EVALUATING THE PERFORMANCE OF SUBSURFACE HORIZONTAL FLOW CONSTRUCTED WETLAND FOR TERTIARY TREATMENT OF SANITARY LANDFILL LEACHATE

Jeganathan Shanthi Sasikala Devi

(139251T)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

December 2017

EVALUATING THE PERFORMANCE OF SUBSURFACE HORIZONTAL FLOW CONSTRUCTED WETLAND FOR TERTIARY TREATMENT OF SANITARY LANDFILL LEACHATE

Jeganathan Shanthi Sasikala Devi

(139251T)

A dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Environmental Management

Department of Civil Engineering

University of Moratuwa

Sri Lanka

December 2017

DECLARATION OF CANDIDATE AND THE SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Master's dissertation under my supervision.

Name of the supervisor: Professor M. W. Jayaweera

Professor in Environmental Engineering

Department of Civil Engineering

Signature of the supervisor:

Date:

Abstract

The difficulty in detecting and quantifying the typical composition characteristics of landfill leachate, limit successful treatment of it. High quality effluent that can be discharged to surface waters could be achieved by using the two stage leachate treatment systems with a constructed wetland at the final stage. This pilot scale study was conducted with the aim of evaluating the tertiary treatment of pre-treated leachate obtained from Sanitary Landfill located at Dompe, by a subsurface horizontal flow constructed wetland comprising *Phragmites karka* and Calicut tiles as substrate. The removal efficiency of BOD₅, COD, TSS, NO₃⁻-N and PO₄³⁻-P was evaluated. The study period was from June to August 2017. Sixty liters of diluted pre-treated leachate (i.e. Containing 80% of the pre-treated leachate by volume) was fed per day with a hydraulic retention time of 1 day. Concentration based average removal efficiency of the system was 63% for BOD₅, 62% for COD, 96% for TSS, 49.11% for NO₃⁻-N and 85.28% for PO₄³⁻-P. Long term research is necessary to examine the effects of continuous feeding and shock loadings on the growth response of *Phragmites karka*.

Key words: Horizontal Subsurface Flow, Phragmites karka, Removal Efficiency

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude for my supervisor Professor M. W. Jayaweera, Professor in Environmental Engineering, Department of Civil Engineering, University of Moratuwa for his kind support, valuable guidance and constant encouragement in carrying out this research.

I would like to extend my thanks to Eng. J. M. U. Indrarathna, Deputy Director General (Waste Management) of the Central Environmental Authority for giving me permission to conducting this research at the Sanitary landfill, Dompe, to the staff of landfill for their cooperation in the construction of the experimental setup and carrying out this research on the site and to the laboratory staff of the Central Environmental Authority for supporting me in laboratory analysis. I would like to acknowledge the Research and Development unit of the Central Environmental Authority for providing partial fund for this study.

Also, I am thankful to Professor M. I. M. Mowjood, Professor in Bio Engineering, University of Peradeniya and Mr. N. S. Gamage, Director, Uva Provincial Office for their valuable guidance in carrying out this research. I am grateful to Ms. Madurangi Perera for supporting me throughout the study related to the design. I thank my family members, friends and colleagues who helped me in many ways to fulfill this task successfully.

TABLE OF CONTENTS

Declaration of candidate and the Supervisor		i
Abstract		
Acknowledgements		
Table of Contents		iv-v
Li	st of Figures	vi- vii
List of Tables		viii
Li	st of Abbreviations	ix
Li	st of Appendices	Х
1.	Introduction	1-3
	1.1.Problem statement	3-5
	1.2. Objectives	5
2.	Literature Review	6
	2.1. Phytoremediation	6-7
	2.2. Aquatic treatment systems	7-8
	2.3. Landfill leachate treatment using phytoremediation	9
	2.3.1. Landfill leachate treatment studies around the world	9-10
	2.3.2. Landfill leachate treatment studies in Sri Lanka	10-11
	2.4. Use of <i>Phragmites karka</i> in wastewater treatment	11-13
3.	Methodology	14
	3.1. Study site	14-15
	3.2. Plant description	
	3.3. Experimental method	
	3.3.1. Experimental setup	17-18
	3.3.2. Evaluation of the system	18
	3.3.2.1. Phase 1: Acclimatization phase	18-19
	3.3.2.2. Phase 2: Operation phase	19
	3.4. Sample analysis	20
	3.5. Data analysis	20

