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ABSTRACT

Mathematics plays a major role in higher education as it is particularly essential to develop
the analytical thinking of students in a wide range of disciplines, especially, in engineering
sciences. Therefore, exploring the student academic performance has been a crucial aspect of
the educational research recently. In this study, the impact of mathematics in Level 1 and
Level 2 on student engineering performance in Level 2 was investigated for seven
engineering disciplines at the Faculty of Engineering, University of Moratuwa, Sri Lanka
under two scenarios: (i) effect of mathematics in Level 1 and Level 2 simultaneously and (ii)
effect of mathematics in Level 1 and Level 2 separately by using unadjusted and adjusted
Canonical Correlation Analysis (CCA). A theoretical model underlying relationship between
two measurements, mathematics performance and engineering performance was developed
based on literature review. The Structural Equation Modeling based on Partial Least Squares
(PLS-SEM) technique was used to validate the conceptual model and proposed an index to
measure the mathematical influence on student engineering performance. The first canonical
variate of engineering was found to be the best proxy indicator for the engineering
performance. The impact of mathematics in semester 2 is significantly higher compared with
the impact of mathematics in semester 1 on engineering performance in Level 2. The
mathematics in Level 1 and Level 2 jointly influenced on the engineering performance in
Level 2 irrespective of the engineering disciplines and the level of impact of mathematics
varies among engineering disciplines. The individual effect of mathematics in Level 2 is
significantly higher compared to the individual effect of mathematics in Level 1 on
engineering performance in Level 2. The mathematics in Level 1 is still important in
affecting students’ engineering performance in Level 2 as there is a significant effect
indirectly. The results obtained in this study can be utilized in curriculum development in
mathematics modules.

Keywords: canonical correlation analysis; engineering mathematics; structural equation
modeling; student academic performance
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CHAPTER 1
INTRODUCTION

This chapter describes the background of the study, the objectives of the study and

the significance of the study. Also, chapter outline of the thesis is presented.

1.1. Background

Higher education is an important tool for the socio-economic and technological
development of any country as it provides the capable manpower needed to
transform the resources within that country into wealth (Farooq et. al., 2011). This is
achieved when higher education provides the exact quality of training and skills
required in the exact quantity. Recently, many researchers have made extensive
efforts in determining various aspects of student academic performance in higher
education in different countries (Alfan and Othman, 2005; Al-Alwan, 2009; Hermon
and Cole, 2012; Imran, Nasor, and Hayati, 2011; McKenzie and Schweitzer, 2001;
Mufti and Qayum 2013).

Improving student academic performance is essential for the universities as their
main objective is to provide quality education to their undergraduates with the
changes in higher education. Consequently, there is an urgency to look into the
effectiveness of the academic programs which will lead to discover the possible

factors that assist to improve student academic performance.

Mathematics plays a major role in higher education as it is more than a tool for
solving problems and it can develop intellectual maturity and logical thinking of
students. The skills in mathematics would certainly assist to enhance students’
knowledge in a wide range of disciplines, such as engineering, physics, biology,
accounting and social science. Especially, in engineering sciences, mathematical
knowledge is crucial importance to improve the analytical thinking of engineering
undergraduates. Thus, students desire to pursue an engineering degree course are

required to be proficient in mathematics than other students.



Engineers, particularly apply mathematics and sciences such as physics to find
suitable solutions to problems or to make improvements to the status quo. Therefore,
mathematics is a key foundation for the education of engineers in all disciplines.
Many researchers (Sazhin, 1998; Pyle, 2001; Goold and Devitt, 2012) have revealed
the importance of mathematical knowledge for engineering students to develop their
logical and analytical thinking. Mathematics is a significant topic supporting a large
number of engineering courses. It is important for engineering students, to hold a
strong mathematical fundamental knowledge that can keep their motivation for
equitable progress of their engineering programs (Othman et. al., 2012). Pyle (2001)
stated that engineering as a profession requires a clear understanding of mathematics,
sciences and technology. According to Harris et. al. (2015), a widely understood
need for professional engineers and student ‘becoming engineers’ to think
mathematically and to use mathematics to describe and analyze different aspects of
the real world they seek to engineer. Also Sazhin (1998) explained that an
engineering graduate acquires not only a practical but also abstract understanding of

mathematics.

Over the years, there have been concerns about the relationship between the pre-
university admission performance of students and their academic performance in the
university. In many countries, the pre-university requirement for engineering degrees
is based mostly on mathematics for all higher education institutions. Similarly, in Sri
Lanka, admission to higher education institutions is based on the results of the
General Certificate of Education Advanced Level; G.C.E. (A/L) examination. The
indicator to select the engineering students to government universities is decided by
the mean Z-score of the three Z-scores of Combined Mathematics, Physics and
Chemistry in G.C.E. (A/L) examination (University Grants Commission — Sri Lanka,
2017).

In engineering sciences, pre-university qualification or admission criteria for
university entrance have been widely studied in the literature and are commonly

accepted to have a beneficial effect of pre-university mathematical knowledge on



students’ subsequent academic performance (Barry and Chapman, 2007; Hermon
and Cole, 2012; Ismail et al., 2012; Lee et al., 2008; Othman et al., 2009).

As described above, it is clear that mathematics is a key role in engineering sciences.
Therefore, developing mathematical thinking of students is a major task as it is an
essential tool in engineering education. Thus, Department of Mathematics, Faculty of
Engineering, University of Moratuwa provides knowledge to all the engineering
departments in the university equipping undergraduates with the essential
mathematical knowledge, to enhance their analytical skills so that they are capable of
solving problems in engineering sciences. The Department of Mathematics has
designed mathematics modules in semester 1 and semester 2, which are made
compulsory for all engineering students. Further, Department of Mathematics offer
variety of common modules for all engineering departments depending on their

requirements from Level 2 onwards as well.

According to Sri Lankan education system, students are entering university with
diverse prior knowledge and background. However, most of the students who
admitted to the Faculty of Engineering, University of Moratuwa have obtained
higher grades in combined mathematics in G.C.E. (A/L) examination as it is a pre-
requisite for the admission to engineering degree programs. During the semester 1
students do not belong to the particular engineering department. At the end of
semester 1 the students are allocated to seven engineering disciplines based on the
mean marks of six common modules including mathematics. The six common
modules are: Mathematics, Programming Fundamentals, Mechanics, Properties of
Materials, Fluid Mechanics and Electrical Engineering. The seven engineering
disciplines are: Chemical and Process Engineering, Civil Engineering, Computer
Science and  Engineering,  Electrical  Engineering,  Electronic  and
Telecommunications Engineering, Materials Science and Engineering and

Mechanical Engineering.

Department of Mathematics has identified that mathematics performance of

engineering students in their undergraduate degree programs varies significantly



between and within different engineering disciplines irrespective of semesters.
Furthermore, the variability in mathematics marks in first two semesters are high
comparatively. A few percentage of students used to fail the mathematics module in
semesters, while certain percentage used to repeat the examination to upgrade their
results. The staff of mathematics department strongly feels that performance of
mathematics by the student, certainly have similar impact on the academic

performance of students in each level (year).

1.2.  Objectives of the Study

In the view of the above, the objectives of the study are:

e To determine the impact of mathematics on students’ academic performance at
the end of Level 2 by different disciplines of engineering programs.

e To determine the individual impact of mathematics in Level 1 and Level 2
separately on the engineering performance in Level 2,

e To develop a statistical model to determine the underlying relationships between

mathematics in Level 1 and Level 2 with the engineering performance in Level 2.

1.3.  Significance of the Study

It is crucial to understand the impact of mathematical knowledge that students
acquired from their undergraduate engineering degree programs as it is particularly
essential to develop the analytical and logical thinking of engineering students. This
knowledge would be useful for educational stakeholders at different level of decision
making. As such studies were not reported the findings of this study will be useful
for various stakeholders at the University of Moratuwa, in particular, the academic
staff of the Department of Mathematics as well as the academic staff of other
engineering disciplines to make future planning such as revise the future curriculum
and etc. Moreover, other government universities in Sri Lanka can make use of these

results to make their decisions.

Much research effort has been devoted to student academic performance in various

fields such as engineering, physics, medicine, accounting, etc. Researchers mostly



concerned about the prior knowledge that obtained from secondary education.
Therefore, admission criteria or entry test was used as the factors in their studies. In
reference to engineering education, prior mathematical knowledge was considered as
the main key factor to examine the student academic performance. However, there is
a lack of studies related to examining the impact of mathematical knowledge gained
from undergraduate engineering degree programs on students’ academic

performance.

Though the marks of different subjects can be considered as the multivariate data, no
studies were found under multivariate statistical environment to examine the impact
of subjects on student academic performance. Furthermore, a detailed statistical
analysis of students’ marks has not been carried out to determine the influence of
mathematics. Hence, a suitable multivariate statistical technique can be used to

determine the influence of mathematics on students’ academic performance.

1.4.  Outline of the Thesis

This thesis is organized into seven chapters, references and appendices. Chapter 2
consist a review of literature about the influence of mathematics as well as other
subjects on students’ performance. The purpose of this chapter is to establish the
current available knowledge and the statistical techniques used to determine the
impact of a subject on students’ performance. Chapter 3 briefly describes the
research methodology employed and the theories and techniques applied to the study
and the theory of proposed index. Chapter 4 presents the descriptive statistics of
students” mathematics and engineering performance. Apart from that bivariate
correlation analysis and linear regression analysis are also reported. The overall
impact of mathematics on engineering performance in Level 2 is examined in
Chapter 5. Chapter 6 illustrates the individual impact of mathematics in Level 1 and
Level 2 on engineering performance in Level 2 separately. Chapter 7 discovers the
underlying relationships between mathematics in Level 1 and Level 2 with the
engineering performance in Level 2. The final chapter describes conclusions,

recommendations and suggestions for future studies.



CHAPTER 2
LITERATURE REVIEW

The aim of this chapter is to obtain an insight on the literature related to the study:
different findings, knowledge and ideas have been established on the students’
academic performance. This will provide guidance on which statistical analyses are

used, their drawbacks and etc.

2.1.  Importance of Mathematics in Higher Education

Over the years, the influence of mathematics in a variety of subjects has been
challenged by learning research and the development and diversification of the
curriculum. A number of research studies revealed that there is a significant
influence of mathematics on students’ performance in different fields (Imran, Nasor
& Hayati, 2011; Aina, 2013; Hailikari, Katajavuori, & Lindblom-Ylanne, 2008;
Alfan and Othman, 2005).

Othman et al. (2009) studied on Pre-University qualifications of engineering students
together with their performance on their first semester Grade Point Average (GPA)
and found a pre-test effect on first semester results. According to Alfan and Othman
(2005) knowledge earned in mathematics prior to entering the university is crucial in
assisting the students in undertaking the courses in both business and accounting
program. A study conducted among physics students in four colleges of education in
Nigeria by Aina (2013) found that the subject combination affects students’
performance. The students, who combined mathematics with physics performed

better than students who follow other subject combinations.

2.2. Importance of Mathematics in Engineering Education

Mathematical knowledge is one of the most important tools for engineers.
Mathematics for the engineering student should be regarded as a language of
expressing physical, chemical and engineering laws (Sazhin, 1998). To discover the

role of mathematics in engineering practice, Goold and Devitt (2012) conducted a



study with the focus on professional engineers in Ireland. They exposed that
mathematical knowledge gained prior and during engineering education is highly
essential in engineering practice as they use a high level of curriculum mathematics
and mathematical thinking in their work. Therefore, mathematics plays a major role

in the formation of engineers.

Some authors have studied about the relationship between pre mathematical
knowledge of engineering undergraduate students and their academic performance.
Lawson (2003) found that changes in basic mathematical knowledge have a direct
effect to many mathematical skills that are essential for those undergraduate degree
courses with a significant mathematical content. Othman et al. (2009) found that pre-
university mathematical knowledge effect on the performance of the first year

engineering students.

A study carried out by Imran et al. (2011) investigated the relationship between
students’ overall performance in engineering programs and their grades in
mathematics and physical science courses. Their findings indicated that the
relationship between students’ overall performance in the degree program and their
performance in the mathematics courses was relatively stronger compared to the
physical science courses. A similar study conducted by Hermon and Cole (2012)
found that pre-university mathematical knowledge is an effective predictor of

academic performance in aerospace engineering.

Othman et al. (2012) conducted a research on more than 800 first year engineering
undergraduates from two academic sessions in Malaysia. The main purpose of their
study was to identify the mathematical concepts which are considered difficult and
challenging by the first year students. The study evaluated the results of pre-test that
include 15 elementary mathematical concepts and found that students from both
academic sessions were lacking in certain important topics, which are the main
mathematical contents required in engineering courses. A study by Nopiah et al.
(2013) investigated the effectiveness of the pre-test mathematics questions in



predicting the performance of the students in the subsequent engineering

mathematics course.

Many authors have been reported on the use of university mathematics support with
strong mathematical backgrounds. A study by Lee et al. (2008) concluded that first
year engineering students’ performance can be improved with the help obtained from
the university mathematics learning support centre. Similarly, the benefits of
mathematics support in university engineering students are well documented in
several studies (Parsons and Adams, 2005; Patel and Little, 2006; Pell and Croft,
2008).

2.3.  Statistical Analysis of Student Academic Performance

Pre-university qualification and admission criteria for university entrance have been
widely studied by various authors in a variety of academic fields: Engineering (Ali
and Ali, 2010; Hermon and Cole, 2012), Chemistry (Seery, 2009), Medicine (Ali,
2008; Hailikari, Katajavuori and Lindblom-Ylanne, 2008; Mufti and Qayum, 2013),
Equine and animal studies (Huws and Taylor, 2008), Accounting (Al-Twaijry, 2010;
Alfan and Othman, 2005), Finance (Grover, Heck, and Heck, 2009) and Psychology
(Huws, Reddy and Talcott, 2006; Thompson and Zamboanga, 2004). Different types
of statistical techniques have been applied to examine the student academic

performance in past studies and most frequent techniques are discussed below.

2.3.1. Correlation Coefficient

A study has been carried out by Ali and Ali (2010) to determine the validity of entry
tests in term of predicting future academic performance of the engineering students
at the University of Engineering and Technology, Peshawar. The study covers 203
engineering students from six engineering disciplines: Electrical, Mechanical, Civil,
Agriculture, Chemical and Mining Engineering. In their study, FSc scores (exam
score at the end of grade XIl), entry test scores and overall merit (combination of
FSc and entry test scores) as the predictors and the academic achievements from first
to final year as the response were considered. Results revealed that the FSc marks,

entry test scores and overall merit were significantly and positively correlated with



the academic achievement of engineering students irrespective of gender and
disciplines. However, for female students and agriculture discipline, results showed a
negative correlation between the predictors and the academic achievement. Ali and
Zaman (2011) conducted a similar study for the students of Dental Colleges of
Khyber Pukhtunkhawa, during the academic sessions 2000-2005. The study showed
that entry tests are significantly correlated with the academic achievement of dental

students.

Imran, Nasor and Hayati (2011) explored the association between students’ overall
performance in engineering programs and their grades in mathematics and physical
science courses. Ten year data on students’ grades of 6 courses in mathematics and 3
courses in physical science for three undergraduate engineering programs;
electronics engineering, communication engineering and instrumentation and control
engineering were considered in their study. Cumulative Grade Point Average
(CGPA) was used as the overall performance in the program while GPA for each
category of courses was calculated separately as the performance in each course
category. They found that significant positive correlation in the mathematics (r=0.85,
p<0.05) and physical science courses (r=0.75, p<0.05) with students’ overall

performance.

Nopiah et al. (2013) examined the effectiveness of the pre-test mathematics
questions in predicting the performance of the diploma students of the Faculty of
Engineering & Built Environment, Universiti Kebangsaan Malaysia, in the
subsequent engineering mathematics course using a sample of 23 engineering
diploma students from four engineering programs (Mechanical and Material
Engineering, Electrical and Electronic Engineering, Civil and Structural Engineering,
and Chemical and Process Engineering). They found that there is no significant
correlation between the pre-test towards Vector Calculus and Linear Algebra (r=-
0.160, p=0.465 and r=-0.095, p=0.668) whereas the correlation between Vector
Calculus and Linear Algebra subjects showed a strong correlation with the value of
0.767.



2.3.2. Generalized Linear Models using One-way ANOVA

A study conducted by Aina, Ogundele and Olanipekun (2013) focused on the
relationship between proficiency in English language and academic performance
among students of science and technical education. The study was based on 60
students and students’ results from First year to Third year in College of Education,
Kwara State, Nigeria were used. The results revealed that the difference exists
between students who failed English language and those who passed in both science
and technical education. In another study Aina (2013) investigated the difference in
students’ academic achievement in Physics based on subject combination based by
physics students from four Colleges of Education in Kwara State, Nigeria. They
concluded that the academic achievement of students who combined physics with
mathematics was significantly better than those who combined with chemistry.
Alves, Rodrigues and Rocha (2012) found the significant difference between
engineering undergraduate students’ achievement on their engineering disciplines in
Engineering and Industrial Management, Computer Engineering, Materials
Engineering and Industrial Electronics and Computers Engineering. A study by
Amin et al. (2013) showed the students with low-entrance CGPAs could still obtain
the equivalent CGPAs as the high-entrance CGPA students while in Institution of
Higher Education (IHE).

2.3.3. Linear Regression Models

Eng, Li and Julaihi (2010) investigated the factors influencing the course marks of
underachieved Mathematics courses based on 1050 students from a public university
in Sarawak, Malaysia. Marks of Pre-Calculus, Calculus-1, Mathematics-1l and
Engineering Mathematics-1 taken as the response variables while Sijil Pelajaran
Malaysia (SPM), or the Malaysian Certificate of Education Mathematics grades,
SPM Additional Mathematics grades, Mathematics class size and students’ gender as
the predictor variables. Results revealed that SPM Mathematics was not significant
in all the four models (p>0.05). However, SPM Additional Mathematics was
recommended as the best predictor to the course marks of underachieved
Mathematics courses, which is statistically not valid.
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Grover, Heck, and Heck (2009) attempted to determine the level of mathematics,
accounting, and economics knowledge students have upon entering the introductory
finance course. The results showed that scores for the math and accounting questions
on the pretest are a predictor of student performance in the introductory finance
course. The scores on economics questions have no significant impact regarding

course performance.

Seery (2009) examined the role of prior knowledge in the first year performance of
undergraduate chemistry, aptitude and claimed a strong relationship between prior
knowledge and exam performance. Furthermore, it was found that prior knowledge
has a demonstrable influence on future exam performance over and above student
aptitude. Hailikari, Katajavuori, and Lindblom-Ylanne (2008) found that student
achievement in the pharmaceutical chemistry course can be predicted by prior

knowledge from previous courses; mathematics and chemistry.

2.3.4. Clustering and Classification

In educational fields, data mining techniques: Clustering and Classification are used
to enhance the understanding of the learning process of students. Rajadhyax and
Shirwaikar (2012) conducted a study to find the relevant subjects in an
undergraduate syllabus and the strength of their relationship. Although, there existed
a general notion that mathematics subjects and programming subjects are correlated,
the experiments illustrated that there does not exists a strong relationship between
mathematics subjects and programming subjects. Ahmed and Elaraby (2014) applied
clustering techniques to evaluate students’ performance in one of the educational
institutions, in Egypt and the decision tree method was used to predict the final grade
of students. Similarly, predicting student performance using data mining techniques
is well documented in several studies (Tair and El-Halees, 2012; Bhise, Thorat and
Supekar, 2013; Pal and Pal, 2013).

2.4. Canonical Correlation Analysis (CCA)

The CCA developed by Hotelling (1936) used to identify and measure the

associations among two multidimensional variables. This is appropriate in the same
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situations where multiple regression would be, but where are there are multiple
intercorrelated outcome variables. Estimating separate equations for each output
neglects the relationships among the outputs, while estimating a simultaneous
equation model assumes that the relationship among the dependent variables is
causal. Moreover, both separate regressions and simultaneous equation models are
likely to neglect aspects of joint production technology (Gyimah-Brempong and
Gyapong; 1991). Vinod (1968) argued that the presence of joint production, ordinary
least squares regression (OLS), or even a simultaneous equation system, gives
inconsistent estimates. Therefore, the problem with estimating a regression equation
when there are two or more dependent variables is substantially solved by CCA

approach.

