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Abstract

This study proposes a reach-to-grasp path planning and controlling method for trans-
humeral prostheses. Trans-humeral prostheses are used to replace the missing body
part after the loss of upper limb (UL) above elbow. Reach-to-grasp paths refers to
the paths taken by the human UL to reach towards an object with the intention of

grasping.

A trans-humeral prosthesis has been designed and fabricated with 5DOF. A simulation
environment has been proposed using the design. Simulation environment consists of
a virtual shoulder joint which can be actuated according to a natural human shoulder
using an Inertial Measurement Unit (IMU). Prosthesis and the simulation environment
has been used to experimentally evaluate the proposed path planning method.

A reach-to-grasp path planning method combining Electromyography (EMG) signals
and vision signals has been proposed. EMG Based Module (EBM) is capable of con-
trolling prosthesis elbow motion effectively with an accuracy of 92%. Visual Servoing
Module (VSM) consists of a 2-1/2D visual servoing system to center the object of in-
terest to the hand of the prosthesis and to correct the orientation. An object reaching
algorithm has been proposed to reach towards the object. Later, the EBM and the
VSM has been fused using an fusion filter.

An improvement to the above method has been proposed to make the paths straight.
It consists of a path generation module and a path tracking module. Path generation
module is capable of generating a path towards the object. The object position is
located and a path is generated from the current position of the prosthetic hand to the
object position with the aid of vision. Path tracking module takes the prosthetic hand
on the generated path considering shoulder motions. Two path tracking methods has
been proposed: spatial path following method and Model Predictive Controller (MPC)
based path tracking method. Proposed path planning method has been experimentally
evaluated.

Keywords- Trans-humeral prosthesis, electromyography, visual servoing,
reach-to-grasp path planning, path following
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