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Abstract

This study proposes a reach-to-grasp path planning and controlling method for trans-
humeral prostheses. Trans-humeral prostheses are used to replace the missing body
part after the loss of upper limb (UL) above elbow. Reach-to-grasp paths refers to
the paths taken by the human UL to reach towards an object with the intention of
grasping.

A trans-humeral prosthesis has been designed and fabricated with 5DOF. A simulation
environment has been proposed using the design. Simulation environment consists of
a virtual shoulder joint which can be actuated according to a natural human shoulder
using an Inertial Measurement Unit (IMU). Prosthesis and the simulation environment
has been used to experimentally evaluate the proposed path planning method.

A reach-to-grasp path planning method combining Electromyography (EMG) signals
and vision signals has been proposed. EMG Based Module (EBM) is capable of con-
trolling prosthesis elbow motion effectively with an accuracy of 92%. Visual Servoing
Module (VSM) consists of a 2-1/2D visual servoing system to center the object of in-
terest to the hand of the prosthesis and to correct the orientation. An object reaching
algorithm has been proposed to reach towards the object. Later, the EBM and the
VSM has been fused using an fusion filter.

An improvement to the above method has been proposed to make the paths straight.
It consists of a path generation module and a path tracking module. Path generation
module is capable of generating a path towards the object. The object position is
located and a path is generated from the current position of the prosthetic hand to the
object position with the aid of vision. Path tracking module takes the prosthetic hand
on the generated path considering shoulder motions. Two path tracking methods has
been proposed: spatial path following method and Model Predictive Controller (MPC)
based path tracking method. Proposed path planning method has been experimentally
evaluated.

Keywords- Trans-humeral prosthesis, electromyography, visual servoing,
reach-to-grasp path planning, path following
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Chapter 1

INTRODUCTION

Prosthesis (plural: Prostheses) is an artificial device which replaces a missing

body part. “Prostheses” is a word developed from ancient Greek words “prós”

means for “in addition” and “thésis” means for “a placing” [1]. Among prostheses

limb prostheses holds importance since loss of limbs make amputees unable to

carry out his/her Activities of Daily Living (ADL). Limbs can be lost due to

traumas, accidents, diseases, or congenital conditions [2].

Development of prosthetic limbs has been started way back in the history. First

confirmed use of a prosthetic device dates back to 950-710 BC [3] which was a toe

prosthesis found attached to the right foot of a female. This prosthesis was built

using wood and leather. Prostheses were developed using wood, iron, steel, and

copper in old days. However, their use is more cosmetic rather than functional.

Development of prostheses were highly influenced by world war I and II, which

resulted in developing more functional prostheses. National Academy of Sciences

(NSA) of United States (USA) began to support research and development of

prostheses after world war II [4]. Hence, more scientific efforts have been flooding

towards the development and control of prostheses.

The concept of cybernetics which means communications and control systems

in machines and living things influenced the development of functional prosthe-

ses [5]. First, electrically powered prosthesis have been developed with the sup-

port of USA government and IBM in 1949 [6]. Prostheses should be capable of

being controlled according to human motion intention in order to carryout ADL

1



properly. Numerous efforts have been taken by the researchers to achieve func-

tional prostheses which can be controlled according to the motion intention of

the wearer.

However, the prostheses stand way back from the natural limb compared to

the functionality, controllability, and appearance.

1.1 Prosthesis as a Robot

A robot can be treated as a machine which can be programmed by a computer.

Moreover, robots are capable of carrying out complex series of actions automati-

cally. Robots are used to perform human activities safely and productively. These

machines are used in many areas such as manufacturing, space exploration, mil-

itary applications, medical applications, etc. In most applications humans and

robots are not directly connected. However, in prosthetic applications the human

robot interaction is significant.

Most of externally powered Upper Limb (UL) prostheses can be considered as

serial link manipulator robots. A serial link manipulator robot is made up of me-

chanical links connected serially by joints. These robots consist of the mechanical

manipulator (links), end effector, controllers, actuators, and sensors. Generally,

the number of joints can be treated as the number of Degrees of Freedom (DOF).

The devices attached to the output links are the end effectors. The end effector is

used to manipulate objects. In an UL prosthesis, prosthetic hand acts as the end

effector. Robot controllers ranging from low level joint controllers to high level

intelligent controllers are used to drive the end effector as desired. Potentiometers

and/or encoders are used to measure robot joint motions which will also be used

for the purpose of feedback control. Apart from that external sensors such as

vision, Inertial Measurement Unit (IMU), etc. can be used to control a robotic

manipulator depending on the application.

2



1.2 Motivation

Throughout the day a wide variety of tasks are performed using the human

UL. Hence, loss of part of the UL leaves the amputees with difficulties in carrying

out even the basic ADL which makes them helpless. Prostheses are developed

in order to uplift their living standards and to add lost functions. However, the

human UL is a complicated biological structure with bones and muscles acting

together to provide many functions. Therefore, providing the same functionality

with a mechanical device is a difficult task. Moreover, these devices should be

developed to work with human motion intentions and to achieve human-like mo-

tions. Researchers are consistently working on developing prostheses and their

controllers which can mimic human UL motions and functionality. However, cur-

rent developments need improvements to match the functionalities of a human

UL.

Developments in task level prosthetic controllers are very rare compared to

the vastly available joint level controllers. Hence, task level prosthetic controllers

should be developed so that several tasks can be performed by the prosthesis.

Since most of the tasks performed by an UL involves reach-to-grasp motions it

is important to develop methods to achieve such capabilities in prostheses to

progress research in task level prosthetic controllers.

Moreover, the prosthesis is a separate device which operates using the signals

extracted from the amputee. However, the extracted biological signals cannot

exactly identify the motion intentions of the amputee. Hence, external sensors

are used in order to assist bio-signal based controllers.

Following are the drawbacks of available prosthetic controllers which motivated

the work presented in this thesis.
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• Most of the available prostheses are not capable of generating human-like

motions due to few control inputs available after an amputation.

• In joint level prosthetic controllers each and every joint should be controlled

separately in order to complete a task.

• The prostheses did not have required sensory inputs to judge weather the

prosthesis moves towards the object of interest.

• Reach-to-grasp path planning methods for trans-humeral prostheses are not

yet been developed, however it is an essential part in developing task level

prosthetic controllers.

Therefore, the work presented in this thesis is towards developing vision aided

reach-to-grasp path planning methods for trans-humeral prostheses considering

stump arm motions. The prosthetic motions should work according to the human

motion intentions. Hence, an Electromyography (EMG) based elbow motion

prediction method has been developed. Moreover, a 2-1/2D visual servoing based

reach-to-grasp path planning method has been developed integrating EMG based

elbow prediction method. This method is capable of taking the prosthetic hand

towards an object. However, the paths taken by the prosthetic hand has some

curvatures. Hence, improvement to the previous reach-to-grasp path planning

method has been proposed. This method consists of a path generation module

and a path tracking module. Path generation module is used to generate a path

towards the destination. Two path tracking methods have been proposed: spatial

path following method and the Model Predictive Controller (MPC) based path

tracking method. These two methods are capable of taking the prosthetic arm

towards the object of interest in a stringent line path. These path tracking

methods are used to plan reach-to-grasp motions of the trans-humeral prosthesis.

4



1.3 Contributions of the Thesis

The research work presented in this thesis is towards the development of vision

based reach-to-grasp path planning methods for a trans-humeral prosthesis. The

major contributions are outlined below.

• Propose an EMG-Force Proportional and Moment Balance (EFPMB) model

for elbow motion prediction.

• Propose a vision aided path planning method for reach-to-grasp motions of

the trans-humeral prosthesis based on a 2-1/2D method of visual servoing.

• Propose a spatial path following method for the trans-humeral prosthesis,

compensating shoulder motions.

• Propose an improved dynamic path tracking method based on a Model

Predictive Controller (MPC) for the trans-humeral prosthesis.

• Develop an improved vision based path planning method for reach-to-grasp

motions of the trans-humeral prosthesis using proposed path following meth-

ods.

1.4 Thesis Overview

The thesis consists of six chapters. Organization of the thesis is as follows.

Chapter 2 covers the literature review. Chapter 3 explains the prosthesis and the

simulation environment used for the experimental evaluation of path planning

methods. Chapter 4 proposes the 2-1/2D visual servoing based reach-to-grasp

path planning method. Chapter 5 proposes the reach-to-grasp path planning

method based on path tracking methods. Chapter 6 concludes the thesis with

future directions. The contents of the following chapters are elaborated below.
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Chapter 2:- Literature Review

This chapter covers the bio-mechanics of human UL and currently available

prosthetic controllers. Bio-mechanics of UL plays a vital role in designing pros-

theses and their controllers. Moreover, evolution of prosthesis controllers has

been extensively reviewed in this chapter. besides, reach-to-grasp paths of a UL

and path planning methods has been discussed.

Chapter 3:- The Trans-humeral Prosthesis Used to Evaluate the

Path Planing Method

The simulation environment and the 5 DOF trans-humeral prosthesis which

has been developed is elaborated in this chapter. The simulation environment has

been developed using virtual robot experimentation platform (V-REP) to simu-

late prosthetic control algorithms. Main motion units of the prosthesis: elbow,

forearm, wrist, and hand have been explained with their designs. The low level

controllers used to actuate these motion units have been explained and evaluated

experimentally. The prosthesis and the simulation environment have been used

in the following chapters to evaluate the proposed path planning Method.

Chapter 4:- Reach-to-Grasp Path Planning Based on a 2-1/2DMethod

of Visual Servoing

This chapter proposes a reach-to-grasp path planning method based on a 2-

1/2D Visual Servoing Module (VSM) and a EMG Based Module (EBM). The

EBM is used to controls elbow flexion/extension (FE). A camera and an Ultra-

sonic (US) sensor are fitted on the palm of the prosthesis. The VSM plans the

path towards the detected object by the camera if a reach request is received.

Since both VSM and EBM produce elbow FE angles, these two modules are

fused to get a resultant elbow FE angle.
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Chapter 5:- Reach-to-Grasp Path Planning Based on Path Tracking

Methods

This chapter proposes an improvement to the previous method based on dy-

namic path tracking algorithms. This method makes the paths straight line,

which was missing in the method discussed in chapter 4. The proposed method

consists of two modules: path generation module and path tracking module. The

path generation module generates a path towards the object of interest with the

sensory feedback received from the camera and the US sensor fitted on the palm.

The path tracking module uses two novel algorithms proposed in this study, in

order to track the generated path by the prosthetic hand.

Chapter 6:- Conclusion

This chapter concludes the thesis with future directions.
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Chapter 2

LITERATURE REVIEW

Loss of part of the UL leaves an amputee with difficulties in performing even

the most basic ADL. Full or partial loss of the UL can be caused by diseases,

accidents, trauma, etc. [7]. With the aim of uplifting the living standards of

amputees, continuous efforts on developing functional and reliable prostheses have

been conducted by various researchers. [8–11].

Currently, different combinations of biological and sensory signals are used as

inputs in achieving smoothly functioning and reliable controllers for UL prosthe-

ses. However, still these prosthetic devices and their controllers have not been

able to match the performance of a natural UL.

This chapter covers the bio-mechanics & kinematics of human UL, UL pros-

theses, available prosthetic control methods, and reach-to-grasp path planning

methods.

2.1 Bio-mechanics and Kinematics of Upper Limb (UL)

Bio-mechanics and kinematics of the UL plays an important role when de-

signing and controlling UL prostheses. Since the joints and their motions of a

UL prosthesis should be developed in accordance with the bio-mechanics and the

kinematics of human UL.
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Shoulder

Elbow

Hand

Wrist

Figure 2.1: Four major sections of UL. UL is divided into four major sections in
order to ease analyzing bio-mechanics. These four sections are shoulder, elbow,
wrist, and hand.

2.1.1 Bio-mechanics of Upper Limb (UL)

Bio-mechanics is the study of mechanical laws relating to the movement or

structure of living beings. In order to analyze the bio-mechanics, the human UL

can be divided into four major sections: shoulder, elbow, wrist, and hand (see Fig.

2.1). The movements of the UL are three dimensional (3D). These movements

are described using 3 planes defined with respect to the human body: sagittal

plane, transverse plane. and frontal plane (See Fig. 2.2).
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Frontal

Plane

Sagittal 
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Anterior

Posterior

Inferior

Superior

Figure 2.2: Planes of human body. Human body movements can be explained
using three planes: frontal, sagittal, and transverse. Frontal plane is also refereed
to as coronal plane. Transverse plane is also refereed to as horizontal plane [12].

Shoulder

The shoulder consists of three major bones viz. clavicle, scapula and humerus.

The clavicle and the scapula supports suspension of the UL and also serves as

a location for muscle attachment. the humeral head (ball) of the humerus and

the glenoid cavity (socket) of the scapula is combined to form the gleno-humeral

joint which is known as the shoulder joint (refer Fig. 2.3) [13]. The humerus

bone connects the shoulder and elbow. Shoulder joint can be modelled as a

ball and socket joint with 3 DOF: shoulder FE, abduction/adduction (AAD) and

internal/external rotation (IER). Movement of the gleno-humeral joint in sagittal

plane results in shoulder FE motion. Shoulder AAD is the movement of the UL

in frontal plane around the shoulder joint. IER is the rotation of the UL towards

and away from the trunk around the shoulder joint with the elbow flexed 90

degrees (Fig. 2.4). The range of motions (ROM) of shoulder joints are given in

Table 2.1 [14].
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claviclescapula

humerus

glenoid cavity

humeral head

Figure 2.3: Bones of shoulder joint. Humeral head and glenoid cavity creates the
shoulder joint. Shoulder joint can be treated as a ball and socket joint with 3
DOF.

Flexion

Extension

Abduction

Adduction

External 

Rotation
Internal 

Rotation

Figure 2.4: Motions of shoulder joint

Elbow

The elbow joint consists of two articulating surfaces: between the trochlea &

trochlear notch and between the capitulum & the head of the radius. Elbow

flexion is caused by contraction of the anterior muscles of the upper arm and

elbow extension is caused by contraction of the posterior muscles of the upper

arm. The elbow joint can be modelled as a hinge joint. The proximal radioulnar

joint is located immediately after the elbow joint. Radial notch moves around

the head of the radius which permits axial rotation of the forearm, known as
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Table 2.1: Range of motions of shoulder [14]

Motion Range
Shoulder Flexion/Extension 158◦ / 53◦

Shoulder Abduction/Adduction 170◦ / 0◦

Shoulder Internal/External Rotation 70◦ / 90◦

humerus trochlea

trochlear notch

capitulum

head of the radius

Ulna

Radius

proximal 

radioulnar joint

Hinge joint

Pivot joint

(a)

(b)

SupinationPronation

Flexion

Extension

(c)

Radial notch

Figure 2.5: Motions of elbow joint. (a) Bones of forearm and elbow joint, (b)
Modeling elbow joint as 2 DOF, (c) 2 DOF at elbow joint.

supination/pronation (SP). This motion is visible at the distal end of the forearm

which can be modelled as a pivot joint (Refer Fig. 2.5). Since both the proximal

radioulnar joint and the elbow joint is closely located, these two joints form the

elbow complex. Hence, the elbow joint is considered to have 2 DOF.
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Saddle Joint

(b)(a)

Figure 2.6: Motions of wrist joint [15]. (a) Modeling wrist as 2 DOF, (b) 2 DOF
at wrist joint.

The muscles along humerus contracts and extend to provide elbow FE. Three

muscles are located anterior to the humerus: Biceps brachii, brachialis and cora-

cobracialis and the triceps muscle is located posterior to the humerus.

The average elbow joint is capable of 0◦ in extension and 146◦ in flexion.

Pronation and supination of the forearm have ranges of 71◦ and 84◦ respectively

[14].

Wrist

The wrist is connected to the elbow with the radius and ulna bones. A number

of muscles which extend along the radius and ulna, cause two wrist motions: wrist

FE and ulnar/radial deviation (URD) (Fig. 2.6). FE and URD are commonly

assumed to occur around two axes or rotation slightly offsetting one another.

Hence, wrist is considered to have 2 DOF. The wrist can be modelled as a saddle

joint [refer Fig. 2.6(a)]. Average ROM in the wrist are 73◦ in flexion, 71◦ in

extension, 19◦ in radial deviation, and 33◦ in ulna deviation [14].
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Power Grasp
Index Finger 

Extension
Medium Wrap

Lateral Pinch Precision Disk
Thumb Index 

Finger

Figure 2.7: Grasping patterns frequently used in ADL [17]

Hand

Most complicated component of the UL is the hand which consists of carpal,

metacarpal and phalangeal bones. Five metacarpal and 14 phalangeal bones form

the palm and fingers of the hand. Eight carpal bones form the wrist [16]. The

five digits (or fingers) of the hand are the thumb, index finger, middle finger, ring

finger and little finger. The fingers, cumulatively have 21 DOF. The hand being

a highly functional and important component of the human body, it is essential

in carrying out most of the ADL.

Hand is responsible for grasping and manipulating objects. In order to grasp

objects, the hand is capable of adapting into different forms which are referred to

as grasping patterns. In ADL there are few grasping patterns which are frequently

used. They are, medium wrap, index finger extension, power grasp, lateral pinch,

precision disk, and thumb-index finger [17]. Fig. 2.7 depicts these grasping

patterns.
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Figure 2.8: Kinematic structure of upper limb. Distance from shoulder to elbow
and elbow to wrist are extracted from [18], where 50th percentile data of men
were taken.

2.1.2 Kinematics of Upper Limb (UL)

Kinematics is the study of motion without considering the forces which cause

the motion. Kinematics plays an important role in analyzing bio-mechanics of

the UL. The UL can be modelled as a 7 DOF structure: 3 DOF at shoulder, 2

DOF at elbow, and 2 DOF at wrist. The hand acts as the end effector of the

kinematic chain. The kinematic structure of the UL is shown in Fig. 2.8. All

7 DOF of the UL can be represented using revolute joints. According to the

shoulder model, 3 DOF at shoulder can be represented as 3 revolute joints with

mutually perpendicular joint axes. Similarly, the motion of elbow and wrist joints

can be represented as 2 revolute joints each with mutually perpendicular axes.

The kinematcs of UL are analysed using the conventional Denavit-Hartenberg

(DH) convention [19]. The motion of end effector (hand) is represented with re-
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spect to (w.r.t.) the shoulder. Hence, shoulder acts as the base of the kinematic

chain. The coordinate frame attached to the base is frame 1 ([X1, Y 1, Z1]). Coor-

dinate frame 8 ([X8, Y 8, Z8]) is attached to the hand of the UL. Axes of rotation

of shoulder AAD, FE, and IER are Z1, Z2, and Z3 respectively. Similarly the

axes of rotation of elbow FE, SP, wrist URD, and wrist FE are Z4, Z5, Z6, and

Z7 respectively.

In DH convention, 4 link parameters are defined for a particular link between

two joints: θ, d, a, and α [20]. These parameters are substituted to the DH

matrix to derive the transformation from one joint to the other. The DH matrix

used to represent pose of j w.r.t. to j − 1, T j−1j is given in (2.1). In (2.1), cθ, sθ,

sα, and cα represents sin(θ), cos(θ), sin(α), and cos(α) respectively.

T j−1j =


cθ −sθcα sθsα acθ

sθ cθcα −cθsα αsθ

0 sα cα d

0 0 0 1

 (2.1)

The DH parameters: θ, d, a, and α are defined as follows (refer Fig. 2.9). θ is

the angle between xj−1 and xj axes about zj−1 axis. d is the distance from origin

of frame j − 1 to xj axis along zj−1 axis. a is the distance between zj−1 and zj

axes along xj axis. α is the angle from zj−1 to zj about xj axis.

The DH parameters for the human UL is given in Table 2.2. DH parame-

ters θ(θ1 to θ7) are the joint angles from shoulder to wrist in the same order

as coordinate frames (frame 1 to frame 7 in Fig. 2.8) are defined. Substitut-

ing these parameters in the DH matrix [refer (2.1)], transformation matrices

(T 1
2 , T

2
3 , T

3
4 , T

4
5 , T

5
6 , T

6
7 , and T 7

8 ) can be obtained.