Gyimah-Brempong and Gyapong (1991) examined the effects of socioeconomic
characteristics (SEC) of communities in the production of high school education in
the state of Michigan. Abedi (1991) conducted a study on academic performance to
examine the efficiency of the undergraduate Grade Average Point (GPA) as a
predictor of graduate academic success and compared it with other predictors. CCA
was applied on three measures of graduate academic success and eight demographic
and undergraduate academic variables including undergraduate GPA. It was found a
weak relationship among graduate academic success and predictors and the graduate

academic success was not associated with undergraduate GPA.

A study carried out in Malaysia, by Ismail and Cheng (2005) investigated the effects
of school inputs, environmental inputs and gender influence in the production of a
joint educational production function in mathematics and science subjects for eighth
grade students. Rovai and Ponton (2005) focused on how a set of three classroom
community variables (social community, learning community and mean number of
postings per week) was related to a set of two students learning variables (course
points and perceived learning) in a predominantly using CCA. A study carried out by
Dai et al. (2011) focused on the context of student score analysis and CCA was used
to investigate the relationship of scores of different classes of courses; i.e. basic

courses and major courses. The study was based on course scores of the first and
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second academic year of 76 college students. It summarized that three mathematical
basic courses were strongly related with major courses. A recent study by
Sliusarenko and Clemmensen (2014), applied CCA to explore the association
between the evaluation of the course and the evaluation of the teacher at the

Technical University of Denmark.

Incorrect modelling may result in spurious statistical conclusions which do not
reliably reflect the underlying structure of the data. Therefore, by using CCA, it is
not possible to investigate the association between two sets of variables when there
exists a linear effect of the third set of variables on other two variable sets.

2.5. Chapter Summary

The review of the literature confirmed several studies have been conducted by
different authors in different countries to find the impact of mathematics on student
academic performance. Various types of statistical approaches such as bivariate
correlation, analysis of variance, regression analysis and canonical correlation
analysis have been used. However, the knowledge on the influence of mathematics
on different aspects is very few and there are many gaps in this area. The existing
knowledge on the influence of mathematics were inadequate to find a real effect due
to spurious statistical correlation among subjects. The concept of covariate in
statistical analysis has not been used in any of the studies. Nevertheless, no such

studies were reported in Sri Lanka.
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CHAPTER 3
MATERIALS AND METHODS

3.1. Data Description

The study was conducted with all engineering students from seven different
disciplines at the Faculty of Engineering, University of Moratuwa, Sri Lanka for two
academic years 2010/2011 and 2011/2012. Data were collected from examination
division, University of Moratuwa after due permission was taken. Seven different
engineering disciplines used for the study are namely; Chemical and Process
Engineering (CH), Civil Engineering (CE), Computer Science and Engineering (CS),
Electrical Engineering (EE), Electronic and Telecommunications Engineering (EN),
Materials Science and Engineering (MT) and Mechanical Engineering (ME). The
number of students enrolled in the seven departments is given in Table 3.1.

Table 3.1: Number of students enrolled in each engineering disciplines

Engineering Academic year
Discipline 2010/2011 2011/2012
CE 125 125
CH 80 80
cs 100 98
cE 69 100
EN 100 100
ME 100 100
MT 46 48

Students’ examination marks of mathematics courses in Level 1 as well as Level 2
and all compulsory engineering courses in Level 2 were utilized for the analysis.
Each Level has two semesters and semesters can be named as, Level 1: semester 1
(S1) and semester 2 (S2) and Level 2: semester 3 (S3) and semester 4 (S4).
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As the curriculum of engineering departments (refer Appendix 1) are different, the
analysis is carried out for each engineering discipline separately. Moreover, the
mathematics modules; MA1013 (in S1), MA1023 (in S2), MA2013 and MA2023 (in
S3 and MA2033 (in S4) are compulsory for all engineering disciplines except CS
discipline. In addition to that, there are more mathematics modules offered in S4 for
engineering disciplines, depending on their requirements. The following Table 3.2
and Table 3.3 present the mathematics modules followed by students of each
engineering discipline in two academic years; 2010/2011 and 2011/2012.

Table 3.2: Mathematics modules followed — academic year 2010/2011

Lewel | Semester [Course Code| CH CE Cs EE EN ME MT
Level 1 S1 MA1013 ® ¥ ® ¥ ® ¥ ®
S2 MA1023 -4 -4 -4 -4
MA1032 A
Level 2 S3 MAZ2013
MA2023
MA2042
s4 MA2033 ® ¥ ® ¥ ® ¥ ®
MA2042
MA2013 o
MA3013 3 ®

Table 3.3: Mathematics modules followed — academic year 2011/2012

Lewel [ Semester |Course Code| CH CE CS EE EN ME MT
Level 1 S1 MA1013 % 4 4 4 4 4 4
S2 MA1023 % 4 4 4 4 4
MA1032 4
Level 2 S3 MA2013 -4 X 4 4 4 4
MA2023 4 4 4 4 4 4
MA2073 4
MA2053 %
S4 MA2033 % 4 4 4 4 4 4
MA2053 4 4
MA2063 4
MA3013 4 4
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3.2.  Canonical Correlation Analysis (Unadjusted)

Canonical Correlation Analysis (CCA) is a powerful multivariate statistical
technique for measuring the linear relationship between two multidimensional
systems developed by Hotelling (1936). Procedurally, the two sets of observed
variables are linearly combined to produce pairs of canonical variates that have
maximum bivariate correlation (Johnson and Wichern, 2007). The number of
variables in the smaller set of the two is equal to the maximum number of pairs of

canonical variates.

Let two vectors X = (X1, X5, ..., Xp) and Y = (13,15, ..., ¥,) of random variables, and
there are correlations among the variables, then CCA will find a linear combination of

the X; and Y; which have maximum correlation with each other. The CCA computes

two projection vectors, a and b such that the correlation coefficient:

R — cov(aTx,pTy) alSxyb
¢ Jvar@x)war(Ty) aTSxa/bTSyb

1)

IS maximized, where Syy Is the covariance matrix between X and Y, and Sy and Sy
are the covariance matrices of X and Y respectively. Since R, is invariant to the

scaling of vectors a and b, CCA can be formulated equivalently as,

maxg, a’ Sxyb )
subject to,
aTSXa =1 and bTSyb =1.

The first pair of canonical variables or first canonical variate pair (Uy, V;) is the pair
of linear combinations of X and Y respectively, having the highest correlation
between the two systems. If the optimum values of (a, b) are denoted as (al, bT) and
then,

U =alX and vV, =bly

is the pair of first canonical variables.
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The second pair of canonical variables is the pair of linear combinations U, and V,
having unit variances, which has the highest correlation subject to U,, being
uncorrelated with U;, and V,, being uncorrelated with V; (the construction actually
ensures that U; and V, are uncorrelated, as well as are U, and V;). Therefore, at the

kt" step, the canonical vectors are obtained as:

(af, b) = argmaxg a” Sxyb 3)
subject to,
var(Uy) =var(V,) =1
corr(Uy,U;) =0 for k +1
corr(V,,,V;) =0 for k +1

foralll=1,2,..,k—1 and k < min{p, q}. The process continues, until subsequent
pairs of linear combinations no longer produce a significant correlation. The

conceptual framework of the canonical correlation function is illustrated in Figure 3.1.

Yg

Figure 3.1: lllustration of the conceptual framework in CCA
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3.2.1. Key Termsin CCA
It is necessary to review the key terms, to have a basic understanding of the analytic

procedure.

e Canonical variate:
A linear combination of optimally weighted sum of two or more variables, and are
formed for both independent and dependent variables. This is also known as linear

composite. For example, new variables U; where U; = Zﬁ.’zlainj on(j=12,..,p)

and V; where V; = Z?zl b;;Y; on (j = 1,2, ..., q) are canonical variates.

e Canonical correlation:

The bivariate correlation between the pair of canonical variates and it measures the
strength of the overall relationship between the two canonical variates, with one
variate representing the independent variables and the other representing the
dependent variables. Thus, C; = Corr(U;,V;), i = min(p,q) is known as the

canonical correlation between X and Y variable sets.

e Canonical root:
This represents the squared canonical correlation, which estimates the proportion of
shared variance between the canonical variates of dependent and independent

variables. this denoted by ¢ 2.

e Standardized canonical coefficient:
This is similar to the standardized regression coefficients in multiple regressions that
can be used as an indication of relative importance of the observed independent or

dependent variables in determining its respective canonical variate.

e Canonical loading:
The Pearson correlation between an observed independent or dependent variable with
its respective canonical variate. This is also referred as canonical structure

correlations.
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e Canonical cross-loading:
The correlation between an observed independent or dependent variable with its
opposite canonical variate. As an example, the independent variables are correlated

with the dependent canonical variate.

e Redundancy index:

The amount of variance in a canonical variate (dependent or independent) explained
by the other canonical variate in the canonical function. For an example, the amount
of variance in the dependent variables explained by the independent canonical variate
is represented by the redundancy index of the dependent variate. Redundancy

measure can be formulated as:

9 Ly?

S Lv?
Rly,y, = AV(YIVD) = CEyy,. AV (y|v) = ==

where AV (Y|V;) is the averaged variance in Y variables that is accounted for by the

canonical variate V;, LYﬁ is the loading of the | ¥ variable on the i canonical variate

and Cy, v, isthe i™ canonical correlation.

3.2.2. Test of Significance for Canonical Correlation
For assessing the statistical significance of the canonical correlations, the null and
alternative hypotheses are:

Hp:C; =Cy, = -+ =C,, = 0,

Hi:C#0 atleastonei =1,2,..,m

For testing the above mentioned hypotheses, the most widely used test statistic is
Wilks’ lambda, given by A=[[",(1-C?) and under Hy,, p=[n—1-—

1
E(p +q+1)logA ~xpq
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3.3. Adjusted CCA

3.3.1. Partial Canonical Correlation Analysis (Partial CCA)

The partial canonical correlation is a multivariate generalization of ordinary partial
correlation, which used to assess the partial independence of two sets of variables
given a third set of variables (Rao, 1969). Suppose that, there is another vector,
Z = (Zy,Zy,...,Z,) of random variables and it is interested to study the relation
between the vectors X and Y partialing out the linear effect of vector Z from both X
and Y vectors. Partial canonical correlation represents the maximal correlation

between the partial canonical variates U* and V* where,
U*=aTey and V*=bhTey,

of unit variance where ey and ey represent the residual vectors obtained after
regressing X on Z and Y on Z respectively. Mathematically this is equivalent to
maximizing,
Pxyz = m%x a*" Syy zb* 4
a*’ *
subject to,

a*TSXx_Za* =1 and b*TSyy_Zb* =1.
The matrices S;; ; are the covariance matrices of the residual vectors ey and ey.

3.3.2. Part Canonical Correlation Analysis (Part CCA)

The part canonical correlation estimates the relation between the vectors X and Y
partialing out the linear effect of vector Z from vector Y but not vector X (Timm and
Carlson, 1976). That is, part canonical correlation computes linear combinations of
the variates e, and X, U’ = a’"X and V' = b'Te,, of unit variance such that the

correlation between U’ and V' is maximal. This is equivalent to maximizing,

Pz = g}%’f aITSX(Y.Z)bI (%)

subject to,

a,TSXXa, == 1 and b’TSyylzb’ == 1
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3.4.  The Propositions

On the view of past literature (Chapter 2), it can be hypothesized that student
mathematics performance influences on their academic performance in engineering
programs. The proposed relationships between mathematics performance and
engineering performance can be depicted graphically as shown in Figure 3.2. In
order to interpret the priori theoretical relationships from a practical perspective, the
degree of structural path coefficients along with their statistical significance of each
structural path can be used. The relationships depicted in Figure 3.2 can be expressed

as propositions.
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Figure 3.2: Proposed model for conceptual framework

3.5.  Partial Least Squares Structural Equation Modeling (PLS-SEM)

The Structural Equation Modeling (SEM) approach using the Partial Least Squares
(PLS) technique is considered as second generation multivariate data analysis
technique. The first generation data analysis techniques, such as analysis of variance
(ANOVA), multiple regression analysis, and factor analysis are analyzed only single
relationship between the the independent and dependent variables at a time (Gefen et
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al., 2000). Nevertheless, PLS-SEM technique enables to model the relationships

among multiple independent and dependent variables simultaneously.

PLS-SEM technique is a non-parametric method, where no strong assumptions (with
respect to the distributions, the sample size and the measurement scale) are required.
As there are lack of the classical parametric inferential framework, this non-
parametric method allows modeling simultaneously estimate and test complex
theories with empirical data based on resampling methods. An ordinary least squares
(OLS) based method is the estimation procedure for PLS-SEM. This will estimate
the path relationship (coefficients) in the model that maximize the explained variance

of the endogenous latent variables and minimize the unexplained variances.

A structural equations model comprises of two elements, measurement model and
structural model. The measurement model specifies how each construct is measured
while the structural model specifies how the constructs are related to each other. A
simple PLS structural equation model is depicted in Figure 3.3.

Outer model for exogenous Outer model for endogenous
latent variable latent variable

Figure 3.3: General PLS structural equation model
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3.5.1. Measurement Models

The measurement model which is also referred to as the outer model represents the
relationship between the construct (i.e. variables that are not directly measured) and
observed variables (or indicators). Within the PLS framework, one observed variable
can only be related to one construct and each construct must contain at least one
observed variable. There are two different types of measurement models, namely,
reflective model and formative model. According to Figure 3.3, outer model for
exogenous latent variable represents a formative model while outer model for

endogenous latent variable is a reflective model.

The formative measurement model is based on the assumption that indicators cause
the changes in the construct. The formative measurement model can be represented

as follows:
$i = XjwiiXij + & (6)

where,
&, —i™ exogenous latent variable,

Xij — j™ observed variable of i exogenous latent variable,
w;; — regression coefficient of Xjj,

&; — error term of i exogenous latent variable

The reflective measurement model indicates the construct causes the measurement of
the indicators. It reproduce the factor analysis model, in which each variable is a
function of the underlying factor. Equation 7 presents the relationship between latent

variable and its indicators mathematically.
Yij = Akjni + Ok (7)

where,
Y, — " observed variable of k" endogenous latent variable,
Nk — k™ endogenous latent variable,

Axj — coefficient representing effect of n, on Yy,

8x; — measurement error for Y
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3.5.2. Structural Model

The structural model, (also known as the inner model) represents the relationship
between constructs and observed variables that are not the indicators of constructs
(Hair et al. 2016). The structural model is defined as follows:

Mk = 2 Brjinj + XiVii&i + Gk (8)

where,

Brj — path coefficient linking the j™ predictor endogenous latent variable and

k™ endogenous latent variable
Yri — path coefficient linking the i exogenous latent variable and k™
endogenous latent variable

¢ —error term of kK™ endogenous latent variable

3.5.3. Assessment of Model Validation

The evaluation of estimates of PLS-SEM consist two separate processes for the
measurement model and the structural model. With reference to assessment of
measurement model, specific criteria associated with reflective and formative models
to evaluate the reliability and validity of the construct measures are different
procedures and techniques (Chin, 1998; Fornell and Larcker, 1981; Freeze and
Raschke, 2007; Hair et al., 2016; Urbach and Ahlemann, 2010).

3.5.3.1. Assessment of the Reflective Measurement Models
Reflective measurement models are assessed on their internal consistency reliability

and validity.

Indicator Reliability

Indicator reliability indicates the amount of variance in a measure that is due to the
construct rather than to error (Fornell and Larcker, 1981). To establish indicator
reliability, the squared standardized outer loadings of the indicators are considered. It
is suggested that a construct should explain significant amount of each indicator’s

variance (at least 50%).
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Internal Consistency Reliability

This is measured through Cronbach's alpha, which provides an estimate of the
reliability based on the intercorrelations of the observed indicator variables and
Composite Reliability (CR) which takes into account the different outer loadings of
the indicator variables. Therefore, CR is a less conservative measure compared to
cronbach’s alpha.

i 4)?

CR= % + Sovar(®)

where, 4; is the standardized outer loadings of the ith indicator variable of a specific
construct, &; is the measurement error of ith indicator variable and var(§;) =1 —

A2,

Construct validity describes how well the measurement items relate to the constructs
and it is assessed through two main elements: convergent validity and discriminant

validity.

Convergent Validity
To evaluate convergent validity on the construct level, Average Variance Extracted
(AVE) critertia is considered (Fornell and Larcker, 1981). This attempts to measure
the amount of variance that a construct capture from its indicators relative to the
amount due to measurement error. This measure would be equivalent to the
communality of a construct.

Yidi®

AVE = ——
i+ Xivar(6;)

Discriminant Validity

Discriminant validity evaluates the degree to which a construct is truly distinct from
other constructs by empirical standards (Hair et al., 2016). To established the
discriminant validity, two measures, cross loadings of the indicators and Fornell-
Larcker criterion are considered. Cross loadings assessment allows the evaluation of

discriminant validity on indicator level while Fornell-Larcker criterion assesses the
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discriminant validity on construct level. Fornell-Larcker criterion is more
conservative method, which compares the square root of the AVE values with the
latent variable correlations (Fornell and Larcker, 1981) and it suggests that a
construct shares more variance with its assigned indicators than with another

construct in the structural model.

3.5.3.2. Assessment of the Formative Measurement Models

Formative measurement models are assessed for their convergent validity, the
significance and relevance of the indicators as well as the presence of collinearity
among indicators. As there is no measurement error in foramative models, rather a
disturbance term, that represents the remainder content of the construct which cannot
explain by the indicators, the internal consistency reliability concept is not

appropriate. (Andreev et al., 2009).

Significance and Relevance of Indicators

Formative indicator weight which represents the amount of variance in its construct
that explained by the indicator, are assessed and compared to determine their relative
contribution to their formative construct. Moreover, the significance level of the

indicator suggests the level of validity.

Collinearity of Indicators
The variance inflation factor (VIF) is considered to check the multicollinearity
among the formartive indicators and it denotes the level of an indicator’s variance is

explained by the remaining indicators of the same construct (Henseler et al., 2009).

3.5.3.3. Assessment of the Structural Model

The structural model is assessed after the assessment of measurement models is
established. The coefficients of determination (R?), the magnitude and significance of
path coefficients, total effects including direct and indirect effects, and the effect size
(f ?) are the evaluation criteria for structural models. The effect size allows assessing
the contribution of an exogenous construct to the R® value of an endogenous

construct.
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3.5.4. Bootstrapping Technique

As PLS-SEM is a non-parametric method that does not require assumptions about
the data distribution, the significance tests cannot be applied to test whether the
coefficients are significant. Therefore, a non-parametric bootstrapping technique is
used to test the significance of various results such as path coefficients, outer
weights, outer loadings and R2 values. In bootstrapping, subsamples are randomly
drawn using the resampling with replacement procedure. The subsample is then used
to estimate the PLS path model and this process is repeated for all random
subsamples. The estimations from the bootstrap subsamples are used to assess the
significance of PLS-SEM results (Chin, 1998; Hair et al., 2016).

3.6.  The Proposed Mathematical Influence Index
According to the equation 6 and equation 7, the measurement models for

mathematics latent variable and engineering latent variable can be defined as:

(ENG)y = X7% wijYij + &k k=34 9)
and
Xij = A;j(MAT); + 6;; 1 1=1,2.3; j=1, 2, ...,.J (10)
where,
(ENG), - k™ endogenous latent variable which represents the k™ semester
engineering performance
Yii — raw marks of j™ engineering module in k™ semester in Level 2
ny — no. of engineering modules in k™ semester
(MAT); - i"™ exogenous latent variable which represents the Level 1, S3 or

S4 mathematics performance respectively

Xij — raw marks of j"" mathematics module in i™ mathematics block

Let corr?(X;;, MAT;) be the squared outer loading of i observed mathematics

j:
variable of the i mathematics latent variable (mathematics performance in i block)
and RZ is the coefficient of determination of k™ engineering latent variable

(engineering performance in semester k). The mean of squared outer loadings linking
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each mathematics variable to the corresponding mathematics latent variable over all
blocks is a special case of communality index which measures the predictive
performance of the mathematics models. The coefficient of determination can be
considered as an index of measuring the predictive performance of the structural

model.

