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Abstract  
 

This thesis can be divided into two main modules. First module is implementation of an Ex-

tended Kalman filter and introduce into existing flight control algorithm which is used to con-

trol multi-rotor unmanned vehicles. Purpose of this implementation is to improve flight per-

formance and reliability of the system. Second module is implementation of an obstacle avoid-

ance system based on stereo vision and fuzzy logic for same flight control algorithm to avoid 

crashes and avoid obstacles during navigation. In this thesis Chapter 1 introduce basic modules 

of this implementations and explain about flight control algorithm and its major components 

which is used in here. This chapter also explains the theory behind the Extended Kalman Fil-

ters, stereo vision systems and fuzzy logic. Chapter 2 described literature survey about existing 

implementation of Extended Kalman filters on multi-rotor platforms, stereo vision system im-

plementations and related obstacle avoidance implementations like artificial potential field and 

fuzzy logic. First section of chapter 3 focused into implementation details and experimenting 

results of Extended Kalman filter and also explained how Extended Kalman filter outputs are 

combined to Attitude and Position controllers of flight control algorithm. Second section of 

chapter 3 focused into implementation and experimenting results of the stereo vision system. 

This section explained detail implementation of stereo vision system like stereo camera cali-

bration, image rectification, disparity map generation and depth calculation. Mainly OpenCV 

was used in this implementation. Third section of chapter 3 focused into explained implemen-

tation of fuzzy decision-making system. In here described deciding of fuzzy inputs and outputs 

using depth image, creation of fuzzy inference system, selection of membership functions and 

combined fuzzy decision-making system with flight control algorithm. Flight testing and ex-

perimental results of Extended Kalman filter and obstacle avoidance system were described in 

chapter 4, both systems were tested on outdoor environments and improvement of the perfor-

mance and reliability was discussed in this chapter.  Chapter 5 is the final chapter of this thesis 

and it includes conclusion of the thesis, recommendations and further works. 

Keywords: Quadcopters, Kalman Filters, Obstacle Avoidance, Stereo Vision, Fuzzy Logic. 
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 INTRODUCTION 

Basically, this research can be divided into two sections. Implementation of an Ex-

tended Kalman filter to improve the performance of multi-copter flight control algo-

rithm presented in [1] and [2] and implementation of stereo vision and fuzzy logic-

based obstacle avoidance algorithm for same flight control algorithm. There are sev-

eral multi-rotor platform types available. These are categorized based on number of 

motors they have, like Tri-copters, Quad-copters, Hexa-copters and Octo-copters. In 

here Quad-copter was selected because of theirs less complexity compares to Hexa-

copters or Octo-copters and relatively more stable than Tri-copters. To improve the 

flight performance of quadcopters, like improve robustness of position hold or auton-

omous flight to given waypoints, automatic take-off and landing, flight control algo-

rithm should have accurate and robust attitude and position control system. To improve 

performance of these controllers, flight control algorithm should have reliable state 

estimation system. Therefore, in here Extended Kalman filter was proposed to the 

flight control algorithm presented in [1] and [2]. Extended Kalman filters are non-

linear version of the linear Kalman filters. Due to non-linearity behaviour of multi-

rotor vehicle attitude, we cannot use linear Kalman filter to estimate attitude of the 

system. Therefore, Extended Kalman filter was introduced to the system and it can 

estimate both attitude and position of the vehicle simultaneously. Unlike other filters 

like complementary filters or low pass filters over advantage of Kalman filter is we 

can fuse all available measurement at once. This will improve performance and relia-

bility of the vehicle.  

When flying quadcopters or other types of unmanned vehicle pilot needs more skill to 

avoid crashing into walls, tree or other obstacles. This is serious burden for untrained 

pilot and therefore, system should have reliable obstacle avoidance system. In many 

situations ultrasonic or Infar red sensors were used. This type of sensors suffers from 

lack of information around their environment and thus they give faulty readings most 

of the cases. As human use stereo vision to avoid obstacles around them when navi-

gating, the same principal was used in here. Therefore, stereo vision and fuzzy logic 

based control method was proposed to detect and avoid obstacles accurately.  
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Rest of this chapter briefly explain the basic components of the flight control algorithm 

presented in [1] and [2] and theory behind the Extended Kalman filters, Stereo vision 

and Fuzzy Logic.  

 Flight control algorithm  

Multi-Copters or Quad-copters are aerodynamically unstable and require an on-board 

flight control algorithm for stable flight. The flight controller algorithm abstract data 

from all on-board sensors like MEMS accelerometers, gyroscopes, barometers, and 

GPS and estimate system orientation and position and then theses information fed into 

to attitude and position controller to maintain quadcopter attitude and position. Figure 

1.1 shows the basic components that include in most of multi-rotor platforms. Quad-

copter can control its attitude or orientation (i.e. Roll, Pitch and Yaw) by changing its 

rotors speeds. Flight control algorithm presented in [1] and [2] introduce Globally sta-

bilize intrinsic non-linear PID controller to stabilize any kind of multi-rotor system. 

This flight control algorithm presented in [1] and [2] was tested on several multi-rotor 

platforms like quad-copters, hexa-copters and octo-copters and it consists with follow-

ing basic components. 

1. Hardware Abstraction Layer. 

2. State estimation. 

3. Attitude & Position Control. 

4. Communication Protocol. 

 

 Hardware Abstraction Layer 

Hardware Abstraction Layer read sensor data and to send drive commands to motors. 

HAL is consisting with common driver set for peripheral devices. It also provides a 

device driver interface to communicate with the hardware. The main purpose of a HAL 

is to handle different hardware architectures from the operating system by providing a 

uniform interface to the system peripherals. Flight control algorithm presented in [1] 

and [2] supported, flight controller boards which are runs Linux based operating sys-

tems.   
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 State estimation  

To estimate the attitude of the multi-rotor, flight control algorithm presented in [1] and 

[2] consists with complementary filter implemented by Mahony et al presented in [5]. 

Currently, flight control algorithm does not have position estimation filter and GPS 

measured horizontal position and barometer measured height are directly fed into the 

position controller. Because of this reason performance of the position control of the 

vehicle is poor. So, vehicle needs reliable estate state estimation system to perform 

better for its autonomous operations.  

 Attitude control & Position control 

The quadrotor control structure is usually divided into internal and external loops ac-

cording to the characteristics of the system model. The internal control loop is used to 

control attitude (orientation) of the vehicle and the external control loop is used to 

control the position of the vehicle. Flight control algorithm presented in [1] and [2] 

used Globally stabilize intrinsic non-linear PID controller to control its attitude. To 

control position angle based linear PID control algorithm was used.  

 Communication protocol 

It is important to maintain stable communication between flying machine and user. 

Because we have to give control commands through this communication protocol. In 

here MAVLink communication protocol was used. MAVLink is mostly used for com-

munication between a ground control station and unmanned aerial vehicles. MAVLink 

protocol can be used to transmit the like vehicle position, velocity and orientation of 

the vehicle. It allows any type of communication devices such as Radio Telemetry, 

Wi-Fi or any other UDP device. Figure 1.2 shows working principal of MAVLINK 

using block diagrams. Figure 1.3 shows graphical user interface of flight control algo-

rithm presented in [1] and [2] which is use to communicate with any kind of multi-

rotor. 
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Figure 1.1 Basic components of simple Multi-copter 

Reference: http://ardupilot.org/copter/docs/introduction.html 

 

Figure 1.2 MAVLink communication protocol block diagram 

Reference: https://www.slideshare.net/nicholasyoonchun/open-source-drone-

sineverydaylife-66474415 

 

https://www.slideshare.net/nicholasyoonchun/open-source-dronesineverydaylife-66474415
https://www.slideshare.net/nicholasyoonchun/open-source-dronesineverydaylife-66474415
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Figure 1.3 Graphical user interface use to communicate with quadcopter 

 

 Key features of the flight control algorithm  

• High accurate aerobatic flight mode: Perform aggressive flips and stable under 

large deviation. 

• Automatic Position Hold mode: The quadcopter holds its position using its 

GPS, accelerometers and barometer. 

• Return to Home: Vehicle will be fly back to take-off position and land auto-

matically. 

• Autonomous missions: Using Graphical User Interface we can upload the GPS 

waypoints to vehicle. Then copter will fly automatically to these waypoints and 

come back to launch point without any human intervention. 

• Failsafe: In case of loss of contact with the pilot, low battery or the vehicle 

goes outside a defined geofence copter will triggers an autonomous return-to-

home. 
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 Kalman filter 

Multi-rotor position, orientation and velocities are critical states and need to be accu-

rately estimated as mention in previous. The Kalman Filter has been applied to many 

aerospace applications and used in many navigation systems. Most popular states es-

timators are Kalman filters and its non-linear versions such as the Extended Kalman 

Filter. Standard Kalman filter is linear estimator like complementary filter and it can 

use to minimize the error variance. Unlike complementary filter gain Kalman filter 

itself optimize its filter gain and this gain calls Kalman gain. If system is linear then it 

can be mathematically represented as follows.  

 

 

 

Where A is state matrix, B is input matrix and H is measurement matrix.  𝑥 is state of 

the system, 𝑢 is known input to the system, 𝑦 is the measured output, 𝑤 is a process 

noise and 𝑧 is a measurement noise. 

Kalman filter assumes that process noise and measurement noise are zero mean gauss-

ian noises and they also not correlated. According to this assumption covariance ma-

trices of process noise (𝑄) and measurement noise (𝑅)can be written as follows.  

  

 

 

Kalman filter process can be divided into two stages. State and covariance prediction 

stage and state and covariance update stage. Theses stages can be mathematically rep-

resented by using equation (1.1) (1.2) (1.3) and (1.4). 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 

 

 

 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑧𝑘 

 

 

 

𝑄𝑘 = 𝐸(𝑤𝑘, 𝑤𝑘
𝑇) 

 

 

 

 

𝑅𝑘 = 𝐸(𝑧𝑘 , 𝑧𝑘
𝑇) 

 

 

 

 

(1.1) 

(1.2) 

(1.4) 

(1.3) 
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Prediction stage 

 

 

Update stage 

 

 

 

 

Where 𝑥̂𝑘|𝑘−1 is the predicted state estimation at actual time step, 𝑃𝑘|𝑘−1 is the pre-

dicted estimated covariance matrix,  𝑥̂𝑘|𝑘 is updated state estimation from previous 

time step 𝑃𝑘|𝑘  is the updated estimated covariance at previous time step and 𝐾𝑘 is Kal-

man gain for actual time step. 

 Extended Kalman filter  

When it comes to Extended Kalman filter system matrix (𝐴) contains non-linear terms. 

As a result of this system state can be represent as equation (1.12). Therefore, system 

matrix (𝐴) and measurement matrix (𝐻) can be represented as equation (1.13) and 

(1.14). All the steps and equations are same as linear Kalman filter. 