The transformation from shoulder (base, frame 1) to the hand (end effector,

frame 8) can be stated as (2.2). Transformation matrix, T 1
8 gives the pose (posi-

tion and orientation) of the hand w.r.t. the shoulder.
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End Effector

Base

Figure 2.9: Definition of DH parameters. Parameters θj, dj, aj, and αj are
marked on the figure.

T 1
8 = T 1

2 × T 2
3 × T 3

4 × T 4
5 × T 5

6 × T 6
7 × T 7

8 (2.2)

2.2 Upper Limb (UL) Prostheses

UL prostheses are used to replace the missing part of the UL after an ampu-

tation. The UL performs a wide variety of tasks, from the delicate and complex

to the strong and forceful. An ideal UL prosthesis should be capable of doing all

of these. Unfortunately, current UL prostheses can not perform the tremendous

array of functions routinely done by our natural hands.

UL prostheses are designed and used for different levels of amputations such as

shoulder disarticulation, trans-humeral amputation, elbow disarticulation, trans-

radial amputation, wrist disarticulation, loss of partial hand, and loss of fingers.

Fig. 2.10 depicts the levels of amputations.
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Table 2.2: DH Parameters of human UL

Link θ d(mm) a(mm) α
1 θ1 0 0 π/2
2 θ2 0 0 π/2
3 θ3 304 0 π/2
4 θ4 0 0 −π/2
5 θ5 271 0 −π/2
6 θ6 0 5 −π/2
7 θ7 0 0 0

Trans-humeral 

Shoulder Disarticulation

Elbow Disarticulation

Trans-radial

Wrist Disarticulation

Loss of Partial Hand

Loss of Fingers

Figure 2.10: Levels of amputation. Amputation between shoulder and elbow
is referred to as trans-humeral amputation and amputation between elbow and
wrist is referred to as trans-radial amputation.

Moreover, prostheses can be categorized based on the way they are powered as

cosmetic prostheses, body powered prostheses, and externally powered prostheses.

The cosmetic prostheses are worn just for the appearance and body powered
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Figure 2.11: Overview of a prosthetic control system. Inputs to the system can
be biological signals from the amputee or any external sensors used. The inputs
are processed using the prosthetic controller to derive the prosthetic joint angles.

prostheses use wearer’s body power to operate. For example, a body powered UL

prosthesis can use the shoulder power of the amputee’s healthy limb to operate

the elbow, hand, and wrist using cables and mechanical locks [21]. Externally

powered prosthetic devices are powered by an external power source such as

batteries. Externally powered prostheses are the most functional among three

categories. different types of controllers are developed using different input signals

to control externally powered prostheses. These control systems are discussed in

the following section.

2.3 Upper Limb Prosthetic Control Systems

Controlling a device that has been developed to replace a missing body part is a

challenging task. Moreover, prostheses should be able to control according to the

wearer’s motion intention. Since biological signals carry information related to

the motion intentions of the wearer, biological signals such as Electromyography

(EMG) [10, 22], Electroencephalography (EEG) [23], and Electrocorticography

(ECoG) [24] are used to control prostheses. Theses inputs are processed using

a prosthetic controller to derive the prosthetic joint angles. Overview of a UL

prosthetic control system is shown in Fig. 2.11.

EEG signals can be used to extract motion intentions of the human from the

surface of the head [23]. ECoG uses electrodes placed on the surface of the brain
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(under the skull) to capture signals related to motion intentions [24]. Among

these biological signals, EMG is preferred by researchers due to its advantages

such as higher signal to noise ratio and ease of extraction [21, 22]. EMG signals

can be easily extracted from the muscles. However, amputations make muscles

unavailable for EMG signal extraction. For example, after a trans-humeral am-

putation, only parts of the biceps brachii and triceps brachii are available. All

other muscles below the point of amputation are lost.

Hence, prosthetic developers are experimenting with different combinations of

sensory signals and biological signals to achieve smooth and reliable control of

the prostheses.

2.3.1 Myoelectric (EMG) Signals

Human motion intentions are generated in the brain and transferred to the

muscles through the nervous system. EMG (Myoelectric) are the signals that

represent the current generated by the ionic flow across membranes of the muscle

fibers. Muscle fibers are in groups called Motor Units (MU) where the activation

of MU creates a Motor Unit Action Potential (MUAP). Continuous firing of

muscle fibers creates a Motor Unit Action Potential Train (MUAPT). EMG signal

is the summation of these MUAPTs (see Fig. 2.12).

EMG signals contain rich information regarding limb motions and can be used

to control prostheses. EMG signals can be extracted in two ways. In the first

method, surface electrodes are used to extract EMG signals non-invasively from

the surface of the muscles. These signals are referred to as surface EMG. Second

method is to extract EMG signals by inserting needle electrodes into the muscle

which is an invasive process. These EMG signals are called as intramuscular

EMG [25,26].
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Figure 2.12: EMG signal. Muscle fibers are in groups called Motor Units (MU)
where the activation of MU creates a Motor Unit Action Potential (MUAP).
Continuous firing of muscle fibers creates a Motor Unit Action Potential Train
(MUAPT). EMG signal is the summation of these MUAPTs.

2.3.2 Myoelectric Control Systems

Myoelectric control systems are based on EMG signals and first developed

in late 1950s and early 1960s [23]. Surface EMG is mostly used in myoelectric

control systems due to the fact that it can be easily extracted non invasively from

the surface of skin above muscles.

There are two types of myoelectric control systems: pattern recognition based

and non-pattern recognition based. Fig. 2.13. shows a pattern recognition based

myoelectric control system in which, the input signals are converted into output

commands using features. Features are extracted from a signal of small duration

which is called a segment. Moreover, features can be categorized into the domain

that they are being extracted from as time domain features, frequency domain

features, and time-frequency domain features [27]. Time domain features are the

most commonly used features in controlling prostheses. Some of the commonly

used features according to [28–30] are: root mean square (RMS), mean absolute
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Figure 2.13: Pattern recognition based myoelectric control system

value (MAV), MAV slope, zero crossings (ZC), slope sign changes (SSC), and

waveform length (WL). Refer Appendix A for details about these features. De-

pending on these features the segments are classified into different tasks using a

classifier and those tasks are used to control prostheses [27,31].

The classification can be done in 3 stages for better accuracy (see Fig. 2.14).

These stages are pre-processing, classification, and post-processing. Pre-processing

is performed in most cases to get rid of the curse of dimensionality where the clas-

sification error will increase with many features in few training samples. Principle

component analysis (PCA), linear discriminant analysis (LDA), and multiple dis-

criminant analysis (MDA) are the mostly used methods in preprocessing [32,33].

In classification, these inputs (feature vector) are classified into classes using ar-

tificial neural networks (ANN), Bayesian networks, LDA, fuzzy inference systems

(FIS) or fuzzy-neuro classifier [29]. Post-processing on these classified outputs are

performed to reduce misclassifications and increase classification accuracy. Post

processing techniques such as majority voting, moving average and fuzzy logic

have been used after classification for improved accuracy [34,35].

Non-pattern recognition based control systems do not use classification. Some

of the non-pattern recognition based control methods are proportional control,

onset analysis, and threshold control [27, 36]. As an example, in proportional

control, speed or torque of a prosthetic joint is determined to be proportional to
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Figure 2.14: Stages of classification. Classification of myoelectric signals can be
done in 3 stages for better results. These stages are pre-processing, classification,
and post-processing.

the amplitude of EMG signals [37]. In threshold control, output command is gen-

erated if amplitude of EMG signal is greater than a threshold [36]. Non-pattern

recognition based control algorithms are simple to implement compared to pat-

tern recognition based control algorithms, but the number of functions that can

be controlled are limited [27]. Behavior of non-pattern recognition based control

systems depends on characteristics of the data acquisition system, anatomy and

physiology of muscles, position of sensors on the skin and muscle fatigue [36]. It

is most effective to use non-pattern recognition based methods alongside pattern

recognition based control systems [27].

Both methods discussed above require the existence of muscles to extract EMG

signals, however as a result of amputation there are only few muscles available

to extract signals. In the case of trans-humeral amputation, all the forearm

muscles and part of the biceps brachii and triceps brachii are not available. In

order to control the prosthesis, the available muscle segments of biceps brachii,

triceps brachii and shoulder muscles are used. In most cases the prosthesis is

controlled using an agonist and antagonist muscle pair, such as biceps brachii

and triceps brachii. The user of prosthesis is capable of activating these muscles

with different intensities and patterns so that the prosthesis developers can take

this into account when developing prostheses. The different patterns of these two

muscle signals are used to achieve the required DOF [38]. However, this method

of controlling prosthesis requires higher amount of training to adapt to the system

and the user need to perform several contractions to get a single task done [38].
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Figure 2.15: EMG contraction levels used in [39].

A non-pattern recognition based myoelectric control system has been used to

control a prosthesis in [39] for a 9 year old girl with a trans-humeral amputa-

tion. Biceps brachii and Triceps brachii of the amputee has been used to control

two motions of the prosthesis: elbow FE and hand open/close. Two methods of

controlling were discussed: three-level method and contraction rate detection. In

three-level method, contraction level is used in controlling 2 motions where slight

contractions of muscle activate open/close of the hand and higher contractions

activate elbow FE (refer Fig. 2.15). In the second method, higher contraction

for a period of time (T ) which goes into level 3 activates elbow FE until EMG

level drops into level 1. In the same way if the contraction for the time period

T ended up in level 2, hand open/close is activated. [39]. In [40], elbow FE and

forearm SP of healthy humans are classified using a pattern recognition based my-

oelectric control system. Biceps brachii, medial head of triceps brachii, posterior

deltoid, anterior deltoid, middle deltoid, and clavicular pectoralis major were the

muscles used to extract surface EMG. Intramuscular electrodes were used to ex-

tract signals from brachialis (see Fig. 2.16). Four EMG features are used for the

classification: MAV, WL, ZC, and SSC. Time delayed artificial neural networks

(TDANN) have been used for the classification. A motion capture system has

been used to extract motions of the human UL. The algorithm is capable of pre-

dicting elbow FE and forearm SP motions simultaneous. This method resulted in

an average root mean square error (RMSE) of 11.6◦ for single joint motions and

13.4◦ for simultaneous joint motions. Antfolk et al. proposed a method which
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Figure 2.16: EMG electrode placement in [40]. Surface EMG signals are extracted
from Biceps brachii, medial head of triceps brachii, posterior deltoid, anterior
deltoid, middle deltoid, and clavicular pectoralis major. Intramuscular EMG
signals are extracted from brachialis. These EMG signals are used to classify
elbow FE and forearm SP

uses 16 myoelectric signals in a prosthesis designed for trans-radial amputees in

which, EMG electrodes were placed on superficial extensor muscles on dorsal side

and superficial flexor muscles on the volar side of the forearm [41] . The subject

could learn in less than 2 hours to perform intended tasks with the prosthesis.

The prosthesis is capable of performing power, lateral, and precision grips. Fin-

gers of the prosthesis were equipped with force sensors to provide feedback to the

user [41]. In [36], surface EMG signals from biceps brachii, triceps brachii, and

pectoralis major were used to control a prosthesis designed for trans-humeral am-

putees. Pattern recognition based control strategy has been used which uses an

autoregressive model and a neural network to extract features and classify. The

arm is capable of achieving wrist FE, forearm SP, and hand open/close. Accord-

ing to [30], the speed of opening and closing of the hand can be changed based on

EMG signals. Various motions of the arm and hand as well as combinations of

the motions are classified in this research. The study has been conducted using
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a classifier based on Bayesian theory and evaluated using amputees and non-

amputees. For non-amputees, 6 pairs of electrodes were used which were placed

2 cm distal to the elbow around the circumference of the forearm in an equidistant

manner. For amputees, eight pairs of electrodes were used which were placed on

the biceps brachii and triceps brachii. A motion classification system was sug-

gested in [42] for trans-radial amputees. It is capable of identifying 9 motions:

wrist flexion, wrist extension, ulnar deviation, radial deviation, forearm supina-

tion, forearm pronation, opening of fingers, closing of fingers, and relaxation.

Four EMG signals were used for the classification process. Furthermore, [8] has

used a self-correcting pattern recognition based method using a neural networks

to control an UL prosthesis. The self-correcting post-processing algorithm de-

tects potential erroneous classifications which in turn increases the classification

accuracy by 30 percent. [24] researched about the effects on a prosthetic hand

when changing its impedance. Both stiffness and damping could be changed in

a virtual environment. Adapting for different conditions of the hand was seen

to be increasing after incorporating impedance control. Farina et al. reviewed

simultaneous control of multiple DOF in UL prosthetic devices in [22]. [43] uses

a method based on quantum information processing for pattern recognition. Si-

multaneous movements of multiple DOF were simulated in a virtual environment.

Furthermore, authors discussed about the possibility of adapting the system or

classifying surface EMG. Details of the work discussed are summarized in Table

2.3.

Apart from above discussed methods there is a surgical procedure known as

targeted muscle re-innervation (TMR) for persons with low control input sites

(muscles) [44–46]. In TMR the nerve endings of the amputated limb section is

transferred onto a muscle where the activation level is low. For UL amputa-

tions, muscles at the chest are used in most cases (refer Fig. 2.17(a)) [44, 45].

The re-innervated muscles are used to extract EMG signals for the prosthesis

control (refer Fig. 2.17(b)). Further, the persons who undergo TMR can get

the sensations relevant to the missing limb from the surface of the re-innervated
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(a)

(b) (c)

Figure 2.17: Targeted Muscle Reinnervation (TMR). (a) Rewired Nerves, (b)
EMG Extraction, (c) Controlling a prosthesis with TMR [44]

muscles [47]. TMR has some risks associated due to the invasive surgery that

the amputee needs to undergo. They are permanent paralysis of the target mus-

cles, phantom limb pain, development of painful neuromas, and standard risks of

elective surgery. As a result amputees are reluctant to undergo TMR surgery.

2.3.3 Hybrid Myoelectric Control Systems

Due to unavailability of required number of muscle sites to extract EMG signals

and invasiveness of the TMR surgery hybrid control systems are developed. A

hybrid control system is where two or more control inputs are used to control

the prosthesis [48]. For example a hybrid myoelectric prosthesis can have EMG
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Hybrid 
Myoelectric 

Control Systems

EMG + External 
sensory inputs

EMG + Vision 
as an added 

sensor

EMG + other 
sensors

EMG + any 
other bio signals

EMG + other 
bio signals + 

sensory inputs

Figure 2.18: Categorization of hybrid myoelectric control systems

signal inputs and some other inputs such as foot pressure sensors, and switches.

which are used collaboratively to achieve the desired motions of the prosthesis.

Furthermore, some research activities are being carried out to fuse EMG signals

with EEG signals to design prosthetic controllers [49]. Hybrid myoelectric control

systems can be categorized into 3 (see Fig. 2.18). In the first category the EMG

signals are fused with other sensory inputs such as foot pressure sensors, IMU,

and switches to reinstate the lost functionality of the human limbs. Vision aided

myoelectric control systems are the latest addition to this category and discussed

in a separate section. In the second category the myoelectric signals can be fused

with any other biological signals such as EEG or ECoG. This field is still under

development and literature related to this category is limited. Under the third

category the EMG signals can be fused with bio signals and external sensory

inputs to build robust controllers and research related to this category needs

more improvements.

EMG + External Sensory Inputs

Boston elbow and Utah arm are commercially available prosthetic devices

which are equipped with hybrid myoelectric control systems falling under this

category. These devices use mechanical switches to switch between motions [28].

In these devices, the user needs to use the other hand or any other means to press
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Figure 2.19: ACHILLE interface used to control prostheses. The sensitive areas
are marked in the figure [50]. This device contains 4 sensitive areas and can be
worn inside a shoe.

the switches and activate different motions. ACHILLE [50] is a foot pressure sen-

sory wearable interface for prosthesis control which is shown in Fig. 2.19. This

device is equipped with 4 sensitive areas and can be worn inside a shoe. This is

an instrumented insole and it can wirelessly transmit the signals to a prosthetic

controller. Signals from these kind of devices combined with EMG signals can be

used to control a prosthesis. ACHILLE can be used even by an amputee who has

lost both hands to control a prosthetic device. Moreover, motion sensors such

as accelerometers or IMU can be used as an added devices to control a prosthe-

sis. The signals from the IMUs are combined with the EMG signals to achieve

the prosthesis motions in [51]. Eight EMG sensory inputs from muscles around

the forearm and two 3-axis accelerometer inputs fitted near brachioradialis and

biceps brachii has been used in a pattern recognition based control algorithm to

distinguish hand motions.
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Figure 2.20: Use of both EMG and EEG to control a trans-humeral prosthesis [49]

EMG + Any Other Bio Signals

Possibility of using EEG and EMG based hybrid control approaches have being

discussed in [49] for bio robotics applications which includes the control of pros-

thesis. They have drawn the conclusion that EEG and EMG combined control

systems can perform well compared to the control systems which are only based

on EEG or EMG alone. The combined system can be formed in two ways as

simultaneous and sequential in which the simultaneous control strategy outper-

forms. Furthermore, appropriate fusion of EMG and EEG signals can improve

the accuracy of the control system. An EMG and EEG combined prosthesis

controller is shown in Fig. 2.20.

EMG + Vision as An Added Sensor

Vision sensors can be used as an external input in order to control prostheses.

Need for vision sensors arise due to lack of capability in identifying the objects

that the prosthesis needs to grasp. Moreover, integrated vision systems can es-

timate the distance to the object, shape of the object and size of the object.

Natural limb is controlled through the nervous system which is connected with
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the human vision system including eyes. External vision systems can fill the gap

created by the loss of natural limb. Loss of natural limb breaks the link between

the humans natural vision system with the limb. Vision systems such as stereo

cameras, charge coupled devices (CCD), and complementary metal oxide semi-

conductor (CMOS) sensors can be integrated with prosthetic control systems.

One of the main functions required by a UL prosthesis is reaching towards an

object and grasping it. When considering vision-based reaching and grasping,

the first step is to identify and locate the target object. Secondly, the prosthesis

should be moved to an appropriate position to perform the grasp. Subsequently,

identification of how to grasp the object is necessary. Finally, the grasp is being

executed. According to [52], grasping can be classified into two: blind grasps and

visually guided grasps. In the former, the location of the object is determined.

Then the prosthesis is moved without any visual feedback. In the latter method,

a visual feedback loop is established. This method is named as visual servoing.

Visual servoing is more accurate than the blind grasps [52].

Number of cameras used is an important factor in designing a vision-based

control system. Use of multiple cameras improve accuracy, and depth sensing

can be achieved by using the stereoscopic vision of the cameras [53] however,

calibration is required. On the other hand, using a single camera reduces the

need of calibration drastically [52]. However, an additional depth sensing method

must be deployed such as laser or US depth sensor [53]. In [54], two cameras have

been used with a laser pointer for object recognition. It proposes a hat that

consists of two web cameras and a laser pointer which should be worn by the

user. The user points to the object with the laser pointer. The vision system

calculates the distance to the object from cameras by comparing the two images

taken by two cameras. Then it detects the object after a colour segmentation

process and comparing the segmented image with a set of images stored in a

database. The algorithm is depicted in Fig. 2.21. It also uses tactile sensors

which work alongside vision system to identify and recognize objects.
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Fig. 3 – Algorithm for object detection and grasp type identification. 

 

Laser detection starts with the image conversion from the YUV to the 
YCbCr color space for the easier detection of the red component. All pixels that 
meet the condition that their Y component and 1.5Cr-0.4Cb component 
subtraction is greater than the threshold which is 90% of maximum value in 
both terms are potential candidates. In order to reduce the impact of false 
detection (primarily as a consequence of reflecting surfaces that have large Y 
component), on pixels that have passed the first threshold additional 
morphological operations with hit&miss [5] algorithm is performed. Only group 
of pixels whose morphology is similar to imperfect dot will pass. 

Object detection is done by removing the background with the usage of 
color segmentation [6]. The candidates for the background are those pixels 
whose value of RGB component slightly differs from the median of the same. In 
this process the initial primitive of the original image, where the background is 
marked by ones and the rest are zeros, is obtained. The object of relevance 
extraction is done by filling the primitive with ones, starting with coordinates of 
the image where the laser is located and ending with pixels declared for 
background, and then subtracting the initial from the newly created primitive. 

