18/001/86/2015

SEMI-ELLIPTICAL EXPONENTIALLY WEIGHTED MOVING AVERAGE SCHEME FOR JOINTLY MONITORING MEAN AND VARIANCE OF GAUSSIAN PROCESSES

> LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

ATHAMBAWA MOHAMED RAZMY

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

> DEPARTMENT OF MATHEMATICS UNIVERSITY OF MORATUWA SRI LANKA

51 15 51(043)

109290

+ CD- ROND TH2939

JUNE 2015

109290

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any university or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where acknowledgement is made in the text."

"Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use the contents in whole or in part in future works."

Signature:

Date: 15/06/2015

The above candidate has carried out research for PhD thesis under my supervision.

Signature of the Supervisor:

Pairies

ł

Date: 15 June 2015.

Abstract

Shewhart, cumulative sum and exponentially weighted moving average control charts were introduced for monitoring process mean. These charts were subsequently used for monitoring process variance. Later, it was realized that process monitoring is a bivariate problem and several joint monitoring scheme for process mean and variance were introduced by many authors. The challenge in the advanced joint monitoring scheme is that it should be sensitive for both small and larger changes either in process mean, variance or both. In this thesis, a new advanced joint monitoring scheme for process mean and variance called semi-elliptical exponentially weighted moving average scheme is proposed for Gaussian processes with its design procedure for the industry. The performance of this new scheme is compared with the joint monitoring schemes suggested by other authors using a new comparison index proposed in this thesis. Application of this new scheme is tested with real and simulated data sets.

Most frequently, this new scheme detected various magnitudes of shifts in mean and variance quicker than any other schemes. In overall, the new scheme developed in this study performs better than the existing schemes with some limitations when the shift in mean, variance or both is large. A big advantage of this new scheme is, the design parameters are independent of sample size. As this scheme use the standardized mean and variance, this scheme can be used to monitor several parameters at a time in a single display. Unlike most of the joint monitoring scheme, this new scheme takes the drop in variance as the desirable state when the mean is on target. Therefore this scheme can be recommended for advanced joint monitoring of process mean and variance. The new methodology is very useful for many industrial applications. Furthermore improvements are suggested on this scheme to monitor multi quality parameters simultaneously.

Keywords: Average run length, Control limits, Exponentially weighted moving average, Joint monitoring, Process mean, Process variance, Shifts

Acknowledgement

First and foremost I would like to express my sincerest gratitude to my supervisor, Professor T.S.G Peiris, Professor in Applied Statistics and Head, Department of Mathematics, Faculty of Engineering, University of Moratuwa for his encouragement, guidance and invaluable support throughout this study period. His willingness to set aside time even in the midst of his work to help me, has given me a better understanding and insight to the topic. Not forgetting the hours he patiently spent in correcting my works. My heartiest thanks to Professor Gan Fah Fatt, Department of Statistics and Applied Probability, National University of Singapore, who made me to get interest in the Joint Monitoring of process mean and variance and guided me to write complex programs in SAS. I remember and thank to Professors R.O. Thattil, S. Samita, Pushpa Wijekoon, W.B. Daundasekera and U.N.B Disanayake and Dr. T. Sivananthawerl who taught me the statistical concept throughout my undergraduate and postgraduate career.

I am whole heartedly thankful to the staff of the Department of Mathematics, University of Moratuwa for their valuable support. I also thank to Dr. S.M Ismail, Vice Chancellor, Dr. M.I.S. Safeena, Dean, Faculty of Applied Sciences, Dr. H.M.M Naleer, Head, Department of Mathematical Sciences and my other colleagues in the South Eastern University of Sri Lanka for their support and advice to carry out my research works. I also express my special thanks to the Higher Education for Twentieth Century (HETC) project of the Ministry of Higher Education, Sri Lanka and its Directors Mr. K.M. Mubarak and Dr. P. Elango for the supports in various ways.

I would like to take this opportunity to thank my parents and family members who have been supporting me all the way up to now by taking most of my burden onto them and because of them I have come so far in my life. Finally, I would like to thank my loving wife, daughter, son, sister and brother for helping me in one way or another and for their encouragement. I wish to dedicate the completion of my thesis to my dearest family.

Razmy

Table of Contents

Declarat	tion		Page I
Abstract	t		п
Acknow	ledger	nent	ш
Table of			IV
List of T	ables		VIII
List of F	ligures	s	x
List of A	-		XII
List of A			XIV
Chapter	1:	Introduction	1
1	.1	Quality Monitoring Process	1
I	.2	Importance of Joint Monitoring of Process Mean and Variance	2
1	.3	Research Problem	3
1	.4	Objectives of the Study	4
1	.5	Outline of the Thesis	4
Chapter	• 2:	Review of Literature	6
2	1	Introduction	6
2	.2	Shewhart Control Charts for Monitoring Process Mean and	
		Variance	6
2	3	CUSUM Control Charts for Monitoring Process Mean and	
		Variance	6
2	.4	EWMA Control Charts for Monitoring Process Mean and	
		Variance	7