 

 

   Where  

    

 

  

𝑥̂𝑘|𝑘−1 =  𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘|𝑘−1𝐴𝑇 + 𝑄𝑘 
 

𝑦̃𝑘 = 𝑧𝑘 − ℎ(𝑥̂𝑘|𝑘−1) 
 

𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 

 
𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘

𝑇𝑆𝑘
−1 

 
𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝑘𝑘𝑦̌𝑘 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 
 

Predicted State  

Predicted Covariance 

Innovation 

Innovation Covariance 

Kalman Gain 

Update State 

Update Covariance 

(1.5) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.6) 

𝐴 =  
𝜕𝑓

𝜕𝑥
⃒𝑥̂𝑘−1|𝑘−1,𝑢𝑘

 

𝐻 =  
𝜕ℎ

𝜕𝑥
⃒𝑥̂𝑘|𝑘−1

 

𝑥̂𝑘|𝑘−1 = 𝑓(𝑥̂𝑘−1|𝑘−1, 𝑢𝑘) (1.12) 

(1.13) 

(1.14) 
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 Stereoscopic Vision  

Using pair of stereo images which is acquired using stereo camera and calculating the 

distance to each pixel of the image is most important and difficult task in robotics and 

computer vision applications. Depth images can be extract using pixel wise matching 

between the left image and right image which is provided by stereo camera. Stereo 

vision is commonly use in fields of machine vision, computer vision, VR/AR (Virtual 

reality and Augmented reality), robot navigation, simultaneous localization and map-

ping, depth measurements and 3D environment reconstruction. 

There are four main steps in stereoscopic vision process.  

1. Due to Camera lens distortion first, we have to perform camera calibration to 

find camera distortion coefficients. 

2. Due to camera misalignment, we have to perform Image rectification to get co-

planner images. 

3. Disparity Calculation. 

4. Depth Calculation. 

 Camera calibration 

Due to lens curvature and misalignment between image plane (Image sensor) and lens, 

images taken from cameras are always distorted. There two types of distortion. 

Radial distortion: Due to curvature shape of the camera lens when light rays bend 

more near the edges of a lens than its optical center (Figure 1.4). Due to radial 

distortion, expected straight lines in the corner of the images are appear as curved. Its 

effect is increase we move away the camera from the center of image. 

 

Figure 1.4 Radial distortion 

Reference: https://www.mathworks.com/help/vision/ref/cameraintrinsics-class.html 



9 

Tangential distortion: Occurs due to misalignment of the image plane and lens as 

shown in Figure 1.5. Due to tangential distortion some areas in image may look nearer 

than expected. 

 

Figure 1.5 Tangential distortion 

Reference: https://www.mathworks.com/help/vision/ug/camera-calibration.html 

 

To eliminate this camera image distortion effect on depth calculation, we have to 

perform stereo camera calibration to find camera image distortion coefficients i.e. 

Radial distortion coefficient and Tangential distortion coefficient for both left and right 

camera. 

The Radial distortion can be represented as follows: 

 

 

The Tangential distortion can be represented as follows: 

 

 

So all together we need to find five distortion coefficients given by: 

 

 

𝑥distorted = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) 

𝑦distorted = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) 

 

 𝑥distorted = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)] 

𝑦distorted = 𝑦 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦] 

 

= (𝑘1 𝑘2 𝑘3 𝑝1 𝑝2 ) 

(1.15) 

(1.16) 

(1.17) 

(1.19) 

(1.18) 

Distortion Coefficients 

https://www.mathworks.com/help/vision/ug/camera-calibration.html
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In addition to this, intrinsic parameters (Camera matrix) and extrinsic parameters of 

the stereo camera need be find. Intrinsic parameters are camera specific parameter and 

it includes focal length (𝑓𝑥, 𝑓𝑦) and optical centers (𝑐𝑥, 𝑐𝑦). These parameters can be 

stored as a 3x3 matrix: 

 

 

The extrinsic parameters are rotation and translation vectors of the right camera 

compare to left camera. 

 Image rectification 

In most of the situations cameras of the stereo camera are not perfectly aligned and 

also with high precision equipment it may be impractical to align these cameras. Due 

to this misalignment of those cameras it is difficult to find corresponding points of left 

camera image and right camera image. Therefore, we have to perform image rectifica-

tion before going into next step. As shown in Figure 1.6 in the process of rectification 

will replace the initial images of both camera by using another projective equivalent 

pair. That means initial images are re-projected to common plane which parallel to the 

baseline of the stereo camera. 

 

Figure 1.6 Rectification of a stereo pair.  

Reference: https://sites.google.com/site/stereoimagesrectification/introduction 

= [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] 

 

(1.20) Camera Matrix 
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These Projection matrices (𝑃𝑙 𝑃𝑟) for left and right camera can be written using camera 

matrix (equation 1.20) and extrinsic parameters (Right camera translation and rotation 

compare to left camera) as shown in equation (1.21) and equation (1.22).  

 

 

 

 

 

 Disparity 

The disparity is horizontal distance between two matching pixels relative to left cam-

era optical centre or right camera optical centre (In most cases relative to left camera 

optical centre) and the disparity map defines a value of this horizontal pixel distance 

for each image pixel coordinate. Hence, it is a function of  𝑑(𝑥, 𝑦) where 𝑑 is disparity 

value of 𝑥𝑡ℎ and 𝑦𝑡ℎ pixel. The Tsukuba stereo image pair is shown together with a 

disparity map in Figure 1.7.  

 

Figure 1.7 The Tsukuba stereo image pair:  

a) Left view b) Right view c) Superimposed left and right view. d) Disparity map  

𝑃𝑙 = [
𝑓𝑙

0
0

0
𝑓𝑙

0

𝑐𝑥𝑙

𝑐𝑦𝑙

1

0
0
0

] 

 

𝑃𝑟 = [
𝑓𝑟

0
0

0
𝑓

𝑟

0

𝑐𝑥𝑟
𝑐𝑦𝑟

1

𝑇𝑥 × 𝑓𝑟

𝑇𝑦 × 𝑓𝑟

0

] 

 

(1.21) 

(1.22) 
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 Pixel correlation (Block matching) 

To find disparity of each image pixel first we have to identify the conjugate pairs 

(blocks) in both left and right images. To identify two blocks as a conjugate pair, it is 

necessary to measure the similarity of these blocks. Several algorithms were proposed 

for this task and most of the algorithm uses a matching cost function to identify con-

jugate pair of pixels. The most common matching cost functions are sum of absolute 

differences (SAD), sum of squared differences (SSD) and the normalized cross corre-

lation (NCC).  

Sum of absolute differences (SAD) can be expressed as: 

 

 

Sum of squared differences (SSD) can be expressed as: 

 

 

Normalized cross correlation (NCC) can be expressed as: 

 

 

Where 𝐼𝑙  𝐼𝑟 are the intensity values in the left and right image, (𝑥, 𝑦) are the pixel’s 

coordinates, 𝑑 is the given disparity value and W is the support region or block-size. 

Conjugate pairs are search in correspondence rows only. This is because images are 

rectified and this will eliminate the search of vertical conjugate pairs. 

 Disparity calculation (Stereo correspondence) algorithms 

In above topic we already assigned random disparity values for each pixel based on 

matching cost algorithm SAD, SSD or NCC. Now we have to find disparity values in 

entire image. For this purpose, we used Stereo correspondence algorithms which are 

almost contains several optimization techniques.  

SAD(𝑥, 𝑦, 𝑑) = ∑ ǀ𝐼𝑙(𝑥, 𝑦) − 𝐼𝑟(𝑥, 𝑦 − 𝑑)ǀ

𝑥,𝑦є𝑊

 

SSD(𝑥, 𝑦, 𝑑) = ∑ (𝐼𝑙(𝑥, 𝑦) − 𝐼𝑟(𝑥, 𝑦 − 𝑑))𝑥,𝑦є𝑊
2 

NCC(𝑥, 𝑦, 𝑑) =
∑ 𝐼𝑙(x, y) − 𝐼𝑟(x, y − d)𝑥,𝑦є𝑊

√∑ 𝐼𝑙
2(𝑥, 𝑦)𝑥,𝑦є𝑊 . ∑ 𝐼𝑙

2(𝑥, 𝑦 − 𝑑)𝑥,𝑦є𝑊

 

(1.23) 

(1.24) 

(1.25) 
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Stereo correspondence algorithms can be divided into mainly two groups. First one is 

Dense Disparity algorithms and second one is Sparse Disparity algorithms. However 

Sparse disparity algorithms are low accurate and almost out of date.  

Therefore, here I do not focus into sparse disparity algorithms. When it comes to dense 

disparity algorithms we can divide this into two groups based on their optimization   

techniques. First one is Local methods also called area-based methods or windows-

based methods. In this method disparity computation of a given pixel depends only on 

the intensity value of the selected window. Second method is Global methods also 

called energy-based methods. Local methods are less accurate compare to Global 

methods because they only focus on local minima but considerably fast compare to 

Global methods. On the other hand, Global methods are more accurate because they 

focus on global minima but computationally extensive compare to local methods.   

Local methods 

Local methods only use information located in a close pixel in support window (block). 

In here we assign disparity value that minimizes the cost function for each individual 

pixel. This method is also called as Winner-Take-All (WTA) optimization and math-

ematical representation for this type of optimization is shown in equation (1.26).  

When using local Winner-Take-All optimization, the disparity map is defined as:  

     

Where 𝑑(𝑥, 𝑦) is disparity value of the 𝑥𝑡ℎ  and 𝑦𝑡ℎ pixel and 𝐶(𝑥, 𝑦, 𝑑) is matching 

cost function based on SAD, SSD or NCC as mention equation (1.23) (1.24) and 

(1.25). 

 

Global methods 

Global methods find disparities for all reference image pixels at once. This is 

achieved by minimizing an energy function using some optimization technique. The 

energy function used in stereo matching usually include two terms called correspond-

ence data term and a smoothness term. 

𝑑(𝑥, 𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐶(𝑥, 𝑦, 𝑑) 
 

(1.26) 
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In above 𝑑 = 𝑑(𝑥, 𝑦) is the disparity value of each pixel of the reference image and 

 is a parameter that adjusts smoothness of the result. The data term is normally based 

on sum of a matching cost function such as SAD SSD or NCC as mention equation 

(1.23) (1.24) and (1.25). 

 

 

The smoothness term is often a function depending on differences in disparity and 

intensity of neighboring pixels according to:  

 

   

Here 𝜌 is tunable value and idea behind this value is increase monotonically with dis-

parity difference to penalize a discontinuous result, but at the same time be able to 

reduce this penalty for disparity discontinuities located at color edges.  