Distance to chosen object marked by the laser beam is obtained by prior 
measurements of Euclidean distance, between pixels on the left and the right 

Figure 2.21: Object determination and grasp type identification algorithm used
in [54]

Cameras can be placed statically on a structure which does not move or

they can be mounted on a moving part such as the manipulator itself (eye-in-

hand) [52, 53]. Similarly, combination of these two methods can be used [53].

If cameras are mounted statically, the manipulator might occlude the targeted

object. Furthermore, camera to manipulator coordinate transformation has to

be calibrated [52]. Mounting the camera in the manipulator eliminates these

drawbacks, but introduces the problem of changing lighting conditions since

the amount of light received by the camera changes due to its position being

changed [52]. [53] employs LED illumination mounted on the hand to overcome

this problem.

Few vision based prosthesis controllers are reported in literature which are

listed in Table 2.4. Majority of research carried out by integrating vision sensors
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Figure 2.22: Control system architecture of [56]

to control upper limb prostheses are conducted to control trans-radial prostheses

[53–57]. In these, wrist and hand motions are performed with the aid of vision

[53,54,56] and in some of them EMG is used only as a trigger to open and close

the hand [55,56]. Only the orientation of hand is corrected in these prostheses to

reach towards an object of interest [53, 57]. This has been achieved by directly

calculating the required rotation angle from image data in [57], and using an

accelerometer in [53].

Dosen et al. used a web camera, US distance sensor and a laser pointer to

control a prosthetic hand along with an EMG interface [56]. The user should

move the arm so that the laser pointer is pointed to the target object. It can be

reliably identified by the camera. The prosthetic controller selects the grasp type

and the size based on target object. The control system architecture is shown in

Fig. 2.22 and the implementation of the control system is shown in Fig. 2.23. The

control system of [56] is named as Cognitive Vision System (CVS) which decides

the grasping pattern. It is a rule-based approach. After grasp types are decided

based on the size of the object, CVS generates control commands for the hand

control module, which in turn determines the appropriate finger positions and

forces required. The user issues commands with the EMG interface for opening

and closing the hand.
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Table 2.4: Vision based prosthetic controllers

Ref. Task Level DOF Sensors Cons Accuracy

[57]

Estimate grasping
pattern (4 types),
object size, and

orientation of the
object to control
prosthetic hand

accordingly.

TR
SP and
hand
DOF.

Web
camera, US

distance
sensor

Lack of
sensory

feedback.

Size
estimation
accuracy is
higher than

36%.

[55]

Grasp identification
(2 types) and

control of a bebionic
V2 hand prosthesis.

TR

Hand
DOF to
adapt
two

grasping
patterns.

Two
mechanomyo-

gram
(MMG)

sensors, web
camera.

Lack of
grasping
types.

Average
success rate

84.4%.

[53]

Estimate grasping
pattern (3 types),
object size, and

object orientation
to control a hand
prosthesis with
wrist rotator.

TR

Wrist
rotation
(SP) and

hand
DOF.

Web
camera, US

distance
sensor, Ac-
celerometer,

laser
pointer,

LED
illumination.

Lightning
is

unnatural
for a

prosthe-
sis.

Success rate,
With

lighting
90%,

Without
lighting

70%.

[56]

Select grasp type (4
types) and size (3

sizes). Triggers
using an EMG

signal.

TR
Hand
DOF

2 EMG
sensors, web
camera, US

distance
sensor, laser

pointer.

No closed
loop

(Look
and

move)
vision

control.

Correct type
and size

84%. Wrong
size, correct
type 3%.
Correct

type, large
size 3%.

[54]

Stationary fixed
stereo cameras are

used to estimate the
grasping pattern (4

types) for
Electrotherapy.

N/A N/A

Two CCD
cameras,

laser
pointer,

Stationary
cameras
are not
suitable

for
prosthesis
applica-
tions.

Higher than
90%.
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Figure 2.23: Implementation of control system in [56]

In [53], a camera, an US sensor and an accelerometer has been used to control

a trans-radial prosthesis. The camera and the accelerometer is turned on only

when the distance measured by the US depth sensor reaches a critical value (25

cm). The prosthetic controller estimates the shape and size of the object in

real time. Furthermore, it estimates the hand orientation relative to the object.

Based on this data, control signals are generated to control wrist rotator of the

prosthesis and actuators of the hand. Prosthetic hand can form three grasping

patterns: palmar, lateral, and precision. Signal processing algorithm used in the

trans-radial prosthesis is depicted in Fig. 2.24.

According to [53] and [54], using the laser pointer will not benefit when the

target object is of the same colour as that of laser. This will also happen when

the target object is very bright, reflective or transparent. [54], also suggests that

inconsistent backgrounds and shadows can disrupt proper object recognition. If

the visual data to be part of the feedback loop of the prosthetic control system, it

should track the target object as the limb moves. In order to track the object, [52]

suggests to use features corresponding to points on the perimeter of the object.

[53] extracts image contour to estimate its shape. [53] and [56] have estimated the

size of the target object taking distance to the object (obtained with the distance

sensor), length of the object’s short & long axes and focal length of the camera

as inputs. Types of grips are decided based on the size of the object [53,56].
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Figure 2.24: Signal processing algorithm used in [53]

37



Vision aided myoelectric control systems are considered as important since

it has the ability to see things that needs to be grasped. Vision can be used

in prosthesis for assisting grasp and taking feedback regarding the positions of

prosthetic limb segments. Grasping assist was possible since the vision sensors

can be equipped in the hand to see the object and path can be planned depending

on the vision feedback.

2.4 Reach-to-grasp Path Planning

Natural ULs are capable of providing necessary articulations to reach towards

an object when the human needs to grasp that object, which is known as reach-

to-grasp. Typically, a healthy human hand takes a straight line path with a bell

shaped velocity profile for reach-to-grasp motions [58, 59]. Moreover, the human

hand follows a similar path when pointing at an object. In order to obtain

human-like motions in prostheses, the prosthetic hand should be able to follow a

human-like path.

Majority of trans-humeral prosthetic controllers tend to control the prosthesis

at joint level rather than at task level. However, a few task level prosthetic

controllers can also be found in literature. In [60], several tasks are associated with

stump arm kinematics, where the tasks and prosthetic movements are predefined.

However, upper limb motions required for the same task may vary from person

to person. Furthermore, a person can perform the same task with different upper

limb motions. For example, reaching towards the mobile phone on a table with

the intention of grasping. In this, the phone placement and the current position

of the person can change from time to time, which requires different movements

of the UL to perform the task.

Furthermore, if a person wants to grasp an object, the human hand should be

moved closer to the object from the current position. The human hand normally

takes a straight line path from the current position to the destination position

where the object is placed. In order to have this functionality in trans-humeral
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prostheses, the hand of the prosthesis should be capable of taking on a reference

path which is straight line if the points on the path are kinematically feasible. The

reference path is created from the current position of the hand to the destination

position (object position).

The methods that are found in literature for path planning has been developed

for manipulators where the kinematics from base to the end effector are known

[61–63]. Moreover, each and every DOF of manipulators is controllable. When

considering trans-humeral prostheses, it can be treated as a manipulator fitted on

a base. Stump arm is acting as the base where the base movements are not known-

a-priori. Furthermore, the prosthetic controller is not capable of controlling the

stump arm.

2.5 Summary

Loss of part of the UL makes people unable to perform most of the ADL.

In order to regain the lost functionality externally powered UL prostheses are

developed. These prostheses are controlled using biological signals such as EMG,

EEG, and ECoG. EMG is preferred due to high signal to noise ration and ease

of extracting.

Two methods of EMG based control systems can be found: pattern recognition

based and non-pattern recognition based. Pattern recognition based algorithms

for different limb motion classifications have led to promising results in prosthetic

control. Among them time domain features are the mostly used features due to

the fact that they are able to perform well compared to the complexity and the

computing power that is being demanded. According to the literature the EMG

only controllers are not able to classify the motions in full accuracy. As the level of

amputation increases the classification becomes difficult because the EMG signals

also vanish. This problem was addressed using TMR and were able to control

prosthetic limbs with a reasonable level of accuracy. However, TMR includes an

invasive surgical procedure and it has some risks associated with it.
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In order to overcome the drawbacks of EMG only control systems and TMR,

hybrid myoelectric control systems were developed. In hybrid myoelectric con-

trol systems, different sensory inputs are used in combination with EMG signals.

Among them foot pressure sensors and mechanical switches are the easy to imple-

ment reliable methods. However, these types of control systems have drawback of

complexity and the user of the prosthesis needs to press switches or foot against

floor to perform the required task which is quite unnatural. Fusion of sensory

inputs has a long way to go in order to reach the capabilities of natural limb.

Vision aided myoelectric control systems are considered as important since

it has the ability to see things that needs to be grasped. Vision can be used

in prostheses for assisting grasp and taking feedback regarding the positions of

the prosthetic limb segments. Grasping assistance was possible since the vision

sensors can be fixed in the hand to see the object and path can be planned

depending on the vision feedback. Currently developed vision aided prosthetic

control systems are for trans-radial prostheses.

Reach-to-grasp motions are performed to reach towards an object with the

intention of grasping that object. Natural UL takes a straight line path towards

the object with a bell shaped velocity profile if there are no any obstacles in

the path. Giving path planning capability to perform reach-to-grasp motions is

required to progress task level prosthetic controller development for trans-humeral

prostheses.

Path planning of a trans-humeral prosthesis to perform reach-to-grasp motions

requires hand to be moved closer to the object and to correct the orientation of

hand according to the user intention. In order to achieve this vision signals

and EMG signals should be integrated. Moreover, new algorithms should be

developed in order to follow the path towards the object of interest compensation

shoulder motions as shoulder motions are solely performed by the wearer.
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Chapter 3

THE TRANS-HUMERAL PROSTHESIS USED TO EVAL-

UATE THE PATH PLANING METHOD

This chapter explains the simulation environment and the prosthesis that has

been used for experimental evaluation of path planning algorithms. 3 DOF at

the shoulder joint prevails after a trans-humeral amputation. The latter 4 DOF

of elbow and wrist along with DOF at the hand are lost and replaced by the

prosthesis.

3.1 Design Criteria for the Trans-humeral Prosthesis

It is evident that existing trans-humeral prostheses are hardly able to achieve

required DOF [64, 65]. Therefore, a prosthesis with simultaneously working ma-

jor UL motions while having the relevant anthropometric aspects is required to

achieve human-like motions. However, almost all the available trans-humeral

prostheses do not include two wrist motions at the same time. Furthermore, the

natural UL has a axis shift between two wrist motions which can be hardly seen

in UL prostheses. If one of the motions are absent the shoulder or the remaining

motions are required to perform the missing motion.

When designing a prosthesis, weight is a crucial factor. Overweighted pros-

theses limit the ROM and cause musculo-skeletal disorders. Thus, the weight

of a prosthesis should be similar or lesser compared to the human UL. The UL
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Figure 3.1: Major components of The prosthetic arm

of a human with a weight of 75kg weighs around 3kg [66]. Moreover, length of

the forearm should be according to the anthropometry. Length of the forearm

of a grown man is 27.1 cm according to [18] considering the 50th percentile data.

Though the fact remains as such, due to the components added to achieve the

required motions, it is difficult to keep up according to the anthropomorphic

data. Hence, keeping the co-relation between the functions of prosthesis and the

anthropometry has become a challenging task.

3.2 Design of the Trans-humeral Prosthesis

As a solution, a 5 DOF prosthesis has been designed. It has a novel 2 DOF

wrist which has a axes shift between two wrist motions. Moreover, it can achieve

full ROM similar to a human UL. Furthermore, prosthesis is fabricated consider-

ing the weight. Major components of the design are shown in Fig. 3.1.

3.2.1 Elbow

The design of the elbow is shown in Fig. 3.2. A brushless DC (BLDC) motor

(EC 4 Pole, Maxon motors) is used to initiate the rotary motion of the elbow.

BLDC is fixed to the elbow housing. Elbow housing can be connected to the

stump arm of the amputee. The BLDC motor is connected to a harmonic drive

gear box (100:1) through a spur gear pair (ratio 1:1). The output of the harmonic
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Figure 3.2: 3D Model of elbow assembly

drive gear box is coupled with the elbow shaft through a spur gear pair with a

gear ratio of 23:16. The elbow shaft holding plate is rigidly attached to the elbow

housing. The elbow shaft is supported by elbow shaft holding plates with the aid

of two bearings. Elbow shaft can rotate relative to the Elbow shaft holding plates.

The forearm connecting plates [see Fig. 3.3(a)] rigidly connects with elbow shaft

so that the part 1 of forearm assembly can rotate relative to the elbow assembly.

Thus the elbow FE motion is achieved.

3.2.2 Forearm

The forearm design of the prosthesis is shown in Fig. 3.3. Forearm motor

(DCX22S, Maxon motors) is used to generate the forearm SP motion. The fore-

arm motor is fixed to the forearm wheel and the forearm wheel is fixed to forearm

connecting plates. Output shaft of the DC motor is connected to the internal gear

using a spur gear attached to the motor shaft. The internal gear is rigidly fixed to

the forearm base wheel to enable the forearm SP motion. Forearm base wheel is

placed inside the forearm wheel. In order to support the relative motion between

two wheels, a needle roller bearing is used. Needle roller bearing is press fitted
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Figure 3.3: 3D Model of forearm assembly, (a) part 1, (b) part 2

to the forearm wheel and base wheel is press fitted to the needle roller bearing.

Forearm base plate is connected to the forearm base wheel. The forearm base

plate can rotate with the forearm base wheel and achieve the relative motion

between two forearm parts [in Fig. 3.3, (a) and (b)]. Forearm bars have been

used to connect the forearm base plate to the wrist connecting plate.

3.2.3 Wrist

UR motor (DCX22S, Maxon Motors) of the wrist (see Fig. 3.4(a)) is connected

through the wrist connecting plate. A bevel gear pair rigidly attached to the

output shaft of UR motor and URD shaft enables the URD motion. Bevel gear

attached to the output shaft of the UR motor transmits rotary motion generated

by the UR motor to the URD shaft through the bevel gear attached to the URD

shaft. This mechanism gives the flexibility to the design adjusting the distance

between two perpendicular axes of wrist motions. Wrist of the prosthesis has a 20

mm shift between these two axes [see Fig. 3.4(b)]. L brackets are rigidly attached

to the wrist connecting plate. URD shaft is supported by L brackets with two
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Figure 3.4: Wrist of the prosthesis. (a) 3D model of wrist assembly, (b) Wrist
design. It can achieve 2 DOF wrist motions while maintaining a 20mm axis shift
between wrist URD and wrist FE motions.

bearings. Hence, the URD shaft can rotate relative to the L brackets. Shape

of the UR connecting plates are designed to achieve the full range of motion of

URD. U bracket is connected to the wrist FE motor (DCX22S, Maxon Motors)

to achieve the wrist FE motion. One end of the U bracket is connected to the

wrist FE motor shaft. Other end of the U bracket is supported with a bearing.

U bracket enables the connection to the prosthetic wrist.

3.2.4 Hand

The hand (see Fig. 3.5) comprises of a hand base which enables the connection

with the U bracket of the wrist. A DC motor is located inside the hand. A screw

is fixed coaxially with the DC motor shaft. A ball which moves along the screw is

fit to the fingers (thumb and index finger). When the DC motor starts rotating,

thumb and index fingers are pushed apart or towards each-other due to the ball

and screw mechanism [67]. A force sensor is attached to the thumb to detect

and limit the grasping force. A limit switch is used th detect the full open of the

hand.
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Figure 3.5: Prosthetic hand

3.3 Simulation of the Trans-humeral Prosthesis

In most circumstances, evaluation of control algorithms of prostheses are car-

ried out in actual prostheses or prototype of prostheses. However, this limits the

capability of developing a control algorithm if the required hardware is not avail-

able. Even if the hardware is available, a considerable amount of time will have

to spent on setting up for the evaluation. Therefore, this simulation environment

is proposed to simulate trans-humeral prosthetic control algorithms.

The simulation environment is implemented using V-REP [68]. V-REP is a

robot simulator which can be used to build simulation environments. External

inputs such as IMU sensory inputs, inputs from a camera, and EMG signals can

be fed into V-REP. [21,26,69].

The simulation environment consist of a trans-humeral prosthesis and a virtual

shoulder joint. The virtual shoulder joint can mimic human shoulder motions

using an IMU attached to the stump arm of an amputee. IMU is a sensor consist

of an accelerometer and a gyroscope. The accelerometer is capable of capturing

the instantaneous translational accelerations applied on all 3 axes. The gyroscope

is capable of capturing instantaneous angular velocities around 3 axes. These

accelerations and angular velocities are used to calculate the rotation angles of

the human shoulder joint.

46



Shoulder

2 DOF
Elbow

2 DOF

Wrist

2 DOF
Hand

Figure 3.6: Prosthesis model used in simulation environment. The prosthesis has
5 DOF and it has been fitted to the end of a virtual shoulder.

The simulation environment is used to verify the ranges of motions and kine-

matics of the design before moving into the fabrication of the hardware. Moreover,

this simulation environment is used to simulate trans-humeral prosthetic control

algorithms without an amputee.

3.3.1 Development of the Simulation Environment

Simulation environment is developed using several components. First the pros-

thesis model is developed in the V-REP using the design of a prosthesis. The

3D model of the prosthesis is converted into STL files and imported into V-REP.

Later, the model is built inside V-REP by adding revolute joints where necessary.

Furthermore, a virtual shoulder joint is added to the prosthesis.

The virtual shoulder joint is modelled using 3 revolute joints as shown in Fig.

3.7(a), elbow FE as a revolute joint [Fig. 3.7(b)], forearm SP as a revolute joint

[Fig. 3.7(c)], and wrist FE & wrist URD as two revolute joints [Fig. 3.7(d)]. The

virtual shoulder is controlled according to the stump arm motions of an amputee

through the IMU. IMU can be attached to the stump arm of an amputee. The

developed prosthesis model is shown in Fig. 3.6.

Shoulder AAD is implemented as a revolute joint using a cylinder and a cube

[see Fig. 3.7(a)] after the cube shoulder FE is implemented as a revolute joint

using the cube and another cylinder. At the bottom of the second cylinder,
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Figure 3.7: DOF at each joint of the simulator (joint axes are shown in orange
colour) (a) Shoulder joint, (b) Elbow joint, (c) Forearm SP, (d) Wrist joint

shoulder IER is implemented as a revolute joint. The drive train of the elbow

FE is included adjoining to the shoulder IER. A revolute joint is inserted to get

the elbow FE as per Fig. 3.7(b). Furthermore, the forearm SP is implemented

as a revolute joint after the elbow FE [see Fig. 3.7(c)]. The forearm is modelled

as a link between elbow and wrist. At the bottom of the forearm, wrist joint is

implemented. After a revolute joint for URD at the distal end of the forearm

link, wrist FE is implemented as shown in Fig. 3.7(d).

After developing the simulation model in V-REP, control algorithms are im-

plemented as embedded scripts in V-REP using LUA (a programming language

used by V-REP). Since the shoulder joint is preserved in a trans-humeral am-

putee, the shoulder joint motions are mapped into the simulation environment

through the IMU (MPU 6050). Control inputs of the shoulder are fed into the

simulation environment using a micro-controller (ATmega2560, Atmel) through

serial communication (RS232). The setup is shown in Fig. 3.8. The IMU can

be placed on the stump arm of the amputee. The shoulder AAD and shoulder

FE can be controlled through this setup. The angle data is calculated using the

accelerometer and the gyroscope present in IMU. A complementary filter [refer
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Figure 3.8: Shoulder controller. Natural human shoulder angles are extracted us-
ing the IMU and fed into the simulation environment through a micro-controller.

(3.1)] is implemented inside the micro-controller to calculate the resultant angle

for both shoulder AAD and shoulder FE.