The mathematical influence index is defined as the geometric mean of the average
communality of mathematics, (i.e. the average proportion of variance the
mathematics modules can contribute to the mathematics performance), and R? of
engineering performance (i.e. the proportion of variance in engineering performance

explained by the mathematics performance). Thus, new index is defined as:

ng
1 1

(index); = 72 — E corr?(X;;, MAT,) || * R, (11)
~ L%

l Jj=1

2; k=
where, I={3' k=3

)

This new index is used to compare the impact of mathematics on student engineering

performance by their engineering disciplines.

3.7.  Chapter Summary

The four multivariate techniques: Canonical Correlation Analysis (CCA), Partial
CCA, Part CCA and Partial Least Squares Structural Equation Modeling (PLS-SEM)
are used to achieve the objectives of this study. Of these techniques, Partial CCA and
Part CCA are not being explored in many areas in applied statistics. In this study,
these two methods are used to eliminate the effect of mathematics in Level 1 and in
Level 2 respectively. The novel contribution of this study is to propose an index
based on the results of PLS-SEM to determine the impact of mathematics on
engineering performance for a given discipline and to compare the influence among

the engineering disciplines.
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CHAPTER 4
EXPLANATORY DATA ANALYSIS

This chapter provides the explanatory data analysis (descriptive statistics, boxplots,
etc.) of both independent and dependent variables. The mathematics modules in
Level 1 and the all compulsory modules in Level 2 are taken as the independent and
dependent variables respectively. Furthermore, the association between mathematics
marks and engineering marks is investigated using correlation coefficients and

multiple regression analysis.

4.1.  Descriptive Analysis of Overall Mathematics Marks in Level 1

Mathematics marks in Level 1: semester 1 (S1) and semester 2 (S2) are denoted by
Math_S1 and Math_S2 respectively. Table 4.1 presents the descriptive statistics of
students’ marks of mathematics courses in S1 and S2 (in Level 1), irrespective of
engineering discipline. Math_S1 is a 3 credits mathematics module which consists of
Logic and Set Theory, Vectors and Metrices, and Real Analysis. Math_S2 is also a 3
credits module which consists of Probability and Statistics, Differential Equations

and Multivariate Calculus and Numerical Methods.

Table 4.1:  Descriptive statistics of mathematics marks in Level 1

Academic Variable | Mean SE of Median Std. Minimum | Maximum
year Mean Dev.

Math_S1 59.2 0.44 58.8 10.6 39.5 91.3
2010/2011

Math_S2 64.3 0.53 64.3 13.0 15.0 99.0

Math_S1 68.9 0.48 69.3 12.0 18.7 100
2011/2012

Math_S2 57.2 0.54 56.4 13.4 12.6 95.4

According to Table 4.1, the average mark of Math_S2 (64.3) is higher than the
average mark of Math_S1 (59.2) in 2010/2011 academic year while the average mark
of Math_S1 (68.9) is higher than the average mark of Math_S2 (57.2) in 2011/2012

academic year. But, the standard error of the mean of Math_S1 is lower than that of
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Math_S2 for both academic years. Furthermore, median values indicate that many
students obtained higher marks for Math_S2 in 2010/2011 academic year and for
Math_S1 in 2011/2012 academic year. It is clear that students’ mathematics

performance in two academic years is different.
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Figure 4.1: Distributions of mathematics marks in S1 and S2
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The distributions of mathematics marks in S1 and S2, irrespective of engineering
discipline for both academic years are shown in Figure 4.1. It is clear that Math_S2

are wider spread around the mean mark than Math_S1 in both academic years.

4.2.  Descriptive Analysis of Mathematics Marks by Engineering Disciplines
4.2.1. Analysis of Mathematics Marks in S1
Table 4.2 contains the descriptive statistics of mathematics marks in S1 for both

academic years.

Table 4.2:  Descriptive statistics of mathematics marks in S1 (Discipline wise)

AC;(:Z;niC Discipline N Mean ﬁ/li;: Sg/ Cv. Min. Max.
CE 117 59.7 0.66 7.1 11.94 39.8 83.5
CH 77 50.9 0.78 6.8 14.34 395 71.0
CS 96 65.1 0.95 9.3 13.42 46.5 91.3
2010/2011 EE 68 60.3 0.96 7.9 13.17 44.3 84.3
EN 98 70.9 0.77 7.7 10.81 45.2 88.8
ME 98 52.7 0.66 6.5 12.34 395 68.3
MT 41 45.0 0.77 4.9 10.96 395 61.3
CE 125 69.7 0.79 8.8 12.68 46.7 96.0
CH 71 59.5 1.23 10.3 17.38 38.9 96.7
CS 95 77.1 0.83 8.1 10.54 54.7 100.0
2011/2012 EE 99 714 0.81 8.1 11.33 56.7 93.3
EN 96 79.7 0.71 6.9 8.71 62.3 95.3
ME 96 62.5 0.83 8.2 13.08 40.3 84.0
MT 44 48.7 13 8.6 17.76 18.7 69.3

CV — Coefficient of Variation

According to the results of 2010/2011 academic year, EN discipline obtain the
highest mean of mathematics marks in S1 (70.9) while MT discipline obtain the
lowest mean of mathematics marks in S1 (45.0) with the least standard deviation of
4.9. The highest amount of variability relative to its mean is from CH discipline

compared with other disciplines.

With reference to the results of 2011/2012 academic year, it can be seen that, mean
of mathematics marks in S1 in EN discipline is 79.7 with a least standard deviation
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of 6.9 and the mean marks of Math_S1 in CH discipline is 59.5 with the largest
standard deviation of 10.3 compared with other disciplines. Moreover, coefficient of
variation confirmed that, EN discipline has the least amount of variability relative to
its mean (8.71) while the highest amount of variability relative to its mean is from
MT and CH disciplines. It is clear from the data that mathematics performance in S1
is relatively high in two disciplines: EN and CS. Students from MT discipline show

the least mathematics performance in S1.

Furthermore, Figure 4.2 exhibits the boxplots of mathematics marks in S1 by
engineering disciplines. It can be seen that few students of CE, CH and CS
disciplines obtained exceptionally high marks than EN discipline. Furthermore, it is
clear that performance of MT students is far below than the performance of other
students in both academic years. The outliers (*) indicates values which are higher
than Q3+1.5(Q3-Q1) and lower than Q; -1.5(Q3-Q1) where Q1 and Q3 are the first and

third quartiles of the variable.
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Figure 4.2: Distribution of mathematics marks in S1 by engineering discipline
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4.2.2. Analysis of Mathematics Marks in S2

Descriptive statistics of students’ mathematics performance in S2 for both academic
years are presented in Table 4.3. With respect to the results of 2010/2011 academic
year, it is clear that the highest average mark for the mathematics course in S2 is
from CS discipline and the second highest average mark is from the EN discipline
while the lowest average mark is from the MT discipline (48.2). The results of
coefficient of variation indicate that EN discipline obtain the lowest amount of
variability relative to its mean (12.12) while the highest amount of variability relative

to its mean is from the MT discipline (18.65).

Table 4.3:  Descriptive statistics of mathematics marks in S2 (Discipline wise)

Acigginlc Discipline N Mean I?/Iigr: Sg\j/ Cv. Min. Max.
CE 117 63.7 0.97 10.5 16.50 15.0 91.7
CH 77 58.8 1.14 10.0 17.02 29.5 85.0
Cs 96 74.6 1.30 12.7 17.05 28.7 98.1
2010/2011 EE 68 66.1 1.16 9.6 14.47 41.0 87.0
EN 98 73.5 0.90 8.9 12.12 53.7 99.0
ME 98 55.8 0.95 9.4 16.88 16.0 84.0
MT 41 48.2 1.40 9.0 18.65 25.1 71.0
CE 125 57.1 0.9 10.1 17.64 26.9 79.6
CH 71 48.0 1.29 10.8 22.58 25.7 78.7
Cs 95 73.9 1.04 10.1 13.66 40.8 95.4
2011/2012 EE 99 56.3 0.98 9.8 17.36 30.8 80.8
EN 96 62.1 1.05 10.3 16.59 37.8 86.2
ME 96 51.1 0.9 8.8 17.21 325 74.8
MT 44 40.1 1.41 9.4 23.32 12.6 58.9

CV — Coefficient of Variation

By referring the results of 2011/2012 academic year in Table 4.3, it can be said that
the students of the CS discipline have obtained the highest average mark (73.9) while
students from MT discipline have obtained the lowest average mark (40.1) for
mathematics in S2. Besides that, the highest amount of variability relative to its mean
is from MT discipline (23.32) while the least amount of variability relative to its

mean is from CS discipline (13.66).
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The Figure 4.3 depicts the boxplots of mathematics marks in S2 by engineering
disciplines. By comparing Figure 4.2 and Figure 4.3, it can be seen that the range of
marks (Max—Min) in S2 is higher than that of S1 in most of the engineering

disciplines.
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Figure 4.3: Distribution of mathematics marks in S2 by engineering discipline

4.3.  Analysis of Variance (ANOVA)

In order to test the significant difference of mathematics marks among engineering
disciplines, Analysis of Variance (ANOVA) was carried out for students’
mathematics marks in S1 and S2 for both academic years separately. The null
hypothesis tested was: there is no significant difference between mean marks of
mathematics course among engineering disciplines. The summary of the ANOVAS is
shown in Table 4.4. It can be seen that all F-values are highly significant (p=0.000).
Thus, it can be concluded with 95% confidence that both mean marks of
mathematics courses in both S1 and S2 are significantly different for both academic

years.
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Table 4.4:  ANOVA for mathematics performance in Level 1

Category \S/erjiract‘?oor:c s;urgr%fs df S'\éljgre F Sig.
Between Groups | 34571 (51%) 6 | 5761.815| 103592 | 0.000
f&i%z_oslll) Within Groups | 32705 (49%) | 588 55.62
Total 67275 594
Between Groups | 38802 (39%) 6 | 6467.011| 61.936| 0.000
f&i%zglzl) Within Groups | 61396 (61%) | 588 | 104.415
Total 100198 594
Between Groups | 46459 (51%) 6 | 7743113 | 100081 | 0.000
?&1#2%112) Within Groups | 43940 (49%) 619 70.985
B Total 90398 625
Between Groups | 51277 (46%) 6 | 8546181 | 86.800 | 0.000
f&%z%lzz) Within Groups | 60946 (54%) | 619 98.458
B Total 112223 625

Parenthesis indicates percentage values with respect to the total sum of squares

The percentage sum of squares between groups for S1 is 51% for both years. This
indicates that variability of mathematics marks in S1 is almost same between
disciplines and within disciplines. In contrast between the groups sum of squares in
S2 has absorbed 38% and 46% of the total variability during 2010 and 2011
respectively. This implies within discipline variability of mathematics marks is
higher for S2.

It should be noted that pairwise comparisons between engineering disciplines are not

investigated as it does not make more sense for the objectives of this study.

4.4.  Descriptive Analysis of Mathematics Marks in Level 2

The mathematics modules followed in semester 3 (S3) and semester 4 (S4) in Level
2 vary according to the requirement of engineering discipline as described in Section
3.1. The results of important descriptive statistics of students’ mathematics
performance in Level 2 with respect to their engineering disciplines for two

academic years are presented in Table 4.5 and Table 4.6.
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Table 4.5:

Descriptive Statistics for mathematics performance in Level 2 — 2010/2011

S3 S4
Discipline
MAZ2013 MAZ2023 MA2042 MA2033 MA2042 MA3013 MA2013
CE Mean + SE 65.0+0.8 59.5+1.2 62.8+1.0 80.2+0.4
Minimum 42.3 25.0 20.0 55.1
Maximum 87.6 95.0 86.0 89.0
EN Mean = SE 72.0+0.8 71.241.3 76.8+1.0 83.8+0.7
Minimum 51.6 39.9 46.0 46.5
Maximum 92.8 97.0 95.0 98.1
ME Mean + SE 55.9+1.0 55.6+1.0 62.4£1.0 71.3+1.1
Minimum 28.4 30.9 39.0 43.3
Maximum 77.0 81.3 88.0 97.2
EE Mean + SE 69.6+1.0 61.5+1.5 66.1+1.6 77.1+1.2
Minimum 46.5 38.5 38.0 49.5
Maximum 86.1 93.5 92.0 95.2
MT Mean = SE 51.4+1.4 43.8+1.7 49.5+1.5 68.9+1.8
Minimum 31.3 21.0 35.0 46.0
Maximum 69.4 68.4 75.0 90.9
CS Mean + SE 63.8+1.2 73.8+0.9 72.4+1.1 64.5+1.0
Minimum 43.5 53.4 48.0 40.8
Maximum 100.0 93.2 95.0 84.2
CH Mean + SE 61.6+1.1 51.7+1.3 58.8+1.3
Minimum 36.9 24.5 37.0
Maximum 80.2 83.0 87.0




Table 4.6:

Descriptive Statistics for mathematics performance in Level 2 — 2011/2012

Discipline > >
MA2013 MA2023 MA2073 | MA2053 MA2033 MA2053 | MA2063 | MA3013
CE Mean + SE 77.6x0.8 62.4+1.0 71.9+0.8 67.1+0.8
Minimum 39.6 37.6 48.0 44.6
Maximum 93.4 91.5 95.4 85.3
EN Mean £ SE 81.5+£1.0 71.4x1.2 77.8x1.1
Minimum 53.5 43.2 55.0
Maximum 98.6 96.2 99.2
ME Mean + SE 67.4x1.0 56.6x1.2 62.4+09 | 73.9+1.1
Minimum 23.8 19.4 41.8 42.9
Maximum 86.7 84.9 90.4 95.2
EE Mean + SE 78.6+0.9 66.7+1.2 70.9£1.0 | 86.1+0.6
Minimum 52.2 40.0 46.3 61.8
Maximum 97.6 89.1 91.8 97.2
MT Mean + SE 56.7+2.3 45.8+2.1 56.4+1.6 65.0+1.1
Minimum 215 14.4 38.2 48.5
Maximum 88.8 77.6 88.6 78.6
CS Mean + SE 64.9£1.0 58.4+1.3 73.2+1.2 66.0+1.2
Minimum 45.6 23.5 42.3 43.2
Maximum 89.3 95.2 98.0 92.7
CH Mean + SE 67.0+1.6 56.7+1.6 64.7+1.4
Minimum 32.4 26.4 34.0
Maximum 92.0 81.8 97.0




Based on the results of Table 4.5 and Table 4.6, it is clear that students from EN
discipline show the best performance in mathematics in S3 and S4 whereas the
students from MT discipline show the least performance in mathematics in S3 and S4
for both academic years. It should be noted that CS discipline is offered special

modules by the Department of Mathematics.

4.5.  Comparison of GPA with Average / Weighted Average Marks

In order to determine the students’ overall academic performance in Level 2, the
university standard criteria, Grade Point Average (GPA) is calculated. To avoid the
interval scale in marks which used in GPA calculations, the students’ mean marks
and weighted mean marks are also calculated. The weights were assigned based on

the number of credits. These three statistics are computed as follows:

Lj=1my;

mean; =
n

Xriomy;
(weighted mean); = R )
PN
" Cigii
GPA), = 2/=1 79U
( )l ZC]

where, m;; — raw mark of the j"" subject by the i"" student
n —number of subjects
¢; — number of credits of the j™ subject

gij — grade point of the j™ subject by the i" student

In order to test whether raw marks can be used in this study as a proxy variable for
student performance, correlation analysis was carried out among the above three

performance indicators. The results are shown in Table 4.7 and Table 4.8.
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The coefficients of correlation reveal that there is very strong positive significant
linear relationship (> 0.9) between GPA with mean marks in Level 2 as well as GPA
with weighted mean marks in Level 2, irrespective of the engineering disciplines for
both academic years. This confirms that either mean marks or weighted mean marks

can be considered as a proxy estimator for the student actual academic performance.

Table 4.7:  Correlation between GPA and average performance - 2010

Mean Weighted Mean
Discipline

S3 S4 S3 S4
CE 0.990 0.983 0.990 0.983
CH 0.987 0.974 0.991 0.983
CS 0.978 0.983 0.984 0.984
EE 0.978 0.989 0.983 0.991
EN 0.980 0.978 0.981 0.977
ME 0.972 0.980 0.990 0.986
MT 0.992 0.986 0.992 0.991

Table 4.8:  Correlation between GPA and average performance - 2011

Mean Weighted Mean
Discipline

S3 S4 S3 S4
CE 0.979 0.975 0.979 0.975
CH 0.983 0.984 0.971 0.980
CS 0.984 0.981 0.987 0.980
EE 0.948 0.867 0.952 0.877
EN 0.987 0.987 0.988 0.983
ME 0.974 0.976 0.986 0.986
MT 0.994 0.988 0.994 0.993
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4.6. Association between Mathematics in Level 1 and Overall Performance in

Level 2

In order to determine the association between marks of mathematics modules in
Level 1 (Math_S1 and Math_S2) and average marks of the all modules in S3 and S4

as well as overall average marks in Level 2, correlation analysis was performed by

engineering disciplines separately and the results are shown in Table 4.9 and Table

4.10.

Table 4.9:  Correlation between mathematics marks and student performance -2010

Criterion Predictors CE
(N=117)
Mean_S3 Math_S1 0.368**

Math S2  0.536**

Mean_S4 Math_S1 0.165*
Math_S2 0.399**

Mean Math_S1  0.295%*

Level 2 Math S2  0.518*

EN
(N=98)

0.468**
0.581**

0.419**
0.430**

0.475**
0.554**

ME
(N=98)

0.348**
0.499**

0.228*
0.305**

0.326**
0.454**

EE
(N=68)

0.284*
0.513**

0.339**
0.463**

0.339**
0.522**

MT
(N=41)

0.283
0.703**

0.147
0.677**

0.217
0.710**

CH
(N=77)

0.340**
0.515**

0.394**
0.572**

0.387**
0.576**

cs
(N=96)

0.362**
0.605**

0.351**
0.527**

0.385**
0.612**

**_Correlation is significant at the 0.01 level (1-tailed)

*. Correlation is significant at the 0.05 level (1-tailed)

Table 4.10: Correlation between mathematics marks and student performance -2011

Criterion Predictors CE
(N=125)
Mean_S3 Math_S1 0.314**
Math_S2 0.485**
Mean_S4 Math_S1 0.342**
Math_S2 0.490**
Mean_ Math_S1 0.360**
Level 2 Math_S2 0.534**

EN
(N=96)

0.332**
0.631**

0.224*
0.617**

0.307**
0.659**

ME
(N=96)

0.238*
0.575**

0.233*
0.613**

E-E
(N=99)

0.461**
0.606**

0.372**
0.600**

0.253* 0.439**

0.634**

0.635**

MT
(N=44)

0.393**
0.556**

0.198
0.482**

0.308*
0.541**

CH
(N=71)

0.483**
0.603**

0.446**
0.600**

0.486**
0.630**

CS
(N=95)

0.482**
0.501**

0.492**
0.507**

0.507**
0.524**

**_Correlation is significant at the 0.01 level (1-tailed)

*. Correlation is significant at the 0.05 level (1-tailed)
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Considering the results of correlation coefficients in Table 4.9, the correlation
between mathematics marks in Level 1 and students’ overall performance for all
disciplines are statistically significant at the 0.05 level except the linear relationships

between mathematics module in S1 and students’ performance of MT discipline.

The results of correlation analysis in Table 4.10, shows significant correlation
between mathematics marks and students’ performance for all disciplines at the 0.05
level except the linear relationship between mathematics course in S1 and average
marks of S4 (Mean_S4) of MT discipline. Moreover, the correlation between
mathematics course in S2 and students’ overall performance are stronger compared
with the correlation between mathematics course in S1 and students’ overall

performance for all disciplines in both academic years.

4.7.  Analysis of Academic Performance by Engineering Disciplines

Additionally, Pearson correlation analysis was carried out, in order to examine the
linear relationship between variables of the two sets; mathematics and engineering
modules separately as well as between the variables in both mathematics and
engineering sets for each discipline. The results of correlation analysis for two
semesters in Level 2 by engineering discipline for two academic years are presented

in Appendix 2.