 Depth calculation 

Once we have derived the disparity (𝑑 = 𝑥 −  𝑥′) for each image pixel (𝑥, 𝑦) and cam-

era matrices, the calculation of the depth for each pixel is very straightforward as 

shown in Figure 1.8. Once we know the disparity (𝑥 −  𝑥′) of each pixel then we can 

estimate how far away the object is. The relation between disparity and depth is given 

by 

 

𝐸(𝑑) = 𝐸𝑑𝑎𝑡𝑎(𝑑) + 𝝀. 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) 

𝐸𝑑𝑎𝑡𝑎(𝑑) = ∑ 𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦))

(𝑥,𝑦)є𝐼𝑚

 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) = ∑ 𝜌[𝑑(𝑥, 𝑦) − 𝑑(𝑥 + 1, 𝑦),
(𝑥,𝑦)є𝐼𝑚

 𝐼(𝑥, 𝑦) − 𝐼(𝑥 + 1, 𝑦)]

+  𝜌[𝑑(𝑥, 𝑦) − 𝑑(𝑥 + 1, 𝑦), 𝐼(𝑥, 𝑦) − 𝐼(𝑥 + 1, 𝑦)] 

 

   

 

 

Depth (𝑍) =
𝐵𝑓

𝑥 − 𝑥′
 

 

 

(1.27) 

(1.28) 

(1.29) 

(1.30) 
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Figure 1.8 Relationship between depth of a point and disparity of same 

point 

Where 𝐵 is the distance between the optical centers of two cameras, also called the 

baseline and 𝑓 is the focal length of the camera. According to above equation, disparity 

and depth of a point is inversely proportional.  

 Fundamental problems in stereo correspondence  

Occlusion  

Occlusion occurs when a point in the 3D space in front of the cameras gets depicted 

in one of the images and is blocked from being depicted in the other one. There is no 

general solution to the occlusion problem and as occlusion may cause to faulty 

matches.  

Uniform texture and lack of texture  

Another challenge is to handle surfaces with uniform texture and surfaces that lack 

features like white wall, glasses. When surfaces with these properties are encountered 

in a stereo image pair, it becomes complicated to decide which pixels in the left and 

right images that are corresponding to each other.  

Sensor noise and bias  

Camera sensor noise is another issue for stereo matching in that two matching pixels 

that should have the same intensities may not. This problem is especially occurring 

in poorly textured image regions or in images taken under poor lighting conditions. 

If two different cameras are used to capture the stereo images there might also be a 

difference in gain or a bias in the intensity of matching pixels in the left and right 

image.  
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 Fuzzy Logic 

Fuzzy logic is use in many applications such as robotics, image processing, industrial 

applications. Fuzzy logic has ability to replicate the human decision-making process. 

Basic concept in Fuzzy logic is the fuzzy if–then rule. Fuzzy logic can be used to model 

nonlinear systems and the most important thing is it can handle multi-input, multi-

output system.  

 Membership functions 

In fuzzy logic membership functions is a gaussian, trapezoidal, or any other shape of 

curve that are used to match inputs space to 0-1 degree of value. Each system has one 

or more input membership functions and output membership functions. According to 

variation of inputs and output variables shape of membership function will be decided. 

 Fuzzy inference system 

Fuzzy inference system (FIS) is mapping of input data and output data using fuzzy 

rules. Mainly FIS has four main components, fuzzifier, inference engine, rule base or 

knowledge base, and defuzzifier.  Fuzzifier maps input space into fuzzy membership 

functions. The rule base or knowledge base consists with if-then rules that are provided 

by human expertise. The inference engine maps input fuzzy sets into output fuzzy sets 

and determine satisfied combination of each rules. The defuzzifier maps output fuzzy 

sets into a single number. There are many defuzzification methods available. The most 

commonly used method is the centroid and other methods are Bisector, Mean of max-

imum, Sum of maximum and Largest of maximum etc. A general schematic of a FIS 

is shown in Figure 1.9. 

 

Figure 1.9 Block diagram of a fuzzy inference system. 
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 LITERATURE REVIEW 

 Related quadcopter states estimator implementations  

Mahony et al [5] presented attitude estimator for multirotor vehicles using low cost 

inertial measurement unit and observer has global convergence property for any initial 

state. Madgwick [6] presented attitude estimator which very similar to observer de-

scribed in [5], however, this filter uses gradient-descent algorithm to compute the di-

rection of the gyroscope measurement and also include magnetic bias and gyroscope 

bias compensation. Sabatini [7] presented quaternion-based Extended Kalman Filter 

(EKF) for estimating the attitude of a rigid body which can be applied to multirotor 

vehicle attitude estimation and filter also includes magnetic bias estimation and gyro-

scopic measurement bias estimation. Madinehi [8] presented several Kalman filter de-

rivatives like Multiplicative EKF, Additive EKF, Unscented Kalman Filters and In-

variant Kalman Filters, which can be applied to multirotor vehicle attitude estimation.  

 Related stereo vision implementations 

Lazaros et al [9] proposed novel stereo vision algorithm using Laplacian of Gaussian 

and edge detection. It can achieve 10 frames per second for 19 x 19-pixel images. 

Muhlmann et al [10] presented a local optimization stereo correspondence algorithm 

which uses the sum of absolute differences (SAD) and it can achieve 20 frames per 

second, for 160 × 120-pixel images. Di Stefano et al [11] presented another local op-

timization SAD based stereo correspondence algorithm. It achieves 39.59 frames per 

second for 320×240-pixel images. Hirshmuller [12] presented stereo vision algorithm 

which is already implemented in OpenCV call Semi-Global block matching technique. 

Mutual information based matching cost function is used for pixel-wise matching of 

images and this algorithm is mostly used in stereo vision applications. Hernandez et al 

[13] implemented this Semi-Global block matching algorithm in a GPU processor and 

it achieves 42 frames per second for 640 x 480-pixel images. 
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 Related obstacle avoidance implementations 

Lazaros et al [9] proposed stereo vision and fuzzy logic-based obstacle avoidance 

method for mobile robot. In here depth image is divided into three separate portion 

and calculate normalize depth value in each region, then these values fed into fuzzy 

inference system as inputs. Burschkal et al [14] proposed stereo vision-based obstacle 

avoidance method for mobile robots using potential field method. Proposed method 

tested only in indoors and achieved significant results. Borenstein [15] has proposed 

the virtual force field method for robot obstacle avoidance. Kyung et al [16] presented 

an elastic strip method for mobile robots to avoid obstacles. 
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 METHODOLOGY 
 

Development of the Extended Kalman filter and obstacle avoidance system can be 

divided into four separate modules for implementation purpose. 

1. Implementation and Testing of an Extended Kalman filter for quadcopter and in-

troduce it to flight control algorithm presented in [1] and [2]. 

In this section explained about deciding of inputs and outputs of the filter, system 

equations and filter equations, hardware selection and pre-flight test of the filter.   

2. Implementation of the Stereo vision system. 

In this section focused into stereo camera selection, camera calibration and image 

rectification using OpenCV, depth calculation and indoor and outdoor test of the 

stereo vision system. 

3. Implementation of the Fuzzy decision-making system. 

In this section explained about analysing of depth map, deciding of fuzzy inputs 

and outputs, creation of fuzzy table and outdoor test result of the fuzzy system with 

stereo vision system. 

4. Testing of flight control algorithm with above implemented Extended Kalman fil-

ter and obstacle avoidance system.   

 

 Development of the Extended Kalman filter 

 Inputs and outputs of the filter 

In order to control attitude and position of the quadcopter, it is necessary to estimate 

actual attitude, position, and velocity of the system. Position and velocity of the quad-

copter can be expressed as linear model however attitude of the system is nonlinear. 

Therefore, Extended Kalman filter was used to estimate attitude, position, and velocity 

of the quadcopter.  

Advantage of the use of Kalman filter is we can fuse all available sensors (measure-

ments) to estimate the attitude, position, and velocity of the system. However, we can 

estimate attitude of the system only using accelerometer and magnetometer, but results 

of this estimations are corrupted due to accelerometer noise, magnetometer 
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measurement delay and noise. We can also estimate the quadcopter position and ve-

locity by only using GPS. But GPS measurements suffer from low update rate (less 

than 10Hz) and measurement lag compare Inertial measurement unit (IMU) (more than 

250ms measurement delay in GPS compare to IMU). Therefore, Extended Kalman 

filter was used to estimate the vehicle states and filter simultaneously estimates both 

attitude and position of the vehicle.  

 

Inputs: 

• Body frame (Quadcopter frame) reference acceleration (Accelerometer meas-

urements). 

• Body frame reference angular rates (Gyroscopic measurements).  

• Body frame reference magnetic flux measurements (Magnetometer measure-

ments). 

• Earth frame reference GPS position and velocity. 

• Earth frame reference Barometer height measurement. 

Outputs (States): 

• Body frame (Quad-copter frame) reference attitude quaternions 

(𝑞1, 𝑞2, 𝑞3, 𝑞4). 

• North, East, Down earth frame reference velocities (𝑣𝑛, 𝑣𝑒 , 𝑣𝑑). 

• North, East, Down earth frame reference positions (𝑝𝑛, 𝑝𝑒 , 𝑝𝑑). 

• Body frame reference gyro biases (𝜔𝑥𝑏 , 𝜔𝑦𝑏 , 𝜔𝑧𝑏). 

• Body frame reference accelerometer bias offsets (𝑎𝑥𝑏 , 𝑎𝑦𝑏 , 𝑎𝑧𝑏). 