Acn = K(Apn + Agn × δt) + (1−K)(Aan) (3.1)

where Acn, Apn, Agn, δt, Aan, and K are current angle of shoulder AAD (n = x)

or shoulder FE (n = y), previous angle of shoulder AAD or shoulder FE, angular

rate from gyroscope for shoulder AAD or shoulder FE, sample time of IMU, angle

calculated from accelerometer for shoulder AAD or shoulder FE, and a constant

between 0 and 1 respectively. K is selected as 0.98.

Angle calculated from accelerometer, Aan(n = x, y) is given as follows.

Aax = tan−1

(
ax√

ay2 + az2

)
(3.2)

where Aax, ax , ay , and az are angle calculated from accelerometer for x-axis,

acceleration along x-axis, acceleration along y-axis, and acceleration along z-axis

respectively. Similarly Aay can be calculated.

The resultant angles calculated as per (3.1) is sent to the simulation environ-

ment (V-REP) through the micro-controller.

PID controllers are implemented inside the simulation environment to con-

trol shoulder AAD and shoulder FE joints. PID controllers are implemented

in a threaded child script. The respective joints are set to motion mode. The

49



Figure 3.9: UI used to control joints from elbow to wrist

implemented PID controller calculates respective velocities for those two joints.

V-REP can rotate these joints at a given set velocity. Hence, the shoulder joints

of the simulation environment are rotated according to the stump arm motions

extracted thorough IMU. Script limits the maximum and minimum angles that

each joint can rotate.

Rest of the joints from elbow to wrist are also set to motion mode. The joints

are fed with the respective joint velocity. A user interface (UI) is developed for

those four joints. The UI can turn those joints up to the specified joint limits.

The UI is shown in Fig. 3.9. In UI the 4 sliders are available for the 4 joints of

the prosthesis. The joints are controlled using PID controllers as in (3.3) where

the sliders provide the desired joint angles. The PID controllers for these joints

are implemented inside a non-threaded child script.

Furthermore, calculated joint angles from other control algorithms can be used

as inputs instead of the slider inputs from UI. These joint angles can be specified

inside the child script. Moreover, the simulation environment can be used as a

base for developing sensor based control algorithms by adding sensors and placing

them on the prosthetic arm model using the V-REP’s build in sensor database.

EMG or any other biological signal can be fed into the simulation environment

through serial communication or any other method preferred by the developer.
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Figure 3.10: Simulation results of shoulder FE and shoulder AAD

3.3.2 Simulation Results of the Prosthesis

Several simulations were carried out on the developed simulation environment

to evaluate its effectiveness. First, the modelled shoulder joint and its controller

was evaluated. Input angles for the shoulder are given as a sine wave and the

outputs were recorded. Results show (refer Fig. 3.10) that the implemented

controller is capable of effectively following the input angles. Remaining joint

controllers are evaluated for different angle combinations which are fed through

the sliders in UI (see Fig. 3.9). The results are shown in Fig. 3.11. According

to the results, the simulator can effectively generate required joint angles fed

through the UI.
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Figure 3.12: Trans-humeral prosthetic arm. The prosthetic arm has 5 DOF: elboe
FE, forearm SP, wrist FE, wrist URD, and compound motion of hand. Fabricated
prosthesis weighs 3.2kg.

It is evident that the simulation of prosthetic control algorithms can be done

almost with the fed joint angles be reflected in the output, in contrast this is

difficult to achieve in a hardware prosthesis. Moreover, simulation environment

verified the effectiveness of the proposed design.

3.4 Fabrication of the 5 DOF Trans-humeral Prosthesis

The manufactured prosthesis is a right arm trans-humeral prosthesis. In order

to perform human-like motions, it has 5 DOF: Elbow FE, forearm SP, wrist FE,

URD and compound motion of the hand. The prosthesis is shown in Fig. 3.12.

Most of the components of the prosthesis are built using Aluminum considering

the high strength to weight ratio. Gear wheels of the elbow are fabricated using

cast iron since elbow requires high torques and applies high dynamic tooth loads

on the gear wheels. Fabricated prosthesis weighs 3.2kg. The prosthesis weight is

almost similar to that of a human UL.

3.4.1 Prosthetic Controller

Connection diagram of the components (sensors, actuators, and controllers) of

the prosthesis is shown in Fig. 3.13. The prosthesis consists of 5 motors: one

BLDC, three DC motors with encoders, and one DC motor without an encoder.

The BLDC is controlled through a BLDC controller (EPOS2, Maxon Motors).
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It is used to actuate elbow FE. Three DC motors with encoders are used to

actuate forearm SP, wrist FE, and wrist URD. DC motor without an encoder is

used to actuate the hand. All 4 DC motors are controlled using H-bridge motor

controllers (L298). BLDC controller can be directly connected to a personal

computer (PC). BLDC controller communicates serially (RS232) with the PC.

DC motors are controlled through micro-controllers (ATmega2560, Atmel). Three

micro-controllers are used. DC motors with encoders are connected to these three

micro-controllers. DC motor without an encoder is connected to one of the micro-

controllers. Micro-controllers are communicating with the PC serially (RS232).

BLDC controller has its own position controllers build-in. Hence, it requires

only the joint angles to be sent using the PC. DC motors with encoders are

controlled using proportional-Integral-Derivative (PID) controllers implemented

at micro-controllers. Joint angles are sent to the micro-controllers using the PC.

PID controllers are implemented as (3.3).

Sj = Kp × Ep +Ki × Ei +Kd × Ed (3.3)

where, Sj, Kp, Ki, Kd, Ep, Ei, and Ed are joint command, proportional gain,

integral gain, differential gain, proportional error, integral error and differential

error respectively. Joint commands are given as pulse width modulation (PWM)

outputs of micro-controller. These PWM signals are sent to the H-bridge motor

controllers and to the motors subsequently.

Ep = AD − AA (3.4)

where, AD and AA are desired angle and actual angle (current angle of the

joint) respectively.
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Figure 3.13: Interconnection of components of the prosthesis. Prosthesis consists
of 5 actuators to achieve 5 DOF: BLDC and 4 DC motors. 3 DC motors are
equipped with encoders. 2 sensors are equipped inside the hand: limit switch
and a force sensor. 3 micro-controllers and a BLDC controller has been used to
provide control commands to the actuators.

Ei = Ei(t− 1) + Ep (3.5)

where, Ei(t− 1) is previous integral error.
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Algorithm 1 Hand Operation Algorithm

1: OC ← Place holder for hand open or close state
2: Limit ← Place holder for limit switch state
3: force ← variable for force sensor value
4: Thresh ← force threshold
5: if OC = Open then
6: if limit = 1 then
7: stop
8: else
9: hand open

10: else
11: if force > Thresh then
12: stop
13: else
14: hand close

Ed = Ep(t) + Ep(t− 1) (3.6)

where, Ep(t) and Ep(t − 1) are current proportional error and previous pro-

portional error respectively.

Hand is operated using the hand DC motor, a limit switch, and a force sensor

attached to the thumb. The “hand open” and “hand close” commands are sent

by the PC to the micro-controller. The control algorithm is implemented on

the micro-controller as depicted in Algorithm 1. “Hand open” will open the hand

until it hits the limit switch. The “hand close” will close the hand until a specified

force threshold is detected by the force sensor.

3.4.2 Experimental Validation of The Prosthesis

The prosthetic limb was evaluated for its effectiveness and usability. Joint

angle response of low level PID controllers were evaluated. A sinusoidal wave is

generated through micro-controllers as the desired motion to the PID controllers

of the DC motors. Sinusoidal input and encoder feedback (output motion) values

are collected using the micro-controller.
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Figure 3.14: Motion output of the SP motor to a desired motion input

Table 3.1: Range of motions comparison of actual arm and prosthesis

Range (deg) Range (deg)
Motion Human Limb Prosthesis

Elbow Flexion/Extension 0 - 145 0 - 150
Supination/Pronation -85 - 70 -85 - 70

Wrist Flexion/Extension -70 - 70 -60 - 60
Wrist Ulnar/Radial deviation -35 - 20 -27 - 25

Fig. 3.14 and Fig. 3.15 depicts the output responses of the motors for forearm

SP, wrist FE and wrist URD motions. In each graph it can be seen that output

motions do not reach the peak of the desired motions since the ROM of prosthesis

are limited to the values as shown in Table 3.1.

A comparison of experimentally obtained ROM of the prosthesis and ROM of

human arm [66] is given in Table 3.1.
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Figure 3.15: Motion output of the wrist. (a) Motion output of the wrist FE
motor to a desired motion input (b) Motion output of the wrist UR motor to a
desired motion input

3.5 Kinematics of the Stump Arm and the Prosthesis

The kinematic model of the prosthesis (excluding the hand) along with the

stump arm is depicted in Fig. 3.16. The kinematics have been analyzed using

conventional Denavit-Hartenberg (DH) parameters [19]. Table. 3.2 depicts the

DH parameters related to the kinematic model. In Table. 3.2, q1 to q3 represent

the joint angles of the stump arm and q4 to q7 represent the joint angles of the

prosthesis.

Link 1 to Link 3 of Table. 3.2 is related to the stump arm and is used to derive

transformation from shoulder (frame 1) to elbow (frame 4), T she . Transformation

from elbow (frame 4) to hand (frame 8), T ep of the prosthesis is derived using Link

4 to Link 7. Furthermore, the transformation from shoulder (frame 1) to hand

(frame 8) is stated in (3.7).
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Table 3.2: DH parameters

Link θ d a α
1 q1 0 0 π/2
2 π/2− q2 0 0 π/2
3 π + q3 ls 0 π/2
4 −q4 0 l2 −π/2
5 π/2 + q5 l1 0 −π/2
6 −π/2− q6 l3 l4 −π/2
7 −t5 − q7 0 le 0
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Figure 3.16: Kinematic model of stump arm and trans-humeral prosthesis, (a)
Simulation environment, (b) Fabricated prosthesis, (c) Kinematic model

T shp = T she × T ep (3.7)

where, T shp , T she , and T ep are transformation matrix from shoulder to hand,

transformation matrix from shoulder to elbow, and transformation matrix from

elbow to hand respectively.
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3.6 Summary

This chapter proposed a 5 DOF trans-humeral prosthesis which can mimic

human motions and a simulation environment to simulate control algorithms of

trans-humeral prosthesis. The prosthesis design consist of a novel 2 DOF wrist

mechanism which has a axis offset as well.

simulation environment comprised of a virtual model of the trans-humeral

prosthesis and a virtual shoulder joint. The virtual shoulder joint can mimic the

human stump arm motions with the aid of an IMU. PID controllers are imple-

mented to control joints of the prosthesis and the virtual shoulder. Simulation

environment demonstrated effective results for the shoulder joint control through

an IMU and remaining joints are controlled using the UI. Prosthetic control algo-

rithms can easily be tested on the simulation environment. Use of this simulation

environment can be extended for other types of prostheses.

The 5 DOF prosthesis has been fabricated and experimentally verified. The

prosthesis can achieve slightly below ROM compared to a human UL in elbow

FE, forearm SP, wrist URD and wrist FE. Prosthesis weighs about 3.2kg which

is similar to a grown human’s UL.

Moreover, the kinamatic analysis of the prosthesis and stump arm was carried

out. The kinematics were analyzed using conventional DH parameters.
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Chapter 4

REACH-TO-GRASP PATH PLANNING BASED ON A

2-1/2D METHOD OF VISUAL SERVOING

This chapter proposes a reach-to-grasp path planning method for trans-humeral

prostheses which can reach towards objects of interest according to the wearers

intention. The proposed path planning method uses a 2-1/2D visual servoing

module (VSM) to plan reaching (reach-to-grasp) motions. Visual servoing is the

use of feedback from a vision sensor (camera) to control the motion of a robot.

Visual servoing can be performed in two ways: position based visual servoing

(PBVS or 3D) and image based visual servoing (IBVS or 2D). These two meth-

ods can be combined to avoid drawbacks of each method and resulted in 2-1/2D

visual servoing.

An object reaching algorithm is proposed along with the VSM to control the

elbow FE to drive the hand towards the object of interest. The VSM is integrated

with an EMG based module (EBM). The EBM is used to control elbow FE based

on a novel EMG-force proportional and moment balance model (EFPMB). EMG

is the signals extracted from the muscles which carry motion intentions of the

subject. EMG can be extracted by inserting a needle into the musce (iEMG) or

plcing a sensor on top of the surface of the muscle (sEMG). sEMG is preffered

by researchers due to the non invasive extraction procedure.

Since elbow FE has two angular inputs from EBM and VSM, two modules

are integrated to achieve a resultant angle for the elbow FE to reach towards the

object of interest while keeping the user controllability.
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Figure 4.1: Forces acting on the forearm. Tendon extending from biceps brachii
is connected to the radius bone. It is almost perpendicular to the radius bone.
Tendon extending from triceps brachii is connected to the ulnar bone and slides
around the elbow joint

4.1 EMG Based Module (EBM)

EFPMB model is proposed to generate elbow motion according to the motion

intention of the prosthesis user.

It is assumed that significant portions of biceps brachii and triceps brachii

are available after a trans-humeral amputation and the EMG signals generated

from amputated muscles can be considered as equivalent to that of a healthy

person [70,71].

Since, the force generated during an isometric contraction is proportional to the

EMG signal generated in the respective muscle [72,73], root mean square (RMS)

of EMG signals generated in each muscle is assumed to be directly proportional

to the force (tension) generated by the muscle assuming that the user performs

elbow motions at a slower phase. The forces acting on the forearm is modeled as

shown in Fig. 4.1. Hence, the elbow angle can be stated as follows.

By considering the balance of moments around elbow axis as per the forearm

model which is given in Fig. 4.1,

62



TBlB = τ + TT lT +WlW sin(θ) (4.1)

where, τ , TB, TT , W , lB, lT , lW , and θ are torque applied on elbow joint, force

generated by biceps brachii, force generated by triceps brachii, weight of the

forearm, perpendicular distance to TB from elbow axis, perpendicular distance

to TT from elbow axis, distance to W from elbow axis, and current elbow angle

respectively. (4.1) can be rearranged as follows,

Iα = TBlB − TT lT −WlW sin(θ) (4.2)

where,

τ = Iα (4.3)

where, α and I are angular acceleration and moment of inertia of the forearm

respectively.

When discretizing (4.2), α can be stated as shown in (4.4),

α = δθ/(δT )2 (4.4)

Hence, by discretizing (4.2),

δθ =
TBlB − TT lT −WlW sin(θ)

I
× (δT )2 (4.5)

where, δθ and δT are elbow angle changes produced by the EFPMB and sample

time respectively.

Assuming EMG RMS is proportional to the force generated by the muscles,
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TB = M1EB (4.6)

TT = M2ET (4.7)

where, EB , ET , M1 and M2 are EMG RMS of biceps brachii, EMG RMS

of triceps brachii, and proportional constant for biceps brachii, and proportional

constant for triceps brachii respectively. Force generated by the biceps brachii is

taken as M1EB. The RMS is taken for a sample size of 100, sampled at 2000 Hz.

Since I, δT , W , and lW are constant and lB, lT can be assumed to be constant

around 90◦ of elbow angle, (4.5) can be stated as,

δθ = K1EB −K2ET −K3sin(θ) (4.8)

where, K1, K2, and K3 are proportional constants as given below,

K1 =
M1lB(δT )2

I
(4.9)

K2 =
M2lT (δT )2

I
(4.10)

K3 =
WlW (δT )2

I
(4.11)

The elbow angle, θ produced by the EFPMB is,

θ(t) = θ(t−1) + δθ (4.12)
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where, θ(t−1) and θ(t) are previous elbow angle and elbow angle produced by

EFPMB respectively.

4.2 Visual Servoing Module (VSM)

The proposed VSM uses the eye-in-hand camera configuration, where the cam-

era is fitted on to the palm or the end effector of the robotic prosthesis. The

reach-to-grasp path planning method is developed using the 2-1/2D VSM. The

proposed method is capable of altering the orientation of the prosthesis to match

with the target object orientation while reaching towards the object. The VSM

consists of an image based visual servoing system (IBVS), a position based visual

servoing system (PBVS), and a object reaching algorithm.

In order to map image features into the end effector velocity of prosthesis, a

transformation matrix is used in IBVS. This matrix is known as Image Jacobian

matrix. From the end effector of the prosthesis (Cartesian space) to its joint space

the inverse kinematics (IK) can be derived. Fig. 4.2 depicts the IBVS process.

IK of the prosthesis is derived using an artificial neural network (ANN) [74,75].

ANN is used as it can be trained for the workspace that the robot can reach.

Hence, ANN based IK will result in joint angles which are achievable and within

joint limits. Moreover, conventional methods such as robot Jacobian may produce

joint angles that the robot cannot achieve due to singularities present and the

joint limits [76]. This is very critical for prosthesis applications since some human

joints have limited angular ranges compared to a robot with same DOF.

The visual servoing process used in this study is as follows.

Velocity of the object (Ṗ ) with respect to camera frame can be expressed as

given in (4.13) (Refer Fig. 4.2).
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Figure 4.2: Image based visual servoing process. Image features captured us-
ing the camera are transformed into the cartesian space using image jacobian.
Cartesian space to the robot joints are the inverse kinematics of the robot

Ṗ = ω × P + V (4.13)

where P , ω, and V are position of the object, angular velocity of point P , and

translational velocity of point P respectively. (4.13) can be expanded as follows,


ẋ

ẏ

ż

 =


z.ωy − y.ωz
x.ωz − z.ωx
y.ωx − x.ωy

+


Vx

Vy

Vz

 (4.14)

where [x, y, z]T , [ωx, ωy, ωz]
T , and [Vx, Vy, Vz]

T are point P , angular velocity of

P , and translational velocity of P respectively.

The projection of P onto image plane is taken as PI = [u, v] (refer Fig. 4.3).

From equations of similar triangles,

x =
uz

λ
(4.15)

y =
vz

λ
(4.16)

where, λ is the focal length of the camera. By substituting (4.15) and (4.16)

into (4.14),
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Figure 4.3: Perspective projection. Projection of an object in 3D space onto the
camera plane. Image coordinates, (u,v) are extracted from the captured image
and object position, (x,y,z) is the actual position of the object with respect to
the Camera

[u̇, v̇]T = J [Vx, Vy, Vz, ωx, ωy, ωz]
T (4.17)

where,

J =


λ
z

0 −u
z

−uv
z

(λ2u2)
λ

−u

0 λ
z

−v
z

−(λ2+v2)
λ

uv
λ

u

 (4.18)

J is known as the Image Jacobian. This Image Jacobian can be used for point

to point image features in a monocular camera configuration [77]. As per (4.17),

Image Jacobian relates differential changes of end effector position (velocity) and

differential changes of images features. Jacobian, J requires the focal length (λ,

a fixed parameter of the camera) and distance to the object from the camera, z

for the calculation. z is measured using an US sensor attached to the palm of the

prosthesis. Inverse of the Jacobian matrix can be used to estimate the desired

end effector velocity (or position) from the image features. If Jacobian matrix

is non-invertible, pseudo inverse is used [78]. The control law can be stated as

follows,
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q̇ = −KJ+e(f) (4.19)

where, q̇ ,K, J+, and e(f) are end effector velocity screw ([Vx, Vy, Vz, ωx, ωy, ωz]
T ),

a constant gain, pseudo inverse of Jacobian, and feature error respectively. e(f)

can be given as (4.20).

e(f) = fc − fd (4.20)

where, fc and fd are current and desired image features respectively. Cur-

rent image features are the coordinates of centroid of the object. Desired image

features are the center coordinates of the image frame.

The desired pose q(t) = [x, y, z, α, β, γ]T of the end effector (hand) is calculated

according to (4.21) using q̇ obtained from (4.19).

q(t) = q(t−1) + q̇ × δT (4.21)

where, q(t), q(t−1), and δT are desired pose, current pose, and sample time

respectively.

Aforementioned pose is to move the end effector so that the object is in the

middle of the image frame. Nevertheless, the end effector needs to align with the

object, so that the object can be grasped by the hand of the prosthesis (see Fig.