It can be concluded that the most pairs are significant and positively correlated
(p<0.05) within the each variable set and between the variable sets for all
engineering disciplines. This indicates that there is a strong significant impact from
the mathematics in Level 1 and Level 2 on the engineering modules in Level 2

irrespective of disciplines.

4.8.  Multiple Linear Regression Analysis

As correlation analysis reveals the students’ mathematics modules in Level 1 have
significant positive relationship with their overall academic performance in Level 2,
it is required to determine to what extent the mathematics in S1 and S2 contribute

significantly to the variation in student overall academic performance in Level 2,
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Stepwise regression analysis was carried out separately for three students’ overall
academic performance outcomes: average marks of S3 (Mean_S3), average marks of
S4 (Mean_S4) and overall average of S3 and S4 (Mean_Level 2), by engineering
disciplines and the summary of fitted models for two academic years are presented in
Table 4.11, Table 4.12 and Table 4.13 respectively.

Table 4.11: MLR model Summary for S3 (Discipline wise)

Academic CE CH cs EE EN ME MT
Year
Constant 44174 37.860 43294 45344 11822 31372 19371
Math_S1 - - - - 0.337  0.208 -
Math_S2 0311 0410 0313 0322 0448 0301 0714
ANOVAF 4626 2711 5440 2357 3463 1904  38.16
statistic
2010/2011 | p_ya1ue 0.000 0000 0000 0000 0000 0000  0.000
Std. Errorof 0. ge9 524 519 644 562 657
the Estimate
R-sq 287 265 367 263 422 286 495
R-sq (adj) 281 256 360 252 409 271 482
Constant 48.312 36304 20001 39535 39.101 38.460 39.396
Math_S1 0.111 ) 0320 0212 . . .
Math_S2 0227 0579 0279 0297 0484 0447  0.455
?tz';tli?t\ii: AF 2212 3936 2558 3938 6230 4653  18.76
2011/2012
P-value 0000 0000 0000 0000 0000 0000  0.000
Std. Errorof ) oo 847 604 424 615 562  6.44
the Estimate
R-sq 266 363 357 451 399 331 309
R-sq (adj) 254 354 343 439 392 324 292

Dependent Variable: Mean_S3

According to the results of 2010/2011 academic year in Table 4.11, R? values for all
seven models, illustrated that the fitted models explained 26% to 50% of the
variation in students’ academic performance in S3. F statistics of ANOVA output
imply that all seven fitted models are significant at the 0.05 level. However,

Math_S1 predictor variable is significant at the 0.05 level only in two fitted models
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and that is for EN and ME disciplines. Besides that, Math_S2 has the significant
influence on students’ academic performance in S3 compared to Math_S1 in all
engineering disciplines. Furthermore, residual analysis confirmed that all the fitted

models are adequate.

Similarly, the model summary of students’ overall performance in S3 for 2011/2012
academic year in Table 4.11 indicates that Math_S2 has the significant influence on
students’ academic performance in S3 compared to Math_S1 in all engineering
disciplines. Moreover, the mathematics module in S1 is significant at the 0.05 level
in three fitted models only and that is for CE, EE and CS disciplines.

Table 4.12: MLR model Summary for S4 (Discipline wise)

Academic CE CH CS EE EN ME MT

Year
Constant 53530 34.523 48339 44561 40569 51.756 26.246
Math_S1 ; ; ; - 0.216 ; -
Math_S2 0266 0465 0282 0323 0238 0220 0.662
ANOVAF 2183 3653 3616 1804 1756 986  33.01
statistic

2010/2011
P-value 0.000 0000 0000 0000 0000 0002 0.000
Std. Error of 645 672 581 595 509 650 655
the Estimate
R-sq 160 328 278 215 270 93 458
R-sq (adj) 152 319 270 203 255 84 445
Constant 42516 34337 18.664 43086 42.945 37.328 41.265
Math_S1 0.156 ; 0350  0.135 ; ; -
Math_S2 0275 0657 0300 0290 038 0478  0.453
ANOVAF 2398 3872 2683 3181 57.81 5672 1271
statistic

2011/2012
P-value 0000 0000 0000 0000 0000 0000 0.001
Std. Error of 554 958 639 414 510 544 778
the Estimate
R-sq 282 359 368 399 381 376 232
R-sq (adj) 270 350 355 386 374 370 214

Dependent Variable: Mean_S4
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By referring Table 4.12, it can be seen that all seven fitted models are significant at
the 0.05 level. R? values denote that the fitted models explained 9% to 46% of the
variation in students’ academic performance in S4 in 2010/2011 academic year while
the fitted models explained 23% to 40% of the variation in students’ academic
performance in S4 in 2011/2012 academic year. Furthermore, the impact of
mathematics module in S2 (Math_S2) is significantly higher compared to
mathematics module in S1 (Math_S1) for all engineering disciplines in both
academic years. Moreover, residual analysis confirmed the adequacy of all fitted

models in both academic years.

Table 4.13: MLR model Summary for Level 2 (Discipline wise)

Academic CE EN ME EE MT CH cs
Year

Constant 48545 36521 45819 44920 25114 38135 23.026
Math_S1 ; ; ; ; 0291  0.181 -
Math_S2 0290 0432 0298 0323 0341 0247  0.686
ANOVAF — »105 3189 1505 2477 3969 3715 5617
statistic

2010/2011
P-value 0.000 0000 0000 0000 0000 0000  0.000
Std.Errorof 500 534 526 508 619 620 491
the Estimate
R-sq 268 402 241 273 504 331 374
R-sq (adj) 262 389 225 262 492 322 367
Constant 45615 35330 19.280 41301 40.690 37.970  40.252
Math_S1 0.132 - 0335  0.174 ; - -
Math_S2 0249 0618 0290 0293 0443 0460  0.454
ANOVAF o998 7197 6332 4223 1741 4549  29.76
statistic

2011/2012
P-value 0.000 0000 0000 0000 0000 0000  0.000
Std. Errorof ) o 504 496 384 667 831 584
the Estimate
R-sq 329 434 403 468 294 397 393
R-sq (adj) 318 428 397 457 277 389  37.9

Dependent Variable: Mean_Level 2
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Considering the results in Table 4.11 and Table 4.12, it can be said that the overall
academic performance in S3 is more predictable than overall academic performance
in S4 from mathematics modules in S1 and S2 (in Level 1) in some engineering

disciplines.

With respect to the results in Table 4.13, it is clear that the amount of variance in
students’ overall academic performance in Level 2 (i.e. Mean Level 2) that can be
explained by the corresponding fitted model is varied from 24% to 50% in
2010/2011 academic year and 29% to 43% in 2011/2012 academic year. F statistics
and residual analysis implies that the fitted models are significant at 0.05 level and
adequate for both academic years. Furthermore, the impact of mathematics module in
S2 (Math_S2) is significantly higher compared to mathematics module in S1
(Math_S1) for all engineering disciplines in both academic years.

According to these results, it can be concluded that mathematics in S1 and S2 in

Level 1 are good predictors to the students’ academic performance in Level 2.

4.9. Chapter Summary

The descriptive analysis carried out to identify the patterns of mathematics and
engineering variables. Based on the descriptive analysis of mathematics in S1 and
S2, it can be seen that the highest mathematics performance is from students in EN
and the lowest mathematics performance is from students in the MT discipline for
both academic years. A similar approach is carried out for mathematics in Level 2
and found the consistent results. ANOVA was conducted to compare mathematics
performance in S1 and S2 among engineering disciplines and it is found that
mathematics performance in S1 and S2 are significantly different among engineering
disciplines for both academic years. It can be identified that student in MT discipline

obtained the least engineering performance in S3 and S4 for both academic years.
According to the correlation analysis, it is found that there is a strong positive

significant correlation between GPA with mean marks in Level 2 as well as GPA

with weighted mean marks in Level 2, irrespective of the engineering disciplines for
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both academic years. Furthermore, the overall performance in Level 2 is significantly
correlated with mathematics in S1 and S2 for all disciplines except MT discipline
and it can be seen that correlation with mathematics in S2 is higher compared to
mathematics in S1 for both academic years. Besides that, correlation analysis is
carried out to identify the linear relationship between mathematics and engineering
modules separately as well as between the variables in both mathematics and
engineering sets for each discipline. It is found that the most pairs are significant and
positively correlated within the each variable set and between the variable sets for all
engineering disciplines. The regression analysis suggests that the impact of
mathematics in S2 was significantly higher than the impact of mathematics in S1 on
the overall performance in Level 2 irrespective of the engineering disciplines for
both academic years. Hence, the next chapter examines the overall impact of

mathematics in Level 1 and Level 2 on engineering performance in Level 2.
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CHAPTER 5
COMBINED IMPACT OF MATHEMATICS IN LEVEL 1 AND
LEVEL 2

The results of Pearson correlation analysis in Chapter 4, confirmed that there is a
strong significant relationship between the variables of mathematics and engineering
sets separately as well as between the variables in both sets for each discipline. This
confirms the validity of data for the use of Canonical Correlation Analysis (CCA) in
order to examine the relationship between mathematics performance in Level 1 and

Level 2 with the engineering performance of undergraduates in Level 2.

The marks of two mathematics modules in Level 1 (MA1013 and MA1023) and the
marks of mathematics in each semester in Level 2 (MA2013 and MA2023) are taken
as the predictor set of variables. The number of mathematics modules in Level 2 is
varied from three to four depending on the engineering disciplines. The marks of all
compulsory engineering modules in two semesters (Semester 3 and 4) in Level 2 are
taken as the dependent set of variables. The dependent variables are varied among

engineering discipline (refer Appendix 1).

The result of Chemical and Processing Engineering (CH) discipline is extensively
discussed while the inferences based on results of remaining engineering disciplines
are highlighted. The analysis was done for two semesters S3 and S4 in Level 2
separately in two academic years: 2010/2011 and 2011/2012.

5.1. Combined Impact on CH Student Engineering Performance

5.1.1. Academic Year 2010/2011 - S3 of CH Students

By the end of S3 undergraduates of CH discipline have followed two mathematics
modules in Level 1 (S1 and S2), two mathematics modules in S3 and seven
engineering modules in S3. Therefore, the number of variables in the dependent set
and predictor set is seven and four respectively. Table 5.1 presents the results of
CCA for S3.
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Table 5.1:  Results of canonical correlations - performance of CH in S3 (2010)

Canonical Correlation Analysis

Adjusted Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.791584 0.764661 0.042831 0.626605
2 0.366145 0.239713 0.099330 0.134062
3 0.221443 0.037990 0.109083 0.049037
4 0.168348 . 0.111457 0.028341
Likelihood Approximate
Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 1.6781 1.5233 0.8769 0.8769 0.29876697 3.40 28 239.39 <.0001
2 0.1548 0.1033 0.0809 0.9578 0.80013702 0.87 18 189.99 0.6205
3 0.0516 0.0224 0.0269 0.9848 0.92401182 0.55 10 136 0.8530
4 0.0292 0.0152 1.0000 0.97165886 0.50 4 69 0.7335
Multivariate Statistics and F Approximations
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.29876697 3.40 28 239.39 <.0001
Pillai's Trace 0.83804511 2.61 28 276 <.0001
Hotelling-Lawley Trace 1.91368098 4.43 28 155.5 <.0001
Roy's Greatest Root 1.67813081 16.54 7 69 <.0001

The results in Table 5.1 indicate that there are four canonical variate pairs in this
particular model as the number of canonical variate pairs is equal to the number of
variables in the smaller set. It can be seen that out of four canonical variate pairs only
the first canonical variate pair is statistically significant (p <0.001) according to F
value of Likelihood ratio (that is, Wilks’ Lambda test statistic). It implies that the
first canonical variate pair is sufficient to explain a significant amount of variability
of the predictor set and dependent variable set. In other words, the remaining three
canonical variant pairs are not significantly important to describe the variability of
the two sets. The four multivariate statistics also confirmed that there is a significant
linear relationship between the students’ mathematics performance in Level 1 and S3

with their engineering performance in S3.

The first canonical correlation of 0.792 (p < 0.05) indicates a significant strength of
strong linear relationship between mathematics performance in Level 1 (MA1013
and MA1023) and S3 (MA2013 and MA2023) and engineering performance in S3. It
denotes that the linear function of mathematics marks of the four modules (overall
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mathematics performance) significantly influences a linear function of marks of
seven engineering modules (overall engineering performance of CH). Furthermore,
the squared canonical correlation of 0.6268 (Table 5.1) indicates that 62.7% of the
observed variability of the engineering performance of CH can be explained by the
mathematics performance. This confirms that there is a significant impact on
engineering performance at S3 from the mathematics performance in Level 1 and S3
in Level 2. At this point, it should be noted that the performance in mathematics in
S3 were not taken in to consideration for the engineering performance in S3.

The correlation between the dependent variables (engineering measurements) and the
corresponding canonical variables and that between independent variables
(mathematics measurements) and the corresponding canonical variables are called
‘canonical loadings’. Similarly, the correlation between engineering measurements
and the canonical variables of the mathematics measurement and that between
mathematics measurements and the canonical variables of the engineering
measurements are called ‘canonical cross loadings’. Table 5.2 provides the canonical

loadings and canonical cross loadings for CH data in S3 (2010).

The canonical loadings that the MA1013 mathematics variable (r = 0.4697) indicates
that the MA1013 mathematic variable is weakly correlated with its first canonical
variate of mathematics measurements while the remaining three mathematics
variables are highly correlated (> 0.7) with their first canonical variate of
mathematics measurements. It can also be seen that MA1013 mathematics variable
has a weak relationship (r = 0.372) with the first canonical variate of engineering
measurements, remaining three mathematics variables are moderately correlated (0.5
< r < 0.7). Hence, it can be hypothesized that the impact MA1013 mathematics
variable is weakly related with students’ engineering performance in S3 compared to

the impact of other mathematics variables.
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Table 5.2:  Canonical loadings and canonical cross loadings — performance of CH
in S3 (2010)

Canonical Loadings

Correlations Between the Engineering Measurements and Their Canonical Variables

ENG1 ENG2 ENG3 ENG4
CH2042 0.8181 -0.1700 0.1458 -0.2278
CH2052 0.8301 0.3331 0.0144 -0.0186
EE2802 0.8655 -0.0572 -0.0566 0.2374
EN2852 0.3718 0.1453 -0.1830 -0.1766
ME1822 0.3071 -0.6018 0.4754 -0.0149
ME2012 0.7932 0.0255 0.0717 -0.2967
ME2122 0.4500 0.3567 0.6736 0.0884

Correlations Between the Mathematics Measurements and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4
MA1013 0.4697 -0.4508 -0.6715 0.3540
MA1023 0.7103 0.0151 -0.4985 -0.4967
MA2013 0.7645 0.5063 -0.1849 0.3536
MA2023 0.8064 -0.4198 0.4151 0.0344

Canonical Cross Loadings

Correlations Between the Engineering Measurements and the
Canonical Variables of the Mathematics Measurements

MAT1 MAT2 MAT3 MAT4
CH2042 0.6476 -0.0623 0.0323 -0.0383
CH2052 0.6571 0.1220 0.0032 -0.0031
EE2802 0.6851 -0.0209 -0.0125 0.0400
EN2852 0.2943 0.0532 -0.0405 -0.0297
ME1822 0.2431 -0.2204 0.1053 -0.0025
ME2012 0.6279 0.0093 0.0159 -0.0499
ME2122 0.3563 0.1306 0.1492 0.0149

Correlations Between the Mathematics Measurements and the
Canonical Variables of the Engineering Measurements

ENG1 ENG2 ENG3 ENG4
MA1013 0.3718 -0.1650 -0.1487 0.0596
MA1023 0.5623 0.0055 -0.1104 -0.0836
MA2013 0.6052 0.1854 -0.0410 0.0595
MA2023 0.6383 -0.1537 0.0919 0.0058

The Canonical Redundancy analysis (CRA) is a method to extract and summaries the
variation in a set of response variables (engineering measurements) that can be
explained by a set of explanatory variables (mathematics measurements). The
canonical redundancy indices reflect the effectiveness of canonical analysis in
capturing variances of the observed variables by canonical variate pairs. Table 5.3

depicts the results of the canonical redundancy analysis for S3.
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Table 5.3:

Canonical redundancy analysis — performance of CH in S3 (2010)

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.4531 0.4531 0.2839 0.2839
2 0.0935 0.5466 0.0125 0.2965
3 0.1061 0.6527 0.0052 0.3017
4 0.0337 0.6864 0.0010 0.3026

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.4899 0.4899 0.3070 0.3070
2 0.1590 0.6489 0.0213 0.3283
3 0.2265 0.8754 0.0111 0.3394
4 0.1246 1.0000 0.0035 0.3430

The proportion of the first opposite canonical variable (redundancy measure of
engineering) denotes that the first canonical variate of mathematics performance
accounted for 28.4% of the total variance of student engineering performance in S3.
Furthermore, proportion of own canonical variable of mathematics measurements
and that of engineering measurements indicate that the explainable variability of
performance in mathematics by its first canonical variate is 48.9%, while the
proportion of variance in student engineering performance explained by its first
canonical variate is 45.3%. Thus, it can be concluded that CCA is effective for the
data set used to capture variances of the predictor variables by the first canonical
pair.

5.1.2. Academic Year 2010/2011 - S4 of CH Students

As in the Section 5.1.1 dependent set is the engineering modules in S4 and it consists
of five engineering variables. Mathematics variables in both S1(MA1013) and S2
(MA1023) in Level 1 as well as in both S3 (MA2013 and MAZ2023) and S4
(MA2033) in Level 2 are the predictor set. This set also has five variables. Thus, the
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number of canonical variate pairs in this case is five. As in Section 5.1.1, the results
of CCA are summarized in Table 5.4 to Table 5.6.

Table 5.4:  Results of canonical correlations - performance of CH in S4 (2010)

Canonical Correlation Analysis

Adjusted Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.740065 0.708968 0.051883 0.547696
2 0.277003 . 0.105906 0.076731
3 0.248936 . 0.107600 0.061969
4 0.096492 . 0.113640 0.009311
5 0.043605 . 0.114490 0.001901
Likelihood Approximate
Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 1.2109 1.1278 0.8830 0.8830 0.38733556 2.91 25 250.4 <.0001
2 0.0831 0.0170 0.0606 0.9436  0.85636041 0.68 16 208.38 0.8139
3 0.0661 0.0567 0.0482 0.9918 0.92753028 0.59 9 168.08 0.8071
4 0.0094 0.0075 0.0069 0.9986  0.98880566 0.20 4 140 0.9393
5 0.0019 0.0014 1.0000 ©0.99809858 0.14 1 71 0.7141
Multivariate Statistics and F Approximations
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.38733556 2.91 25 250.4 <.0001
Pillai's Trace 0.69760727 2.30 25 355 0.0005
Hotelling-Lawley Trace 1.37137407 3.61 25 155.3 <.0001
Roy's Greatest Root 1.21090057 17.19 5 71 <.0001

The results in Table 5.4 show that only the first of five canonical variate pairs is
statistically significant (p<0.001). It implies that a significant amount of variability of
predictor and dependent sets can be explained by the first canonical variate pair.
Furthermore, multivariate statistics revealed that the canonical correlation is
significantly different from zero (p<0.001) indicating that there is a significant linear
relationship between linear combination of five mathematics modules and linear
combination of five engineering modules. The first canonical correlation of 0.740
(Table 5.4) indicates that the students’ mathematics performance in both Level 1 and
Level 2 has a strong linear relationship with their engineering performance in S4.
The squared canonical correlation indicates that the first canonical variate of
mathematics accounted for 54.8% of the variance in the first canonical variate of

engineering performance. These results clearly confirm that there is a significant
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impact of mathematics in both Level 1 and Level 2 on CH students’ engineering

performance in S4.