 Extended Kalman filter equations 

 

Angular rate vector:  

Acceleration vector:  

Angular rate bias vector:  

Acceleration bias vector:  

 

 

 

 

 

 

 

𝜔 = (𝜔𝑥; 𝜔𝑦; 𝜔𝑧) 

𝑎 = (𝑎𝑥; 𝑎𝑦; 𝑎𝑧) 

𝑎𝑏 = (𝑎𝑥𝑏; 𝑎𝑦𝑏; 𝑎𝑧𝑏) 

𝜔𝑏 = (𝜔𝑥𝑏; 𝜔𝑦𝑏; 𝜔𝑧𝑏) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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Body frame to earth frame rotation matrix: 

 

 

 

 

Rate of change of quaternion vector:  

 

 

State prediction: 

Using quaternion vector and equation (3.6) quaternion update equation can be written 

as follows: 

 

Using velocity vector, gravity vector, equation (3.2) and equation (3.5) velocity update 

equation can be written as follows: 

 

 

By integrating above velocity, position update equation can be written as follows: 

 

 

Angular rate bias update equation and acceleration bias update equation can be written 

as follows: 

 

 

 

 

 

 

 

𝑅 = [

𝑞1
2 + 𝑞2

2 − 𝑞3
2 − 𝑞4

2, 2(𝑞2𝑞3 − 𝑞1𝑞4), 2(𝑞2𝑞4 + 𝑞1𝑞3) 

2(𝑞2𝑞3 + 𝑞1𝑞4), 𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞4

2, 2(𝑞3𝑞4 − 𝑞1𝑞2) 

2(𝑞2𝑞4 − 𝑞1𝑞3), 2(𝑞3𝑞4 + 𝑞1𝑞2), 𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2

] 

𝑑𝑞 = (1; 0.5(𝜔𝑥 − 𝜔𝑥𝑏)𝑑𝑡; 0.5(𝜔𝑦 − 𝜔𝑦𝑏)𝑑𝑡; 0.5(𝜔𝑧 − 𝜔𝑧𝑏)𝑑𝑡) 

𝑞𝑁𝑒𝑤 = ((𝑞1𝑑𝑞1 − 𝑞2𝑑𝑞2 − 𝑞3𝑑𝑞3 − 𝑞4𝑑𝑞4 ), (𝑞1𝑑𝑞2 + 𝑞2𝑑𝑞1 + 𝑞3𝑑𝑞4 − 𝑞4𝑑𝑞3 ), 
(𝑞1𝑑𝑞3 + 𝑞1𝑑𝑞1 + 𝑞4𝑑𝑞2 − 𝑞2𝑑𝑞4 ), (𝑞1𝑑𝑞4 + 𝑞4𝑑𝑞1 + 𝑞2𝑑𝑞3 − 𝑞3𝑑𝑞1 ))  

𝑣𝑁𝑒𝑤 = [𝑣𝑛; 𝑣𝑒; 𝑣𝑑] + 𝑅 ((𝑎 − 𝑎𝑏)𝑑𝑡 + [𝑔𝑛; 𝑔𝑒; 𝑔𝑑]𝑑𝑡 

𝑝𝑁𝑒𝑤 = [𝑝𝑛; 𝑝𝑒; 𝑝𝑑] + [𝑣𝑛; 𝑣𝑒; 𝑣𝑑]𝑑𝑡 

𝜔𝑏𝑛𝑒𝑤 = (𝜔𝑥𝑏; 𝜔𝑦𝑏; 𝜔𝑧𝑏) 

𝑎𝑏𝑛𝑒𝑤 = (𝑎𝑥𝑏; 𝑎𝑦𝑏; 𝑎𝑧𝑏) 

(3.6) 

(3.5) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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Covariance prediction: 

 

 

 

According to equation (1.13) and using equation (3.12) and (3.13) state transition ma-

trix can be written as follows: 

 

 

 

 

 

 

 

 

According to equation (1.6) and using equation (3.14), (3.15), (3.16), (3.17) and (3.18) 

covariance matrix can be written as follows: 

 

 

 

Update equations: 

Filter state correction step was explained in here. Velocity and position states were 

going to be corrected first. There are six direct measurements (observations) available 

in this system, GPS North and East velocities and positions measurements and Barom-

eter height and climb rate measurements. Therefore, unlike attitude, velocity and po-

sition innovation can be found directly. However, due to measurement lag on GPS and 

the Barometer measurement fusion cannot be done sequentially. Therefore, we store 

predicted states with corresponding time-span in an array until new measurement is 

available. If new GPS/Barometer measurement is available then we call to an array 

𝐹 =  
𝜕𝑓

𝜕𝑥
 

𝑓 = (𝑞𝑛𝑒𝑤; 𝑣𝑁𝑒𝑤; 𝑝𝑁𝑒𝑤; 𝜔𝑏𝑛𝑒𝑤; 𝑎𝑏𝑛𝑒𝑤) Process equation: 

State vector: 

Therefore, State transition matrix: 

Control vector: 

 

𝑢 = (𝜔;  𝑎) 

Control influence matrix: 

 

𝐺 =  
𝜕𝑓

𝜕𝑢
 

Noise vector (IMU noise): 

 𝑁 = 𝑑𝑖𝑎𝑔(𝑑𝑎𝑥𝐶𝑜𝑣 𝑑𝑎𝑦𝐶𝑜𝑣 𝑑𝑎𝑧𝐶𝑜𝑣 𝑑𝑣𝑥𝐶𝑜𝑣 𝑑𝑣𝑦𝐶𝑜𝑣 𝑑𝑣𝑧𝐶𝑜𝑣)   

Process noise: 

 

𝑄 = 𝐺𝑁𝐺𝑇  

𝑃𝑛𝑒𝑤 = 𝐹𝑃𝐹𝑇 + 𝑄 Therefore, covariance matrix: 

𝑥 = (𝑞
1
; 𝑞

2
; 𝑞

3
; 𝑞

4
; 𝑣𝑛; 𝑣𝑒; 𝑣𝑑; 𝑝

𝑛
; 𝑝

𝑒
; 𝑝

𝑑
; 𝜔𝑥𝑏; 𝜔𝑦𝑏; 𝜔𝑧𝑏; 𝑎𝑥𝑏; 𝑎𝑦𝑏; 𝑎𝑧𝑏) 

(3.14) 

(3.13) 

(3.12) 

(3.16) 

(3.15) 

(3.17) 

(3.18) 

(3.19) 
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which stored in previously estimated states and select a state which should have close 

timespan to corresponding measurement. States correction for velocity and position 

will be explained in here only for one axis (North axis) and states correction for other 

axis (East and Down) will be identical to these steps. 

GPS measurements vector:                𝑚𝐺 = (𝑉𝑋, 𝑉𝑌, 𝑃𝑋 , 𝑃𝑌) 

Barometer measurements vector:     𝑚𝐵 = (𝑉𝑧, 𝑃𝑍) 

State Correction step (measurement fusion) for 𝑣𝑛 and only GPS measurement 𝑉𝑋 is 

used in here. 

According to equation (1.7) innovation update equation can be written as follows: 

         

 

According to equation (1.14) measurement Jacobian can be written as follows: 

 

 

According to equation (1.9) and using equation (3.23) innovation covariance update 

equation can be written as follows:  

      

 

According to equation (1.10) and using equation (3.19), (3.23) and (3.24) Kalman Gain 

can be calculated as follows: 

 

According to equation (1.11) (1.12) and using equation (3.19), (3.22) and (3.25) update 

state and covariance can be written as follows:  

 

𝐻𝑣 =  
𝜕𝑣𝑛

𝜕𝑥
 

             𝐾𝑣 = 𝑃𝐻𝑣
𝑇𝑆𝑣 

𝑆𝑣 = 𝐻𝑣𝑃𝐻𝑣
𝑇 + 𝑅𝑣 

Innovation covariance: 

Kalman Gain:         

KK 

(𝑅𝑣 = GPS Velocity observation noise) 

(3.20) 

(3.21) 

(3.25) 

(3.23) 

(3.24) 

(3.22) 

Measurement Jacobian:   

 

Innovation:    𝑦𝑣 =  𝑉𝑋 − 𝑣𝑛  
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Attitude measurements (Observations) are not directly available. Therefore, to correct 

attitude (quaternion), body frame reference predicted magnetic flux value was esti-

mated and compare it with magnetometer flux value to find innovation.  

 

 

 

According to equation (1.8) and using equation (3.28) innovation update equation for 

attitude can be written as follows:  

 

 

According to equation (1.14) and using equation (3.28) measurement Jacobian can be 

written as follows: 

 

 

 

According to equation (1.9) and using equation (3.30) innovation covariance update 

equation can be written as follows  

      

 

According to equation (1.10) and using equation (3.19), (3.30) and (3.31) Kalman Gain 

can be calculated as follows: 

 

 

 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝐾𝑣𝑦
𝑣
 

𝑃𝑛𝑒𝑤 = (𝐼 − 𝐾𝑣𝐻𝑣)𝑃 

Update state:  

:         

KK 

Update covariance:  

:  

:         

KK 

Body frame reference predicted magnetic flux value: 

 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑀𝑎𝑔 =  𝑅𝑇 (𝑚𝑎𝑔𝑁; 𝑚𝑎𝑔𝐸; 𝑚𝑎𝑔𝐷) 

𝑚𝑎𝑔𝑁, 𝑚𝑎𝑔𝐸, 𝑚𝑎𝑔𝐷  are earth frame reference magnetic fields and they can be found 

using initial body frame reference magnetic field and initial 𝑅. 

𝐻𝑚𝑎𝑔 =  
𝜕𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑀𝑎𝑔

𝜕𝑥
 

Innovation:  𝑦𝑚𝑎𝑔 =  𝑚𝑒𝑠𝑢𝑟𝑒𝑑𝑀𝑎𝑔 −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑀𝑎𝑔 

Measurement Jacobian:   

  

𝑆𝑚𝑎𝑔 = 𝐻𝑚𝑎𝑔𝑃𝐻𝑚𝑎𝑔
𝑇 + 𝑅𝑚𝑎𝑔 Innovation covariance: 

(𝑅𝑚𝑎𝑔 = Magnetometer observation noise) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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According to equation (1.11) (1.12) and using equation (3.19), (3.29) and (3.32) update 

state and covariance can be written as follows:  

 

 

 

 

These equations are initially simulated using MATLAB symbolic Tool-box and then 

it converted to C++ language which can be run on flight controller board with Linux 

operating system. Then the filter was tested in real-time using actual sensor signals. 

Results of these experimentations are described in next section. 

 Hardware selection and assembling of the Quadcopter 

There are several components consists with quadcopter. Mainly flight control board, 

Motors, Motor speed control unit (ESC), Propellers, Radio frequency communication 

unit and Radio control unit (Remote Controller). Selected component and reason to 

select those components are described in below.  

Flight controller 

When it comes to flight controller board it is the brain of the quadrotor system. This 

consists with main processing unit which is run flight control algorithm and also it 

consists with necessary sensors like Inertial measurement unit (IMU) which includes 

3-axis mems accelerometer measures accelerations, 3-axis mems gyroscope measures 

angular rates, 3-aixs magnetometer also called compass which is sense the earth mag-

netic field, Barometer which is sense the atmospheric pressure, GPS Receiver and also 

includes serial ports, I2C ports, SPI Ports to attach necessary external sensors. In here 

I selected Navio2 flight shield with Raspberrypi 3 small computer which is run Linux 

real-time operating system. Navio2 flight shield includes MPU 9250 sensor with 3-

axis accelerometer, 3-axis gyroscope, 3 axis magnetometer MS5611 barometer, M8N 

GPS Receiver, and also includes PWM output pins for motor control, I2C port and 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝐾𝑚𝑎𝑔𝑦
𝑚𝑎𝑔

 

𝑃𝑛𝑒𝑤 = (𝐼 − 𝐾𝑚𝑎𝑔𝐻𝑚𝑎𝑔)𝑃 

             𝐾𝑚𝑎𝑔 = 𝑃𝐻𝑚𝑎𝑔
𝑇 𝑆𝑚𝑎𝑔 Kalman Gain:         

KK 

Update state:  

:         

KK 

Update covariance:  

:  

:         

KK 

(3.32) 

(3.33) 

(3.34) 
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Serial port. However, Raspberrypi board responsible for run all control algorithms, 

read sensor data from Navio2 flight sensor shield and output commands to the motors.  

