POLY ALUMINIUM CHLORIDE AS AN ALTERNATIVE TO ALUM AS A COAGULANT IN WATER TREATMENT

Shyama Dharmasinghe

(Adm. No: 139206L)

Degree of Master of Engineering in Environment Engineering and Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2017

POLY ALUMINIUM CHLORIDE AS AN ALTERNATIVE TO ALUM AS A COAGULANT IN WATER TREATMENT

Shyama Dharmasinghe

(Adm. No: 139206L)

Degree of Master of Engineering in Environment Engineering and Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2017

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuw distribute my thesis, in whole or part in print right to use this content in whole or part in future.	, electronic or other medium. I retain the
S.Dharmasinghe	Date
The above candidate has carried out research f	or the Masters under my supervision.
Signature of the Supervisor:	Date
Prof (Mrs) N. Rathnayake	
Professor	
Department of Civil Engineering	
University of Moratuwa	

ABSTRACT

Water generally contains suspended and colloidal solids from land erosion, decaying vegetation, microorganisms, and color producing compounds. In addition, due to urbanization and industrial development, pollution of water bodies has become a serious concern. As surface water is the most common source of water supply, the need for treatment of water increases as the surface water bodies get polluted.

Coagulation and flocculation using chemicals, followed by sedimentation or clarification, filtration and disinfection is the conventional method of removal of the above contaminants from raw water. A wide variety of chemicals are used to achieve good coagulation/flocculation in the water industry.

Aluminium Sulphate (alum) is one of the most widely used coagulants in Sri Lanka. The main reasons for the usage of alum are its affordability, availability and lack of low cost alternatives. However, there are other costs and problems associated with the use of alum. Due to the high sludge handling cost, pH adjustment and slow formation of flocs, and also recent issues related to availability of alum at a reasonable cost, the need has arisen to select alternative coagulants for the coagulation process. Poly Aluminium Chloride (PACL) is used as a coagulant in a few treatment plants in Sri Lanka and neighboring countries as an alternative to alum.

In this study, it was aimed to compare the performance of the two coagulants alum and PACL in turbidity and colour removal and to assess the feasibility of substituting alum with PACL. Jar tests were carried out to obtain the optimum coagulant doses required and floc size using water from the two sources supplying the Colombo North area (Kelani Ganga at Biyagama) and Colombo South area (Kalu Ganga at Kandana) when the seasonal variation in river flows caused variations in turbidity. In addition, a questionnaire survey was carried out to investigate the opinions of engineers, chemists and operators who have used both coagulants in the treatment process.

The study revealed that the overall performance of PACL is better than alum with respect to floc size and the optimum dosage required is less for the former. From the opinion survey, it was evident that the majority of those who have used both coagulants recommended the use of PACL, even though some modifications to Plant are needed.

Key Words: Water Treatment, Coagulants, Alum, Poly Aluminium Chloride, Turbidity

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere appreciation and indebtedness to my supervisor Professor Mrs N. Rathnayake for her valuable guidance and advice, to complete the research successfully.

Further, I am grateful to Professor Jagath Manathunga and the course coordinator to the MSc in Environmental Management and Engineering Programme, Professor Mahesh Jayaweera in University of Moratuwa for their valuable guidance, instructions and technical advices, continuously for the enhance my knowledge in the field of evironmental Engineering. Also, I like to thankful to non-academic staff of the university who support to complete the research successfully in many ways.

I am extremely appreciative of Mr. Wijeratne, Manager of the Kandana Water Treatment Plant and his staff, for providing the water plant data, raw water samples and all chemicals in my laboratory work. As well, I would like to acknowledge all staff of the Biyagama Water Treatment Plant for giving me their support to fulfill my laboratory work. Also, I like to thankful to my immediate senior officer, Mr.G.M.Mathuranesan and other section colleagues for their valuable guidance and instruction given me to complete this research successfully. This research would not have been accomplished without their support.

Moreover, I am grateful to the staff of National Water Supply & Drainage Board for their cooperation and providing required information for the study. I am extending my gratitude to the staff of Library in National Water Supply & Drainage Board to provide valuable handbooks, reports and other relevant documents to success my Thesis.

Finally, I acknowledge the support received from numerous others not mentioned above, who contributed to obtain the valuable achievements in my career.