4.4). This is achieved by combining the IBVS with the PBVS to come up with

a 2-1/2D VSM. The required angle of rotation along the main axis of camera is

calculated using the image. The desired pose of the end effector is transformed

from the angle derived, along the camera axis [refer Fig. 4.5 and (4.22)].

q̂ = q(t) × T (4.22)
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Figure 4.4: Misaligned object. The object needs to be aligned with the hand to
grasp the object properly

+θ
-θ

Figure 4.5: Misaligned object as seen by camera. Two images of the object as
seen by the camera with the misaligned angle, θ marked on the images

where, q̂ and T are pose after transformation and transformation matrix along

the image axis by misaligned angle, θ respectively. The sign convention of θ is

indicated in Fig. 4.5. Transformation along image axis (Z axis) can be stated as

follows.

T =


cos(θ) −sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1

 (4.23)

The desired joint angles required to achieve the pose, q̂ is derived using the

ANN. The pose, q̂ of the end effector is fed into the ANN to calculate desired

joint angles. The VSM without the object reaching algorithm is shown in Fig.

4.6.
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Figure 4.6: Visual servoing module. Coordinates of the centroid of object and
center coordinates of the image are fed into the IBVS, which gives the hand pose
required to center the object in the image frame. Orientation of the hand is
corrected by the PBVS

The ANN is implemented as shown in Fig. 4.7. It consists of three layers:

input layer, hidden layer, and output layer. Input layer consists of six input

neurons to input the pose. ANN consists of 100 hidden neurons and 4 output

neurons. Four output neurons outputs joint angles of robotic prosthesis in the

following order: elbow FE, forearm SP, wrist URD, and wrist FE. Activation

function in input and output layers are set to linear and in hidden layer it is set

to sigmoid. Supervised back-propagation learning method is used to train the

ANN using a data set generated using the kinematic model of robotic prosthesis.

Several prosthesis joint angle combinations are generated by changing each and

every joint by 10◦ intervals. Then the forward kinematics of these joint angle

combinations are taken using the kinematic model. Pose generated by forward

kinematics are used as inputs and respective joint angle combinations are used

as outputs to train the ANN. Calculated joint angles from ANN are sent to the

prosthesis.
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Figure 4.7: Artificial Neural Network (ANN) used for the Inverse Kinematics
(IK)

The above method is capable of getting the object into the middle of the image

plane and correct the orientation according to the position and orientation of the

hand. However, prosthetic hand may not be able to reach towards the object while

keeping the object in the middle of the image plane. In this regard elbow can

be treated as the joint which most contributes in making the object closer to the

hand. Thus an object reaching algorithm is introduced to adjust the elbow angle.

The object reaching algorithm is shown in Algorithm 2. It measures the distance

to object by rotating it in one direction, if the resultant distance is lower than the

previous distance, further rotation towards that direction is performed. Moreover,

if the resultant distance is greater than the previous distance, rotation in other

direction is performed. These rotations are performed only if the difference in

distances are above a specified threshold.

4.3 Integration of VSM and EBM

The overall path planning method of the prosthesis is shown in Fig. 4.8. The

path planning method is built-up integrating the EBM and VSM. The EBM is

initially used to move the prosthesis elbow joint according to the human motion

intention. A voluntary isometric contraction in biceps brachii and triceps brachii

is used to trigger the VSM. The VSM starts servoing towards the object if an
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Algorithm 2 Object Reaching Algorithm

1: state = True ← place holder for two different states
2: Zto = 0 ← variable for old distance
3: Zt = 0 ← variable for distance
4: Dist = 0 ← variable for difference in distance
5: Ang ← Elbow Angle
6: L ← Proportional Constant
7: loop:
8: while Zt <= 50 do
9: Visual Servoing

10: Zto = Zt
11: Zt ← Measured Depth from US sensor
12: Dist = Zt - Zto
13: if Dist > 0 then
14: state = !state
15: else
16: state = state
17: if state == True then
18: Ang -= ( L x Dist )
19: else
20: Ang += ( L x Dist )

object is detected. The joints of prosthesis are controlled using the VSM. How-

ever, the elbow has two input angles from the EBM and the VSM. Therefore,

a fusing filter is implemented as given in Algorithm 3 to control the prosthesis

elbow. If the difference of two elbow angles produced by two modules (EBM

and VSM) are above the changing threshold (Th), the fusion fusing filter goes

into the stepping mode. In stepping mode, the elbow angle changes towards the

angle derived from EBM in N steps. However, If the filter is not in the stepping

mode the final elbow angle will take the angle from EBM. Both EBM and VSM

calculations are running at 50ms intervals (20Hz). N and Th can be set based

on the user experience.

4.4 Experimental Validation of the Path Planning Method

Experiments are carried out to validate the proposed path planning method.

The EBM is evaluated using the fabricated prosthesis. The VSM and the fusion

filter are evaluated using the simulation environment.

72



Algorithm 3 Fusion Filter

1: state = True ← Place Holder for the VSM state
2: n = 1 ← Variable for incrementing from 1 to N
3: D = 0 ← Variable for difference between two elbow angles
4: Th ← Changing Threshold
5: N ← No of steps
6: AngEFE ← Calculated Elbow angle
7: AngV S ← Elbow angle from VSM
8: AngEMG ← Elbow angle from EBM
9: D = AngV S − AngEMG

10: loop:
11: while state = True do
12: if |D| > Th then
13: n = 1
14: else
15: AngEFE = AngV S −Dn/N
16: if n < N then
17: n += 1
18: else
19: n = N

If EMG 

signal is
received

If Object is 
detected by the 

camera

EBM

VSM with object
reachching algorithm

Prosthetic
Controller

T

FF

T

Prosthesis

Figure 4.8: Overall path planning method of the prosthesis. Initially the elbow
FE of the prosthesis is controlled with the EBM. When an object is detected by
the camera and the EMG signal is received to reach towards the object VSM with
object reaching algorithm activates and converges towards the object

4.4.1 Experimental Setup

The experimental setup is shown in Fig. 4.9. It consists of the fabricated

prosthesis, EMG acquisition system (Bagnoli 16, Delsys), a personal Computer
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Figure 4.9: Experimental setup

(PC), IMU, and angle measuring device. The PC used has a 7th generation intel

i7 processor, 16GB of RAM, nvidia quadro graphics card, and a 240 GB SSD.

EMG acquisition system is used to extract surface EMG signals from biceps

brachii and triceps brachii of 8 healthy subjects. Two single differential EMG

sensors are attached to the skin surface above biceps brachii and triceps brachii.

Sensors are connected to the EMG amplifier through the input box. Amplified

EMG signals are transmitted to the PC through a data acquisition (DAQ) card

(NI-6220, National Instruments) and processed according to EBM. These signals

are sampled at 2000Hz and band pass filtered to be within 50Hz to 450Hz. The

resultant elbow FE angle is calculated in a Matlab script according to EBM.

The calculated elbow FE angle is fed into the prosthesis using a microcontroller

(ATmega2560, Atmel) where the low level joint controllers are implemented. PC

communicates serially (RS232) with the microcontroller at the prosthesis. EBM

experiments are conducted on a real-time basis and subjects are asked to perform

elbow FE motion without moving the shoulder. Elbow FE angles of the subject

and the prosthesis are recorded with two angle measuring devices. These angle

measuring devices are equipped with potentiometers and data are recorded using

a microcontroller (ATmega2560, Atmel).

In simulations, the joint angles calculated in Matlab are fed into the simulation

environment through remote Application Program Interface (API) functionality

of V-REP. A virtual camera attached to the palm of the prosthesis is used to

identify the target object. Images obtained from the camera are processed using

an OpenCV based filter. The filter is capable of detecting objects and returning
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Figure 4.10: Detected two points for angle calculation. A bounding rectangle
around the detected object is created and two points at the middle of the short
edges of the bounding rectangle are selected
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Figure 4.11: Calculation of angle, θ. Point at the top is selected by comparing v1
and v2. Hence the misaligned angle is calculated

the centroid image coordinates of the object. These centroid coordinates are

processed according to (4.19) and (4.21).

The orientation correction process is performed immediately after visual ser-

voing using the IBVS. The misaligned angle, θ is found by identifying two points

in the image. These two points are at the two distal ends of the detected object.

Those are the center points of the short edges of the constructed bounding rect-

angle (refer Fig. 4.10). The angle, θ is given as depicted in Fig. 4.11. This angle

is used to calculate the desired pose, q using (4.22).

Moreover, the fusion filter is also evaluated using the simulation environment.

resultant elbow angle calculated from the EBM is fused with the VSM using the

fusion filter. The parameters N and Th are found using an user study.
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4.4.2 Experiments and Results

The first experiment is conducted to evaluate the ANN used for the IK of the

prosthesis. 1000 random combinations of joint angles are used for the experiment.

Joint angle combinations are used to calculate the pose of the end effector using

the kinematic model of the prosthesis. The poses are used as inputs to the

ANN. Calculated joint angles from the ANN is compared with the original joint

angles. Experimental procedure is shown in Fig. 4.12. The ANN was able to

predict angles with a mean square error (MSE) less than 0.06. The results of

the ANN based IK is depicted in Table 4.1. The MSE of angles are 0.0078,

0.0443, 0.0566, and 0.0444 for elbow flexion/extension, supination/pronation,

wrist flexion/extension, and ulnar/radial deviation respectively. The MSE of

position and orientation are 0.1731, 0.1115, 0.0572, 0.0.0439, 0.0751, and 0.0991

for x-coordinates, y-coordinates, z-coordinates, angle around x-axis (α), angle

around y-axis (β), and angle around z-axis (γ) respectively.

Moreover, the ANN method of IK has been compared with other methods

of obtaining IK. Damped least squares (DLS) method, which is based on robot

Jacobian inversion and an optimization method based on inertia-point (IP) al-

gorithm has been used for the comparison. The results are shown in Table. 4.2.

Experiment is conducted for 100 poses within the reachable workspace. ANN

method outperforms for the application on a prosthesis since it has no effect from

singularities present due to trained pose that may result. Moreover, DLS and op-

timization methods try to find a pose which minimizes the error, which may find

a local minima at joint limits and stuck there. Furthermore DLS and optimiza-

tion methods resists shifting from one IK solution to other whereas ANN method

outputs a solution based on the trained workspace. ANN can perform an IK

calculation within 50ms, whereas other two methods are more time consuming.

Secondly the EBM is evaluated. Fig. 4.13 shows the prosthesis and human

angle variation for 3 subjects. In Fig. 4.13, (a1) and (a2) represents the same
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Figure 4.12: Experimental procedure for ANN based Inverse Kinematics (IK)

Table 4.1: Results of ANN based Inverse Kinematics (IK)

Parameter MSE Average Error Maximum Error
q1 0.008219 0.000166 0.456126
q2 0.049166 -0.01161 0.665428
q3 0.057372 -0.01048 1.681989
q4 0.048098 0.019348 1.858260
x 0.192884 0.007915 2.389031
y 0.134373 0.012536 1.849927
z 0.062545 0.005552 1.155758
α 0.054377 -0.01048 0.995110
β 0.150753 -0.01519 2.325238
γ 0.154540 0.010858 3.023294

Table 4.2: Comparison of Inverse Kinematics (IK) methods

Algorithm RMS Error of Position Average Time Taken
ANN 1.65 mm 43 ms
IP Optimization 20.35 mm 59 ms
DLS 88.97 mm 127 ms

result. However, (a1) represents the real-time variation of the elbow angles, in

(a2) the prosthesis angle is shifted to the left to match the human elbow angle

eliminating the lag. Table 4.3 represents the RMSE, the shifted time or the

time lag, and the RMSE after correcting the time lag. Mean row in Table 4.3

shows the mean values for 3 subjects. The prosthesis follows the desired motion of

elbow with an RMSE of 10.87 degrees and percentage error of 7.44% (10.87/146).

However, minor lagging behind the actual human limb can be observed due to the

processing time incurred and also it takes 50ms to capture signals from the onset
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Table 4.3: Summary of EBM performance

Subject RMSE (Deg) Time Shift (ms) RMSE after shift (Deg)
a 24.27 400 11.50
b 28.66 420 10.23
c 29.74 360 10.87

Mean 27.56 393 10.87

of motion. According to literature, a time lag of 300ms is acceptable for real-time

operation [27]. Hence, a time lag of 393ms is acceptable and an amputee may

get used to this small time lag as he/she uses the prosthesis.

In the third experiment, the IBVS is evaluated. A spherical object is randomly

placed on the workspace making it visible to the camera. The convergence of the

object towards the center of the image frame is observed while changing the

shoulder angles from the IMU. The results are shown in Fig. 4.14. It can be seen

from the results that the object moves out from the center of the image when

shoulder angles are changed. The IBVS corrects prosthesis angles so that the

object converges toward the center again. However, the IBVS alone cannot make

the hand reach toward the object. Distance to the object (z) does not reduced

to make the object closer to the hand.

In the fourth experiment, the IBVS with object reaching algorithm is evalu-

ated. The convergence of the hand towards the object is observed. The results

are shown in Fig. 4.15. It can be seen from Fig. 4.15 that the object converges

towards the center of the image frame when the visual servoing is performed.

Moreover, the object reaching algorithm makes the distance to the object mini-

mum by changing the elbow angle as visual servoing is performed. In this process

the distance to object (z) is reduced from S1 to S2 time interval [Refer Fig.

4.15(b)]. The elbow FE angle variation from S1 to S2 time interval to achieve

this distance reduction can be seen in Fig. 4.15(c). From S2 time point onwards,

the distance to object (z) is further reduced by changing the shoulder angles. The

process where prosthetic hand reaches towards the object of interest by changing
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Figure 4.14: Reach-to-grasp path planning using IBVS, (a) Shoulder angle vari-
ation, (b) Image coordinates and distance to the object variation, and (c) Pros-
thesis joint angle variation

the elbow angle is depicted in Fig. 4.16. z reduces even below 50mm with the

help of object reaching algorithm. The experiment is repeated for 10 different

object positions. Hand paths for 3 of the object positions are shown in Fig. 4.17.

Distance to the object from the hand at the end of visual servoing is 18mm,

23mm, and 28mm respectively for 3 paths shown in Fig. 4.17. As per the paths,

the hand converges towards the object of interest with the aid of object reach-
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Figure 4.15: Reach-to-grasp path planning using IBVS with object reaching al-
gorithm, (a) Shoulder angel variation, (b) Image coordinates and distance to the
object variation, and (c) Prosthesis joint angle variation

ing algorithm. The paths are smooth without any sudden changes despite some

curvatures.

Fifth experiment is the evaluation of PBVS. Only the PBVS is implemented

and the resultant image features (position of the centroid and misaligned angle)

are recorded. Results are shown in Fig. 4.18. At the beginning, a cylindrical
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Figure 4.16: Reach towards the object of interest by changing the elbow angle
using object reaching algorithm
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Figure 4.17: Hand trajectories for 3 different object positions when reach-to-grasp
path planning with object reaching algorithm

object misaligned by −10◦ is placed on the workspace. Fig. 4.18 shows that the

proposed PBVS is capable of correcting the hand orientation so that the object

is properly aligned. The PBVS can correct the misaligned angle effectively while

keeping the object to the center of the image.

Sixth experiment is carried out to evaluate the overall VSM for reach-to-grasp

motions of the prosthesis. The orientation of the object is changed between −10◦

and 10◦ while changing the shoulder angles from IMU. The resultant joint angles

from the VSM and the image features are recorded along with the orientation of

the object and the shoulder angles. Object reaching algorithm is omitted since

it may converge the hand towards the object, preventing further visual servoing.

Results are shown in Fig. 4.19. The PBVS corrects the orientation soon after

visual servoing is performed using IBVS. Orientation correction process causes

the object to move out from the center which is then corrected by the IBVS in

the next iteration. The results indicate that the proposed path planning method

is capable of correcting the orientation of the object effectively. Moreover, the

object stays within the middle of the image plane.
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Figure 4.18: Correcting hand orientation using PBVS. (a) shows the misaligned
angle and (b) shows the image coordinate variation as PBVS is performed

In the last experiment, the integration of VSM and EBM is evaluated. Two

elbow FE angles from two modules are used as inputs to the fusing filter. A

user study is conducted to decide on the number of steps, N and the changing

threshold, Th for the fusion filter. US1, the first user study is conducted to find

the changing threshold, Th. US2, the second user study is conducted to find the

number of steps, N . The study is conducted using 20 subjects. In US1, changing

threshold is set to different values and users are given the chance to select the

best alternative for them. Users are asked to select the minimum elbow angle

when the prosthesis is not required to follow the angle derived from the EBM.

The results of US1 is shown in Table. 4.4. In US2, the number of steps, N is set

to different values and the subjects are asked to select the best option for them.

The subjects are asked to perform a higher elbow angle variation and the fusion
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Figure 4.19: Reach-to-grasp path planning using overall VSM, (a) Shoulder angle
variation, (b) Object orientation as seen by the camera, (c) image coordinate
variation, and (d) Prosthesis joint angle variation
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Figure 4.20: Resultant elbow FE angle obtained from integrating elbow FE angles
derived from VSM and EBM

Table 4.4: Responses of User Study 1

Th (Deg) No of Responses
4 1
6 2
8 3
10 8
12 4
14 2

filter changes the elbow angle towards the angle derived from the EBM based on

the selected N . The responses are given in Table 4.5. According to the users’

responses N and Th are selected, they are 5 and 10◦ respectively.

The results of the fusion filter are shown in Fig. 4.20. According to the re-

sults, elbow angle follows the VSM. However, when EBM produces angles varying

slowly, the elbow angle follows the EBM. Nevertheless, if the EBM produces a

sudden angle variation, only a part of that (1/N) is reflected in the final elbow

angle. If the EBM angle variation persists, the fusing filter drives the elbow angle

towards the angle derived from EBM in N steps.
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Table 4.5: Responses of User Study 2

N No of Responses
2 1
3 2
4 4
5 7
6 3
7 2
8 1

4.5 Summary

This chapter proposed a vision based reach-to-grasp path planning method for

trans-humeral prostheses. The proposed path planning method is capable of con-

trolling the elbow of the prosthesis with EMG signals using the proposed EFPMB

model. Furthermore, it used a 2-1/2D VSM to center the object relative to the

prosthesis hand while aligning the hand with orientation of the object. An object

reaching algorithm is proposed for the elbow joint to reach the prosthesis hand

towards the object while reducing the distance to the object. Visual servoing

is performed with the aid of an ANN based IK calculator. The ANN produces

promising results for IK of the aforementioned 4 DOF prosthesis with a MSE of

less than 0.06 in joint angles. Experimental results validated the effectiveness of

the proposed vision based path planning method. Additionally, the path plan-

ning method was capable of converging towards the object while maintaining the

controllability through human motion intention. When the human elbow angle

was slowly changed, the prosthesis elbow followed the EBM. However, the angle

produced by EBM does not directly affect the prosthesis elbow angle if EBM

produces a high difference in angles.
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Chapter 5

REACH-TO-GRASP PATH PLANNING BASED ON PATH

TRACKING METHODS

The method discussed in the previous chapter helps the prosthetic hand to

move towards the object, yet the path towards the object is not a straight line.

In order to obtain human-like motions in prostheses, the prosthetic hand should

be able to follow a straight line path with a bell shaped velocity profile. As a

solution, this chapter proposes an improvement to the previous path planning

method which makes the paths taken by the prosthesis straight line. The pro-

posed method is based on two path tracking methods which are capable of taking

the prosthetic hand on a straight line path.

First, the human motions are analyzed to validate the straight line nature of

the human paths. Later the human like reach-to-grasp path planning method is

proposed. The path planning method consists of a path generation module and

a path tracking module. Path generation module generates a path towards the

object of interest. Path tracking module carries the prosthetic hand on the gen-

erated path compensating shoulder motions as the shoulder motions are entirely

performed by the wearer of the prosthesis.

5.1 Human Reach-to-grasp Motion Analysis

This study is conducted in order to understand how a natural UL performs

reach-to-grasp motions. According to literature, the human hand moves in a

straight line path with a bell shaped velocity profile [58,59].
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Figure 5.1: Capturing human motion while performing a reaching motion

Five human subject are asked to perform a motion towards a point in the

space and the data are recorded. Several markers are attached to the hand,

elbow, and shoulder of the UL of human subjects (see Fig. 5.1). The motions

are recorded using a camera and analyzed using Kinovia: an open source motion

analysis software. During the analysis, marker positions are tracked and recorded.