Table 5.5:  Canonical loadings and canonical cross loadings — performance of CH
in S4 (2010)

Canonical loadings

Correlations Between the Engineering Measurements and Their Canonical Variables

ENG1 ENG2 ENG3 ENG4 ENG5
CH2062 0.7930 -0.2200 -0.5596 -0.0928 -0.0330
CH2072 0.5457 -0.1046 0.3609 -0.7163 -0.2188
CH2082 0.8962 0.2256 0.0022 0.2550 -0.2843
CH3092 0.8534 -0.4268 0.2373 0.0297 0.1800
CH3102 0.8621 0.1257 0.0550 -0.0863 0.4801

Correlations Between the Mathematics Measurements and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4 MAT5
MA1013 0.4855 -0.6104 -0.1222 -0.5601 -0.2510
MA1023 0.7460 -0.0852 -0.5591 -0.1485 0.3188
MA2013 0.7289 0.3530 -0.1827 -0.1514 -0.5365
MA2023 0.7159 0.0960 0.5655 -0.2746 0.2883
MA2033 0.7184 -0.3730 0.0131 0.5556 -0.1896

Canonical cross loadings

Correlations Between the Engineering Measurements and the
Canonical Variables of the Mathematics Measurements

MAT1 MAT2 MAT3 MAT4 MAT5S
CH2062 0.5868 -0.0609 -0.1393 -0.0090 -0.0014
CH2072 0.4039 -0.0290 0.0899 -0.0691 -0.0095
CH2082 0.6633 0.0625 0.0006 0.0246 -0.0124
CH3092 0.6316 -0.1182 0.0591 0.0029 0.0078
CH3102 0.6380 0.0348 0.0137 -0.0083 0.0209

Correlations Between the Mathematics Measurements and the

Canonical Variables of the Engineering Measurements

ENG1 ENG2 ENG3 ENG4 ENG5
MA1013 0.3593 -0.1691 -0.0304 -0.0540 -0.0109
MA1023 0.5521 -0.0236 -0.1392 -0.0143 0.0139
MA2013 0.5394 0.0978 -0.0455 -0.0146 -0.0234
MA2023 0.5298 0.0266 0.1408 -0.0265 0.0126
MA2033 0.5316 -0.1033 0.0033 0.0536 -0.0083

The results in Table 5.5 clearly indicate that all five mathematics modules positively
influence on engineering performance at different level of intensity as all the
canonical cross loadings of five engineering measurements are greater than zero and
the first mathematics canonical variate (MAT1) varied from 0.4039 (CH2072) to
0.6633 (CH2082). The canonical cross loadings of five mathematics measurements
with the first engineering canonical variate (ENG1) varied from 0.3593 (MA1013) to
0.5521 (MA1023) are all positive and significant.
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Table 5.6:  Canonical redundancy analysis — performance of CH in S4 (2010)

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.6403 0.6403 0.3507 0.3507
2 0.0616 0.7019 0.0047 0.3554
3 0.1006 0.8024 0.0062 0.3616
4 0.1190 0.9215 0.0011 0.3627
5 0.0785 1.0000 0.0001 0.3629

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.4704 0.4704 0.2576 0.2576
2 0.1306 0.6010 0.0100 0.2677
3 0.1362 0.7371 0.0084 0.2761
4 0.1486 0.8857 0.0014 0.2775
5 0.1143 1.0000 0.0002 0.2777

According to the results in Table 5.6 it confirms that the proportion of variance in
engineering performance in S4 explained by the first canonical variate of
mathematics in both S3 and S4 is 35.1%. It can be concluded that mathematics
performance in Level 1 and Level 2 has a significant impact on the performance of

CH engineering students in S4.

5.1.3. Academic Year 2011/2012- S3 of CH Students

The mathematics measurements and as well as the engineering measurements are the
same as in Section 5.1.1 which was done for academic year 2019/2011 of S3 CH
students. Table 5.7 presents the results of canonical correlation and multivariate
statistics for data of 2011/2012 academic year in S3 in Level 2 for CH students.
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Table 5.7:  Results of canonical correlations — performance of CH in S3 (2011)

Canonical Correlation Analysis

Adjusted Approximate Squared

Canonical Canonical Standard Canonical

Correlation Correlation Error Correlation

1 0.815817 0.799804 0.039973 0.665558

2 0.252979 . 0.111874 0.063998

3 0.239124 . 0.112689 0.057180

4 0.015687 . 0.119493 0.000246

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 1.9901 1.9217 0.9390 0.9390 0.29506605 5.93 16 193.11 <.0001
2 0.0684 0.0077 0.0323 0.9713 0.88226373 0.91 9 155.91 0.5138
3 0.0606 0.0604 0.0286 0.9999 0.94258780 0.98 4 130 0.4235
4 0.0002 0.0001 1.0000 0.99975392 0.02 1 66 0.8990

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.29506605 5.93 16 193.11 <.0001
Pillai's Trace 0.78698262 4.04 16 264 <.0001
Hotelling-Lawley Trace 2.11932342 8.22 16 120.13 <.0001
Roy's Greatest Root 1.99005503 32.84 4 66 <.0001

The results in Table 5.7 indicated that out of four canonical variate pairs only the
first canonical variate pair is statistically significant (r=0.816, p < 0.05) confirming
that the first canonical variate pair is sufficient to explain a significant amount of
variability of the predictor set and dependent variable set. The four multivariate
statistics tests also confirmed that the first canonical correlation is significantly
different greater than zero. These results indicate that the strength of the linearity
between mathematics and engineering performance is high. Thus, it can be
concluded that first pair of canonical variate, a linear combination of the mathematics
measurements and a linear combination of the engineering measurements has a
correlation coefficient of 0.816. The value of squared canonical correlation of 0.616
suggests that the proportion of the variance in the canonical variate of engineering
performance explained by the canonical variate of the mathematics performance in
Level 1 is 66.6%. The corresponding value for 2010//2013 is 62.7%.

Table 5.8 provides the results canonical loadings and canonical cross loadings for S3
in Level 2 of 2011/2012 batch.
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Table 5.8:  Canonical loadings and canonical cross loadings — performance of CH
in S3 (2011)

Canonical Loadings

Correlations Between the ENG Variables and Their Canonical Variables

ENG1 ENG2 ENG3 ENG4
CH2013 0.8881 -0.4521 -0.0370 -0.0737
CH2023 0.7981 -0.059%4 0.5731 -0.1763
CH2033 0.9466 0.2312 -0.0683 0.2141
ME2122 0.4665 -0.5283 0.3550 0.6142

Correlations Between the MAT Variables and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4
MA1013 0.5603 0.6370 0.2326 0.4757
MA1023 0.7791 0.5114 -0.1364 -0.3359
MA2013 0.9256 -0.1829 -0.2122 0.2544
MA2023 0.8653 -0.0913 0.4928 0.0057

Canonical Cross Loadings

Correlations Between the ENG Variables and the Canonical Variables of the MAT Variables

MAT1 MAT2 MAT3 MAT4
CH2013 0.7246 -0.1144 -0.0088 -0.0012
CH2023 0.6511 -0.0150 0.1370 -0.0028
CH2033 0.7723 0.0585 -0.0163 0.0034
ME2122 0.3805 -0.1337 0.0849 0.0096

Correlations Between the MAT Variables and the Canonical Variables of the ENG Variables

ENG1 ENG2 ENG3 ENG4
MA1013 0.4571 0.1611 0.0556 0.0075
MA1023 0.6356 0.1294 -0.0326 -0.0053
MA2013 0.7552 -0.0463 -0.0507 0.0040
MA2023 0.7059 -0.0231 0.1178 0.0001

The values canonical loadings indicate that the first canonical variate of engineering
performance is highly correlated (r > 0.75) with all engineering modules with
exceptional for the module ME2122. Thus, this implies that much of the shared
variance of all engineering modules is captured by its first canonical variate.
Similarly, in mathematics measurements all mathematics modules are strongly
correlated (>0.75) with its first variate with exceptional for MA1013. These results
confirm that there is a significant impact from mathematics in Level 1 and S3 on the

CH Engineering performance in 2011/2012 batch as well.
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Based on the values of canonical cross-loadings (Table 5.8), it can be said that all
engineering measurements are highly correlated (>0.60) with the first canonical
variate of mathematics performance except the engineering measurement ME 2122
while all mathematics measurements are also highly related (>0.60) with the first
canonical variate of engineering performance except MA1013 mathematics variable.
These results confirm that there is a significant impact from mathematics in Level 1

and S3 on the CH Engineering performance in 2011/2012 batch as well.

Table 5.9:  Canonical Redundancy Analysis — performance of CH in S3 (2011)
Standardized Variance of the Engineering Measurements Explained by
Their Own The Opposite
Canonical Variables Canonical Variables
Canonical

Variable Cumulative Cumulative

Number Proportion Proportion Proportion Proportion

1 0.6349 0.6349 0.4225 0.4225

2 0.1351 0.7700 0.0086 0.4312

3 0.1151 0.8851 0.0066 0.4378

4 0.1149 1.0000 0.0000 0.4378
Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical

Variable Cumulative Cumulative

Number Proportion Proportion Proportion Proportion

1 0.6316 0.6316 0.4204 0.4204

2 0.1773 0.8089 0.0113 0.4317

3 0.0901 0.8990 0.0052 0.4369

4 0.1010 1.0000 0.0000 0.4369

The results of the canonical redundancy analysis are provided in Table 5.9. The
results of cumulative proportions for opposite canonical variables in engineering
measurements indicate that the proportion of variance explained by the first
canonical variate of mathematics performance is 42.3% of engineering performance
in S3. Furthermore, the amount of variance in engineering performance in S3
explained by its first canonical variate is 63.5%, while 63.2% of the variance in

mathematics performance is explained by its first canonical variate.
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5.1.4. Academic Year 2011/2012 — S4 of CH Students

As in Section 5.1.2, the dependent set contains five engineering variables and the

predictor set contains five mathematics variables. As in Section 5.1.2, the

corresponding three tables with respect to canonical correlation carried out for the

data in S4 for the academic year 2011/2012 are summarized in Tables 5.10 — Table

5.12 respectively.

Table 5.10: Results of canonical correlations - performance of CH in S4 (2011)

Canonical Correlation Analysis

Canonical
Correlation
0.811597
0.413333
0.203386
0.146095
0.018812

ui b W N R

Adjusted App
Canonical
Correlation
0.788620
0.322201
0.020121

Eigenvalue Difference Proportion Cumulative

roximate
Standard

Error
0.040794
0.099103
0.114579
0.116972
0.119481

Likelihood Approximate

1 1.9299 1.7238 0.8767 0.8767 ©
2 0.2060 0.1629 0.0936 0.9703 ©
3 0.0432 0.0213 0.0196 0.9899 ©
4 0.0218 0.0215 0.0099 0.9998 0
5 0.0004 0.0002 1.0000 ©
Multivariate Statistics

Statistic Value

Wilks' Lambda 0.26540791

Pillai's Trace 0.89259832

Hotelling-Lawley Trace 2.20125183

Roy's Greatest Root 1.92989156

Ratio

.26540791
.77761638
.93784118
.97830983
.99964610

F V.

alue
3.92
1.02
0.46
0.35
0.02

and F Approximations

F Value
3.92
2.83
5.27

25.09

Num

DF
25
25
25

5

Ca
Corr

Q.

Num

De

0
0
0.
0

Squared
nonical
elation
658690
.170844
.041366
021344
.000354

DF Den

25 228.
16 190.
9 153.

n DF

228.11

325

140.6

65

DF Pr > F

11 <.0001
05 0.4381
48 0.9021

128 0.8417
65 0.8799

Pr > F

.0001
.0001
.0001
.0001

According to the results (Table 5.10) it can be seen that only the first pair of

canonical variate is statistically significant (p < 0.001) confirming that only the first

variate is able to capture significant amount of variability of the predictor set and

dependent variable set. This further shows the significance impact from mathematics

performance on the engineering performance in Level 2 for the 2011/2012 CH

students. The first canonical correlation is found to be equal to 0.812 which implies
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a strong relationship between mathematics in both Level 1 and Level 2 with their
engineering performance in S4. The squared canonical correlation indicates that
65.9% of variation in the first canonical variate of engineering is explained by the

first canonical variate of mathematics.

Table 5.11: Canonical loadings and canonical cross loadings — performance of CH
in S4 (2011)

Canonical loadings

Correlations Between the ENG Variables and Their Canonical Variables

ENG1 ENG2 ENG3 ENG4 ENG5

CH2043 0.8905 -0.2166 -0.1659 -0.0642 0.3584
CH2053 0.9132 -0.0306 0.1482 -0.1896 -0.3275
CH2063 0.8948 -0.0614 0.2879 0.2925 -0.1648
CH2073 0.8781 0.2739 -0.1960 0.1879 -9.2833
CH2083 0.8991 0.3623 0.2295 0.0406 0.0773
Correlations Between the MAT Variables and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4 MATS

MA1013 0.5408 -0.4021 0.1600 -0.4541 0.5603
MA1023 0.7407 -0.5074 -0.1409 -0.3141 -0.2747
MA2013 0.8152 0.3668 -0.0678 -0.4428 -0.0176
MA2023 0.7962 0.0458 -0.4970 -0.0473 0.3386
MA2033 0.9664 0.0817 0.2156 0.1105 0.0263

Canonical cross loadings

Correlations Between the ENG Variables and the Canonical Variables of the MAT Variables

MAT1 MAT2 MAT3 MAT4 MAT5
CH2043 0.7227 -0.0895 -0.0337 -0.009%4 0.0067
CH2053 0.7411 -0.0126 0.0301 -0.0277 -0.0062
CH2063 0.7262 -0.0254 0.0586 0.0427 -0.0031
CH2073 0.7126 0.1132 -0.0399 0.0275 -0.0053
CH2083 0.7297 0.1497 0.0467 0.0059 0.0015

Correlations Between the MAT Variables and the Canonical Variables of the ENG Variables

ENG1 ENG2 ENG3 ENG4 ENG5
MA1013 0.4389 -0.1662 0.0325 -0.0663 0.0105
MA1023 0.6011 -0.2097 -0.0287 -0.0459 -0.0052
MA2013 0.6616 0.1516 -0.0138 -0.0647 -0.0003
MA2023 0.6462 0.0189 -0.1011 -0.0069 0.0064
MA2033 0.7843 0.0338 0.0438 0.0161 0.0005

Table 5.11 provides the canonical loadings and canonical cross loadings for S4. The
canonical loadings reflect that both engineering and mathematics variables are

strongly correlated (>0.70) with their first canonical variate except MA1013
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mathematics variable. Hence, it can be concluded that a considerable amount of
variance in mathematics except MA1013 variable, is captured by its first canonical
variate. By referring the canonical cross-loadings, it can be said that all engineering
variables are significantly and strongly correlated (>0.70) with the first canonical
variate of mathematics performance. Furthermore, all mathematics variables have a
significant impact on the first canonical variate of engineering. The impact is the
highest from MA2033 and the lowest from MA1013.

Table 5.12: Canonical Redundancy Analysis — performance of CH in S4 (2011)

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.8014 0.8014 0.5279 0.5279
2 0.0516 0.8530 0.0088 0.5367
3 0.0447 0.8977 0.0018 0.5385
4 0.0325 0.9302 0.0007 0.5392
5 0.0698 1.0000 0.0000 0.5392

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.6147 0.6147 0.4049 0.4049
2 0.1125 0.7272 0.0192 0.4241
3 0.0687 0.7959 0.0028 0.4270
4 0.1031 0.8990 0.0022 0.4292
5 0.1010 1.0000 0.0000 0.4292

Table 5.12 presents the results of the canonical redundancy analysis for S4. The
redundancy index of engineering exhibits that the explainable variability of student
engineering performance in S4 is 52.8% by the first canonical variate of
mathematics. It can be concluded that the first canonical variate of mathematics is a
good predictor of student engineering performance in S4. In addition to that, 80.1%
of the variance in engineering performance is explained by its first canonical variate
while the proportion of variance in mathematics performance explained by its first

canonical variate is 61.5%.
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5.2.  Combined Impact on CE Student Engineering Performance

In order to determine the impact of mathematics on students’ engineering
performance of the remaining engineering disciplines, similar analyses as explained
in Section 5.1.1 — Section 5.1.4 were carried out separately for each engineering
disciplines. For each discipline, the analyses were carried out for all four cases: (i)
2010/2011 — S3, (ii) 2010/2011 — S4, (iii) 2011/2012 — S3 and (iv) 2011/2012 — S4.

For CE discipline, the independent set contains marks of six different engineering
modules (Table 5.13) and predictor set contains marks of four mathematics modules
for S3 and marks of six mathematics modules for S4 (Table 5.13). The detailed
output for CE disciplines under those four scenarios are shown in Appendix 2. It was
found that only the first canonical variate pair is significant for all four scenarios and
thus Table 5.13 provides summary results focusing on the first pair of canonical

variate.

5.2.1. Academic Year 2010/2011- S3 of CE Students

According to the results in Table 5.13 it is clear that the students’ mathematics
performance has a moderately strong impact on their engineering performance in S3
in the academic year 2010/2011 (r = 0.592, p < 0.001). About 35% of engineering
performance can be explained by the mathematics performance. Furthermore, it can
be seen that the impact of MA1023 module (in S2) is higher compared with other
mathematics modules. The canonical redundancy index of engineering suggests that
13.5% of the total variance of engineering performance in S3 can be explained by the

first canonical variate of mathematics.
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Table 5.13: Important statistics related to the first pair of canonical variate — CE student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical
Corralation (CC) 0.592 0.623 0.724 0.766
Squared CC 0.351 0.388 0.524 0.587
vWa}H;S) Lambda (p- 0.585 (<.0001) 0.551 (<.0001) 0.355 (<.0001) 0.364 (<.0001)
1) 2) (3) (1) ) 3) 1) 2 (3) (1) ) (3)
CE2012 0123 0449 0266 | CE2012 0.686 0.895 0558 | CE2112 0587 0919 0.665 | CE2112 0.388 0.830 0.636
o CE2022 -0.269 0397 0235 | CE2022 0175 0.168 0.105 | CE2122 0.063 0.665 0481 | CE2122 0229 0.766 0.587
E:gg;‘r’ne;'n”(i CE2032 0822 0952 0564 | CE2032 -0.085 0.042 0026 | CE2132 0.113 0.750 0543 | CE2132 0260 0.786 0.602
P CE2042 0245 0700 0415 | CE2042 0354 0724 0451 | CE2142 -0.097 0488 0353 | CE2142 0086 0.622 0.476
CE2052 0097 0515 0.305| CE2052 0.131 0496 0309 | CE3012 0442 0862 0624 | CE3012 0320 0.766 0.587
CE2062 0088 0545 0.323 | CE2062 0.085 0472 0.294
Variance extracted 38.62 30.39 56.61 57.29
Redundancy 13.55 11.81 29.64 33.66
1) ) (3) 1) ) 3) 1) 2 (3) (1) ) (3)
MA1013 0032 0548 0.324 | MA1013 0.027 0428 0266 | MA1013 -0.167 0.196 0.142 | MA1013 -0.062 0.374 0.287
_ MA1023  0.804 0931 0551 | MA1023 0433 0765 0477 | MA1023 0.054 0454 0.328 | MA1023 0.099 0602 0.461
F’;’éﬁgfrrn“:;'gj MA2013 0346 0564 0334 | MA2013 0335 0758 0473 | MA2013 0.047 0291 0211 | MA2013 0.125 0612 0.469
MA2023  0.076 0504 0208 | MA2023 0468 0.862 0537 | MA2023 0.329 0453 0.328 | MA2023 0.263 0.693 0.531
MA2033 0.695 0.876 0.634 | MA2033 0287 0.736 0.564
MA3013 0377 0.629 0.455| MA3013 0572 0.865 0.663
Variance extracted 43.47 52.12 28.26 44.10
Redundancy 15.25 20.26 14.80 25.90

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




5.2.2. Academic Year 2010/2011- S4 of CE Students

The canonical correlation of S4 in academic year 2010/2011 implies that there is a
strong linear relationship between students’ mathematics performance and their
engineering performance in S4 (0.724). The impact of two mathematics modules in
S4 (MA2033 and MA3013) on the engineering performance in S4 is higher than that
of other mathematics modules. The redundancy measure of engineering denotes that
the proportion of variance explained by the first canonical variate of mathematics
performance is 29.6% of engineering performance in S4.