 

Figure 3.1 Navio2 flight shield connected with Raspberrypi 3 computer 

board. 

Motors and Electronic speed control unit (ESC) 

Motors used in most multi-rotors are brushless dc motors. These motors are catego-

rized based on their KV rates. KV rates means increment of the rpm of the motor due 

to change of 1 volt. Normally motors with higher KV rates can produce low thrust and 

higher rpm while motors with lower KV rates can produce high thrust and low rpm. 

Therefore, high KV rate motors are suitable for heavy vehicle while low KV rate mo-

tors are suitable for light weight situations. When it comes to ESC they are categorized 

based on their current they can handle. ESC with higher current rates are suitable for 

motors with low KV rates. ESC converts DC voltage into 3-phase AC voltage using 

MOSFET. In here KV rate with 850 brushless dc motor with 20Amp ESC was se-

lected. 

 

Figure 3.2 Selected 850KV brushless dc motor and 20Amp ESC 
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Remote controller 

To give control commands to quadcopter like Throttle Roll Pitch Yaw command we 

need remote controller. Most of the time these are working with radio frequency range 

around 2.4GHz. These are categorized based on operating channels like 4 channel ra-

dios, 8 channel radios etc. In here 8 channel radio was selected. It has 4 main channels 

(Throttle, Roll, Pitch and YAW) and four auxiliary channels.  Remote controller work 

as a transmitter and to capture this transmitted signal quadcopter needs a receiver. Re-

ceiver also has eight output channels. 

 

Figure 3.3 Selected transmitter and receiver 

Radio telemetry 

To receive data like position velocity and attitude information or to send control com-

mands from quadcopter to laptop, tablet or vice versa we need this radio module. Un-

like Remote controller, this device is capable of two-way communication. That means 

one radio module can transmit data and at the same time, it can handle received data. 

Most of the time working frequency of those modules is 433MHz.  

 

Figure 3.4 Selected Radio telemetry 
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Battery 

Most of the time batteries used in multi-rotors are lithium-polymer. Because they can 

handle high discharge rates. Batteries categorized based on their number of cells like 

2cell 3cell etc. In here I used 4cell 14.8V with capacity 3300mAh battery. 

 

Figure 3.5 Selected lithium-polymer battery 

 

Final assembly of the quadcopter 

Figure 3.6 and Figure 3.7 shows final assembly of the system. Motors were connected 

to ESCs and then ESCs are powered using battery. PWM signal wires of the ESCs are 

connected to PWM output pin of the Navio2 flight shield and also remote-control re-

ceiver was connected to PWM input pin. Finally, radio telemetry module was con-

nected via serial port of the flight shield and external antenna also connected to GPS 

receiver. 

 

Figure 3.6 Actual hardware set-up of the system 
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Figure 3.7 Connections of the hardware components 

 

 Experimental results of the filter 

In here Kalman Filter estimated position and velocity compared with GPS position and 

velocity. However, Kalman Filter estimated attitude cannot be compare because quad-

copter attitude cannot be measured directly. Experiment was done in outdoor while 

moving the setup, the GPS position of Latitude and Longitude (North-East axis is pos-

itive) directions and Kalman filter estimated position of Latitude and Longitude 

(North-East axis is positive) directions were recorded every 5ms and plotted as shown 

in Figure 3.8, Figure 3.10. Several experiments were conducted while changing the 

process noise (Accelerometer noise) and measurement noise (GPS noise). Only most 

successful experiment result was shown in below. According to Figure 3.8 and Figure 

3.10 Kalman filter estimated position is followed by GPS measured position. However, 

Kalman filter estimated position is considerably lead compare to GPS measured posi-

tion according to Figure 3.9 and Figure 3.11 which are zoom version of the Figure 3.8 

and Figure 3.10. In here GPS position update rate is 5Hz but Kalman Filter position 

update rate is 400Hz because IMU update frequency is also 400Hz. Therefore, Kalman 

Filter estimated position is 80times faster than GPS position. According to Figure 3.9 

and Figure 3.11 position variation of the Kalman filter is smoother than GPS position 

estimation. However, there are little jumps on Kalman filter estimated position due to 

fusion step perform in every 200ms. 
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Figure 3.8 GPS position vs EKF position for Latitude direction 

 (Accelerometer process noise =0.25𝑚/𝑠2 and GPS position noise= 0.5m) 

 

Figure 3.9 Zoom version of Figure 3.8  

GPS position vs EKF position for Latitude direction 

 (Accelerometer process noise =0.25𝑚/𝑠2 and GPS position noise= 0.5m) 
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Figure 3.10 GPS position vs EKF position for Longitude direction 

 (Accelerometer process noise =0.25𝑚/𝑠2 and GPS position noise= 0.5m) 

 

Figure 3.11 Zoom version of Figure 3.10  

GPS position vs EKF position for Latitude direction 

 (Accelerometer process noise =0.25𝑚/𝑠2 and GPS position noise= 0.5m) 

 



32 

Velocity comparison experiment was done by applying sudden disturbance to vehicle. 

Same as position comparison experiment in here also data was recorded every 5ms 

and then plotted.  Figure 3.12 and Figure 3.13 shows how EKF estimated Velocity 

variation with GPS measured velocity. According to Figures, EKF estimated velocity 

lead compare to GPS velocity. Same noise covariances were used in here and EKF 

velocity update rate is 400Hz. Fusion step only applied when new GPS data is availa-

ble. 

 

Figure 3.12 GPS velocity vs EKF velocity for Latitude direction 

 (Accelerometer process noise =0.25𝑚/𝑠2 and GPS velocity noise= 0.5𝑚/𝑠) 

 

Figure 3.13 GPS velocity vs EKF velocity for Longitude direction 

 (Accelerometer process noise =0.25𝑚/𝑠2 and GPS velocity noise= 0.5𝑚/𝑠) 
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Vertical velocity and height variation of the EKF was plotted against barometer climb 

rate and height as shown in Figure 3.14 and Figure 3.15. Unlike GPS, barometers are 

measures atmospheric pressure, because of this it contains highly noisy measurements 

and also measurement lag is around 50ms and its low compare to GPS. However, EKF 

estimated height and climb rate overcome these problems and update rate was in-

creased from 10Hz to 400Hz. 

 

Figure 3.14 Barometer height vs EKF height 

 (Accelerometer process noise =0.25𝑚/𝑠2 and Barometer height noise= 2𝑚) 
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Figure 3.15 Barometer climb rate vs EKF climb rate 

 (Accelerometer process noise =0.25𝑚/𝑠2 and climb rate noise= 1.5𝑚/𝑠) 

 Introduce Extended Kalman filter outputs to flight control algorithm 

The chosen Attitude and Position control architectures are shown in Figure 3.16 and 

Figure 3.17. Theoretical development of this attitude controller was described in this 

paper [2] and implementation and experimental results were described in this paper 

[1]. When it comes to attitude control of the system, actual attitude information was 

extracted from the Extended Kalman filter and desired attitude information were pro-

vided by the pilot using a remote controller. Error between these two are the attitude 

error which fed into the attitude PID controller. PID controller then generates the thrust 

which should produce by each of the motors.  

Both controllers work as a cascade system as shown in Figure 3.17. Quadcopters are 

underactuated systems, therefore they cannot be control using single controller. Man-

ual flight only requires attitude controller but when it comes to autonomous flight of 

the vehicle there must be need of position controller. 
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Input to the position controller is actual position and velocities which extracted from 

EKF and desired position information given by pilot via remote controller. Output of 

the position controller is desired Roll angle, Pitch angle and Thrust. Then this infor-

mation is fed into the attitude controller to maintain the desired position of the vehicle. 

 

Figure 3.16 Attitude control of quadcopter 

 

Figure 3.17 Position control of quadcopter 
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 Development of the stereo vision system  

 Selection of the stereo camera 

Stereo camera consists with two similar cameras. To get better performance from the 

system camera should be identical and camera alignment should be perfect. But in 

reality, cameras even with same brand won’t be identical. However, in here two normal 

USB web cameras as shown Figure 3.18 were used to build the stereo camera as my 

first experiment. This camera can provide up to 720-pixel (1280x720) video resolution 

with 30 frames per second also view angle is only up to 60° with manual focus lens. 

Most of the situations distance between optical centers (Baseline distance) of the stereo 

camera is in the range between 10-15cm therefore, here I placed both cameras 12cm 

apart as shown Figure 3.18. Then both cameras were connected to Navio2 + Raspber-

rypi flight controller as shown in Figure 3.19. 

 

Figure 3.18 Normal USB web camera. 

 

Figure 3.19 Stereo camera build using two normal USB web camera 



37 

However, when creating depth images using above mention stereo camera, several 

problems occurred as follows: 

1. Camera Misalignment. 

2. Image synchronization problem. 

3. Narrow View Angle (lower than 60°). 

4. Low frame rate (VGA video 30fps). 

5. Low computing power. (Depth calculation using VGA resolution approxi-

mately takes 250ms). 

 

Due to manual installation of cameras, there are severe camera misalignment occurred 

which can’t be compensated using camera calibration and image rectification. This 

camera communicates with flight controller using two USB wires and due to this, most 

of the time image buffering problem occurred either one of cameras. Therefore, depth 

image calculation goes wrong on due to this problem. Narrow view angle creates depth 

images with less information about obstacles. Depth calculation using VGA resolution 

approximately takes 250ms. This also caused more serious problem. Because this re-

fresh rate cannot be acceptable in highly dynamic robots like quadcopters. 

 

To get rid of above mention problems then I moved to stereo camera called ZED and 

computing platform called Nvidia Jetson TX1 which has lot of advantages as follows: 

1. No Camera Misalignment. 

2. No Image synchronization problem. 

3. Wide View Angle (Up to 110° View Angle). 

4. Fast frame rate (Capture 720p video with 60fps or VGA video with 100fps). 

5. More computing power with GPU. (NVIDIA Maxwell™ GPU with 256 

NVIDIA® CUDA® Cores). 

6. Quad-core ARM® Cortex®-A57Processor. (Depth calculation with 720p res-

olution approximately takes 75ms). 

Compared to other USB web cameras, the ZED has a larger CMOS sensor that is ideal 

for low-light environments. It also has a low-latency USB performance which is suit-

able for the stereo vision application.  
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The ZED also has fixed focus lens with 110° field of view and the distance between 

the cameras is 12 cm. This will make information rich depth maps. When it comes to 

the Jetson TX1 Developer Kit, it is an ideal development platform for image 

processing. It is consists with a Linux operating system call Ubuntu and this makes 

Jetson TX1 ideal for computer vision applications such as computation of depth using 

stereo images. 