Recorded marker position of the hand is used to derive the hand path and velocity

profile.

The resultant paths for 3 attempts are shown in Fig. 5.2 with their velocity

profiles. The straight line nature of these paths and end point errors (EPE) are

shown in Table. 5.1. Straight line nature is given as the RMSE between the path

taken by the hand and the fitted trend line to the path. The Mean RMSE for

the paths was 3.1mm. As per the results, human subjects are almost straight

line with a bell shaped velocity profile. These results are used to evaluate the

performance of the proposed path tracking methods.
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Figure 5.2: Human path taken by 3 subjects, (a) Path taken by subject 1, (b)
Path taken by subject 3, and (c) Path taken by subject 4.

Table 5.1: Straight line nature of the paths taken by human hand

Person RMSE EPE (mm)
1 1.05 1.65
2 2.42 2.36
3 2.68 2.24
4 6.37 7.68
5 2.99 3.44

Mean 3.10 3.47

5.2 Proposed Reach-to-grasp Path Planning Method

The proposed path planning method consists of two modules: Path generation

module and path tracking module. Path generation module generates a path

from the current position of the hand to the destination position of the hand.

Path tracking module follows the generated path to reach the destination. The

destination position of the hand is the position of the object which needs to be

grasped.
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Figure 5.3: Proposed path generation module

5.2.1 Path Generation Module

In the path generation module, the object is located first. An IBVS algorithm

is used to locate the object. After locating the object, current hand position w.r.t.

the shoulder (base) is calculated using the kinematic model of the prosthesis and

stump arm. Next, the object position w.r.t. the hand is derived. Object position

w.r.t. the shoulder is calculated using transformation matrices. Finally, a path

from the current position of the hand to the destination position is created. The

proposed path generation module is shown in Fig. 5.3

Locating The Object

The prosthesis is set to a neutral position with following joint angles: Elbow

FE:- 120 deg., SP:- 30 deg., UR:- 0 deg., and wrist FE:- -20 deg. These joint angles

are selected to have the maximum visibility of the objects on a table (Refer Fig.

5.4). Moreover, the wearer can perform shoulder motions which improves the

visibility of the objects on the table. Objects are positioned on the table. A

camera is fitted on the hand of the prosthesis. Moreover, an US sensor is fitted

closer to the camera to measure the distance to the object (refer Fig. 5.5). The
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Figure 5.4: Initial position of the prosthesis

Camera
US Sensor

Camera View

𝑓𝑐
𝑓𝑑

Figure 5.5: Attachment of camera and US sensor to the prosthesis

IBVS is used to locate the object and center the detected object relative to the

hand.

Red coloured objects are used to eliminate the burden on image processing.

The camera can detect the object on the table and return the center coordinates

(fc) of the detected object. An OpenCV based filter is used to detect the object.

The image coordinate error that moves the object to the center of the image plane

can be stated as (5.1).

e(f) = fc − fd (5.1)

where, e(f) and fd are image coordinate error and desired image coordinates
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respectively. The desired image coordinates (fd) are the center coordinates of the

image plane (Refer Fig. 5.5).

These image coordinate errors [e(f)] are used to calculate the difference in

hand pose (q̇) required to center the object in image plane. The control law can

be stated as follows.

q̇ = KJ+e(f) (5.2)

where, K and J+ are proportional constant and pseudo inverse of the image

jacobian respectively. The derivation of image jacobian can be found in chapter

4 [refer (4.18)].

The required hand pose to center the object in the image plane is calculated

according to (5.3).

q(t) = q(t−1) + q̇ × δt (5.3)

where, q(t), q(t−1), and δt are the required hand pose, current hand pose, and

sample time respectively.

The joint angles needs to achieve the required hand pose (q(t)) are the IK of

the prosthesis for the required pose. IK is calculated using the ANN proposed in

chapter 4. The IBVS process is continued iteratively until the object gets to the

center with a tolerance of 1/3 in both image axes.

After moving the object to the center of the image plane, the IBVS stops.

The image coordinates of the object center and the distance to the object at this

instance is used to derive the object position w.r.t. the hand.
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Calculating Hand Position (Starting Point)

The prosthetic hand position w.r.t. the shoulder (base) is calculated after the

IBVS process is completed. This is the starting point of the path where the hand

starts to move towards the object from this point onwards. The current shoulder

angles of the stump arm are captured using the IMU attached to the stump arm.

The shoulder angle capturing process is explained in detail in Chapter 3 (Section

3.2.1).

Using the current shoulder angles, position of the end of the stump arm w.r.t.

the shoulder (base) is calculated by using the kinematic model of the stump arm.

Prosthetic joint angles after the completion of IBVS process is used to calculate

the prosthetic hand position w.r.t. the end of the stump arm. The position of the

prosthetic hand w.r.t. the shoulder (Ts) is calculated using these two positions.

Calculating Object/Destination Position (End Point)

Perspective projection has been used to derive the object position w.r.t. the

prosthetic hand. According to Fig. 4.3, camera can see the object, P (x, y, z).

The projection of the object onto the camera frame is I(u, v). By equations of

similar triangles,

x =
uz

λ
(5.4)

y =
vz

λ
(5.5)

where z and λ are distance to the object and focal length of the camera re-

spectively. z, is measured using the US sensor and λ is a fixed parameter for the

camera. Hence, the object position w.r.t. the prosthesis hand is [x, y, z]. The ob-

ject position w.r.t. the shoulder (base) can be calculated as (5.6). The positions
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Prosthesis

Figure 5.6: Experimental setup used to evaluate the path generation module -
Plan view. Three objects: a bottle, a pen, and a mobile phone are placed on a
table on 16 different positions from A1 to D4 (one by one placed on one position
at a time). Path generation module create paths from the neutral position of the
hand to the destination (object) position using the inputs from the camera and
the US sensor fitted on the palm of the prosthesis.

are given as transformation matrices and required positions are extracted from

these transformation matrices.

Te = Ts × [x, y, z, 1]T (5.6)

These two positions (Te and Ts) are used to generate the path, from starting

position (Ts) to the destination position (Te). The generated path is sent to the

path tracking module.
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Experimental Evaluation of the Path Generation Module

Path generation capability of the path generation module is experimentally

evaluated using the simulation environment. Three objects are placed on a table

in 16 different positions. The paths are generated for these object positions from

the neutral position of the hand. The experimental setup is shown in Fig 5.6. The

objects used are a pen, a water bottle, and a mobile phone which are commonly

available on a working table. Moreover, the objects are placed in 16 different

positions from A1 to D4 which are circled in yellow colour in Fig. 5.6.

The starting and destination positions of the paths are found using the pro-

posed method. The distance between the found destination positions and the

nearest points on the surface of the objects are recorded using the simulation

environment. These distances are depicted in Table. 5.2. As per the results, the

predicted points are close to the objects with a mean less than 20mm. However,

as the object size increases the distance error becomes minimum. After the hand

reaches towards the object with a distance error less than 20mm, grasp planning

and grasping can be done. Grasping and grasp planning are outside of the scope

of this thesis.

The start and end positions of the paths generated by the path generation

module for the mobile phone is depicted in Table 5.3. Object placement column

shows where the mobile phone is actually placed. All positions are given relative

to the shoulder (base). The end position will be a point on the surface rather

than the centroid of the object. Hence, the comparison needs to be done allowing

for tolerances for the object size. The tolerances are x− axis: +/-3.65, y− axis:

+/-33.65, and z − axis:+/-69.05. According to the results, the end positions of

the paths are almost similar to the position of the object with some variations

along x− axis. This can be due to errors in measuring distance to the object (z)

using the US sensor.
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Table 5.2: Distance between detected positions and the object surface

Position Phone (mm) Pen (mm) Bottle (mm)
1D 14.8 02.9 3.3
2D 02.4 02.1 1.6
3D 07.9 00.3 6.2
4D 03.6 - -
1C 00.5 21.9 9.3
2C 07.8 16.5 7.7
3C 06.1 20.7 4.3
4C 01.1 15.5 2.8
1B 24.3 16.8 9.2
2B 12.4 17.0 7.9
3B 03.9 20.3 9.7
4B 07.0 39.4 7.3
1A 24.3 18.1 5.4
2A 18.7 18.7 6.9
3A 13.9 17.3 6.5
4A 12.8 25.8 0.3

Mean 10.09 16.88 5.89
SD 07.64 09.76 02.88

5.2.2 Path Tracking Module

The generated paths are tracked using a path tracking module. Two path

tracking algorithms are proposed in this study: spatial path following method

and MPC based path tracking method. These two methods are discussed in the

subsequent sections.

5.3 Spatial Path Following Method

The prosthesis needs to synchronize with shoulder motions in order for the

hand of the prosthesis to follow a given path. The shoulder motions are solely

performed by the wearer. Based on the shoulder motions and the path that needs

to be followed, respective poses of the prosthesis w.r.t. the end of stump arm

(elbow) is derived. The prosthetic joint angles are calculated based on the derived
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Table 5.3: Paths Generated by the path generator for mobile phone

Start End Object Placement
x y z x y z x y z

1D 59.35 70.95 -286.25 254.22 137.50 -327.09 237.25 125 -325
2D 86.35 35.02 -290.60 236.52 0.450 -326.49 237.25 0 -325
3D 120.92 -15.83 -304.35 226.12 -112.81 -321.90 237.25 -125 -325
4D 135.54 -34.90 -303.64 230.50 -220.54 -317.45 237.25 -250 -325
1C 51.51 66.38 -291.94 240.49 132.52 -441.13 237.25 125 -450
2C 83.46 53.32 -294.81 248.89 -9.77 -443.69 237.25 0 -450
3C 97.84 8.16 -297.65 247.12 -130.04 -440.67 237.25 -125 -450
4C 118.87 -15.21 -301.16 238.82 -244.82 -436.89 237.25 -250 -450
1B 34.23 77.86 -289.29 209.89 121.13 -529.57 237.25 125 -575
2B 60.36 62.61 -287.08 221.78 15.59 -525.31 237.25 0 -575
3B 89.29 49.60 -278.89 245.08 -129.78 -570.41 237.25 -125 -575
4B 108.84 48.32 -272.73 248.14 -244.51 -566.27 237.25 -250 -575
1A 31.04 65.70 -279.20 209.86 122.52 -644.37 237.25 125 -700
2A 55.57 65.17 -279.58 215.53 9.79 -641.31 237.25 0 -700
3A 15.48 23.87 -295.81 220.26 -114.79 -661.30 237.25 -125 -700
4A 32.59 26.20 -295.84 253.94 -242.65 -698.14 237.25 -250 -700

pose of the prosthesis. The proposed method for path following is depicted in

Fig. 5.7. The proposed path following method consists of shoulder pose estimator

which is used to derive the current shoulder pose, prosthesis pose estimator which

is used to derive the current prosthetic pose, shoulder pose predictor which is

used to predict the shoulder pose for the next iteration, locus locator which is

used to locate the current position (locus) of the prosthetic hand relative to the

path, prosthesis pose generator which is used to generate prosthetic hand pose

required for further advancements along the path, IK/FK generator which is used

to calculate the forward and inverse kinematics of the prosthesis, and Min-Dist

finder which is used to select the best possible pose and joint angles.

5.3.1 Shoulder Pose Predictor

According to the proposed method, shoulder motions for the next instance are

estimated based on angular velocities and accelerations of the shoulder consider-

ing shoulder complex as three revolute joints. The angle of each joint is predicted
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Figure 5.7: Proposed path following method

for the next instance according to (5.7) by neglecting higher order terms such as

jerk and snap.

θe = θc + ωts +
1

2
αts

2 (5.7)

where, θe, θc, ω, α, and ts are predicted joint angle, current joint angle, angular

velocity of respective joint, angular acceleration of respective joint, and sample

time respectively.

The shoulder pose for the next instance, T́ she is derived using three estimated

joint angles based on the kinematic model of the stump arm.
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5.3.2 Path Following

Firstly, current pose of the prosthetic hand relative to the shoulder (T shp ) is

derived. The current joint angles of the shoulder along with the kinematic model

of the stump arm [Refer Fig. 3.16(c) and Table. 3.2] are used to calculate stump

arm pose w.r.t. shoulder (base) (T she ). Furthermore, pose of the prosthetic hand

w.r.t. elbow (T ep ) is calculated using the current joint angles of the prosthesis.

Pose of the hand w.r.t. shoulder (T shp ) is extracted from the calculated transfor-

mation matrices using (3.7).

Next, the current position of the hand on the path needs to be derived. Locus

locator is introduced in this regard. The shortest possible distance between the

current hand position and the given path is considered as the distance to the

path. The point on the path to which the hand has the shortest distance is

considered as the current position (locus) on the path. If the path to be followed

is considered to be a straight line in 3D space. The point (P ′) to which the path

has the shortest distance is the locus on the path (see Fig. 5.8). The path from

point P1 to P2 can be stated as (5.8).

x− P1x

P2x − P1x

=
y − P1y

P2y − P1y

=
z − P1z

P2z − P1z

= t (5.8)

where, [x, y, z]T , [Pnx, PnyPnz]
T , and t are arbitrary point on the path, point
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n(n = 1, 2), and time parameter relevant to the locus on the path respectively. t

should be within 0 and 1.

The line connecting P and P ′ lies on a plane (PL) which is perpendicular to

the path (P1P2). The direction of the path is the normal vector to the plane

(PL). The normal vector can be stated as (5.9).

u =


P2x − P1x

P2y − P1y

P2z − P1z

 (5.9)

The equation of the plane which has point P , can be written as (5.10),

u.R = u.P (5.10)

where, R is any point on the plane and can be treated as a point on the path.

From (5.9), (5.10), and replacing R with P ′,


P2x − P1x

P2y − P1y

P2z − P1z

 .


x

y

z

 =


P2x − P1x

P2y − P1y

P2z − P1z

 .


Px

Py

Pz

 (5.11)

where, [Px, Py, Pz]
T is the current position of the prosthetic hand (P ). By

replacing [x, y, z]T using t, P1, and P2, the time parameter relevant to the locus

(t) can be stated as (5.12).

t =
(X.Px + Y.Py + Z.Pz)− (P1x + P1y + P1z)

(X2 + Y 2 + Z2)
(5.12)
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where,

[X, Y, Z]T =


P2x − P1x

P2y − P1y

P2z − P1z

 (5.13)

The time parameter t is used to find the current locus (P ′). Any possible

points beyond the current locus on the path are checked for further advancements

along the path. Three consecutive points related to time parameters (t + 1/K),

(t + 2/K), and (t + 3/K) are selected. In which, K is the number of steps that

the path is divided into.

The prosthesis pose generator is used to generate the required pose of the pros-

thesis, T́ ep for aforementioned three points considering predicted shoulder pose,

T́ she . This can be stated as (5.14).

T́ ep = (T́ she )−1 × T́ shp (5.14)

where, T́ shp is a point on the path related to next movements [(t + i/K), i =

1, 2, 3] along the path.

The IK for the required prosthetic hand pose (T́ ep ) gives the joint angles related

to that pose. IK/FK generator is used to generate joint angles by taking IK. IK

is calculated using the ANN [Refer Section 4.2 and Fig. 4.7 of Chapter 04]. The

achievable pose (T̀ shp ) that the prosthesis can achieve relative to the required pose

is derived by taking forward kinematics for the derived joint angles along with

the predicted shoulder pose. Required poses (T́ ep ), achievable poses (T̀ shp ) and

joint angles of achievable poses are sent to the Min-Dist finder (refer Fig. 5.7).

The point with minimum distance error is selected by the Min-Dist finder

by comparing distances between all three pose pairs. Moreover, the maximum

allowable error is defined by the enclosing threshold. If the minimum error, Emin is

greater than the enclosing threshold, previous joint angles and pose are retained
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Proceed with 
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F
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Required Pose,
 𝑇𝑝
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of palm,  𝑇𝑝
𝑠ℎ

Minimum 

Error, 𝐸𝑚𝑖𝑛

Enclosing 

Threshold, 𝐸𝑇

Figure 5.9: Operation of Min-Dist finder

without any changes (refer Fig. 5.9). Joint angles derived from the Min-Dist

finder are sent to the prosthesis.

5.3.3 Experimental Evaluation of the Spatial Path Following Method

Several experiments are conducted to evaluate the effectiveness of the proposed

path following method. The experiments are conducted using the simulation

environment.

Experimental Setup

Experimental setup consists of an IMU (MPU6050), micro-controller (AT-

mega2560, Atmel), and a PC with V-REP and MatLab [68]. The experimental

setup is depicted in Fig. 5.10. The angular motions of the shoulder are captured

using the IMU. The IMU is capable of extracting shoulder FE and shoulder AAD

(refer Chapter 3 Section 3.2.1). The angles are extracted using the accelerometer

and gyroscope of IMU. Angular velocities, ω are the gyroscope readings around
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Figure 5.10: Experimental setup

respective axes of IMU, and angular accelerations, α are derived as shown in

(5.15).

α =
ω(t) − ω(t−1)

ts
(5.15)

where, ω(t), ω(t−1), and ts are current angular velocity, previous angular veloc-

ity, and sample time respectively.

Captured shoulder data are fed into the PC using the micro-controller. Path

following method is implemented using a MatLab script in the PC which cal-

culates prosthetic joint angles based on the proposed method. Calculated joint

angles are fed to the simulation environment through remote API functionality

of V-REP [68].

Moreover, the paths of the prosthesis are compared with the paths of the

human UL.
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Table 5.4: Paths used for the experiment

Path Length Starting point End Point
(mm) x y z x y z

1 146.5 254.35 -20.58 -327.33 321.54 -20.58 -457.48
2 189.0 88.42 -20.58 -291.90 66.36 -20.58 -479.56
3 233.6 254.35 -20.58 -327.33 191.29 86.69 -525.01
4 267.5 254.35 -20.58 -327.33 241.91 212.81 -457.48

Experimental Procedure

First, the performance of the shoulder pose predictor is evaluated. The shoul-

der angles captured using the IMU attached to the stump arm are compared with

the predicted shoulder angles from (5.7). Predicted and actual shoulder angles

are recorded.

Secondly, the path following ability of the proposed method for several paths

has been tested. The experiments are conducted in two stages. In the first stage,

path following ability of the proposed method without the shoulder pose predictor

is evaluated. In the second stage, path following method with the shoulder pose

predictor is evaluated. Table 5.4 depicts the starting and end points of the paths

along with the length of the paths which have been used for the experiments.

The starting and end points are stated w.r.t. frame 1 (X1, Y1, Z1) as given in Fig.

3.16(c). Fig. 5.11 visualises these paths in 3D space. The points are selected

by observing practical situations when reaching towards different objects. The

paths used for the experiments are straight lines which are constructed based on

(5.8). Moreover, the paths 1 and 2 are 2D planer paths.

The shoulder angles are given as a MatLab function when evaluating the path

following method without the shoulder pose predictor. Captured human data is

used to construct the MatLab function. Shoulder angles are recorded along with

the prosthetic joint angles and locus while performing path following motions.

Pose of the hand is calculated using stump arm and prosthetic joint angles. Hence,

the path followed by the prosthetic hand is constructed.
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y (mm)
z (mm)

x (mm)

Figure 5.11: Paths used for the experiment. Path 1 is given in black colour, path
2 in blue colour, path 3 in red colour, and path 4 in green colour. Red star marks
show the starting points of the paths. Paths 1 and 2 are 2D planer paths.

Velocity, V of the hand along the path is derived as (5.16).

V =
√
Vx

2 + Vy
2 + Vz

2 (5.16)

where,

Vk =

(
Ck − Pk

ts

)
(5.17)

where, Vk, Ck, Pk, and ts are velocity along k−Axis(k = x, y, z), k coordinate

of current pose, k coordinate of previous pose, and sample time respectively.