TABLE OF CONTENTS

Decla	ration	of the Ca	andidate & Supervisor	i
Abstr	act			ii
Ackno	owledg	gement		iii
Table	of Co	ntent		iv
List o	f Figu	es		vi
List o	f Table	es		vii
List o	f Abbr	eviations	3	ix
List o	f Appe	endices		X
1.0	Intro	duction		1
	1.1	Backgr	round to Research	2
	1.2	Proble	m Statement	3
	1.3	Aim ar	nd Objective of the Research	4
	1.4	Selecti	on of Coagulants	4
	1.5	Study l	Location and Scope of Work	6
	1.6	Scope	of the Research	6
2.0	Lite	ature Re	view	
	2.1	Introdu	action	7
		2.1.1	Background to the Literature Review	7
		2.1.2	Waterborne Disease and Health Condition	7
	2.2	Treatm	nent of Drinking Water	8
	2.3	Coagul	lation and Coagulants	8
		2.3.1	Coagulation	8
		2.3.2	Factors Affecting Coagulation	9
		2.3.3	Electrical Properties of Particles	10
		2.3.4	Mechanisms of Coagulation	11
		2.3.5	Types of Chemicals Used for Coagulation	14
		2.3.6	Past Results of Experiments	16
		2.3.7	Aluminium	18
	2.4	Alumii	nium –Based Coagulants	21
		2.4.1	Aluminium Sulphate(Alum)	21

		2.4.2	Poly Aluminium Chloride (PACL)	26
	2.5	Alkalinit	ty and pH Adjustment	32
3.0	Rese	arch Meth	odology	35
	3.1	Introduc	tion	35
		3.1.1	Experimental Plan	35
	3.2	Location	and Topography	37
		3.2.1	Kandana Treatment Plant	37
		3.2.2	Biyagama Treatment Plant (Kelani Right Bank)	38
	3.3	Selection	n of Coagulant	39
		3.3.1	Factors for Selection of Coagulant	39
		3.3.2	Experimental Design	39
		3.3.2	Experimental Materials and Methods	40
	3.4	Optimal	Coagulant Dosage Selection	46
	3.5		nnaires Survey	46
		3.5.2	Description of Questionnaire	46
4.0		•	ults and Discussion	48
	4.1	Introduc		48
	4.2	Factor A Coagula	ffecting to the Effectiveness and Efficiency of Usage of	48
	4.3		y of the Raw Water in Kalu Ganga and Kelani Ganga	50
	4.4	Experim	ental Jar Tests Results	51
	4.5	Coagula	nt Performance	51
		4.5.1	Coagulant Performance in Kalu Ganga	52
	4.6	Flocs Siz	ze Analysis	60
	4.7	Factors a	affecting the effectiveness and efficiency of coagulants	61
	4.8	Financia	l Analysis	62
	4.9	Question	nnaire Survey Analysis	63
5.0	Conc	lusions &	Recommendations	64
	5.1	Conclusi	ions	67
	5.2	Recomm	nendations	70
6.0	Refe	rences		72

LIST OF FIGURES

Figure No	Description	Page
Figure 1.1	Site Map of the Study Area in Kandana Treatment Plant	6
Figure 1.2	Site Map of the Study Area in Biyagama Treatment Plant	6
Figure 2.1	Charge acquisition through isomorphous substitution of Al for Si	10
Figure 2.2	Schematic representation of coagulation observed in jar tests using Al or Fe	13
Figure 2.3	Turbidity Removal Efficiency of Coagulant in Turbidity of 300NTU	16
Figure 2.4	Turbidity Removal Efficiency of Coagulant in Turbidity of 150NTU	17
Figure 2.5	Turbidity Removal Efficiency of Coagulant in Turbidity of 100NTU	17
Figure 2.6	Turbidity Removal Efficiency of Coagulant in Turbidity of 10NTU	18
Figure 2.7	Manufacturing Process of Aluminium Sulphate	23
Figure 2.8	Picture Shows the Poly Aluminium Sulphate Sample	23
Figure 2.9	Manufacturing Process of Poly Aluminium Chloride	28
Figure 2.10	Picture Shows the Poly Aluminium Chloride Sample	29
Figure 2.11	Equilibrium concentrations of CO ₂ and alkalinity with respect to pH	33
Figure 3.1	Flow Diagram Methodology	36
Figure 3.2	Flocs Size at Different Dose of Coagulants Using Jar Test Apparatus	39
Figure 3.3	Photograph Showing the Removal of Turbidity at Different Dose of Coagulants Using Jar Test Apparatus	43
Figure 3.4	Photograph Showing the Flocs formation at Different Dose of Coagulants Using Jar Test Apparatus	44