5.2.3. Academic Year 2011/2012- S3 of CE Students

Based on the results of CCA for S4 in academic year 2011/2012 in Table 5.17, it can
be said that the linear relationship between students’ mathematics performance and
their engineering performance in S3 is moderately strong (0.623). However, most of
the engineering variables are weakly correlated with their canonical variate as well as
the canonical variate of mathematics (<0.30). Moreover, the lowest impact of
mathematics on engineering performance in S3 is from the MA1013 mathematics
module. The first canonical variate of mathematics accounted for 11.8% of the total

variance of engineering performance in S3.

5.2.4. Academic Year 2010/2011- S4 of CE Students

The results of CCA for S3 in academic year 2011/2012 in Table 5.17 illustrate that
the students’ mathematics performance is strongly correlated with their engineering
performance in S4 (0.766). The highest impact of mathematics and the lowest impact
of mathematics on CE student performance in S4 are from the MA3013 mathematics
module in S4 and the MA1013 mathematics module in S1 respectively. The
canonical redundancy measure of engineering denotes that the first canonical variate
of mathematics can be explained 33.6% of the total variance of engineering
performance in S4.

5.3. Combined Impact on Student Performance in Other Disciplines

As detailed analyses were shown for both disciplines: CH discipline (Section 5.1)

and CE discipline (Section 5.2) only summary tables similar to Table 5.13 are given
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for other five disciplines. As for CH and CE it was found that only the first canonical
covariate is significant in other five disciplines also. It concluded with 95%
confidence that a significant amount of variability of predictor and dependent sets
can be explained by the first canonical variate pair as revealed by the Wilks’ lambda
test statistics. The summary results for the five disciplines: CS, EE, EN, ME and MT

are shown in Tables 5.14 to 5.18 respectively.

5.3.1. Impact on Student Performance in CS

With respect to Table 5.14, the canonical correlation exhibits that there is a
significant linear relationship between students’ mathematics performance and their
engineering performance for both academic years in S3 and S4 as the first canonical
variate between mathematics measurements and engineering measurements for S3
(2010/2011), S3 (2011/2012), S4 (2010/2011) and S4 (2011/2012) are 0.688 (p <
0.0001), 0.679 ( p <0.0001), 0.748 (p < 0.0001) and 0.758 (p < 0.0001) respectively.
The percentages of variability of engineering performance explained by the linear
function of mathematics for the four cases are 47%, 59%, 56% and 57% respectively.

Based on standardized coefficients in S3 (2010/2011) it can be concluded that all the
mathematics modules have positive moderately impact on engineering performance
in S3 except MA1013 mathematics module in S1. The impact from MA1013 is
significantly lower compared with other three mathematics modules. Similar trend
was observed for S3 (2011/2012) as although all mathematics modules showed
positive impact on student engineering performance in S3, the impact from MA1013
is significantly lower compared with other three modules. Based on standardized
coefficients in S4 (2010/2011) the mathematics modules MA1013 and MA2023
showed negative impact on engineering performance in S3 compared to other
mathematics modules. However, based on the results in S4 (2011/2012) it can be
concluded that all six mathematics modules have positive impact on the engineering

performance.
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The redundancy measure of engineering indicates that the first canonical variate of
mathematics performance accounted for 29% of the total variance of engineering
performance in S3 (2010/2011). The corresponding percentages for other three are
30%, 29% and 40% respectively for S3 (2011/2012), S4(2010/2011) and S4
(2011/2012).

5.3.2. Impact on Student Performance in EE

The results in Table 5.15 showed that in all four cases: S3 (2010/2011), S3
(2011/2012), S4 (2010/2011) and S4 (2011/2012) the students’ mathematics
performance is strongly and significantly correlated with their corresponding
engineering performance. The squared canonical correlation varied from 53% in S3
(2010/2011) to 71.4% in S4 (2010/2011). In all cases the standardized coefficients of
mathematics measurements are all positive with exceptional for MA2023 in S4
(2010/2011) and MA1013 in S4 (2011/2012). As for CH, CE and CS the impact
from S2 mathematics (MA1023) is always higher than S1 mathematics (MA1013).
Furthermore by comparison of mean of the standardized coefficients for mathematics
modules in Level 2 and Level 1 in S4, it was found the mean coefficient for Level 2
is higher than that of Level 1. Thus it can be hypothesized that the impact from
mathematics modules in Level 2 on the engineering performance in Semester 2 is

significantly higher than that from mathematics in Level 1.

The canonical redundancy measure of engineering indicates that the first canonical
variate of mathematics can be explained 21.9%, 24.7%, 36.7% and 41.1%
respectively of the total variance of engineering performance in S3 (2010/2011), S3
(2011/2012), S4 (2010/2011) and S4 (2011/2012).

5.3.3. Impact on Student Performance in EN

According to the results in Table 5.16 it is clear that students’ mathematics
performance has strong impact on their engineering performance in all four cases in
EN. The first canonical correlations between mathematics performance and
engineering performance are 0.815, 0.834, 0.783 and 0.700 respectively for S3
(2010/2011), S3 (2011/2012), S4 (2010/2011) and S4 (2011/2012) and therefore
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corresponding squared canonical correlation are 66.5%, 69.6%, 61.3% and 49.0%. It
is very difficult explain why it is significantly low in S4 (2011/2012). The squared
correlation was found higher for both S3 than both S4 only in EN disciplines. Thus,
it can be concluded that the impact of mathematics in Level 1 and S3 on engineering
performance of EN in S3 is higher compared with the impact of mathematics in
Level 1 and Level 2 on engineering performance of EN in S4. to the impact of

mathematics in S1 and S2.

The standardized coefficients are all positive for the four cases with exceptional for
MA1013 for S4 (2011/2012) indicating all mathematics modules have some sort of
positive impact on students’ performance in engineering. The canonical redundancy
index of engineering suggests that almost 40.0% of the total variance of engineering
performance in S3 irrespective of academic year (2010/2011 or 2011/2012) can be
explained by the first canonical variate of mathematics. The corresponding

percentage for S4 is around 27%.

5.3.4. Impact on Student Performance in ME

The results in Table 5.17 showed that in all four cases: S3 (2010/2011), S3
(2011/2012), S4 (2010/2011) and S4 (2011/2012) the students’ mathematics
performance is significantly correlated with their corresponding engineering
performance. The squared canonical correlation varied from 47% in S3 (2010/2011)
to 59% in S3 (2011/2012). In all cases the standardized coefficients of mathematics
measurements are all positive with exceptional for MA1013 in S3 (2011/2012) and
MAZ2013 in S4 in both 2010/2011 and 2011/2012. As for CH, CE and CS the impact
from S2 mathematics (MA1023) is always higher than S1 mathematics (MA1013).

The canonical redundancy measure of engineering indicates that the first canonical
variate of mathematics can be explained 18.3%, 21.9%, 22.9% and 30.3%
respectively of the total variance of engineering performance in S3 (2010/2011), S3
(2011/2012), S4 (2010/2011) and S4 (2011/2012).
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5.3.5. Impact on Student Performance in MT

According to the results in Table 5.18 it is clear that students’ mathematics
performance has strong impact on their engineering performance in all four cases in
MT. The first canonical correlations between mathematics performance and
engineering performance are 0.807, 0.739, 0.881 and 0.738 respectively for S3
(2010/2011), S3 (2011/2012), S4 (2010/2011) and S4 (2011/2012) and therefore
corresponding squared canonical correlation are 65.1%, 54.5%, 77.7% and 54.4%.
The squared correlation was found higher for both S3 than both S4 and it can be
concluded that the impact of mathematics in Level 1 and S3 on engineering
performance of MT in S3 is higher compared with the impact of mathematics in
Level 1 and Level 2 on engineering performance of MT in S4 to the impact of
mathematics in S1 and S2.

The redundancy measure of engineering indicates that the first canonical variate of
mathematics performance accounted for 28% of the total variance of engineering
performance in S3 (2010/2011). The corresponding percentages for other three are
13%, 45% and 14% respectively for S3 (2011/2012), S4(2010/2011) and S4
(2011/2012).
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Table 5.14: Important statistics related to the first pair of canonical variate — CS student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.760 0.764 0.756 0.855
Correlation
Squared canonical 0.577 0.584 0.571 0.730
correlation
Wilks” Lambda 0.372 0.333 0.333 0.231
P-value <.0001 <.0001 <.0001 <.0001
(1) (2 (3) (1) (2 3) 1) (2 3) (1) 2 (3)
CE1822 0.209 0.652 0.495 | CE1822 0.174 0.662 0.506 | CS3022 0.343 0.848 0.641 | CS3022 0.033 0.697 0.595
Engineering CS2032 0.016 0.668 0.507 | CS2032 0.447 0.894 0.683 | CS3032 0.070 0.671  0.507 | CS3032 0.350 0.881 0.753
performance CS2042 0.354 0.797 0.605 | CS2042 -0.009 0.589 0.450 | CS3042 0.307 0.738  0.558 | CS3042 0.090 0.716 0.612
CS2062 0.245 0.715 0.543 | CS2062 0.281 0.816 0.624 | CS3242 -0.166  0.296  0.224 | CS3242 0.031 0.498 0.426
EN2022 0.339 0.757 0.575 | EN2022 0.334 0.754 0.576 | EN2062 0.418 0.850  0.642 | EN2062 0.551 0.928 0.793
ME1822 0.214 0.653 0.496 | ME1822 0.018 0.544 0.416 | ME1802 0.178 0.723  0.546 | ME1802 0.114 0.675 0.577
Variance extracted 50.28 51.89 50.77 55.66
Redundancy 29.02 30.31 28.99 40.64
1) (2) 3) (1) (2) 3) 1) (2 3 (1) (2 (3)
MA1013 -0.028 0.416 0.316 | MA1013 0.058 0.573 0.438 | MA1013 -0.038 0.459 0.347 | MA1013 0.018 0.560 0.479
Mathematics MA1032 0.416 0.774 0.588 | MA1032 0.325 0.654 0.500 | MA1032 0.370 0.736 0556 | MA1032 0.291 0.636 0.544
performance MA2023 0.281 0.639 0.486 | MA2053 0.417 0.833 0.637 | MA2023 -0.055 0.414 0.313 | MA2053 0.259 0.763 0.652
MA2042 0.596 0.856 0.650 | MA2073 0.465 0.875 0.669 | MA2042  0.258 0.605  0.457 | MA2073 0.025 0.681 0.582
MA2013 0.414 0.758 0573 | MA2033 0.324 0.835 0.713
MA2033  0.389 0.766  0.578 | MA2063 0.369 0.868 0.742
Variance extracted 47.83 55.4 40.84 53.6
Redundancy 27.61 32.36 23.31 39.14

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 5.15: Important statistics related to the first pair of canonical variate — EE student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
cC 0.731 0.741 0.845 0.796
Squared CC 0.535 0.550 0.714 0.633
Wilks’ Lambda 0.352 0.390 0.181 0.251
P-value 0.0001 <.0001 <.0001 <.0001
(1) 2 3 ) 2 3 () 2 3 @ 2 3
EE2012 0.534 0.841 0.615 | CE1822 0.096 0.458 0.339 | EE2042 0.303 0.731 0.618 | EE2043 -0.170 0.379 0.302
EE2022 0.160 0.711 0.520 | EE2013  0.217 0.752 0.558 | EE2052 0.225 0.610 0.515 | EE2053 0.199 0411 0.327
Engineering EE2033 0.183 0.486 0.355 | EE2023  0.290 0.698 0.518 | EE2072 0.092 0.745 0.630 | EE2063 0.184 0592 0471
performance EN2012 0.006 0679 0.496 | EE2033  0.199 0.674 0.500 | EE2083 0.389 0.840 0.709 | EE2073 0511 0.855 0.680
EN2022 0.238 0.645 0.472 | EN2012 0.113 0.588 0.436 | EE2132 0.190 0.734 0.620 | EE2083 0.341 0.786 0.625
ME2012 0.304 0.701 0.512 | EN2022 0.058 0.603 0.447 | EE3072 0.154 0.641 0.542 | ME2842 0.252 0.673 0.536
CE1822 -0.105 0.221 0.161 | ME2012 0.419 0.847 0.628 | ME2842 0.012 0.691 0.584
Variance extracted 40.95 44.94 51.34 41.07
Redundancy 21.89 24.7 36.65 26.02
(1) 2 (3 ) 2 3 (1) 2 3 @ 2 3
MA1013 0.057 0.439 0.321 | MA1013 0.104 0.555 0.411 | MA1013 0.032 0.445 0.376 | MA1013 -0.067 0.415 0.331
Mathematics MA1023 0.326 0.690 0.505 | MA1023 0.337 0.758 0.562 | MA1023 0.181 0.602 0.509 | MA1023 0.300 0.755 0.601
performance MA2013 0.536 0.843 0.617 | MA2013 0.172 0.729 0.541 | MA2013 0.237 0.612 0.517 | MA2013 0.017 0.619 0.492
MA2023 0.383 0.776 0.568 | MA2023 0.610 0.920 0.682 | MA2023 -0.070 0.547  0.462 | MA2023 0.367 0.772 0.614
MA2032 0.724 0.938 0.793 | MA2033 0.394 0.854 0.680
MA2042 0.134 0.677 0.572 | MA2053 0.316 0.543 0.432
Variance extracted 49.57 56.48 42.86 45.75
Redundancy 26.5 31.04 30.6 28.98

(1) Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 5.16: Important statistics related to the first pair of canonical variate — EN student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
Canonical 0.815 0.834 0.783 0.700
Correlation
Squared canonical 0.665 0.696 0.613 0.490
correlation
Wilks” Lambda 0.299 0.238 0.298 0.410
P-value <.0001 <.0001 <.0001 <.0001
) 2 ©)] ) 2 3 1) ) 3) ) ) (3)
o EE2092  0.300 0.881 0.718 | EE2092  0.455 0.871 0.727 | EN2072  0.479 0.831 0.650 | EN2072  0.612 0.823 0.646
E”r%”;‘r*ne“nng EN2012  0.438 0.880 0.718 | EN2012  0.204 0.660 0.550 | EN2142  0.020 0.619 0.485 | EN2142  0.233 0.545 0.382
performance EN2022 0209 0.755 0.616 | EN2022 0231 0713 0595 | EN3022  0.003 0.294 0230 | EN3022 0132 0448 0.314
EN2052 -0.072 0572 0.466 | EN2052  -0.191 0.588 0.491 | EN2082  0.647 0.910 0.712 | EN2082  0.753 0.919 0.733
EN2062 0.301 0.778 0.634 | EN2062  0.468 0.893 0.745
Variance extracted 61.05 56.90 49.68 43.3
Redundancy 40.58 39.59 30.44 24.74
) 2 3 ) 2 3 1) ) 3) ) ) (3)
MA1013 0.201 0587 0.478 | MA1013 0.025 0.373 0.311 | MA1013 0.190 0.609 0.477 | MA1013  -0.237 0.203 0.142
Mathematics MA1023 0.201 0.693 0565 | MA1023 0.124 0.698 0.582 | MA1023 0.088 0.616 0.482 | MA1023 0.282 0.773 0.542
performance MA2013 0.466 0.858 0.699 | MA2013 0.373 0.838 0.699 | MA2013 0.286 0.750 0.587 | MA2013 0.039 0.666 0.466
MA2023 0.411 0.834 0.680 | MA2023 0.629 0.941 0.785 | MA2023 0.275 0.817 0.639 | MA2023 0.494 0.865 0.605
MA2033 0.372 0.799 0.626 | MA2033 0.445 0.846 0.592
MA2042 0.154 0.607 0.475
Variance extracted 56.35 55.38 49.77 50.90
Redundancy 37.45 38.53 30.49 24.95

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 5.17: Important statistics related to the first pair of canonical variate — ME student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.688 0.769 0.748 0.758
Correlation
Squared
canonical 0.473 0.591 0.560 0.575
correlation
Wilks’ Lambda 0.421 0.306 0.390 0.319
P-value <.0001 <.0001 <.0001 <.0001
(1) 2 (3) 1) 2 3) 1) ) (3) 1) 2 (3)
EE2802 0200 0595 0409 | EE2803 0294 0714 0549 | ME2032 0370 0710 0532 | ME2032 0.182 0.724 0.549
N EN2852 0071 0435 0299 | EN2852 0.032 0.383 0295 | ME3072 0201 0626 0468 | ME3073 0.101 0632 0.479
p:gg‘rﬁ]e;'nnci ME2012 0.167 0592 0407 | ME2012 0413 0764 0587 | ME3032 0.616 0.865 0.647 | ME3032 0320 0.729 0.553
ME2022 -0.052 0509 0.350 | ME2023 0.095 0.475 0.365| ME3062 -0.308 0226 0.169 | ME3062 0.184 0.635 0.481
ME2092 0.674 0902 0621 | ME2092 0.098 0480 0369 | ME2142 0247 0596 0446 | ME2153 0514 0.884 0.670
ME2112 0286 0596 0410 | ME2112 0592 0.856 0.658
ME2602 -0.329 0.412 0.317
Variance 38.68 37.10 41.02 52.80
extracted
Redundancy 18.31 21.92 22.96 30.34
(1) 2 (3) 1) 2 3) (1) ) 3) (1) 2 (3)
MA1013 0.190 0524 0360 | MA1013 -0.035 0.338 0.260 | MA1013 0.363 0490 0.367 | MA1013 0.020 0329 0.249
Mathematics MA1023 0498 0799 0550 | MA1023 0.188 0.641 0492 | MA1023 0.164 0469 0351 | MA1023 0332 0773 0586
performance MA2013 0221 0.695 0478 | MA2013 0437 0860 0.661 | MA2013 -0.106 0.356 0.266 | MA2013 -0.109 0562 0.426
MA2023 0.466 0750 0516 | MA2023 0564 0915 0.703 | MA2023 0203 0562 0421 | MA2023 0.615 0.791 0.600
MA2033 0.320 0.646 0483 | MA2033 0.056 0546 0.414
MA2042 0579 0799 0598 | MA2053 0451 0.624 0.473
Variance 48.96 52.54 32.65 38.92
extracted
Redundancy 23.18 31.04 18.28 22.36

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 5.18: Important statistics related to the first pair of canonical variate — MT student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

girr‘ferl‘;‘;ﬁ:n 0.807 0.739 0.881 0.738
Sgﬁg{gﬂ;ﬁ”on'cm 0.651 0.545 0.777 0.544
Wilks’ Lambda 0.198 0.266 0.073 0.119
P-value 0.0003 0.0088 <.0001 <.0001
@ ) ®) @ ) ®) @) ) ©)) @ @) ©))
EE2802 -0.042 0.616 0497 | EE2803  0.185 0.652 0.482 | ME2142 0.072 0.752 0.663 | ME2850  0.175 0.551 0.407
EN2852 -0.328 0.462 0.373 | EN2852  0.267 0.433 0.320 | ME2832 0530 0.871 0.767 | ME2832 0.160 0539 0.398
Engineering ME1822 0.059 0.305 0.246 | ME1822 -0.105 0.240 0.177 | ME3062 0.413 0772 0.680 | ME3062 0574 0714 0.527
performance ME2012 0.273 0.668 0.539 | ME2012  0.733 0.871 0.643 | MT2032 -0.210 0.734 0.647 | MT2032 -0.562 0.138 0.102
MT2042 1316 0935 0.754 | MT2042 -0.732 0.098 0.072 | MT2072 -0.060 0.679 0.599 | MT2072  -0.543 0.091 0.067
MT2122 -0.325 0.781 0.630 | MT2122 -0.084 0.165 0.122 | MT2142 0.020 0.712 0.628 | MT2142  0.883 0.604 0.446
MT2152 0525 0.449 0.331 | MT2152  0.442 0.782 0.689
Variance extracted 43.6 23.81 57.69 24.95
Redundancy 28.37 12.99 4481 13.57
1) ) ®) D ) ®) 1) ) ©)) 1) ) ©))
MA1013 -0.501 0.042 0.034 | MA1013 -0.276 0.383 0.283 | MA1013 -0.038 0.298 0.262 | MA1013 -0.323 0.183 0.135
Mathermatics MA1023 0.740 0.847 0.683 | MA1023 0.335 0.748 0.553 | MA1023 0.353 0.771 0.680 | MA1023  0.073 0570 0.420
performance MA2013 0506 0.706 0.570 | MA2013 0315 0.783 0.578 | MA2013 -0.006 0530 0.468 | MA2013 -0.161 0.485 0.358
MA2023 0.060 0.623 0.503 | MA2023 0.645 0.944 0.697 | MA2023 0.088 0.709 0.625 | MA2023  0.631 0.849 0.626
MA2033 0.442 0.827 0.729 | MA2033  0.645 0.880 0.649
MA3013 0.391 0.806 0.710 | MA3013  -0.030 0.244 0.180
Variance extracted 40.13 55.24 46.67 35.79
Redundancy 26.11 30.13 36.25 19.47

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




5.4. Relationship between GPA and First Canonical Variate

In this study, the first canonical variate was considered as a proxy indicator to judge
the students’ performance instead of real GPA based on number of credits and grade
point as practiced in universities. Therefore, the strength of linearity between those
two indicators were evaluated using Pearson correlation between GPA and first
canonical variate of engineering modules in Level 2. The results for each case by

disciplines are shown in Table 5.19.