	2.5	Joint Quality Monitoring Schemes	8
	2.5.1	Combined Shewhart Scheme with Rectangular Control	
		Region (SS _r)	9
	2.5.2	Combined Shewhart Scheme with Elliptical Control	
		Region (SS _e)	10
	2.5.3	Combined CUSUM Scheme with Rectangular Control	
		Region (CS _r)	12
	2.5.4	Combined EWMA Scheme with Rectangular Control	
		Region (ES _r)	13
	2.5.5	Combined EWMA Scheme with Elliptical Control Region (ES _r)	14
	2.5.6	Multivariate EWMA T ² Scheme	15
	2.5.7	Max Charting Scheme (MS _m)	16
	2.5.8	Max EWMA Charting Scheme (ES _{me})	17
	2.5.9	EWMA Semicircle Scheme (ES _{sc})	18
	2.5.10	Shewhart Distance Scheme (SD)	18
	2.5.11	EWMA Distance Square Scheme (EWMADS)	19
	2.6	Comparison of the Joint Monitoring Schemes	20
	2.7	Summary of the Review	20
Chapt	er 3:	Development of New Semi-Elliptical Exponentially Weighted	
		Moving Average (SEEWMA) Scheme	24
	3.1	Introduction	24
	3.2	Development of New SEEWMA Scheme	24

3.2 Development of Design Procedure for the SEEWMA Scheme 38

3.4	Comparison of Several Joint Quality Monitoring Schemes	39
3.5	Comparison Procedure of the Joint Monitoring Schemes	40
3.6	Summary of Chapter 3	42
Chapter 4:	Comparison of the New SEEWMA Scheme with the	
	Existing Joint Monitoring Schemes	43
4.1	Introduction	43
4.2	Scheme Parameters	43
4.3	Comparison of the Schemes Using Out-of-control ARLs and	
	Efficiency Measure	46
4.4	Summary of the Chapter 4	77
Chapter 5:	Illustration of New SEEWMA Scheme	78
Chapter 5: 5.1	Illustration of New SEEWMA Scheme Introduction	78 78
5.1	Introduction	78
5.1 5.2	Introduction Application of SEEWMA Scheme for the Piston Ring Data	78 78
5.1 5.2 5.3	Introduction Application of SEEWMA Scheme for the Piston Ring Data Application of SEEWMA Scheme for the Simulated Data	78 78 80
5.1 5.2 5.3	Introduction Application of SEEWMA Scheme for the Piston Ring Data Application of SEEWMA Scheme for the Simulated Data	78 78 80
5.1 5.2 5.3 5.4	Introduction Application of SEEWMA Scheme for the Piston Ring Data Application of SEEWMA Scheme for the Simulated Data Summary the Chapter 5	78 78 80 86
5.1 5.2 5.3 5.4 Chapter 6:	Introduction Application of SEEWMA Scheme for the Piston Ring Data Application of SEEWMA Scheme for the Simulated Data Summary the Chapter 5 Research Papers Published Based on this Study	78 78 80 86 87
5.1 5.2 5.3 5.4 Chapter 6: 6.1	Introduction Application of SEEWMA Scheme for the Piston Ring Data Application of SEEWMA Scheme for the Simulated Data Summary the Chapter 5 Research Papers Published Based on this Study Introduction	78 78 80 86 87 87
5.1 5.2 5.3 5.4 Chapter 6: 6.1 6.2	Introduction Application of SEEWMA Scheme for the Piston Ring Data Application of SEEWMA Scheme for the Simulated Data Summary the Chapter 5 Research Papers Published Based on this Study Introduction Details of the Papers	78 78 80 86 87 87 87

Chapter 7:	Conclusions and Recommendations	126
7.1	Conclusions	126
7.2	Recommendation	127
Chapter 8:	References	129
Appendix A		136
Appendix B		172
Appendix C		173

List of Tables

Table 2.1	Advantages and disadvantages of the reviewed existing	
	joint monitoring schemes	21
Table 3.1	Control limit (R) for the SEEWMA scheme for selected λ_M , λ_V	
	and in-control ARLs	37
Table 4.1	Scheme parameters of the various joint monitoring schemes with	
	in-control ARL of 250 for quickly detecting process mean shift	
	$\Delta = 1.25$ and variance shift $\delta = 1.25$	44
Table 4.2	Scheme parameters of the various joint monitoring schemes with	
	in-control ARL of 370 for quickly detecting process mean shift	
	$\Delta = 1.25$ and variance shift $\delta = 1.25$	45
Table 4.3.	Out-of-Control ARLs of the various joint monitoring schemes with	
	respect to the shift in process mean (Δ) and variance (δ) for	
	in-control ARL 270	47
Table 4.4	Standard Deviations of the out-of-control ARLs estimated for	
	various joint monitoring schemes with respect to the shift in process	
	mean (Δ) and variance (δ) for in-control ARL 250	51
Table 4.5	Out-of-Control ARLs of the various joint monitoring schemes	
	with respect to the shift in process mean (Δ) and variance (δ) for	
	in-control ARL 370	55
Table 4.6	Standard Deviations of the out-of-control ARLs estimated for	
	various joint monitoring schemes with respect to the shift in process	
	mean (Δ) and variance (δ) for in-control ARL 370	59