4.	Results and discussions	21-24
	4.1. Removal of organics and suspended solids	24-26
	4.1.1. Biochemical Oxygen Demand (BOD ₅)	26
	4.1.1.1. BOD ₅ removal in phase1 (Acclimatization phase)	27
	4.1.1.2. BOD ₅ removal in phase 2 (Operation phase)	27-29
	4.1.2. Chemical Oxygen Demand (COD)	29
	4.1.2.1. COD removal in phase1 (Acclimatization phase)	29-30
	4.1.2.2. COD removal in phase 2 (Operation Phase)	30-32
	4.1.3. Total Suspended Solids (TSS)	32
	4.1.3.1. TSS removal in Phase 1 (Acclimatization phase)	33
	4.1.3.2. TSS removal in Phase 2 (Operation Phase)	33-34
	4.2. Removal of nutrients	34-35
	4.2.1. Nitrate $(NO_3^ N)$	35-36
	4.2.1.1. NO_3^- - N removal in phase 1 (Acclimatization phase)	37
	4.2.1.2. NO_3^- - N removal in Phase 2 (Operation phase)	37-38
	4.2.2. Phosphate ($PO_4^{3-} - P$)	38-39
	4.2.2.1. PO_4^{3-} - P removal in Phase 1 (Acclimatization phase)	39
	4.2.2.2. PO_4^{3-} - P removal in Phase 2 (Operation phase)	39-40
	4.3. Plant density	41-42
5.	Conclusions	43
6.	Recommendations	44
Re	eference list	45-51
Ap	ppendix A: Drawings of the design	52
Ap	opendix B: Summary of the design	53
Ap	ppendix C: Statistical analysis of the data	54-57

LIST OF FIGURES

Figure 3.1	Aerial photograph of the Sanitary landfill, Dompe	14
Figure 3.2.a.	Phragmites karka plants	16
Figure 3.2.b.	Habitat of leafy culms and inflorescences of Phragmites	16
	karka plants	
Figure 3.2.c.	Formation of tillers from shoot nodes in Phragmites	16
	karka plant	
Figure 3.2.d	Formation of creeping rhizome and root of Phragmites	16
	karka plant	
Figure 3.3	Front view of the HSSF sectioned into columns and	18
	planted with Phragmites karka	
Figure 3.4	Side view of the HSSF planted with Phragmites karka in	18
	the mid of the each section	
Figure 3.5.a	Bottom leaves turning to yellowish color in plant in	19
	section1 during feeding of 80 l/day & 60% of SBR	
	effluent.	
Figure 3.5.b	Yellow patches observed in upper leaves of the plant in	19
	section1 during feeding of 60 l/day & 90% of SBR	
	effluent.	
Figure 3.5.c	Browning observed in upper leaves of the plant in	19
	section2 during feeding of 60 l/day & 90% of SBR	
	effluent.	
Figure 4.1	A metabolic scheme for the degradation of complex	25
	organic matter, culminating in Methanogenesis.	
Figure 4.2	Inflow and Outflow concentration of BOD ₅	26
Figure 4.3	Removal efficiency of BOD ₅ during the operation phase	28
Figure 4.4	Inflow and Outflow concentration of COD	29
Figure 4.5	Removal efficiency of COD during the operation phase	31
Figure 4.6	Inflow and outflow concentrations of TSS	32

Figure 4.7	Removal efficiency of TSS during the operation phase	33
Figure 4.8	Removal of TSS (sample taken on 2017.08.26)	34
Figure 4.9	Inflow and Outflow concentration of NO3 ⁻ -N	36
Figure 4.10	Removal efficiency of NO_3^- -N during the operation	37
	phase	
Figure 4.11	Inflow and Outflow concentration of PO4 ³⁻ - P	39
Figure 4.12	Removal efficiency of PO ₄ ³⁻ - P during the operation	40
	phase	
Figure 4.13	Growth of tillers and daughter plants during the	42
	study period	

LIST OF TABLES

Page

Table 3.1	Test methods of parameters analyzed	20
Table 4.1	Summary of the descriptive statistics obtained for the	22
	tested parameters during operation phase	
Table 4.2	Summary of the paired T test of the tested parameters	22
	during the operation phase	

LIST OF ABBREVIATIONS

Abbreviation	Description
BOD	Biochemical Oxygen Demand
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
FWS	Free Water Surface System
HF	Horizontal Flow
HRT	Hydraulic Retention Time
HSSF	Horizontal Sub-Surface Flow constructed wetland
NH ₄ -N	Ammoniacal Nitrogen
NO ₂ -N	Nitrite as Nitrogen
NO ₃ -N	Nitrate as Nitrogen
Р	Phosphorus
PO ₄ -P	Phosphate as phosphorus
SSFS	Subsurface Flow System
TDS	Total Dissolved Solids
TKN	Total Kjeldal Nitrogen
TP	Total phosphorus
TS	Total Solids
TSS	Total Suspended Solids
VF	Vertical Flow
VSF	Vertical Subsurface Flow

LIST OF APPENDICES

Appendix	Description	Page
Appendix-A	Drawing of the design	52
Appendix-B	Summary of the design	53
Appendix-C	Statistical analysis of data	54-57