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abstract

Design and Simulation of Fuzzy Inference Based Multiple PID Controllers for 

6-DOF Unmanned Underwater Vehicle

Keywords. PID, fuzzy, inference, multiple controllers, UUV, unmanned, underwater vehicle

Unmanned underwater vehicles are currently being utilised for scientific, commercial and 
military underwater applications. These vehicles require autonomous guidance and control 
systems in order to perform underwater tasks. Modelling, simulation and control of these 
vehicles are still major active areas of research and development.

This thesis explores the design of a control system for a 6-Dof unmanned underwater 
vehicle. The thesis consists of two phases; the first involves the design of three single 
decoupled PID controllers for surge, yaw and depth. Then it is shown that it is not possible to 
cover the entire range of operations of UUV using only single controller by simulation using 
MATLAB SIMULINK. The second phase is concerned with the design of multiple PID 
controllers covering the entire range of UUV operation, as well as the fuzzy inference based 
supervisor design to switch between the different controllers as the operations conditions 
vary.

The design of the PID controllers are based on MATLAB PID tuning algorithms which is a 
robust response time tuning algorithms that allows for faster design process with robust gain 
values. It is shown that these new tuning methods as well as graphical tuning interface 
overcome the adhoc and time consuming process of finding the PID gains. Further it is 
shown that fuzzy gain scheduling using fuzzy inference mechanism is a valid method for 
controlling a UUV with nonlinear dynamics.

It can be concluded that new tools such as MATLAB tuning algorithms and Fuzzy toolbox 
allows for fast and accurate design of controllers for highly complex systems as well as the 
viability of fuzzy inference multiple controllers as a method for UUV control with desired 
response characteristics. Finally the author recommends an actual vehicle implementation 
and testing as future work to be carried out.
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