure and Metrics	33
		3.5.3	Analyzing of Data	33
		3.5.4	Results and Discussion	35
	3.6	Effects	s of the Restrictions for Reachability	35
		3.6.1	Arrangement	35
		3.6.2	Procedure and Metrics	36
		3.6.3	Analyzing of Data	36
		3.6.4	Results and Discussion	36
	3.7	Summ	ary of Human Studies	37
4	Syst	tem De	esign	40
	4.1	System	n Overview	40
	4.2	Under	standing Vocal Commands	41
	4.3	Under	standing Pointing Hand Gesture Location	41
		4.3.1	Kinect	42
		4.3.2	Tracking of User	43
		4.3.3	Obtaining Pointed Location	43
5	Unc	lerstar	nding Uncertain Information in User Commands	46
		5.0.1	Uncertain Information Understanding Module	46

		5.0.2	Module 1 - For Voice Based User Commands	47
		5.0.3	Module 2 - For Hand-gesture Based User Commands	47
		5.0.4	Module 3 - Combined User Commands	49
6	Spa	tial Co	oncerns	51
	6.1	Conce	erns for Space Properties	51
		6.1.1	Table Size	51
		6.1.2	Table Shape	51
	6.2	Effect	of Dynamic Space Constraints	53
		6.2.1	Objects on the Table	53
		6.2.2	Reachability of the Robot	55
	6.3	Specia	al Attention	57
		6.3.1	Concerns for User Location and Orientation	57
		6.3.2	Calculating the Placement Position	58
		6.3.3	Safety Distance	58
	6.4	Exam	ple Scenario	58
7	Res	ults ar	nd Discussion	65
	7.1	Hardw	vare Implementation	65
	7.2	Exper	imental Setups	65
		7.2.1	Experimental Setup 1	65
		7.2.2	Experimental Setup 2	69
	7.3	Syster	n Evaluation	79

	7.3.1	Basic Multimodal System	72		
	7.3.2	Effect of Dynamic Space Constraints	73		
	7.3.3	Special Attention	74		
	7.3.4	System Limitations	75		
8 Co	onclusio	ns	78		
List o	List of Publications				
Refer	rences		82		

LIST OF FIGURES

1.1	Number of elderly population in the world estimated till 2050. $$.	1
1.2	The sales of service robots up till 2010 and estimated values till 2050	2
2.1	Zora robots	6
2.2	ASIMO by Honda	6
2.3	Motoman by Yaskawa Electric	7
2.4	Summary of the literature review	12
3.1	Example scenarios for human studies	14
3.2	Arrangement for the study inorder to understanding of spatial terminology	15
3.3	Effect of the user rating	15
3.4	Color coded cards that were used for the experiment	16
3.5	Results of the study perfromed to understand the spatial terminology	20
3.6	Summery of the table area allocation	21
3.7	The effect of the user's orientation	22
3.8	Effect of the reference frame	23
3.9	Results of the study conducted to understand the user's attention.	25

3.10	Results of the study for effect of table area	27
3.11	The box plot diagram of X coordinate for spatial term "Back Edge" for left handed participants	28
3.12	Different shapes of tables that were used for the study	30
3.13	Summery of the results of thr study effect of the table shapes	31
3.14	The table setup that was used to the study the effects of the objects on the table	32
3.15	Results for table setting (a) \dots	33
3.16	Results for table setting (b)	34
3.17	Results for table setting (c) $\dots \dots \dots \dots \dots \dots$	34
3.18	Effect of the restricted reachability	36
4.1	System overview	40
4.2	The tracked joints of the body by the Kinect	42
4.3	Reference axis of Kinect	43
4.4	Top view of the Kinect with respect to the table	44
4.5	Skeleton tracking of Kinect	44
5.1	Command types that are used by the user	46
5.2	Input and output fuzzy inference functions for UIUM submodules 1,2 and 3	48
5.3	An example scenario for hand gesture based user command	49
6.1	Recalculating of pointed hand gesture location for oval and circular shaped tables	52

6.2	Shift in the fuzzy output curved due to the objects on the table	54
6.3	An example for extracting occupied area by objects on the table	55
6.4	Effect of the User's orientation	56
6.5	Safety concerns when placing the object	59
6.6	Example scenario using both voice and hand gesture based commands	60
6.7	Robots point of view of the user	60
6.8	Tracked skeleton of the user's body	61
6.9	Y and X axis transformations from oval shaped table to a rectangular shaped table	61
6.10	The robots point of view of the table	63
6.11	The robot moves forward to place object	63
6.12	The robot completes the placement of the object	63
6.13	The robot is returning to the starting position	64
7.1	MIROB - The hardware that was used to implement the system	66
7.2	Experimental setup 1 table settings	67
7.3	Placement of objects on the table for setup 1	68
7.4	User satisfaction for setup 1	68
7.5	Shows the room setup that was used for experimental setup 2	70
7.6	The map of the room that was used for experiments in setup 2	71
7.7	Different table shapes that were used during the experimental setup 2	71

8.1 $\,$ User satisfaction in unimodal and multimodal systems. $\,$ 80 $\,$

LIST OF TABLES

3.1	Usage of Area Terms	18
3.2	Area Terms Used in Study 2	19
3.3	Results for Effects of Table Shape	32
3.4	Summary of Human Studies	39
5.1	Rule Base For Fuzzy Modules 1 And 2	47
5.2	The Rule Base For Fuzzy Module 3	50
7.1	Experiment Results for Setup 1	76
7.2	Experiment Results for Setup 2	77