 

 

 

Figure 3.20 ZED stereo camera with Nvidia Jetson TX1 computing platform. 

 

 Stereo camera calibration 

According to Chapter 1, we have to perform Stereo camera calibration before com-

puting the depth. Because almost all stereo cameras subject to camera lens distortion 

and misalignment as mentioned in Chapter 1. In stereo camera calibration we hope 

to find camera distortion coefficient as mention in equation (1.19), camera intrinsic 

parameters (Camera Matrix) as mentioned in equation (1.20) and camera extrinsic 

parameters. These parameters are expected to use in Image rectification and depth 

calculation steps. To stereo camera calibration, OpenCV (Open Source Computer 

Vision) was used. OpenCV is free open source software for computer vision appli-

cations. However, OpenCV is registered under BSD license therefore, it is free to 

use in research applications as well as commercial applications.  

 

To calibrate the stereo camera OpenCV “StereoCalibrate” function was used. First, 

a 7× 10 chessboard pattern was printed on A3 sized paper and it was attached to a 

white color background.  

http://en.wikipedia.org/wiki/Degree_(angle)
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Then place the chessboard pattern in front of the cameras so that stereo camera can 

read all 70 corners of the chess board. Once the calibration starts, we start to move 

and rotate the chessboard, allowing both cameras to see the chessboard from differ-

ent viewpoints as shown in Figure 3.21. Before calling the function “StereoCali-

brate”, “FindChessboardCorners” function was called to locate the corners’ of the 

chess board.  

Finally, “StereoCalibrate” function take chess board information as input and com-

pute distortion coefficient and intrinsic parameters of each camera and saved in a 

.XML file which was used in image rectification and depth calculations. Also, com-

pute extrinsic parameters (rotation matrix and translation vector of the right camera 

compare to left camera) and saved in a separate .XML file. Figure 3.21 shows one 

moment of the stereo calibration process. 

 

 

Figure 3.21 Stereo calibration using a 7 × 10 chessboard pattern 
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 Image rectification 

When it comes to image rectification process, OpenCV “StereoRectify” was used. 

Which takes, raw images, camera matrix and extrinsic Parameters (rotation matrix 

and translation vector) that are computed during the stereo camera calibration pro-

cess as inputs and returns the rectification projections matrices 𝑃𝑙  𝑃𝑟  for left and right 

camera as mention in equation (1.21) and equation (1.22). Then, instead of perform-

ing this calculation every time, OpenCV “Remap” function was used to rectify the 

images by using previously calculated projection matrices. Figure 3.22 shows the 

comparison between raw input images and rectified images, here we can see that 

raw images suffer from lens distortion effect.  That means straight lines in real world 

appears as curved in raw images. However, after rectification is performed, distor-

tion effect was removed and objects appear in rectified images closer to what in real 

world.   

 

Figure 3.22 Raw images (Top) Rectified images (Bottom) 

 Disparity calculation 

OpenCV inbuilt functions were used to calculate disparity images. OpenCV has 

mainly two stereo correspondence algorithms, stereo block matching (StereoBM) and 

Semi-Global block matching (StereoSGBM).  
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As mention in Chapter 1, the stereo block matching algorithm (StereoBM) is a local 

stereo correspondence algorithm that was first developed by Kurt Konolige produces 

a less accurate but very fast disparity map. The Semi-Global block matching algorithm 

(StereoSGBM) is a global stereo correspondence algorithm that was first developed 

by Heiko Hirschmuller [12]. Although it produces a highly accurate disparity map, it 

is somewhat computationally extensive but ideal for real-time purposes. Since we use 

Nvidia Jetson TX1 as our computing platform for image processing, StereoSGBM was 

selected as stereo correspondence algorithm. SGBM algorithm is use sum of absolute 

differences (SAD) matching cost function as mention in equation (1.23) When using 

SGBM algorithm, key parameters that need to be tuned are summarized as below:  

SAD window size: This value controls the size of both the support window in the 

left image and the corresponding window in the right image. Window sizes are odd 

numbers like 3, 5 7 9, etc. A smaller window size decrease quality of the disparity 

map while reducing computational power and larger numbers provide smooth dis-

parity maps while increasing the computational power.  

 

Uniqueness ratio: This value controls the matching cost function margin value 

which is separate disparity values of two matching blocks.   

Pre-filter size: This value controls filter value of image pixels intensity filter. Larger 

values give more smooth disparity image but the response is going to be slow.  

Number of disparities: Difference between maximum and minimum disparity val-

ues. If we want to see closer objects clearly then we have to use larger value of 

number of Disparities and if we want to see things far away objects then we have to 

select smaller values of number of Disparities.  

 

User interface  

To understand the effect of above parameters and fine tuning of the disparity image 

OpenCV “CreateTrackbar” function was used. It creates a slider for each parameter 

and value can be change using those sliders. Figure 3.23 shows the user interface to-

gether with the disparity map computed using the SGBM algorithm.  
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Disparity values are varying between 0 – 255. 0 means closer objects and 255 means 

far-away objects. Changes of pre-filter size and uniqueness ratio not much affect to 

quality of the disparity image but changing SAD window size and Number of dispar-

ities gives significant results as mention in below.  

     

 

Figure 3.23 User interface for block matching algorithm 

 

Effect of changing number of disparities 

Lower value caused far-away objects noisy   but higher value caused far-away 

objects smoother.  

 

 

Figure 3.24 Effect of changing number of disparities.  
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Effect of changing SAD window size 
 

Smaller SAD gives more noise but captures object contours better. Bigger SAD win-

dow size gives smoother image but loses contour recognition of objects.  

 

   Figure 3.25 Disparity maps for different SAD window sizes 

 

When we have disparity map, calculation of the depth image is straight forward. Depth 

was calculated according equation (1.30) which is mention in the Chapter 1. According 

equation (1.30) to calculate the depth of a point we need three parameters. Disparity 

value of that point, focal length of the left or right camera (In here left camera frame 

considered as reference) and baseline distance of stereo camera. Disparity values were 

calculated in previous section, focal length of the each camera was found in camera 

calibration process as intrinsic parameters and finally baseline distance of camera can 

be calculated using optical centre values which are also found on camera calibration 

process. Therefore we know all three parameters and depth values for each pixels were 

calculated. Update rate of depth image with VGA (640x480) resolution raw images 

takes average 40ms and with HD (1280x720) resolution raw images take average 

75ms.  

In this case VGA resolution was selected because it is considerably fast compared to 

HD resolution and quality of depth image was enough to get information about 

obstacles. Rectified raw images with VGA resolution and corresponding depth image 

was shown in Figure 3.26. 
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Figure 3.26 Input raw images and corresponding depth map 

 Manual calibration of the depth image 

However, calcultated depth in above step may not represent the true depth values 

observed in the real world due to slight deviation of focal lengths and optical center 

distance of each camera from real value. Therefore manual calibration step was 

performed as shown in Figure 3.27. A series of images were recorded using the stereo 

camera and OpenCV function was used to get depth of the point which we interest by 

clicking on the raw image. This point is marked in red colour as shown in Figure 

3.27(a). True distance between this marked point and the stereo camera was also 

measured. This procedure was performed for several points and average factor was 

found. This factor was then used to correct computed depth. Moment of this process 

shown in Figure 3.27.  

According to Figure 3.27(a) average distance value from camera to marked red dotted 

point is 1.55m, but according to Figure 3.27(b) measured depth is 1.6m. According to 

Figure 3.27(c) average distance given by depth image was 2.50m and according to 

Figure 3.27(d) measured depth was 2.57m. So this procedure was followed by ten 

different situations and found an average scale factor to correct the depth values of the 

depth image. 
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Figure 3.27 Moment of manual calibration of depth image 

 Testing of stereo vision system on outdoor environment 

Unlike indoors, outdoor environments are subjected to varies lightning conditions. 

Due to variations of the sunlight may cause problems in depth image. Therefore, stereo 

vision system was tested in outdoor and parameters are being tuned in varies lightning 

conditions to get better results. Some results are described in this section.  

Here I focused only on changing number of disparities and SAD window size in out-

door environment. As I described in previous, changing of per-filter size and unique-

ness ratio in outdoor environments not much effect on quality of depth image. But 

changing number of disparities caused to somewhat clear image in far-away objects. 

But it also caused to reduce the quality of the closer objects.  When it comes to SAD 

window size, increasing its size caused to reduce the noise of the depth image but 

reduce the quality of objects contours. In this application we interested only closer 

objects therefore, low number of disparities and low SAD window size were selected 

and these values are not much differed from indoor environment.  
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Therefore, same values were decided to use in both indoor and outdoor environments. 

Figure 3.28 shows some experimentation on outdoor environment considering differ-

ent situation. 

 

Figure 3.28 Quality of the depth image in different scenarios 
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 Development of the fuzzy decision-making system  

 Analyzing the Depth Image 

Lazaros et al [9] presented an obstacle avoidance method which is successfully applied 

to mobile robot by dividing depth map into three separate regions. However mobile 

robot only have two degrees of freedom therefore, dividing depth map into three 

separate regions is enough but when it comes to quadcopter it has three degrees of 

freedom simply up-down left-right and forward-backward. Therefore depth map was 

divided into nine separate regions namely, Centre, Centre-Up, Centre-Down, Center-

Left, Centre-Right, Up-Left, Up-Right, Down-Left and Down-Right as shown in 

Figure 3.29. 

 

Figure 3.29 Depth map’s division in nine windows. 

 Calculation of size of sub regions  

Size of each region depends on the stereo camera field of view, height and width of 

the quadcopter as shown in Figure 3.30. According to equation (3.35), if we know 

camera horizontal field of view (𝜃) distance between camera and image plane 

(distance of camera to end of blind region can be neglected because baseline distance 

is smaller than 1.0m) then we can calculate width (𝑥) and height (ℎ) of visible plane. 

According to camera data sheet, horizontal field of view is 110°  for one camera and 

image width to height ratio is 16:9.  
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Although camera has 20m visible distance according to its data sheet here I only 

considered visible image plane with 5m distance (𝑑) from camera. Since the maximum 

speed of the quadcopter is 5m/s therefore, it takes one second to move current image 

plan at its maximum speed. Processing speed of the fuzzy decision around 10ms and 

as mention in previous chapter processing time of the depth image around 40ms so 

total processing time is around 50ms. Therefore, 5m of distance (𝑑) is enough for this 

situation.  

Using these information, width and height of visible image plane was calculated and 

width is 14.28m and height is 8.01m. Therefore each sub region width is 4.76m and 

height is 2.67m as shown in Figure 3.31. However quadcopter width is 0.75m and 

height is 0.5m. Therefore, selected size for centre region is approximately five times 

larger than quadcopter size. Therefore, quadcopter can be safely move through centre 

region. 