Table 5.19: Pearson correlation between GPA and first canonical variate of

engineering modules in Level 2

2010 2011
Discipline
S3 S4 S3 S4
CE 0.825 0.920 0.809 0.963
CH 0.881 0.974 0.895 0.972
CS 0.957 0.897 0.947 0.932
EE 0.895 0.954 0.898 0.817
EN 0.946 0.885 0.903 0.958
ME 0.911 0.707 0.791 0.948
MT 0.826 0.930 0.504 0.578

The coefficients of correlation reveal that there is a strong positive significant
correlation (> 0.7) between GPA and first canonical variate derived from the marks
in engineering modules in S3 and S4 in Level 2, for all engineering disciplines with
exceptional in MT discipline for both academic years. This confirms that the first
canonical variate of engineering modules in Level 2 can be considered as a good

proxy estimator for the student actual engineering performance.

5.5. Chapter Summary
The combined impact of mathematics in Level 1 and Level 2 on students’
engineering performance in two semesters in Level 2 is significant irrespective of the

engineering disciplines and irrespective of two academic years considered in this
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study. The impact varied between disciplines. The impact of mathematics module in
S1in Level 1 is considerably lower compared with the impact of mathematics in S2
in Level 1 in all disciplines. Furthermore, impact of overall mathematics on the
engineering performance in S4 is higher than the impact of overall mathematics on
the engineering performance in S3 in all seven engineering disciplines. This can be
occurred as there is a direct impact of mathematics in Level 1 (MA1013 and
MAZ1023 modules) on mathematics performance in Level 2. Thus, the next chapter
examines the individual impact of mathematics in Level 1 and Level 2 separately on

the engineering performance in Level 2.
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CHAPTER 6
SEPARATE IMPACT OF MATHEMATICS IN LEVEL 1 AND
LEVEL 2

6.1.  Introduction

In Chapter 5 the combined impact of mathematics in Level 1 and Level 2 was
analyzed. However, in Section 5.5 it was highlighted the necessity of studying the
impact of mathematics in Level 1 and in Level 2 separately as there can be a carry-
over effect in Level 2 as Level 1 mathematics has already been taken by the students
in Level 2. The two unexplored multivariate techniques (Mukuta and Harada, 2014)
namely: (i) Part Canonical Correlation Analysis (Part CCA) and (ii) Partial Canonical
Correlation Analysis (Partial CCA) are used to examine the separate individual

impact of mathematics in Level 1 and Level 2.

The Part Canonical Correlation Analysis (Part CCA) is a statistical tool which used to
determine a pair of linear projections on to a low dimensional space, where
correlation between two multi-dimensional variables is maximized after eliminating
influence of a third set of variables from one of the other two multi-dimensional
variables. That is, Part CCA estimates the relationship between the two sets of
variables, partialing out the linear effect of the third set of variables from one of the
other two variable sets. Therefore, Part CCA is used to determine the relationship
between students’ mathematics performance in Level 1 and their engineering
performance in Level 2 when the influence of mathematics in Level 2 is eliminated

from engineering performance in Level 2.

The Partial Canonical Correlation Analysis (Partial CCA) approach allows to assess
the partial independence of two sets of variables given a third set of variables.
Therefore, Partial CCA was applied to identify the relationship between students’
mathematics performance in Level 2 and their engineering performance in Level 2,
after eliminating the effect of mathematics in Level 1 from both groups, as the

students have already completed mathematics in Level 1 at Level 2.
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As in chapter 5, the result of CH discipline is extensively discussed while the results
of remaining engineering disciplines are briefly described. The analysis is done for
two semesters: S3 and S4 in Level 2 separately in two academic years: 2010/2011 and
2011/2012.

6.2.  Individual Impact of Mathematics in Level 1

The engineering modules in each semester in Level 2 are considered as the
dependent set. The mathematics modules in Level 1 are the predictor set while
mathematics modules in Level 2 are the control set, which eliminates its influence

from the dependent set.

6.2.1. Impact on CH Student Performance

6.2.1.1. Academic Year 2010/2011 — S3

The undergraduates of CH discipline followed seven engineering modules and two
mathematics modules in S3. Therefore, the dependent set contains seven engineering
variables and the control set has two mathematics variables. The two mathematics
modules in Level 1 are considered as the predictor set. The results of Part CCA for
2010 batch in S3 are presented in Table 6.1.

Table 6.1:  Results of Part CCA — performance of CH in S3 (2010)

Canonical Correlation Analysis

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.328535 0.150947 0.102327 0.107935
2 0.260947 . 0.106897 0.068093

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.1210 0.0479 0.6235 0.6235 0.83132088 0.94 14 136 0.5181
2 0.0731 0.3765 1.0000 0.93190659 0.84 6 69 0.5432

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks"' Lambda 0.83132088 0.94 14 136 0.5181
Pillai's Trace 0.17602881 0.95 14 138 0.5064
Hotelling-Lawley Trace 0.19406398 0.93 14 105.49 0.5270
Roy's Greatest Root 0.12099506 1.19 7 69 0.3186
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By referring Wilks’ lambda test statistic in Table 6.1, it can be seen that the first
canonical variate pair of Part CCA is not statistically significant (p=0.518). That is,
the first canonical variate pair is not sufficient to explain a significant amount of
variability of the predictor set and dependent set. Furthermore, the first part
canonical correlation found to be equal to 0.328 and squared canonical correlation
indicates that only 10.8% of variation in the first canonical variate of engineering is
explained by the first canonical variate of mathematics in Level 1 when the effect of

mathematics in Level 2 is eliminated from engineering performance.

Table 6.2 presents the standardized canonical coefficients, canonical loadings and

canonical cross loadings for CH performance in S3.

Table 6.2: Standardized canonical coefficients and canonical structure -
performance of CH in S3 (2010)

Standardized

Measurements Variable Canonical ci:g:;;;i Canonlciiaggzzz
Coefficients

Engineering CH2042 0.4870 0.6755 0.2219
CH2052 0.2591 0.6581 0.2162

EE2802 0.1591 0.5730 0.1882

EN2852 0.0124 0.3548 0.1166

ME1822 -0.2488 0.0464 0.0152

ME2012 0.6250 0.7061 0.2320

ME2122 -0.3196 0.0778 0.0255

Mathematics MA1013 -0.2689 0.2666 0.0876
MA1023 1.1026 0.9720 0.3193

With reference to Table 6.2, the results of canonical loadings and canonical cross
loadings for CH performance in S3 exhibit that the mathematics module in S1
(MA1013) and is weakly correlated with both first canonical variate of mathematics
and first canonical variate of engineering. The canonical cross loading of 0.3193
suggests that MA1023 variable is also weakly correlated with first canonical variate
of engineering after removing the effect of mathematics in Level 2 from engineering
performance as the corresponding value has reduced from 0.5623 (Table 5.2) to
0.3193. Similar trend can be seen for MA1013. However, positive values of
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canonical cross loadings in both MA1013 and MA1023 suggest that there is impact
of mathematics in Level 1 on engineering performance in S3 and S4 (in Level 2)

evenafter the effect of mathematics in Level 2 is removed.

Table 6.3:  Canonical Redundancy Analysis — performance of CH in S3 (2010)

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.2643 0.2643 0.0285 0.0285
2 0.0936 0.3579 0.0064 0.0349

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.5079 0.5079 0.0548 0.0548
2 0.4921 1.0000 0.0335 0.0883

Based on the results of the part canonical redundancy analysis in Table 6.3, it can be
concluded that amount of variability in engineering performance in S3 explained by
the first canonical variate of mathematics is not sufficient (2.85%) when the effect of
mathematics in Level 2 is removed from engineering performance. Apart from that
the explainable variability of mathematics and engineering performance by its first

canonical variate are 50.8% and 26.4% respectively.

6.2.1.2. Academic Year 2010/2011 - S4

As in the Section 6.2.1.1, the two mathematics modules in Level 1 is the predictor
set. The dependent set contains five engineering variables (i.e. five engineering
modules in S4) and the control set contains three mathematics variables (i.e. two

mathematics modules in S3 and one mathematics module in S4).
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The results of part canonical correlation and multivariate statistics for student
performance in S4 are summarized in Table 6.4. The Wilks’ lambda test statistic
reflects that at least first canonical variate pair does not explain a significant amount
of variability of the predictor and dependent sets. Moreover, part canonical
correlation of 0.283 confirmed that the mathematics in Level 1 has a weak impact on
engineering performance in S4 when the effect of mathematics in S3 and S4 is

removed from engineering performance.

Table 6.4:  Results of Part CCA — performance of CH in S4 (2010)

Canonical Correlation Analysis

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.283195 0.136568 0.105508 0.080199
2 0.202945 . 0.109983 0.041187

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.0872 0.0442 0.6699 0.6699 0.88191722 0.91 10 140 0.5279
2 0.0430 0.3301 1.0000 0.95881326 0.76 4 71 0.5532

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks"' Lambda 0.88191722 0.91 10 140 0.5279
Pillai's Trace 0.12138592 0.92 10 142 0.5190
Hotelling-Lawley Trace 0.13014785 0.90 10 102.29 0.5337
Roy's Greatest Root 0.08719190 1.24 5 71 0.3005

Table 6.5 illustrates the standardized canonical coefficients, canonical loadings and
canonical cross loadings for CH performance and it denotes that the mathematics
module in S1 (MA1013) is weakly correlated with both first canonical variate of
mathematics (0.204) and first canonical variate of engineering (0.058) as in Section
6.2.1.1. Besides that, MA1023 mathematics variable (in S2) is also weakly correlated
with the first canonical variate of engineering (0.270). It is clear that the linear
relationship between mathematics in Level 1 and engineering performance in S4 is
significantly weak with the effect of mathematics in S3 and S4 partialed out of the

dependent set of engineering performance.
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Table 6.5: Standardized canonical

performance of CH in S4 (2010)

coefficients and canonical

structure

Standardized

Measurements Variables Canonical
Coefficients

Engineering CH2062 0.6888
CH2072 -0.0410

CH2082 0.2879

CH3092 -0.2250

CH3102 0.4230

Mathematics MA1013 -0.3402
MA1023 1.1200

Canonical Canonical Cross
loadings loadings
0.8996 0.2548
0.1188 0.0337
0.6903 0.1955
0.4625 0.1310
0.6868 0.1945
0.2038 0.0577
0.9548 0.2704

With respect to Table 6.6, the redundancy index of engineering found that the

amount of variability in engineering performance in S4 explained by the first

canonical variate of mathematics in Level 1 is 3.18%. It can be said that the real

effect of mathematics in Level 1 is not sufficient to explain the engineering

performance in S4.

Table 6.6:  Canonical redundancy analysis — performance of CH in S4 (2010)
Canonical Redundancy Analysis
Standardized Variance of the Engineering Measurements Explained by
Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.3971 0.3971 0.0318 0.0318
2 0.1268 0.5239 0.0052 0.0371
Standardized Variance of the Mathematics Measurements Explained by
Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.4765 0.4765 0.0382 0.0382
2 0.5235 1.0000 0.0216 0.0598
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6.2.1.3. Academic Year 2011/2012 — S3

The undergraduates of CH discipline followed four engineering modules and two
mathematics modules in S3 in 2011/2012 academic year. The number of variables in
each set of variables is four engineering variables in dependent set, two mathematics
variables in Level 1 in predictor set and two mathematics variables in S3 in control
set. Tables 6.7 to Table 6.9 provide the results of Part CCA for student academic

performance in S3.

With reference to Wilks’ lambda test statistic in Table 6.7, it is clear that the first
canonical variate pair is not statistically significant (p=0.439). That is, the first part
canonical variate pair is not sufficient to explain a significant amount of variability of

the predictor set and dependent variable set.

Table 6.7:  Results of Part CCA — performance of CH in S3 (2011)

Canonical Correlation Analysis

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.297521 0.194988 0.108943 0.088519
2 0.162431 0.111073 0.116369 0.026384

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.0971 0.0700 0.7818 0.7818 0.88743294 1.00 8 130 0.4394
2 0.0271 0.2182 1.0000 0.97361623 0.60 3 66  0.6197

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks"' Lambda 0.88743294 1.00 8 130 0.4394
Pillai's Trace 0.11490252 1.01 8 132 0.4349
Hotelling-Lawley Trace 0.12421401 1.00 8 90.563 0.4415
Roy's Greatest Root 0.09711527 1.60 4 66 0.1841

The first part canonical correlation is found to be equal to 0.298 and it confirmed a
weak relationship between mathematics in Level 1 and engineering performance
when the effect of mathematics in Level 2 is eliminated from engineering

performance. Moreover, the amount of variation in the canonical variate of
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engineering performance explained by the first canonical variate of the mathematics
in Level 1 is 8.9%.

According to the values of standardized canonical coefficients and canonical
loadings in Table 6.8, it can be said that CH2033 variable in engineering and
MAZ1023 variable in mathematics are the most related variables. Moreover, canonical
cross-loadings indicate that the observed variables in both predictor and dependent

sets are weakly correlated with their opposite first canonical variate.

Table 6.8: Standardized canonical coefficients and canonical structure —
performance of CH in S3 (2011)

Standardized . .
. . Canonical Canonical Cross
Measurements Variable Canonical . .
.. loadings loadings
Coefficients
Engineering CH2013 0.2586 0.4658 0.1386
CH2023 0.0774 0.4061 0.1208
CH2033 0.8854 0.9344 0.278
ME2122 -0.3956 -0.0525 -0.0156
Mathematics MA1013 -0.3025 0.3489 0.1038
MA1023 1.1413 0.9687 0.2882

The results of the part canonical redundancy analysis for S3 are presented in Table
6.9 and it indicates that amount of variability in mathematics set (4.69%) and
engineering set (2.78%) explained by their opposite canonical variate are not
sufficient. Furthermore, the explainable variability of mathematics and engineering

performance by its first canonical variate are 53% and 31.4% respectively.
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Table 6.9:  Canonical Redundancy Analysis — performance of CH in S3 (2011)

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Vvariables Canonical Vvariables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.3144 0.3144 0.0278 0.0278
2 0.2384 0.5529 0.0063 0.0341

Standardized Variance of the Mathematics Measurements Explained by
Their Own The Opposite
Canonical Variables Canonical Variables

Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.5300 0.5300 0.0469 0.0469
2 0.4700 1.0000 0.0124 0.0593

6.2.1.4. Academic Year 2011/2012 - S4
In this analysis, five engineering variables are in dependent set and three
mathematics variables in both S3 and S4 are in control set while the predictor set is

two mathematics variables in Level 1.

Table 6.10: Results of Part CCA — performance of CH in S4 (2011)

Canonical Correlation Analysis

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.293193 0.168814 0.109248 0.085962
2 0.151964 0.046104 0.116763 0.023093

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.0940 0.0704 0.7991 0.7991  ©.89292999 0.75 10 128 0.6803
2 0.0236 0.2009 1.0000 0.97690690 0.38 4 65 0.8192
Multivariate Statistics and F Approximations
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.89292999 0.75 10 128 0.6803
Pillai's Trace 0.10905514 0.75 10 130 0.6765
Hotelling-Lawley Trace 0.11768546 0.75 10 93.291 0.6799
Roy's Greatest Root 0.09404646 1.22 5 65 0.3087
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The results of part canonical correlation and multivariate statistics are summarized in
Table 6.10. By referring the Wilks’ lambda test statistic, it can be seen that the first
pair of canonical variate is not statistically significant (p=0.680). This implies that at
least the first canonical variate pair does not explain a statistically significant amount

of variability of the predictor and dependent sets.

Table 6.11: Standardized canonical coefficients and canonical structure —
performance of CH in S4 (2011)

Standardized . .
. ., Canonical Canonical Cross
Measurements Variable Canonical Loadinegs Loadinegs
Coefficients g g
ENGINEERING CH2043 0.7068 0.661 0.1938
CH2053 0.5356 0.4831 0.1416
CH2063 0.5287 0.3944 0.1156
CH2073 -0.2661 0.0348 0.0102
CH2083 -0.8819 -0.0848 -0.0249
MATHEMATICS MA1013 0.0305 0.5911 0.1733
MA1023 0.9823 0.9997 0.2931

The part canonical correlation (0.293) in Table 6.10 shows a weak linear relationship
between mathematics in Level 1 and engineering performance in S4 with the effect
of mathematics in Level 2 partialed out of the dependent set of engineering variables.
In addition, first canonical variate of mathematics in Level 1 accounted for 8.6% of

the variance of the first canonical variate of engineering.

Based on the results in Table 6.11, it is clear that, observed variables in both
predictor and dependent sets are weakly correlated with their first canonical variate
as well as with their opposite first canonical variate, when the effect of mathematics

in Level 2 is eliminated from the dependent set of engineering variables.
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Table 6.12: Canonical redundancy analysis — performance of CH in S4 (2011)

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Vvariables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.1668 0.1668 0.0143 0.0143
2 0.2969 0.4637 0.0069 0.0212

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.6744 0.6744 0.0580 0.0580
2 0.3256 1.0000 0.0075 0.0655

Table 6.12 illustrates the part canonical redundancy analysis of student performance
in S4. The redundancy index of engineering found that the amount of variability in
engineering performance in S4 explained by the first canonical variate of
mathematics in Level 1 is 1.4%.

6.2.2. Impact on CE Student Performance

A similar procedure was carried out to find the individual impact of mathematics in
Level 1 on students’ engineering performance of the remaining engineering
disciplines for two semesters in Level 2 separately. As in Section 5.2, the results of
Part CCA are also summarized mainly focusing on the first pair of canonical variate.
Table 6.13 depicts the summary of Part CCA results for each semester (S3 and S4) in

two academic years.

6.2.2.1. Academic Year 2010/2011 - S3
With reference to Wilks’ lambda test statistics of S3 in 2010/2011 academic year (in
Table 6.13), it can be said that the first canonical variate pair is sufficient to explain a

significant amount of variability of the predictor set and dependent set. The part
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canonical correlation reflects that mathematics in Level 1 has a slightly weak impact
on engineering performance in S3 (0.438) with the effect of mathematics in S3
partialed out of engineering variables. It can be seen that the mathematics module in
S1 (MA1013) is weakly correlated with both first canonical variate of mathematics
(0.352) and first canonical variate of engineering (0.154). The canonical redundancy
index of engineering suggests that 7.18% of the total variance of engineering

performance in S3 can be explained by the first canonical variate of mathematics.

6.2.2.2. Academic Year 2010/2011 - S4

The Wilks’ lambda test statistics of S4 in academic year 2010/2011 implies that the
first part canonical variate pair is not sufficient to explain a significant amount of
variability of the predictor set and dependent variable set (p=0.212). The part
canonical correlation confirmed that the mathematics in Level 1 is weakly correlated
with the engineering performance in S4 (0.259) when the effect of mathematics in S3
and S4 is eliminated from engineering performance. The MA1013 mathematics
variable denotes a negative relationship with engineering performance in S4 which
cannot be acceptable. The proportion of variance explained by the first canonical
variate of mathematics is 2.28% of engineering performance in S4.