Finally, the paths followed by the prosthesis is compared with the paths fol-

lowed by the human UL [refer Fig. 5.2 and Table 5.1].
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Figure 5.12: Results of shoulder pose predictor. (a) Shoulder AAD, (b) Shouder
FE

Results and Discussion

In the first experiment the shoulder pose predictor is evaluated. The predicted

shoulder angles are plotted along with the actual shoulder angles. Results of the

shoulder pose predictor are depicted in Fig. 5.12. The shoulder pose predictor is

capable of predicting shoulder AAD and shoulder FE with a RMSE of 3.67◦ and

5.16◦ respectively.

The results have some spikes and the prediction is slightly lagging behind (see

Fig. 5.12). This can be due to the fact that the predictions are based on the

current angular acceleration and angular velocity. Sudden changes in angular

velocity and angular acceleration executed by the wearer to change the direction

cannot be immediately reflected in the predictions. Moreover, the human motion

intentions are reflected immediately in human motions as they are executed,

where the predictor is not capable of extracting motion intentions as soon as

they are generated in the human brain. Besides, the IMU is fitted on top of

the skin. The changes in skin as motions are performed, are also affecting the

extraction of shoulder motions.

Second experiment is performed to evaluate the path following method. Fig.

5.13 depicts the path following results. Furthermore, Table 5.5 depicts the RMSE

of distance for each path followed by the prosthesis along with RMSE per unit
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Figure 5.13: Path following results. Paths 1 and 2 are 2D planer paths hence,
depicted as a 2D graph. SPP in the legend refers to the Shoulder Pose Predictor.
(a) Path 1, (b) Path 2, (c) Path 3, and (d) Path 4

length of the path (RMSE/Length) for path following without the shoulder pose

predictor. The distance between end points of the desired paths and the paths

taken by the prosthesis are given in the last column of Table 5.5. Moreover,

Fig. 5.14 shows the velocity profile of the hand when following path 1 by the

prosthesis without the shoulder pose predictor. Table 5.6 depicts the RMSE of

position, RMSE per unit length of path, and end point positional errors when

path following is carried out with the shoulder pose predictor.
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Figure 5.14: Velocity profile for the path 1 taken by the prosthesis

Table 5.5: Path following results without shoulder pose predictor

Path RMSE/Length RMSE End Points (mm)
1 2.78 % 4.07 5.78
2 2.97 % 5.62 4.19
3 6.40 % 14.96 11.69
4 6.24 % 16.70 9.27

Table 5.6: Path following results with shoulder pose predictor

Path RMSE/Length RMSE End Points (mm)
1 2.91 % 4.27 5.54
2 2.94 % 5.56 5.21
3 8.24 % 19.25 19.03
4 7.98 % 21.37 12.74

According to the results, the proposed method is capable of following a given

path with a RMSE of less than 21.37 mm and RMSE per unit length of a path

less than 8.5%. The path following results have some deviations from the original

path. Errors of the shoulder pose predictor can be amplified at the prosthetic

hand level causing variations. According to Table 5.5 and Table 5.6 the proposed

method performs effectively without the shoulder pose predictor. The RMSE per

unit length of the path has been reduced from 8% to 6%, for 3D paths.
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Final experiment is the comparison of prosthetic paths produced by the pro-

posed path following method with human UL paths. The human UL paths are

not perfect straight lines and have an average RMSE of 3.10 (refer Table 5.1).

Moreover, the velocity profiles (refer Fig. 5.2) are not perfectly bell shaped. From

Fig. 5.2 and Table 5.1, it is clear that human paths are not perfect straight lines

due to the kinematic limitations and limited joint angles of some joints. Hence,

an RMSE of around 5 when following 2D paths can be considered as reasonable

and human-like. The end points of the paths followed by the prosthesis are almost

the end position of the desired paths with an error of around 5mm.

Moreover, the velocity profiles of 2D paths followed by the prosthesis are al-

most bell shaped with slightly higher acceleration at start (refer Fig. 5.14) which

is almost similar to that of a human motion (refer Fig. 5.2). The slightly higher

acceleration at the start may not affect the human-like nature of the paths fol-

lowed by the prosthetic hand. However, the 3D paths have higher RMSEs and

EPEs compared to 2D paths and these errors are slightly higher than that of the

human UL motions.

5.4 Proposed MPC Based Path Tracking Method

Due to the higher errors and to overcome effect caused by the shoulder pose

predictor this model predictive controller (MPC) based dynamic path tracking

method has been proposed. The proposed method is depicted in Fig. 5.15 which

consists of a MPC, shoulder matcher, path updater, and a Jerk remover. MPC

generates an array of joint angle vectors which can take the prosthetic hand

on the desired path. Shoulder matcher is used to match the current position

of the stump arm with the prediction from the MPC. The joint angles for the

prosthesis are selected based on the shoulder matcher. If the stump arm position

has a higher variation, path updater is triggered and the reference path will be

updated. The jerk remover sends the selected joint angles to the prosthesis, if
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Figure 5.15: Dynamic path tracking method

the next movement is below a pre-specified error threshold. The path tracking

problem is formulated using the model of the system.

5.4.1 Problem Formulation

For the hand to be taken on a reference path, all 7 joint movements from

shoulder to the wrist will contribute (3 joints at shoulder, 2 joints at elbow, and

2 joints at wrist). Hence, the kinematics of the trans-humeral prosthesis and the

stump arm should be considered to formulate a path tracking problem.

Prosthetic hand pose relative to the shoulder (T shp ) is a function of joint angles,

q (q1 to q7) [Refer Section 3.3 of Chapter 03]. This can be stated as (5.18), where

X is the pose of the prosthetic hand extracted from the transformation matrix

in a vector form.

X = f(q) (5.18)

Using X(t) to describe the hand pose for respective joint angles of prosthesis
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and stump arm at time t, the task is to find joint angles which can take X(t) in

a reference path [Xr(t)] which can be described as (5.19).

X(t)−Xr(t) = 0 (5.19)

In order to track the whole path, the problem can be expressed as below,

end∑
t=start

{
[X(t)−Xr(t)]

2
}

= 0 (5.20)

5.4.2 Model Predictive Controller (MPC)

MPC is used to predict the future inputs (joint angles) of the prosthesis based

on the current state (current pose of the prosthesis) and inputs. The shoulder

joint angles cannot be controlled by the prosthetic controller, but these joint

angles affect the pose of the hand. Hence, the MPC predicts all 7 joint angles

(q1 to q7), including shoulder angles which makes the hand to be taken on the

reference path.

Operation of the MPC used in this study is elaborated in Fig. 5.16. According

to the figure the prediction of future inputs from t+ 1 to t+ p are done at time

t. Prediction horizon is selected from the current point to the end of path since

the prediction is done to optimize the entire path.

MPC uses the model of the system to obtain an optimal set of predicted inputs

by minimizing an objective function. The objective function is constructed based

on the system model given in (5.21) [refer (5.18)]. X, The prediction of path at

time t can be stated as (5.22).

X(t) = f [q(t)] (5.21)
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Figure 5.16: Operation of the Model Predictive Controller (MPC)

X(t+ j + 1|t) = f [q(t+ j|t) + δq(t+ j|t)] (5.22)

where X(t+j+1|t), q(t+j|t), and δq(t+j|t) are pose of the hand predicted for

time (t+ j + 1) predicted at time t, joint angles from previous prediction (t+ j)

predicted at time t, difference in joint angles predicted at time t for time (t+ j)

respectively.

As per the problem formulation, the error vector which needs to be minimized

can be defined as follows.

X́ = X −Xr (5.23)

Hence, the objective function can be formulated as follows.

φ(t) =

p∑
j=1

X́T (t+ j|t)QX́(t+ j|t) (5.24)
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where p and Q are prediction horizon and a constant greater than zero respec-

tively.

Since, X́ is a function of q, the objective function is optimized to find the best

possible joint angles, q. The optimization is done with the constraints on q.

qmin < q < qmax (5.25)

where qmin and qmax are minimum an maximum joint angle vector for 7 joint

angles respectively.

Resultant joint angles from the MPC is an array of q vectors. The size of the

array depends on the number of samples (time points) that the path is divided

into. The paths are divided into segments of 5mm length. i.e. path of 50mm in

length has 10 samples.

5.4.3 Shoulder Matcher

Shoulder matcher selects the prosthetic joint angles based on the current stump

arm position. IMU attached to the stump arm is used to capture current shoulder

angles. Current stump arm position (Pc) is calculated using the kinematic model

of the stump arm. The current stump arm position is compared with the positions

generated from the predicted shoulder joint angles (q1 to q3): predicted stump

arm position (Pp). The predicted stump arm position (Pp) which lies closest to

the current stump arm position (Pc) is selected. The distance between these two

positions (shoulder position error) are sent to the path updater. The prosthesis

joint angles relevant to Pc are sent to the jerk remover.
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5.4.4 Path Updater

Path updater is used to update the reference path if the human stump arm

motion varies significantly from the expected motion. This is measured using

the shoulder position error. Hence, if the shoulder position error is above a

pre-specified threshold, the reference path is updated. The new reference path is

created starting from the current hand position (refer Fig. 5.17). The destination

position remains unchanged.

5.4.5 Jerk Remover

The current shoulder pose and the prosthetic joint angles from the shoulder

matcher are the inputs to this module. Using these inputs, the hand pose w.r.t.

end of the stump arm, T ep is calculated. The hand pose w.r.t. the shoulder

(base), T shp is calculated as shown in (3.7). The jerk remover includes a locus

locator which is used to locate the calculated pose (T shp ) on the desired path

(Refer Section 5.3.2 for the detailed derivation of the Locus locator).

The distance between the locus and the calculated pose (T shp ) which is referred
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to as locus error is compared with a threshold value. This threshold is given

as jerk constant in Fig. 5.15. If the locus error is below the jerk constant, the

prosthetic joint angles are sent to the prosthesis. If the locus error is higher than

the jerk constant, the prosthetic joint angles are not changed towards the new

joint angles. This module helps to eliminate the false predictions from the MPC

and at the same time make the hand follow the reference path with minimum

jerk.

5.4.6 Experimental Validation of the MPC Based Path Tracking Method

The proposed path tracking method is validated using several experiments.

The results obtained are compared with human UL motions and the previous

method. The path tracking experiments are conducted using able-bodied persons

and the simulation environment.

Experimental Setup

Experimental setup consists of an IMU (MPU6050), micro-controller (Atmega

2560, Atmel), and a PC with V-REP and MatLab (Refer Fig. 5.10). Shoulder

motions of the subjects are extracted using the IMU. Extracted shoulder angles

are sent to the PC using the micro-controller. IMU communicates with the micro-

controller using I2C protocol and micro-controller communicates with PC using

serial (RS232) protocol. MPC based path tracking method is implemented on a

MatLab script. The script outputs prosthetic joint angles for the current iteration

by considering shoulder angles received through the IMU. These joints angles are

sent to the simulation environment. PC communicates the joint angles to the

simulation environment with the remote API capability of the V-REP.
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Figure 5.18: 2D paths used for the experiments. Paths are created from the Rest
position to 16 different points lying in the same plane. Two paths are marked
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14.

Experiments

In the first experiment the path prediction capability of the MPC is evaluated.

The paths created during the path generation experiments are used in this regard

(refer Fig. 5.6). The hand positions for the predicted joint angles from the MPC

are calculated using the kinematic model of the prosthesis and the stump arm.

Secondly, the performance of the path tracking method for 2D planar paths has

been evaluated. Sixteen predefined points lies in the same plane as the reference

(rest) point (refer Fig. 5.18) are used for the experiments. Straight line paths

are created from the rest point to these 16 points. The prosthesis needs to

perform joint motions so that the hand moves from the rest point to a predefined

point. Subjects with IMU attached to the shoulder are asked to perform the same

motions. The shoulder joint angles along with the prosthetic joint angles have

been recorded for all motions.
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Table 5.7: 3D paths used for the experiment

Path Length Starting point End Point
(mm) x y z x y z

1 277 197 -21 -325 156 235 -422
2 145 254 -21 -327 211 79 -423

Thirdly, performance of path tracking method for 3D paths have been eval-

uated. 2 randomly selected paths on the reachable workspace has been used.

Starting and end points of the paths with their length are given in Table. 5.7.

These coordinates are given with reference to frame 01 as shown in Fig. 3.16. As

per the previous experiment, the subjects are fitted with an IMU and asked to

perform the same motions. In this experiment also joint angles of the prosthesis

and shoulder joint angles are recorded.

Results and Discussion

According to the first experiment, the hand poses are plotted against the

reference path for the mobile phone for the object placements from C1 to C4 and

D1 to D4 (refer Fig. 5.6). The prediction results are shown in Fig. 5.19 and Fig.

5.20. Summery of path prediction results are shown in Table 5.8. According to

the results, prediction for the paths C1 to C3 and D1 to D3 are almost similar to

the reference path. However, predictions for paths C4 and D4 deviates from the

reference path when its closer to the destination position. This is as a result of

the kinematic restrictions of the UL, the prediction takes the best possible path

which can be kinematically achieved by the prosthesis and the stump arm. In

order to reach towards these positions (C4 and D4), the human trunk also needs

to perform some motions which are not considered in this study.

In the second experiment when following the paths, the hand paths of the

prosthesis with their velocity profiles have been calculated using the kinematics

of stump arm and the prosthesis. The RMSE of these paths w.r.t. the reference

path and the EPE is calculated for all the paths. Fig. 5.21 shows the paths taken
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Figure 5.20: MPC Prediction results for the object placements C4 and D4

by the prosthesis and their velocity profiles for 3 different paths (paths 12, 9, and

10 respectively according to Fig. 5.18). Table 5.9 depicts the length of the paths,

RMSE, and EPE for all the paths taken by the prosthesis. Moreover, the mean

and the standard deviation (SD) are given at the end of the Table.

According to the results, the proposed method is capable of tracking a given

path with a mean RMSE of 3.21 mm and a mean EPE of 1.92 mm. Compared

to human paths (mean RMSE = 3.10 mm and mean EPE = 2.42 mm) which

lies in the same range of errors. Moreover, this method outperform compared

to the method proposed in the previous section. The RMSE reported in the

previous method for 2D paths was 4.27 mm and 5.56 mm, also the EPE reported

was 5.54 mm and 5.21 mm. Moreover, the velocity profiles resulting from the

proposed method are more bell shaped compared to velocity profiles reported in
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Table 5.8: Summary of path prediction

Path RMSE (mm) EPE (mm)
D1 1.04 1.04
D2 0.78 0.78
D3 0.71 0.71
D4 12.88 37.04
C1 1.23 1.24
C2 1.14 1.14
C3 1.23 1.23
C4 15.49 35.74

Mean without D4 and C4 1.03 1.02
SD without D4 and C4 0.21 0.21

Overall Mean 4.32 9.87
Overall SD 5.74 15.32

Table 5.9: Summary of 2D path tracking

Path Length (mm) RMSE (mm) EPE (mm)
1 161.37 2.77 3.4
2 138.91 2.98 1.29
3 170.36 2.98 3.25
4 322.44 4.66 1.55
5 431.75 4.09 1.61
6 476.07 3.92 3.16
7 165.52 2.23 2.44
8 280.36 3.95 3.71
9 291.89 3.42 1.03
10 424.15 3.39 0.192
11 104.50 1.21 0.58
12 248.33 3.08 2.13
13 350.13 3.34 1.8
14 177.16 2.99 1.93
15 395.08 2.96 1.17
16 449.17 3.36 1.39

Mean 3.208 1.915
SD 0.793 1.035

the previous method in which, the velocity profiles had a higher acceleration at

the beginning.

Third experiment is the evaluation of tracking performance for 3D paths. The

paths taken by the prosthetic hand is shown in Fig. 5.22. Prosthesis is able to
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)Figure 5.22: Paths taken by the prosthetic hand when following 3D paths.
(a) path 1. (b) path 2.

track the given 3D paths with an RMSE of 7.31 mm and 7.76 mm respectively

(Table 5.4). The EPE for the two paths are 3.05 mm and 2.45 mm respectively.

Where the reported RMSE and EPE in the previous method was around 20

mm and 15 mm respectively which again outperforms compared to the previous

method.

5.5 Comparison of Two Path Following Methods

Two path following methods: spatial path following method and MPC based

path tracking method have been statistically compared with the human motion.

The comparison has been done for the 2D paths. Path following results of two

methods given in Table 5.5 and Table 5.9 are used for the comparison. These

paths are compared with the human paths which are given in Table 5.1. Three T-

Tests has been carried out: first one is between human path and the spatial path

following method, second one is between the human path and the MPC based

path tracking method, and third one is between two path following methods.

Hypothesis for the T-tests has been selected as follows,
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Table 5.10: T-Test results

Human Vs. SPFM Human Vs. MPFM SPFM Vs. MPFM
h H0 H0 Ha

p 0.2849 0.8586 0.0118

H0 : µ1 = µ2 (5.26)

Ha : µ1 6= µ2 (5.27)

where, H0, Ha, µ1, and µ2 are null hypothesis, alternative hypothesis, mean of

population 1, and mean of population 2 respectively.

The outcomes of the T-Tests performed at 95% confidence level are shown in

Table. 5.10 in which Human, SPFM, and MPFM are referred to human paths,

paths resulted from spatial path following method, and paths resulted from MPC

based path tracking method respectively.

According to the T-Test, two path following methods compared to the human

paths resulted in H0 where the null hypothesis can not be rejected. Hence, there is

no statistically significant difference between compared two populations. This can

be concluded as two path following methods did not have statistically significant

variations from the paths taken by the human.

Besides that, T-Test between SPFM and MPFM resulted in Ha. Which can

say that there is a significant difference between two paths. Since mean RMSE

of MPFM is less than the mean RMSE of SPFM and T-test resulted in accepting

alternative hypothesis, there is a significant reduction of mean RMSE in MPFM

compared to SPFM. This can be concluded as there is a statistically significant

improvement in the MPC based path tracking method compared to the spatial

path following method.

123



5.6 Summary

This chapter proposed a reach-to-grasp path planning method with two path

following methods for trans-humeral prostheses. The proposed path planning

method consists of a path generator which is used to generate a path towards the

destination object. Path following methods are used to take the prosthetic hand

on the generated path.

The path generator, first makes the object to the center of the hand using an

IBVS. The hand position is derived after the IBVS process is completed. The

object position w.r.t. the hand is calculated and hence, object position w.r.t the

shoulder is calculated. A straight line path from the current position of the hand

to the object position is generated with calculated positions.

The proposed first path tracking method is capable of following a given path

compensating shoulder motions. The current position (locus) on the path is

considered when predicting motions for the next iteration. The path following

method is capable of adhering to the path with a RMSE per unit length of path

about 2% for 2D paths with a bell shaped velocity profile. For 3D paths, RMSE

for unit length of path lies around 6% when considering only the path following

without the shoulder pose predictor. However, the accuracy reduced with the

shoulder pose predictor leading to a RMSE per unit length about 8% for 3D

paths. Hence, the shoulder angle prediction has a major impact on the path

following ability of the proposed method requiring improvements.

To overcome the burden from the shoulder pose predictor and higher errors

reported in the first method, the second method is proposed. The proposed

second path tracking method is the MPC based path tracking method for trans-

humeral prostheses to track a straight line path at hand of the prosthesis. This

method was capable of adhering to the path by considering the shoulder motions

which were performed by the wearer. The MPC can predict a joint angle matrix
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which is able to take the prosthetic hand on the path. Shoulder matcher is used

to match the current stump arm position with the predicted shoulder position

derived using predicted shoulder angles, and selects the best possible joint angles

for the prosthesis. The reference path is updated if the position error between

the prediction and the current shoulder positions are high. This method was

capable of tracking 2D paths with a mean RMSE of 3.21mm and 3D paths with a

mean RMSE of 7.54mm. For human paths the mean RMSE was around 3.10mm.

Therefore, the proposed path planning method is capable of generating paths

towards an object of interest and follow the generated path by the prosthetic

hand in a human-like nature.

Statistical results verified the human like nature of the two path following

methods. Moreover, MPC based path tracking method has a statistically signifi-

cant improvement compared to the spatial path following method.
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Chapter 6

CONCLUSION

This chapter includes the conclusions of the thesis together with a discussion

and the future directions of the study. This study addresses the issues related

to controlling trans-humeral upper limb (UL) prostheses. Specifically the issues

related to planning and performing reach-to-grasp motions. Two path planning

methods has been proposed in chapters 4 and 5. This study was motivated by

the increase in need for more reliable and functional prostheses which can mimic

human-like UL motions. The major contributions of the thesis are:

• Proposal of an EMG-force proportional and moment balance (EFPMB)

model for elbow motion prediction.