 

Figure 3.30 Visible image plane of the stereo camera 

 

 

𝑥 = 2 𝑑 𝑡𝑎𝑛(
𝜃

2
) (3.35) 
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Figure 3.31 Dimension of each sub regions 

 Calculation of normalize depth values of sub regions 

Considering quadcopter maximum speed 5m/s depth threshold was selected as 5m. 

That means objects smaller than 5m are considered as threats to the system. Reason to 

select this value is to improve the robustness of the system. If we select very smaller 

threshold value noisy signal can affect to decision-making system. If we select too 

large threshold value robustness of the system will decrease. However, each pixel in 

sub regions contains depth value and this value compare with threshold value. If depth 

value is greater than the threshold value, value of that pixel considered as one and 

otherwise zero. This procedure was then applied to all pixels in sub regions and take 

the summation of all values. This total value then normalizes throughout the sub win-

dow. This gives one single integer for each sub region and altogether nine values can 

be calculated. Then these nine values are fed into the fuzzy inference system as inputs. 

 Determination of fuzzy inputs and outputs 

It is clear that the normalize depth values (𝐷𝑙𝑢 𝐷𝑙𝑐 𝐷𝑙𝑑 𝐷𝑐𝑢 𝐷𝑐𝑐 𝐷𝑐𝑑 𝐷𝑟𝑢 𝐷𝑟𝑐 𝐷𝑟𝑑) of the 

nine regions and vehicle desired speed (𝑉𝑖𝑛) are input to the fuzzy inference system as 

shown in Figure 3.32. According to chapter 3 inputs to the position controller are 

desired positions of North-East-UP axis system.  
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However, instead of desired position, desired velocity in body frame can be estimated 

and then it can be converted into earth fame desired velocity. Integrating these desired 

velocities gives desired positions for position controller. Therefore, the output of the 

fuzzy system should be body frame velocity (𝑉𝑥, 𝑉𝑦, 𝑉𝑧).    

 

Figure 3.32 Navigation direction deciding based on depth image. 

 Determination of fuzzy rules 

Next, fuzzy rules were determined which combined inputs and outputs of fuzzy 

system. Rules were defined based on values of each sub windows, quadcopter desired 

input velocity and output velocities. Overall there 18 rules were defined for the fuzzy 

controller as shown in Table 3.1.  
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Table 3.1: Fuzzy rule table 

𝑉𝑖𝑛 𝐷𝑙𝑢 𝐷𝑙𝑐 𝐷𝑙𝑑 𝐷𝑐𝑢 𝐷𝑐𝑐 𝐷𝑐𝑑 𝐷𝑟𝑢 𝐷𝑟𝑐 𝐷𝑟𝑑 𝑉𝑥 𝑉𝑦 𝑉𝑧 

Low - - - - Low - - - - Zero 

 

Zero Zero 

Low High Low Low Low High Low Low Low Low SP SN SN 

Low Low High Low Low High Low Low Low Low SP SN Zero 

Low Low Low High Low High Low Low Low Low SP SN SP 

Low Low Low Low High High Low Low Low Low Zero SN SN 

Low Low Low Low Low High High Low Low Low Zero SN SP 

Low Low Low Low Low High Low High Low Low SN SN SN 

Low Low Low Low Low High Low Low High Low SN SN Zero 

Low Low Low Low Low High Low Low Low High SN SN SP 

High - - - - Low - - - - Zero 

 

Zero Zero 

High High Low Low Low High Low Low Low Low LP LN LN 

High Low High Low Low High Low Low Low Low LP LN Zero 

High Low Low High Low High Low Low Low Low LP LN LP 

High Low Low Low High High Low Low Low Low Zero LN LN 

High Low Low Low Low High High Low Low Low Zero LN LP 

High Low Low Low Low High Low High Low Low LN LN LN 

High Low Low Low Low High Low Low High Low LN LN Zero 

High Low Low Low Low High Low Low Low High LP LN LP 

SN – Small Negative 

SP – Small Positive 

LN – Large Negative 

LP – Large Positive 
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 Selection of input and output membership functions 

To guarantee smoothness of the fuzzy system gaussian type input and output 

membership functions were used in here. Input membership functions of Normalize 

depth values are defined as Low and High states which is vary between 0:1 as shown 

in Figure 3.33. Vehicle input desired speed also defined as Low and High states which 

is also vary between 0:1 as shown in Figure 3.34.  Output membership functions of  𝑉𝑥  

and 𝑉𝑧  are defined as Large Negative, Small Negative, Zero, Small Positive,  Large 

Positive states which is vary between -1:1 as shown in Figure 3.35. Due to absence of 

positive values of  𝑉𝑦, membership function of 𝑉𝑦 was defined as Zero, Small Negative 

and Large Negative as shown in Figure 3.36.  

 

Figure 3.33 Input membership funcition of desired velocity input (𝑉𝑖𝑛). 

 

 

Figure 3.34 Input membership funcition of normalize depth value of one 

region (𝐷𝑙𝑢 ) 
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Figure 3.35 Output membership funcitions of 𝑉𝑥, 𝑉𝑧 

 

Figure 3.36 Output membership funcition of 𝑉𝑦 

 Selection of defuzziffication method 

In here centroid, bisector, mean of maximum, sum of maximum and largest of maxi-

mum defuzzification methods were tried. Most significant results were provided by 

centroid method. Therefore, centroid method was used as defuzzify outputs. Finally, 

overall fuzzy inference system can be shown as Figure 3.37. 

 

Figure 3.37 Fuzzy inference system 
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 Introduce fuzzy inference system output to flight control algorithm 

As shown in Figure 3.38 section drawn by red color is the obstacle avoidance system 

which is going to introduce to the flight control algorithm presented in [1] and [2]. 

Output of the stereo vision system is depth image and this depth image divide into nine 

sections and find corresponding normalize depth value for each sub region as mention 

in previous section. These nine values are inputs to the fuzzy inference system and 

according fuzzy rule base direction and magnitude of output velocities were decided. 

Then these body frame velocities were converted to earth frame velocities and fed into 

the position controller as desired velocities and by integrating these velocities, desired 

positions were estimated in North-East and up directions. 

 

Figure 3.38 Combination of stereo vision system, fuzzy inference system 

with flight control algorithm 

Fuzzy inference system initially developed and simulated using MATLAB Fuzzy 

Logic Tool box. MATLAB fuzzy system can’t be run on Nvidia Jetson TX1 because 

Jetson TX1 runs on Linux operating system. So using fuzzylite library it was converted 

into the C++ environment which can be run on Linux environment. Entire stereo vision 

system runs on OpenCV which is compatible with Linux operating system. So finally 

both systems are runs on Nvidia Jetson TX1 as separate threads. 
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Figure 3.39 Code architecture runs on Nvidia Jetson TX1 

 Testing of the fuzzy system on outdoor environment 

The Fuzzy decision-making system was tested on outdoor environment. Vehicle was 

gradually taken into an obstacle (tree) as shown in Figure 3.40 and simultaneously 

recorded normalize depth values of nine regions and output velocities of fuzzy deci-

sion-making system. Results were plotted as shown in Figure 3.41 and Figure 3.42 

(Normalize depth values were plotted only for main sub regions in here). According 

to the Figure 3.41 high normalize depth values were appeared in all most all regions 

around 1050 data point and onward, at the same time vehicle forward velocity (𝑉𝑦) 

responded as negative velocity. This can be expected because situation shown in Fig-

ure 3.40 almost impossible to avoid. Therefore, other two velocities (𝑉𝑥 𝑉𝑧) almost zero 

during this time. 𝑉𝑧 shows some spikes on the plot because noise occurred in normalize 

depth values during the test. To eliminate this problem a low pass filter was introduced 

to the system later. At the last stage of this test (data point around 1300 and onward) 

sudden decrease of left side normalize depth value (𝐷𝑙𝑐) caused 𝑉𝑥 was responded as 

negative. But in this situation, it is impossible to avoid the obstacle (tree) and navigate 

around it. Therefore, these types of false situations need to be corrected in future de-

velopments. 
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Figure 3.40 Outdoor testing of fuzzy decision-making system. 

 

Figure 3.41 Variation of depth values of fuzzy decision-making system. 

 



57 

 

Figure 3.42 Variation of velocities of fuzzy decision-making system. 
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 EXPERIMENTAL RESULTS AND ANALYSIS  
 

 Flight test and result analyzing of Extended Kalman filter 

 Hardware setup  

Quad-copter was assembled as shown in Figure 4.1. Flight controller board, Motors 

and Electronic speed control units (ESC), Radio Telemetry module, Radio control re-

ceiver, Battery and GPS antenna were included in here as described in Chapter 3. All 

sensors, motor sequence and all other components and were checked before the flight 

test.  

 

Figure 4.1 Final assembled quadcopter 

 Experimental procedure 

Quad-copter was flying open field as shown in Figure 4.2. Quad-copter was Take-off 

manually then flew few meters in open field and finally land where it Take-off. While 

flying, data was collected every 2.5 milli-seconds through Wi-Fi communication mod-

ule. GPS Horizontal Positions and Velocities of Latitude and Longitude directions, 

Barometer Height and Climb rate, EKF Positions and Velocities of Latitude Longitude 

and Up-Down directions were recorded. Quad-copter was not fly too far from the pilot 

because of loss of data due to low communication range of Wi-Fi modules.  
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Figure 4.2 Quadcopter flying on open field  

 Results 

Barometer measured height with EKF estimated height and Barometer measured climb 

rate with EKF estimated climb rate were plotted as shown in Figure 4.3 and Figure 

4.4. Initially, EKF measured height and climb rate were little bit drift due to accel-

erometer Z axis bias. But within very short period, it is converged into measured value 

as shown in figures. Normally barometers are very highly noise sensors because they 

measured changes in atmospheric pressure. But according to figures EKF estimated 

values have low noise compare to measured values. In here 2.0𝑚 measurement covar-

iance was used for height measurements and 1.5𝑚/𝑠 measurement covariance was 

used for climb rate measurement due to high noise of climb rate measurements. 

0.25𝑚/𝑠2Accelerometer process noise was used in this situation. 
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Figure 4.3 Barometer measured height vs EKF estimated height 

 

Figure 4.4 Barometer measured climb rate vs EKF estimated climb rate 

In here GPS horizontal positions and velocities for Latitude and Longitude directions 

were plotted with EKF estimated horizontal position and velocities for Latitude and 

Longitude directions as shown in Figure 4.5, Figure 4.6, Figure 4.8 and Figure 4.9. 