Table 4.7	Efficiency Measure $(E_{x,\Delta,\delta})$ for various joint monitoring schemes	
	with respect to the shift in process mean (Δ) and variance (δ) for	
	in-control ARL 250	63
Table 4.8	Efficiency Measure $(E_{x,\Delta,\delta})$ for various joint monitoring schemes	
	with respect to the shift in process mean (Δ) and variance (δ) for	
	in-control ARL 370	67
Table 4.9	Performance of the scheme for monitoring different combination	
	of shifts in process mean (Δ) and variance (δ) for in-control ARLs	
	of 250 and 370	73
Table 4.10	Percentage of the time the schemes performed best for different	
	combination of shifts in process mean and variance	77
Table 7.1	Recommended joint monitoring schemes for detecting various shifts in	
	mean and variance	128

List of Figu	res Pa	age
Figure 2.1	A Combined Shewhart Scheme with a Rectangular Control Region	10
Figure 2.2	A Combined Shewhart Scheme with an Elliptical Control Region	11
Figure 2.3	Sequence plots of Sample points in Shewhart Scheme with an EllipticalControl Region	12
Figure 2.4	A Multivariate EWMA T ² Scheme	16
Figure 3.1	Control limits for the EWMA chart for monitoring the process mean based on standardized sample mean with in-control ARLs of 50, 250, 370, 500, 740 and 1000	27
Figure 3.2	Optimal λ_M values for quick detection of shifts in mean Δ for the EWMA chart for monitoring the process mean based on standardized sample mean with in-control ARLs of 50, 250, 370,500, 740 and 1000	29
Figure 3.3	Control limits for One sided EWMA chart for monitoring the process variance based on standardized sample variance with selected in-control ARLs	32
Figure 3.4A	Optimal λ_V values for quick detection of shifts in variance δ for one sided EWMA chart for monitoring the process variance based on standardized sample variance with selected in-control ARLs	34
Figure 3.4B	Optimal λ_V values for quick detection of shifts in variance δ for one sided EWMA chart for monitoring the process variance based on standardized sample variance with selected in-control ARLs	35
Figure 3.5	A sample control region for the SEEWMA Scheme	29

Х

Figure 5.1	SEEWMA scheme for the piston ring data	80
Figure 5.2	SEEWMA scheme for the simulated data.	82
Figure 5.3	Individual plots for the SEEWMA scheme for the simulated data	73

List of Appendices

Appe	ndix A: SAS Programmes Developed for this Study	
AI	SAS Programme for finding Control Limits for the EWMA Chart for Monitoring the Process Mean based on Standardized Sample Mean for Different In-control ARLs	136
A2	SAS Programme for finding Optimum λ_M Values for the EWMA Chart for Monitoring the Process Mean based on Standardized Sample Mean for different in-control ARLs	139
A3	SAS Programme for finding Control Limits for the one sided EWMA Chart for Monitoring the Process variance Mean based on Standardized Sample variance for different in-control ARLs	142
A4	SAS Programme for finding Optimum λ_V Values for the EWMA Chart for Monitoring the Process Variance based on Standardized Sample variance for different in-control ARLs	144
A5	SAS Programme for finding Optimum Chart Parameters for the SEEWMA Scheme for different in-control ARLs	146
A6	SAS Programme for finding Optimum Chart Parameters for the CS _r Scheme for different in-control ARLs	149
A7	SAS Programme for finding Optimum Chart Parameters for the ES _e Scheme for different in-control ARLs	151
A8	SAS Programme for finding Optimum Chart Parameters for the ES _r Scheme for different in-control ARLs	154
A9	SAS Programme for finding Optimum Chart Parameters for the SS _r Scheme for different in-control ARLs	157

A10	SAS Programme for finding Optimum Chart Parameters for the SS _e	
	Scheme for different in-control ARLs	159
A11	SAS Programme for finding Optimum Chart Parameters for the MS_m	
	Scheme for different in-control ARLs	161
A12	SAS Programme for finding Optimum Chart Parameters for the ES_{me}	
	Scheme for different in-control ARLs	164
A13	SAS Programme for finding Optimum Chart Parameters for the ES_{sc}	
	Scheme for different in-control ARLs	167
A14	SAS Programme for finding Optimum Chart Parameters for the SS_d	
	Scheme for different in-control ARLs	170
Арре	ndix B Piston ring data set	172
Apper	ndix C Simulated data set consists of 40 samples	173

List of Abbreviations

ARL	average run lengths
CUSUM chart	cumulative sum chart
EWMA Chart	Exponential Weighted Moving Average chart
LCL	Lower Control limit
SEEWMA Scheme	Semi elliptical EWMA Scheme
UCL	Upper control limit
SSr	Shewhart scheme with rectangular control region
SSe	Shewhart scheme with elliptical control region
CSr	CUSUM scheme with rectangular control region
ESr	EWMA scheme with rectangular control region
ES _e	EWMA scheme with elliptical control region
ESm	Max Charting scheme
ES _{me}	Max EWMA scheme
ES _{sc}	EWMA-semicircle scheme