Figure 3.5	Photograph Showing the Flocs Settlement at Different Dose of Coagulants Using Jar Test Apparatus	44
Figure 3.6	Factors for Selection Method of Coagulant for the Study	45
Figure 4.1	Raw Water Parameters in Kalu Ganga in the year 2010 and 2011	50
Figure 4.2	Raw Water Parameters in Kelani Ganga in the year 2014 and 2015	50
Figure 4.3	Jar Tests Performance in Kalu Ganga with Raw Water turbidity from 4.14NTU to 136NTU	54
Figure 4.4	Effect of Coagulants Concentration on Turbidity in Initial Turbidity Range 0-10NTU	55
Figure 4.5	Effect of Coagulants Concentration on Turbidity in Initial Turbidity Range 11-20NTU	56
Figure 4.6	Effect of Coagulants Concentration on Turbidity in Initial Turbidity Range 21-40NTU	56
Figure 4.7	Effect of Coagulants Concentration on Turbidity in Initial Turbidity Range 41-60NTU	57
Figure 4.8	Effect of Coagulants Concentration on Turbidity in Initial Turbidity Range 61-80NTU	57
Figure 4.9	Effect of Coagulants Concentration on Turbidity in Initial Turbidity Range 81-140NTU	58
Figure 4.10	Jar Tests Performance in Kelani Ganga with Raw Water turbidity from 9.66 NTU to 85.3NTU	58
Figure 4.11	Raw Water Parameters in Kelani Ganga	59
Figure 4.12	Floc Size Formation Using Aluminium Sulphate and Poly Aluminium Chloride in Kalu Ganga	60
Figure 4.13	Comparison chemical cost in Kandana WTP in Year 2008 to 2016	62
Figure 4.14	Benefits Expected From Using PACL and Alum	64
Figure 4.15	Benefits Expected From Using PACL and Alum	65

LIST OF TABLES

Table No.	Description	Page
Table 2.1	Coagulant Used in Water Treatment	14
Table 2.2	Specification for Aluminium Sulphate for Human Consumption	22
Table 2.3	Specification for Poly Aluminium Chloride for Human Consumption	28
Table 2.4	Chemicals typically used in pH/Alkalinity Adjustment	34
Table 3.1	Floc Size Index	45
Table 4.3	Comparative Performance of Alum and PACL at Turbidity 18.3 NTU	52
Table 4.4	Comparative Performance of Alum and PACL at Turbidity 39.2 NTU	52
Table 4.5	Comparative Performance of Alum and PACL at Turbidity 72.5 NTU	53
Table 4.6	Comparative Performance of Alum and PACL at Turbidity 136 NTU	53
Table 4.7	Comparative Performance of Alum and PACL	54
Table 4.8	Chemical Cost of the Kandana Water Treatment Plant from Year 2008 to Year 2016	63
Table 4.9	Annual Cost Saving by Using PACL instead of Alum as per Table 4.8	63

LIST OF ABBREVIATIONS

Abbreviation	Description
ALUM	Aluminium Sulphate
Al	Aluminium
AWWA	American Water Works Association
$^{0}\mathrm{C}$	Degrees Celsius
EPA	Environmental Protection Agency
FSD	Floc Size Distribution
g	Grams
HU	Hessan Units
MCL	Maximum Concentration Level
mg/l	Milligrams per liter
NOM	Natural Organic Matter
NTU	Nephelometric Turbidity Meter
NWSDB	National Water Supply & Drainage Board
PACL	Poly Aluminium Chloride
PAS	Poly Aluminium Sulphate
PASS	Poly Aluminium Silicate Sulphate
ppm	parts per million
TCU	True Colour Units
WHO	World Health Organization
WSP	Water Safety Plan
WTP	Water Treatment Plant

APPENDICES

Appendix A	Raw Water Quality in Kalu Ganga in Year 2010 and Year 2016
Appendix B	Raw Water Quality in Kelani Ganga in Year 2015 and Year 2016
Appendix C	Treated Water Quality Using Aluminium Sulphate in Kalu Ganga Water Source
Appendix D	Treated Water Quality Using Poly Aluminium Chloride in Kalu Ganga Water Source
Appendix E	Treated Water Quality Using Aluminium Sulphate and Poly Aluminium Chloride in Kelani Ganga Water Source
Appendix F	Questionnaire Survey
Appendix G	Questionnaire Survey Analysis