Unlike above initial bias of EKF estimated horizontal position and velocity are almost 

zero due to negligible bias in X and Y axis of accelerometer.  
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According to Figure 4.5 and Figure 4.6, there is not much difference in GPS measured 

position and EKF estimated position. Because GPS measured position has normally 

low noise. But update frequency of GPS measured position is 5Hz and this is very low 

update frequency compare to EKF estimated positions which have 400Hz update fre-

quency. This is very clearly indicated in Figure 4.7 (which is zoom version of Figure 

4.6) as step changes in GPS measured position. Also, GPS measured position is nor-

mally lag 200 milli-second compares to inertial measurement unit. In here 220 milli-

second GPS measurement lag was assumed. Figure 4.7 clearly shows EKF estimated 

position is 220 milli-second leads compare to GPS measured position. According to 

Figure 4.7 to reach 10m, EKF estimated position takes only 66500 data points, but to 

reach same position GPS measured position takes 66580 data points, Therefore, the 

difference between these two are 80 data points. Since data were collected every 2.5 

milli-second total time between these two points are 220 milli-second. In here GPS 

measured position covariance consider as 0.5m and accelerometer process noise con-

sider as 0.25𝑚/𝑠2. According to Figure 4.8 and Figure 4.9 compare to EKF estimated 

velocity, GPS velocity is noisier. GPS velocity also suffers from low update frequency 

as mention above and measurements are lag compare to inertial measurement unit. 

These disadvantages are overcome by using Extended Kalman Filter. 

 

Figure 4.5 GPS measured Latitude position vs EKF estimated Latitude 

position 
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Figure 4.6 GPS measured Longitude position vs EKF estimated  

Longitude position 

 

 

Figure 4.7 Zoom version of GPS measured Longitude position vs EKF 

estimated Longitude position between data point 6600 and 67000 
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Figure 4.8 GPS measured Latitude velocity vs EKF estimated Latitude 

velocity 

 

 

Figure 4.9 GPS measured Longitude velocity vs EKF estimated  

Longitude velocity 
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 Position controller error variation with Extended Kalman filter 

Behavior of position controller with Extended Kalman filter was shown in Figure 4.10, 

4.11, 4.12, 4.13, 4.14, 4.15. Data were collected every 2.5ms as mentioned in previous 

chapter. In Figure 4.10 Actual height and desired height were plotted in same plot. 

According to these results, actual height variation of the system was almost tracked 

the desired height variation with small steady state error as shown in Figure 4.11. Ini-

tially, this error is somewhat large value, but when time passes this error is close to 

zero and almost all the time, height error of the system is less than 0.5m except initial 

convergence situation. Figure 4.12 and Figure 4.14 shows Actual and Desired position 

variations for Latitude and Longitude directions. In these two directions system was 

tracked desired position but with little overshoots as shown Figure 4.13 and Figure 

4.15. These overshoots mostly occur when system is start to move, but almost all the 

time position error is less than 2m. Therefore, in all directions, position errors, steady 

state errors and overshoots are in acceptable values.   

 

Figure 4.10 Actual height variation vs desired height variation 
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Figure 4.11 Height error variation 

 

 

Figure 4.12 Actual position variation vs desired position variation in  

Latitude direction 
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Figure 4.13 Position error variation in Latitude direction 

 

 

Figure 4.14 Actual position variation vs desired position variation in 

Longitude direction 
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Figure 4.15 Position error variation in Longitude direction 

 

 Problems encountered during flight tests 

Most of the time communication range of Wi-Fi modules cause problems due to low 

communication range. Due to same 2.4GHz Communication frequency in Wi-Fi mod-

ule and Remote controlling unit caused communication confliction. 
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 Flight tests and results analyzing of obstacle avoidance system 

 Hardware setup  

Figure 4.16 shows overall hardware setup for test obstacle avoidance system. In here 

stereo camera is connected to Nvidia Jetson TX1 computer using USB 3.0 port. All 

image processing stuff and flight control algorithm runs on this Jetson TX1. Normally 

Nvidia Jetson TX1 doesn’t have sensors like inertial measurement unit (Accelerometer 

+ Gyroscope), Magnetometer, Barometer and GPS. Therefore, these sensors were ex-

ternally connected to Jetson TX1 using available SPI, I2C and Serial ports. All other 

components are same as above mention Quad-copter. All sensors, motor sequence and 

all other components and were checked before the flight test.  

 

Figure 4.16 Overall hardware setup including stereo camera. 

 Experimental procedure 

Flight experimentation was done in two different situations. First one is vehicle was 

fly into a large tree which have feature rich scene. Second one is vehicle was fly into 

a wall which have less features. Both experiments were done using same vehicle and 

during flight tests environment had almost same lightning condition. Results of this 

tests were presented in next section. 
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 Results 

Test 1: Quad-copter fly to a tree 

In here Quad-copter Take-off and autonomously fly into a large tree as shown in Figure 

4.17. Figure 4.17(a) shows quad-copter fly into a large tree. Then Figure 4.17(b) shows 

changing its height to avoid collision with the tree and navigate above the tree. Figure 

4.17(c) and (d) shows final stages of avoiding the tree safely. In this situation vehicle 

was fly in the feature rich scene. Therefore, avoiding this type of obstacles is possible 

because creation of depth images not much difficult in this type of situations.  

 

Figure 4.17 Quadcopter fly over tree  

Test 2: Quad-copter fly to a solid wall 

In here Quad-copter Take-off and fly into a wall as shown in Figure 4.18(a). However, 

quadcopter cannot see the wall and go into crash as shown in Figure 4.18(b). Because 

wall doesn’t contain any identifiable features like corners or edges. This is called uni-

form texture problem in stereo vision as mention in chapter1. Therefore, stereo camera 

cannot be created depth maps and wall cannot be identified as an obstacle. If wall 

contain with feature rich surface, then it can be identified.  
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Figure 4.18 Quadcopter fly to a wall. 

 Problems encountered during flight tests 

Unlike Extended Kalman filter test, here data saving is not possible. Because flying 

distance is too long compared to previous experiments and therefore, communication 

loss occurred while data saving. Some situations, stereo camera facing directly to sun-

light caused blind situations. These situations caused crashed vehicle into obstacles. 

Due to low lightning camera caused to blind and these situations obstacle avoidance is 

also not possible using stereo camera. 
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 CONCLUSIONS 
 

In here sixteen states Extended Kalman filter and stereo vision and fuzzy-logic based 

obstacle avoidance system were implemented. Both systems were tested in real-time 

and results were presented in here. Attitude, Position and Velocity of the quadcopter 

were estimated using Extended Kalman filter and experimental results were compared 

with raw sensor measurements of GPS horizontal position and velocity, Barometer 

height and climb rate. Performance and reliability of vehicle state estimation process 

was increased due to usage of Extended Kalman filter and experimental results also 

proved this. Horizontal position and velocity update frequency of the quad-copter was 

5Hz without using Extended Kalman filter and its increased to 400Hz after implement-

ing the filter and height and climb rate estimation frequency was also increased to 

10Hz to 400Hz. GPS Measurements lag also caused to reduce the performance of the 

system and, by using Extended Kalman filter reduce this measurement lag problem 

and experimental results clearly showed this improvement. Barometer height and 

climb rate measurement are very noisy and Extended Kalman filter reduces this ba-

rometer noise problem as shown in results.  

Stereo vision system was implemented using OpenCV and tested with different light-

ning conditions in indoor and outdoor environments. OpenCV functions were used to 

calibrate the stereo camera and image rectification process. OpenCV global optimiza-

tion technique called Semi-Global block matching stereo correspondence algorithm 

was used to create depth maps because of its high accuracy compare to local optimi-

zation algorithms. Fuzzy logic was used to implement the obstacle avoidance decision-

making system. Depth maps created by stereo vision system was inputs to the fuzzy 

decision-making system. Depth map is divided into equal nine portions and normalize 

depth values of each region were fed into fuzzy decision-making system as inputs. 

Output of the fuzzy system is desired navigation direction of the vehicle. Outputs of 

the fuzzy decision-making system were fed into flight control algorithm to avoid the 

obstacles and navigate around it. Obstacle avoidance system failed to avoid obstacles 

in some situations due to blind scenarios occurred in stereo vision algorithm and in 

future expected to resolve these problems. 
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 RECOMMENDATIONS AND FURTHER WORKS 
 

Extended Kalman filter experimental results were compared with GPS and barometer 

raw measurements instead of using ground truth measurement. Because it is hard to 

find ground truth like these kinds of situations. However, here I can recommend some 

alternatives to find a ground truth to compare experimental results of the EKF. First, I 

recommended to use commercially available GPS/INS module like Xsense MTi-10. 

Xsense MTi-10 is an industry standard MEMS based GPS/INS navigation module 

which is use for many industrial applications like drone stabilizations, control and sta-

bilizations of industrial equipment, Navigation and control of cargo ships etc. Accord-

ing to data sheet of this module it can provide attitude, velocity and position infor-

mation up to 2KHz and measurement latency is less than 2ms. It has GUI for visualize 

the outputs such as velocity, position. It also includes examples for C/C++ and 

MATLAB and Windows and Linux are supported operating systems. Second option 

is we can use simulated vehicle model with EKF to compare filter values. However, I 

hesitate to recommend this as an option because it is hard to mathematically model all 

those dynamics of the system and this will generate faulty results. But if you have very 

accurate system model like including wind dynamics, propeller dynamics then I will 

recommend to use this option. As a third option I recommended to use vision position 

estimation using AR tag. AR tag is image pattern which can be used to estimate posi-

tion using cameras. However, this method is more suitable for indoor environments 

because lightning variations are cause problems in position estimation. This method 

also suffers from measurement lag (like GPS) because there is a time delay on image 

sensing process and calculation of the outputs. However, here I recommended to use 

high processing power laptop or Nvidia Jetson TX1 for image processing because EKF 

estimation and AR tag position estimation should be synchronize. 

When it comes to obstacle avoidance system, vehicle will stop if all nine sub-regions 

are occupied by obstacles during navigation. However, I recommended if this kind of 

situation is occurred then vehicle continually go upwards until obstacle is disappear 

from the scene and then continue the navigation. This can be done by giving constant 

positive earth frame desired velocity for vertical axis until obstacle is disappear from 
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the scene. By integrating this earth frame desired velocity, we can get earth frame 

desired position for vertical axis and then this position can be feed to position control-

ler to control the altitude. In this situation desired horizontal positions should not be 

changed until obstacle is disappear from the depth image. This scenario is most useful 

for when vehicle will be face to building like structures.   
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APPENDICES 
 

Appendix - A   MATLAB Symbolic Implementation of     

Extended Kalman Filter. 

Appendix - B   C++ Implementation of Extended Kalman Filter.   

Appendix - C  C++ Implementation of Stereo Vision System. 

 

Appendix - D  C++ Implementation of Fuzzy Decision-making    

System. 

 

Appendix - E  Extended Kalman filter ground test data. 

Appendix - F  Extended Kalman filter flight test data. 

Appendix - G  Obstacle avoidance system ground test data. 

Appendix - H  Video evidence of system test. 

 

Note: Appendices are available on the provided compact disk (CD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