• Proposal of a vision aided path planning method for reach-to-grasp tasks of

the trans-humeral prosthesis based on a 2-1/2D method of visual servoing.

• Proposal of a path following method for the trans-humeral prosthesis, com-

pensating shoulder motions.

• Proposal of an improved path following method based on a MPC for the

trans-humeral prostheses.

• Development of an improved vision based path planning method for reach-

to-grasp motions of the trans-humeral prosthesis using proposed path fol-

lowing methods.
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6.1 Conclusion

Most of the trans-humeral prosthetic controllers available in literature are de-

veloped to control prostheses at joint level. In those prostheses, each joint is

controlled separately using biological signals such as EMG or external sensory

inputs. Moreover to perform a task, each joint should be controlled separately.

This study aimed at developing a task level prosthetic controller. A person may

perform the same task differently which may require different motions of the

joints of the prosthesis. This means the paths taken by the prosthesis varies

even for the same task. Therefore giving path planning capability is required to

advance research in task level prosthetic control. As a solution, this thesis pro-

pose a reach-to-grasp path planning method. The proposed method is capable

of identifying the object intended by the user and reach towards the object in a

way that human limbs are performing reach-to-grasp motions. A vision sensor

has been used as an added sensor to identify the objects in the workspace and to

extract spatial information related to the object intended by the user.

The thesis consists of six chapters: Introduction, Literature Review, The

Trans-humeral Prosthesis Used to Evaluate the Path Planing Method, Reach-

to-Grasp Path Planning Based on a 2-1/2D Method of Visual Servoing, Reach-

to-Grasp Path Planning Based on path Tracking Methods, and the Conclusion.

Contents of the chapters are briefly stipulated as follows.

First chapter explains the motivation behind the work carried out in this thesis

with a brief introduction to the thesis.

Second chapter reviews the available literature about prosthetic controllers

with background information about UL bio-mechanics. The bio-mechanics of the

human UL has been discussed with major joint complexes and their motions. The

kinematics of the human UL has been discussed with the intention of achieving

human-like motions. In addition the use of biological signals in controlling pros-
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theses has been discussed with their drawbacks. The use of EMG as a control

input and the availability of signals for the use of controlling purposes has been

reviewed. Furthermore, the use of external sensors and using vision as an added

sensor has been reviewed with their merits and demerits. Besides, reach-to-grasp

paths of a UL and path planning methods has been discussed with the intention

of developing task level prosthetic controllers.

Third chapter explains the design and development of the simulation environ-

ment and the 5 DOF trans-humeral prosthesis. Simulation environment consists

of a virtual prosthesis and a shoulder. The shoulder is capable of actuating ac-

cording to a stump arm of an amputee using an IMU attached to the stump

arm. The virtual prosthesis can be actuated accordingly using prosthetic control

algorithms. The hand of the virtual prosthesis is fitted with a camera and an

US sensor. Inputs from the camera and the US sensor have been used when im-

plementing reach-to-grasp path planning algorithms. Fabricated prosthesis has

the same design as the virtual prosthesis used in the simulation environment

which actively powers 5 DOF: elbow FE, forearm SP, wrist FE, wrist URD, and

compound motion of the hand. Low level controllers of the prosthesis are imple-

mented using micro-controllers. These micro-controllers can communicate with a

PC, where the prosthetic control algorithms are implemented. The prosthesis is

capable of generating a range of motions (ROM) similar to a natural human UL.

Moreover, the kinematics and the workspace of the prosthesis are almost similar

to that of a natural limb despite some link offsets.

Fourth chapter propose the vision aided reach-to-grasp path planning method

based on a 2-1/2D method of visual servoing. An EMG force proportional mo-

ment balance (EFPMB) model is proposed in this chapter. The EFPMB model

is capable of controlling the elbow motion of the prosthesis effectively using EMG

signals of biceps brachii and triceps brachii. The model is capable of achiving a

accuracy of 92% and a real time delay less than 400ms. Moreover, the proposed

method uses a 2-1/2D method of visual servoing to center the object relative to
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the prosthetic hand while aligning the hand with the orientation of the object.

An object reaching algorithm is proposed for the elbow joint to reach the pros-

thetic hand towards the object while reducing the distance to the object. Visual

servoing is performed with the aid of an ANN based inverse kinematic calcula-

tor. The ANN produces promising results for inverse kinematics of the prosthesis

with a Mean Square Error (MSE) of less than 0.06 in joint angles. EMG based

module and the visual servoing module is integrated using a fusion filter to get

an resultant elbow joint angle. Experimental results validated the effectiveness of

the proposed hybrid vision based path planning method. Additionally, the path

planning method was capable of converging towards the object while maintaining

controllability through human motion intention.

Fifth chapter consists of the improved reach-to-grasp path planning method

based on path tracking methods. This method is a extension of the previous

method and used to overcome the drawbacks present in the previous method. The

proposed path planning method consists of two modules: path generation module

and a path tracking module. Path generation module is used to generate the

required path towards the object of interest with the aid of vision feedback. An

image based visual servoing (IBVS) system is used to center the object w.r.t. the

hand. Then the position of the object is derived using the perspective projection.

The path from the current position of the hand to the destination position of the

hand is generated using these captured positions. Two path tracking methods

are proposed in order to track generated paths. The first path tracking method

is capable of following a given path compensating shoulder motions. The current

position (locus) on the path is considered when predicting motions for the next

iteration. The path following method is capable of adhering to the path with a

root mean square error (RMSE) per unit length of path around 2% for 2D paths

with a bell shaped velocity profile. For 3D paths, RMSE for unit length of path

was around 6%. The second method is the path tracking method using a model

predictive controller (MPC). This method was capable of adhering to the path by

considering the shoulder motions which were performed by the wearer. The MPC
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can predict a joint angle matrix which is capable of taking the prosthetic hand on

the path. Shoulder matcher is used to match the current stump arm pose with

the predicted shoulder pose derived using predicted shoulder angles and selects

the best possible shoulder pose and angles. Prosthetic joint angles related to

the selected shoulder angles are retrieved and sent to the prosthesis. Moreover,

the reference path is updated if the shoulder motions are not as planned. The

proposed method is capable of tracking a given path with a mean RMSE of 3.21

mm and mean EPE of 1.92 mm. Compared to human paths (mean RMSE = 3.10

mm and mean EPE = 2.42 mm) which lies in the same range of errors. Statistical

analysis verified the effectiveness of the proposed path tracking methods.

6.2 Discussion and Future Directions

The work presented in this thesis addresses the issue of reach-to-grasp path

planning of a trans-humeral prosthesis. The proposed path planning method is

discussed for further improvements. Moreover, the future directions towards a

human like prosthetic controller has been elaborated as ways of extending the

work presented.

1. The fabricated 5 DOF prosthesis has been fitted on a mannequin rather than

on an actual amputee. Hence, fitting methods for an amputee should be

developed and tested. Moreover, the EMG acquisition system used during

the research is a desktop system which is not mobile and cannot be used

as a stand-alone mobile system with the prosthesis. Hence, the controllers

and the EMG acquisition system needs improvements before making the

prosthesis fitted on an amputee and taken out of the laboratory.

2. The proposed EFPMB model to control elbow FE using biceps brachii and

triceps brachii have been evaluated using healthy subjects. However almost

similar EMG signal can be expected from amputees, the proposed EFPMB
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should be evaluated using amputees. The proportional gains can drastically

change when evaluating the EFPMB with amputees.

3. In this research, the focus is towards the vision based path planning and

visual servoing. Hence, the image processing has not been considered in

depth and red coloured objects are used. The objects are identified directly

from the colour itself. However, in order to apply this method on a real

prosthesis, image processing algorithms should be developed to identify

and differentiate real world objects. Hence, further research in the field of

image processing needs to be done in identifying and differentiation real

world objects that a normal human uses in activities of daily living (ADL).

4. This study is conducted only for reach-to-grasp tasks of a trans-humeral

prosthesis. In order to achieve full functionality from the prosthesis other

tasks such as grasping and grasp planning, manipulation of objects after

grasping, and tasks which does not require grasping should also be able to

be performed by the prosthesis. Hence, further research in developing task

planning methods for all tasks needs to be carried out and integrated with

the reach-to-grasp task planning method.

5. This study proposed path planning methods for the prosthetic hand of a

trans-humeral prosthesis to be taken on a predefined path. The proposed

method is capable of compensating shoulder motions and adapting the pros-

thetic joints accordingly. This principle can be used on any manipulator

robot where the base moment is unknown and the end effector should be

taken on a predefined path. However, this requires the base movements

to be continuously measured. Moreover, the proposed method needs to

undergo changes to be used on a robot manipulator with unknown base

movements.
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Appendix A

TIME DOMAIN FEATURES

Time domain features used to classify EMG signals in pattern recognition

based prosthetic control systems.

A.1 Root Mean Square (RMS)

RMS =

√√√√ 1

N

N∑
i=1

x2i (A.1)

A.2 Mean Absolute value (MAV)

MAV =
1

N

N∑
i=1

|xi| (A.2)

A.3 Mean Absolute Value Slope (MAV Slope)

MAV S = MAVk+1 −MAVk (A.3)
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A.4 Zero Crossings (ZC)

{xi > 0 and xi+1 < 0} or {xi < 0 and xi+1 > 0} and |xi − xi+1| ≥ ε (A.4)

A.5 Slope Sign Change (SSC)

{xi > xi−1 and xi > xi+1} or {xi < xi−1 and xi < xx+1} (A.5)

and

|xi − xi+1| ≥ ε or |xi − xi−1| ≥ ε (A.6)

A.6 Waveform Length (WL)

WL =
N−1∑
i=1

|xi+1 − xi| (A.7)
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Appendix B

IMPLEMENTATION OF SHOULDER CONTROLLING

ALGORITHMS OF SIMULATION ENVIRONMENT (IMU

TO V-REP)

B.1 Micro-controller Program

double acc = 9.81/16383.5; // calibration parameters

double an = 250.0/32767.0; // calibration parameters

void setup() {

Wire.begin(); // join I2C bus

Serial.begin(9600); // initialize serial communication

accelgyro.initialize(); // initialize device

}

void loop() {

// read raw accel/gyro measurements from device

accelgyro.getMotion6(&az, &ax, &ay, &gz, &gx, &gy);

// calbration zxy

axx = ax*acc + 0.05;

ayy = ay*acc*0.98 + 1.35;

azz = az*acc - 0.4;
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gxx = gx*an;

gyy = gy*an;

gzz = gz*an+3.32;

// angle calculation from accelerometer

angX = atan(axx/sqrt(ayy*ayy + azz*azz))*57.2957795;

angY = atan(ayy/sqrt(axx*axx + azz*azz))*57.2957795;

//complementary filter

angXX = 0.98*(angXX + gxx*0.000125) + 0.02*angX;

angYY = 0.98*(angYY + gyy*0.000125) + 0.02*angY;

// calculated angles

angXXX = abs(angXX + 90); // Map -90 to 90 into 0 to 180

angYYY = abs(angYY + 90);

}
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B.2 LUA Code in V-REP Used to Control Shoulder

angSFE = simGetJointPosition(shFE)*57.2957795131

angSAD = simGetJointPosition(shAD)*57.2957795131

erSFE_p = erSFE // Previous P error

erSAD_p = erSAD

// x and y are read from the serial port

erSFE = x - angSFE // set P error

erSAD = 0 - z - angSAD

eriSFE = eriSFE + erSFE // set I error

eriSAD = eriSAD + erSAD

p_SFE = erSFE*kp // P term

p_SAD = erSAD*kp

d_SFE = (erSFE - erSFE_p)*kd // D term

d_SAD = (erSAD - erSAD_p)*kd

i_SFE = eriSFE*ki // I term

i_SAD = eriSAD*ki

pid_SFE = p_SFE + d_SFE + i_SFE // PID term

pid_SAD = p_SAD + d_SAD + i_SAD

if (pid_SFE>0.01) then // Set joint velocities

simSetJointTargetVelocity(shFE,pid_SFE)

elseif (pid_SFE<-0.01) then
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simSetJointTargetVelocity(shFE,pid_SFE)

else

simSetJointTargetVelocity(shFE,0)

end

if (pid_SAD>0.01) then

simSetJointTargetVelocity(shAD,pid_SAD)

elseif (pid_SAD<-0.01) then

simSetJointTargetVelocity(shAD,pid_SAD)

else

simSetJointTargetVelocity(shAD,0)

end
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Appendix C

PROSTHESIS JOINT CONTROL IN SIMULATION EN-

VIRONMENT USING UI

angEFE = simGetJointPosition(elbowFE)*57.2957795131

angSP = simGetJointPosition(supPro) *57.2957795131

angUR = simGetJointPosition(ulnarR) *57.2957795131

angWFE = simGetJointPosition(wristFE)*57.2957795131

slEFE = simGetUISlider(manualCt,3)

slSP = simGetUISlider(manualCt,4)

slUR = simGetUISlider(manualCt,5)

slWFE = simGetUISlider(manualCt,6)

erEFE = slEFE * 150/1000 - angEFE

erSP = slSP * 180/1000 - (angSP + 180)

erUR = slUR * 080/1000 - (angUR + 40 )

erWFE = slWFE * 180/1000 - (angWFE + 90 )

if (erEFE>2) then

simSetJointTargetVelocity(elbowFE,erEFE*0.1)

elseif (erEFE<-2) then

simSetJointTargetVelocity(elbowFE,erEFE*0.1)

else

simSetJointTargetVelocity(elbowFE,0)

end
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if (erSP>2) then

simSetJointTargetVelocity(supPro,erSP*0.1)

elseif (erSP<-2) then

simSetJointTargetVelocity(supPro,erSP*0.1)

else

simSetJointTargetVelocity(supPro,0)

end

if (erUR>2) then

simSetJointTargetVelocity(ulnarR,erUR*0.1)

elseif (erUR<-2) then

simSetJointTargetVelocity(ulnarR,erUR*0.1)

else

simSetJointTargetVelocity(ulnarR,0)

end

if (erWFE>2) then

simSetJointTargetVelocity(wristFE,erWFE*0.1)

elseif (erWFE<-2) then

simSetJointTargetVelocity(wristFE,erWFE*0.1)

else

simSetJointTargetVelocity(wristFE,0)

end

end
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Appendix D

IMPLEMENTATION OF LOW LEVEL PID CONTROLLERS

OF THE PROSTHESIS

Implementation of Low Level PID controller in micro-controller used to control

supination/pronation motor. all other DC motor controller are implemented in

the same way except for hand motor.

void setup(){ //initializing

pinMode(Motorline11,OUTPUT); // Set output pins to H-bridge

pinMode(Motorline12,OUTPUT);

pinMode(lmtSt,INPUT); // set input pin for limit switch

EncM1.write(0); // Initialize encoder

Limit = digitalRead(lmtSt);

Minit(); // function to initialize joint

Serial.begin(9600); // initialize serial communication

}

void loop(){

if (Serial.available() > 0) { // read serial port for joint angle

inByte = Serial.read();

}

position1 = (uint8_t)inByte; // set joint angle from serial comm.

EncreadP1 = EncM1.read(); // read encoder for current joint angle

setP1 = position1*180.0/255.0; // mapping the positions from serial
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nP1 = EncreadP1*360.0/2580.0; // mapping the position from encoder

erPP1 = erP1; // Previous proportional error

erP1 = (setP1-nP1)*255.0/180.0;// Proportional error

erD1 = erP1-erPP1; // Derivative error

erI1 += erP1; // Integral error

pTerm1 = kp1*erP1; // P of PID

dTerm1 = kd1*erD1; // D of PID

iTerm1 = ki1*erI1; // I of PID

pidTerm1 = (int)(pTerm1 + iTerm1 + dTerm1); // calculated PID value

if(pidTerm1>255){ // fit PID value into limits

pidTerm1 = 255;

}

else if(pidTerm1 <-255){

pidTerm1 = -255;

}

if(pidTerm1 > 1){ // foreward rotation of motor

Mfwd(pwm1,Motorline11,Motorline12,pidTerm1);

}

else if(pidTerm1 < -1){ // backward rotation of motor

Mrev(pwm1,Motorline11,Motorline12,-pidTerm1);

}

else { // motor stop

Mstop(pwm1,Motorline11,Motorline12);

}

}
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// motor initialization function

void Minit(){

while (Limit == 0)

{

Limit = digitalRead(lmtSt);

Mrev(pwm1,Motorline11,Motorline12,50);

}

EncM1.write(0);

}

// motor reverse function

void Mrev(int EN , int IN1 , int IN2 , int spd){

analogWrite(EN , spd);

digitalWrite(IN1 , LOW);

digitalWrite(IN2 , HIGH);

}

// motor foreward function

void Mfwd(int EN , int IN1 , int IN2 , int spd ){

analogWrite(EN , spd);

digitalWrite(IN1 , HIGH);

digitalWrite(IN2 , LOW);

}

// motor stop function

void Mstop(int EN , int IN1 , int IN2){

digitalWrite(EN, LOW);

digitalWrite(IN1,HIGH);

digitalWrite(IN2,HIGH);

}
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Appendix E

MATLAB SCRIPTS USED IN 2-1/2D VISUAL SERVO-

ING BASED PATH PLANNING METHOD

E.1 IBVS Implementation

% u and v are the current image coordinates

% zz is the distance to the object

if(~isempty(tt0) && tt0(3)~=0) % update errors if got an image frame

ex = u - 127.5;

ey = v - 127.5;

% image feature jacobian

jaco = [ fl/zz 0 -u/zz -u*v/fl (fl^2+u^2)/fl -v;

0 fl/zz -v/zz -(fl^2+v^2)/fl u*v/fl u ];

% psudo inverse of jacobian

invJaco = transpose(jaco)*inv(jaco*transpose(jaco));

qDot = gK*invJaco*[ex;ey];

qPos = qPos + qDot;

errs = net(qPos); % calculate joint angles from NN

% send angles to v-rep
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E.2 PBVS Implementation

% (l1x, l1y) and (l2x, l2y) are coordinates of the

% mid points of the bounding rectangle

if(l1y>l2y) % find the point at the top

yy = l1y - l2y;

xx = l1x - l2x;

else

yy = l2y - l1y;

xx = l2x - l1x;

end

ang = atan2(xx,yy); % misaligned angle

if(abs(ang)<0.04) % if ang is small

ang = 0;

end

% orientation correction due to t5 and th

pu = -sin(t5);

pv = 0;

pw = cos(t5);

th = ang;

Tr = [ pu^2+(1-pu^2)*cos(th) pu*pv*(1-cos(th))-pw*sin(th)

pu*pw*(1-cos(th))+pv*sin(th) 0;

pu*pv*(1-cos(th))+pw*sin(th) pv^2+(1-pv^2)*cos(th)

pv*pw*(1-cos(th))-pu*sin(th) 0;

pu*pw*(1-cos(th))-pv*sin(th) pv*pw*(1-cos(th))+pu*sin(th)

pw^2+(1-pw^2)*cos(th) 0;

0 0 0 1];
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if(th~=0) % if th is not zero, correct the orientation

qq = qq*Tr;

end

% qPos is the pose extracted from qq

errs = net(qPos); % camculate joint angles from ANN

% send angles to v-rep
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E.3 Reaching Algorithm Implementation

if(zz>50 && abs(zz-zzOld)>1 && th==0)

if(state == 1 && errs(1) > gd)

errs(1) = errs(1) - gd*(zz-zzOld);

if(errs(1)>0 && errs(1)<146)

% send errs(1) to V-REP

end

if(zz<zzOld)

state = 1;

elseif(zz>zzOld)

state = 2;

end

end

if(state == 2 && errs(1) < (146 - gd))

errs(1) = errs(1) + gd*(zz-zzOld);

if(errs(1)>0 && errs(1)<146)

% send errs(1) to V-REP

end

if(zz<zzOld)

state = 2;

elseif(zz>zzOld)

state = 1;

end

end
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