6.2.2.3. Academic Year 2011/2012 — S3

By referring the Wilks’ lambda test statistic of S3 in academic year 2011/2012, it is
clear that the first pair of canonical variate is not statistically significant (p=0.217).
Furthermore, part canonical correlation indicates that the linear relationship between
students’ mathematics performance and their engineering performance in S3 is
significantly weak (0.292) when the effect of mathematics in S3 is eliminated from
engineering performance. The first canonical variate of mathematics (in Level 1) can
be explained only 2.35% of the total variance of engineering performance in S3 after

adjusted for mathematics in S3 from engineering performance.
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Table 6.13: Results of first pair of part canonical variate — CE student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
canonical 0.438 0.292 0.259 0.146
?gﬁggg:ﬁ”o”ic“ 0.192 0.085 0.067 0.021
Wilks” Lambda 0.761 0.879 0.889 0.97
P-value 0.002 0.217 0.212 0.962
@ ) (€)) @ ) ©)) € 2 ©)) @ ) ©))
CE2012 0212 0495 0217 | CE2012 0389 0579 0.169 | CE2112 -0.536 0.055 0014 | CE2112 0461 0.724 0.106
CE2022 -0.288 0.383 0.168 | CE2022 0.263 0214 0063 | CE2122 0563 0.754 0.95 | CE2122 0392 0518 0.076
E:ggfne;'nncge CE2032 0773 0922 0404 | CE2032 -0.167 0.007 0.002 | CE2132 0.182 0.537 0.139 | CE2132 0.632 0.717 0.105
CE2042 0287 0696 0.305 | CE2042 0433 0745 0.218 | CE2142 0.458 0.686 0.178 | CE2142 -0.382 -0.038 -0.006
CE2052 0.115 0518 0.227 | CE2052 0.035 0.365 0.107 | CE3012 032 0.603 0.56 | CE3012 -0.13 0.032 0.005
CE2062 0.068 0.499 0219 | CE2062 0505 0.76 0.222
Variance extracted 37.37 27.48 33.91 26.18
Redundancy 7.18 2.35 2.28 0.56
_ @ 2 3 @ 2 ©)) 1 (2 ©)) 1) (2 3
F'\)/éf;m:;'gj MAL013 -0.156 0352 0.54 | MAL013 -0.272 0.045 0013 | MAL013 -0.835 -0.32 -0.083 | MA1013 -0.566 -0.26  -0.038
MAL1023 1.065 0991 0434 | MA1023 1.048 0966 0.282 | MA1023 1.078 068 0.176 | MA1023 1.013 0.842 0.123
Variance extracted 55.27 46.74 28.22 38.82
Redundancy 10.61 3.99 1.89 0.83

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




6.2.2.4. Academic Year 2011/2012 - S4

According to the results Part CCA for S3 student performance in academic year
2011/2012 in Table 6.13, Wilks’ lambda test statistics confirmed that at least first
canonical variate pair is not sufficient to explain a significant amount of variability of
both predictor and dependent sets. The part canonical correlation implies that the
impact of mathematics in Level 1 on engineering performance in S4 is significantly
weak when the effect of mathematics in S3 and S4 is removed from engineering

performance (0.146).

6.2.3. Impact on Student Performance in Other Disciplines

As in Section 5.3, the results of Part CCA for student academic performance in other
five disciplines are summarized mainly focusing on the first pair of canonical variate
in each semester for two academic years. The summary results for the five
disciplines: CS, EE, EN, ME and MT are shown in Tables 6.14 to 6.18 respectively.

6.2.3.1. Impact on CS Student Performance

With reference to Table 6.14, the first pair of canonical variate of the four cases are
not statistically significant (p>0.05) which reflect at least the first pair of canonical
variate is inadequate to explain a significant amount of variance in both predictor and
dependent sets. The part canonical correlation exhibits that there is a weak linear
relationship between students’ mathematics performance and their engineering
performance in Level 2, after adjusted for mathematics in Level 2 from engineering
performance for both academic years in S3 and S4 in Level 2 as the first part
canonical correlation between mathematics measurements and engineering
measurements for S3 (2010/2011), S3 (2011/2012), S4 (2010/2011) and S4
(2011/2012) are 0.363, 0.388, 0.350 and 0.377. Moreover, the amount of variance in
engineering performance in Level 2 (S3 and S4) explained by the first part canonical

variate of mathematics is less than 5% for both academic years.
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6.2.3.2. Impact on EE Student Performance

The results of Part CCA for EE student academic performance in each semester for
two academic years are provided in Table 6.15. Based on the Wilks’ lambda test
statistics, it can be said that at least the first canonical variate pair is not sufficient to
explain a significant amount of variability of both predictor and dependent sets for all
four cases. The results of part canonical correlation in all four cases: S3 (2010/2011),
S3 (2011/2012), S4 (2010/2011) and S4 (2011/2012) the students’ mathematics
performance is weakly correlated with their corresponding engineering performance
when the effect of mathematics in Level 2 is removed from engineering performance
for both academic years in S3 and S4 in Level 2. The squared canonical correlation
varied from 15% in S4 (2010/2011) to 8% in S3 (2011/2012).

6.2.3.3. Impact on EN Student Performance

According to the results in Table 6.16 it can be seen that at least the first pair of
canonical variate is inadequate to explain a significant amount of variance in both
predictor and dependent sets for all cases except S4 in 2011/2012 academic year. The
first part canonical correlation between mathematics performance and engineering
performance after adjusted for mathematics in Level 2 from engineering performance
for both academic years in S3 and S4 in Level 2 are 0.300, 0.339, 0.290 and 0.315
respectively for S3 (2010/2011), S3 (2011/2012), S4 (2010/2011) and S4
(2011/2012) and therefore corresponding squared canonical correlation are 9.0%,
11.5%, 8.4% and 9.9%. It can be said that mathematics in Level 1 has a weak impact
on engineering performance in Level 2, when the effect of mathematics in Level 2 is

removed from engineering performance.

6.2.3.4. Impact on ME Student Performance

With respect to Table 6.17, the Wilks’ lambda test statistics confirmed that the first
pair of canonical variates are not statistically significant (p>0.05) for all cases except
the S3 student performance in 2010/2011 academic year. The first part canonical
correlation between mathematics performance and their engineering performance,
when the effect of mathematics in Level 2 is removed from engineering performance
in Level 2 are 0.424 (p=0.026), 0.415 (p=0.167), 0.401 (p=0.067) and 0.284
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(p=0.416) for S3 (2010/2011), S3 (2011/2012), S4 (2010/2011) and S4 (2011/2012)
respectively. It can be concluded that the actual individual effect of mathematics in
Level 1 on engineering performance in Level 2 is slightly weak for all cases except

the S4 student performance in 2011/2012 academic year.

6.2.3.5. Impact on MT Student Performance

The results in Table 6.18 showed that the first pair of canonical variates are not
statistically significant (p>0.05) which reflects first canonical variate is inadequate
to explain a significant amount of variance in both predictor and dependent sets for
all cases except the S3 student performance in 2010/2011 academic year. It can be
seen that student mathematics performance has moderately strong impact on
engineering performance in Level 2, after adjusted for mathematics in Level 2 from
engineering performance. The first part canonical correlation between mathematics
performance and their engineering performance, when the effect of mathematics in
Level 2 is removed from engineering performance in Level 2 are 0.649 (p=0.019),
0.551 (p=0.304), 0.536 (p=0.313) and 0.472 (p=0.483) for S3 (2010/2011), S3
(2011/2012), S4 (2010/2011) and S4 (2011/2012) respectively.
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Table 6.14: Results of first pair of part canonical variate — CS student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.363 0.388 0.350 0.377
Correlation
Squared canonical
correlation 0.132 0.150 0.123 0.142
Wilks’ Lambda 0.860 0.841 0.836 0.845
P-value 0.327 0.217 0.182 0.238
(1) (2 (3) (1) (2 3) (1) (2 (3) (1) 2 3)
CE1822 0.198 0.443 0.161 | CE1822 -0.150 0.137 0.053 | CS3022 0.792 0.880 0.308 | CS3022 0.019 0.403 0.152
Engineering CS2032 0.115 0.480 0.174 | CS2032 0.022 0.547 0.212 | CS3032 0.236 0576 0.202 | CS3032 0.186 0.575 0.217
performance CS2042 0.096 0.456 0.166 | CS2042 0.376 0.734 0.285 | CS3042 0.394 0.654 0.229 | CS3042 0.169 0.521 0.196
CS2062 0.456 0.717 0.261 | CS2062 0.306 0.544 0.211 | CS3242 -0.130 0.269 0.094 | cS3242 0.275 0.453 0.171
EN2022 0.185 0.449 0.163 | EN2022 0.657 0.822 0.319 | EN2062 -0.260 0.153 0.054 | EN2062 0.763 0.881 0.332
ME1822 0.531 0.760 0.276 | ME1822 0.073 0.352 0.136 | ME1802  -0.045 0.338 0.119 | ME1802 0.003 0.305 0.115
Variance 32.12 32.55 29.05 30.62
extracted
Redundancy 4.24 4.9 3.57 4.35
. (1) (2) 3) (1) (2) 3) (1) (2) (3) (1) (2 3
Mathematics
performance MA1013 -0.204 0.219 0.079 | MA1013 -0.061 0.299 0.116 | MA1013 -0.792 -0.394 -0.138| MA1013 -0.150 0.217 0.082
MA1032 1.063 0.982 0.357 | MA1032 1.020 0.998 0.387 | MA1032 1.001 0.687 0.241 | MA1032  1.043 0.990 0.373
Variance 50.64 54.31 3136 51.37
extracted
Redundancy 6.69 8.17 3.85 7.3

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.15: Results of first pair of part canonical variate — EE student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.342 0.284 0.383 0.359
Correlation
Squared canonical 0.117 0.081 0.147 0.129
correlation
Wilks’ Lambda 0.819 0.897 0.816 0.837
P-value 0.576 0.757 0.560 0.162
1) ) 3) 1) 2 3) €Y 2 3) 1) 2 3)
EE2012 0261 0481 0.165 | CE1822 0479 0.722 0.205 | EE2042 -0.106 0.087 0.033 | EE2043 -0.774 -0.373 -0.134
o EE2022 0.190 0580 0.199 | EE2013 0.353 0.653 0.185 | EE2052 0216 0.322 0.123 | EE2053 0.012 -0.002 -0.001
Egr%g:?ne:nncge EE2033 -0.196 -0.067 -0.023| EE2023 -0.029 0.158 0.045 | EE2072 0255 0352 0.135 | EE2063 -0.295 -0.150 -0.054
EN2012 0010 0509 0.174 | EE2033 0.137 0558 0.158 | EE2083 0.112 0.198 0.076 | EE2073 0545 0547  0.196
EN2022 0599 0.863 0.295 | EN2012 0222 0515 0.146 | EE2132 0429 0267 0.102 | EE2083 0.396 0270  0.097
ME2012 0217 0516 0.177 | EN2022 0.061 0426 0121 | EE3072 0.832 0.787 0.301 | ME2842 0576 0.456 0.164
CE1822 0221 0529 0.81 | ME2012 0.339 0.624 0.177 | ME2842 -0.700 -0.083 -0.032
Variance extracted 30.33 30.27 13.88 12.35
Redundancy 3.55 2.44 2.03 1.59
i (1) 2) (3) 1) 2 3) 1) ) (3) (1) 2 (3)
Mathematics
performance MA1013 -0.349 0031 0010 | MA1013 0.111 0407 0.116 | MA1013 -0.208 0.167 0.064 | MA1013 -0.851 -0.589 -0.212
MA1023 1.069 0945 0.324 | MA1023 0.960 0.994 0282 | MA1023 1055 0981 0.376 | MA1023 0.850 0587 0.211
Variance extracted 4473 57.72 49,51 34.59
Redundancy 5.24 4.65 7.25 4.46

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.16: Results of first pair of part canonical variate — EN student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.300 0.339 0.290 0.315
Correlation
Squared canonical 0.090 0.115 0.084 0.099
correlation
Wilks® Lambda 0.865 0.880 0.912 0.842
P-value 0.200 0.312 0.374 0.146
1) @) ®3) @ @) 3 @ ) ®3) @ ) 3
EE2092 -0.036 0.476 0.143 | EE2092 -0.306 0.098 0.033 | EN2072 0.517 0.424 0.123 | EN2072 0.436 0567 0.179
Engineering EN2012 0596 0709 0.212 | EN2012 -0.632 -0.139 -0.047| EN2082 0.753 0.606 0.176 | EN2082 0.569 0.696 0.262
performance EN2022 0398 0573 0172 | EN2022 -0.066 0.115 0.039 | EN2142 -0.793 -0.409 -0.119 | EN2142 0.772 0.841 0.265
EN2052 -0.188 0.265 0.080 | EN2052 0.664 0565 0.191 | EN3022 -0.006 -0.064 -0.019 | EN3022 -0.348 -0.203 -0.064
EN2062 0571 0730 0.219 | EN2062 0.755 0761  0.258
Variance extracted 33.2 18.8 17.96 27.73
Redundancy 2.98 2.16 151 3.86
1) ) 3) 1) ) 3 @ ) 3 ) &) 3
Mathematics
performance MA1013 0.817 0.939 0.281 | MA1013 -0.307 0.055 0.019 | MA1013 0.933 0.988 0.286 | MA1013 0.864 0.941 0.297
MA1023 0.365 0.638 0.191 | MA1023 1.062 0958 0.325 | MA1023 0.163 0.476 0.138 | MA1023 0.360 0.403 0.101
Variance extracted 64.47 45.99 60.14 44.29
Redundancy 5.79 5.29 5.05 4.40

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.17: Results of first pair of part canonical variate — ME student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
Canonical 0.424 0.415 0.401 0.284
Correlation
Squared canonical 0.180 0.173 0.161 0.081
correlation
Wilks® Lambda 0.778 0.810 0.830 0.893
P-value 0.026 0.167 0.067 0.416
1) ) 3 1) ) (3) 1) 2 (3) @) ) (3)
EE2802  0.042 0.327 0.139 | EE2803 -0.270 0.302 0.126 | ME2032 0.742 0.807 0.324 | ME2032 0.646 0.745 0.211
EN2852  0.166 0.387 0.164 | EN2852 0.791 0916 0.381 | ME3072 -0.008 0.285 0.114 | ME2153 0.331 0567 0.161
E”%i”eefing ME2012 -0.168 0.186 0.079 | ME2012 0.059 0.319 0.132 | ME3032 0522 0.630 0.253 | ME3032 0425 0.613 0.174
perrormance
ME2022  0.030 0.405 0.172 | ME2023 0.030 0.530 0.220 | ME3062 -0.409 0.119 0.048 | ME3062 -0.396 -0.019 -0.006
ME2092 0.968 0954 0.404 | ME2092 0.077 0.360 0.150 | ME2142  0.293 0421 0.169 | ME3073 0.145 0.434 0.123
ME2112  0.070 0.252 0.107 | ME2112 0.158 0.421 0.175
ME2602 0.339 0.674 0.280
Variance 23.81 29.61 26.42 28.82
extracted
Redundancy 4.28 5.11 4.26 2.32
. 1) 2 (3) 1) 2 3) 1) 2 (3) 1) 2 (3)
Mathematics
performance MA1013 0.342 0.619 0.263 | MA1013 -0.474 -0.189 -0.079 | MA1013  0.929 0.987 0.396 | MA1013 -0.421 -0.134 -0.038
MA1023 0.833 0.947 0.401 | MA1023 1.023 0.891 0.370 | MA1023  0.173 0482 0.194 | MA1023 1.032 0914 0.260
Variance 63.97 41.43 60.29 427
extracted
Redundancy 115 7.15 9.71 3.44

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.18: Results of first pair of part canonical variate — MT student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
Canonical 0.649 0.551 0.536 0.472
Correlation
Squared canonical 0.421 0.303 0.287 0.223
correlation
Wilks’ Lambda 0.506 0.653 0.632 0.741
P-value 0.019 0.304 0.313 0.483
1) 2 (3) 1) ) 3) €Y 2 (3) 1) ) 3)
EE2802 -0.075 0315 0.204 | EE2803 0248 0.382 0210 | ME2142 0259 0.290 0.156 | ME2832 -0.125 0.223  0.105
o EN2852 -0.548 0214 0.139 | EN2852 -0.164 0.344 0.189 | ME2832 -0.182 0477 0.256 | ME2850 -0.717 0.184  0.087
Egr%g:?ne:nncge ME1822 0.146 0005 0003 | ME1822 -0.739 -0.387 -0.213| ME3062 -0.424 -0.186 -0.100| ME3062 0.097 0295  0.139
ME2012 -0.009 0.163 0.106 | ME2012 0.650 0.636 0.350 | MT2032 0.895 00912 0.489 | MT2032 0254 0554  0.262
MT2042 1.844 0.822 0533 | MT2042 0.688 0437 0240 | MT2072 0266 0789 0.423 | MT2072 -0.186 0.601  0.284
MT2122 -0.766 0.488 0.317 | MT2122 -0.372 0.005 0.003 | MT2142 0.015 0521 0280 | MT2142 1.290 0.854  0.403
MT2152 -0.136 0.266 0.146 | MT2152 -0.149 0.683 0.366
Variance 18.09 15.42 36.27 26.15
extracted
Redundancy 7.62 4.68 10.42 5.83
) 1) 2 (3) (1) ) 3) 1) 2 (3) 1) ) (3)
Mathematics
performance MA1013 -0.954 -0.605 -0.393 | MA1013 -0.882 -0.409 -0.225| MA1013 -1.004 -0.686 -0.368| MA1013 -1.075 -0.709 -0.335
MA1023 0.869 0487 0316 | MA1023 1.028 0622 0.343 | MA1023 0.794 0392 0210 | MA1023 0795 0.300 0.142
Variance 30.15 27.7 31.19 29.62
extracted
Redundancy 12.7 8.41 8.96 6.6

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




6.3.  Individual Impact of Mathematics in Level 2

The Partial Canonical Correlation Analysis (Partial CCA) approach allows to assess
the partial independence of two sets of variables given a third set of variables.
Therefore, Partial CCA was applied to identify the relationship between students’
mathematics performance in Level 2 and their engineering performance in Level 2,
after eliminating the effect of mathematics in Level 1 from both groups, as the
students have already completed mathematics in Level 1 at Level 2. The dependent
set is the engineering modules in each semester in Level 2. The mathematics
modules in Level 2 are the predictor set while mathematics modules in Level 1 are
considered as the control set.

6.3.1. Impact on CH Student Performance

6.3.1.1. Academic Year 2010/2011 — S3

As in Section 6.2.1.1, the dependent variable set contains seven engineering
variables. The predictor set has two mathematics variables (MA2013 and MA2023)
while the control set also contains two mathematics variables (MA1013 and
MAZ1023). The results of Partial CCA and multivariate statistics for 2010 batch in S3
are presented in Table 6.19.

Table 6.19: Results of Partial CCA — performance of CH in S3 (2010)

Canonical Correlation Analysis Based on Partial Correlations

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.671732 0.633658 0.063794 0.451224
2 0.329880 0.246965 0.103597 0.108821

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.8222 0.7001 0.8707 0.8707 0.48905776 4.05 14 132 <.0001
2 0.1221 0.1293 1.0000 0.89117937 1.36 6 67 0.2422

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.48905776 4.05 14 132 <.0001
Pillai's Trace 0.56004473 3.72 14 134 <.0001
Hotelling-Lawley Trace 0.94434602 4.40 14 102.29 <.0001
Roy's Greatest Root 0.82223746 7.87 7 67 <.0001
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The results in Table 6.19 denotes that out of two canonical variate pairs only the first
canonical variate pair is statistically significant (p <0.001) according to Wilks’
lambda test statistic. It implies that the first canonical variate pair is sufficient to
explain a significant amount of variability of the predictor set and dependent variable
set when the effect of mathematics in Level 1 is eliminated from both mathematics

and engineering performance in Level 2.

The first partial canonical correlation found to be equal to 0.671 and squared
canonical correlation indicates that only 45.1% of variation in the first canonical
variate of engineering is explained by the first canonical variate of mathematics in
Level 2 after removing the effect of mathematics in Level 1 from both mathematics

and engineering performance in Level 2.

Table 6.20: Standardized canonical coefficients and canonical structure -—
performance of CH in S3 (2010)

Standardized . Canonical
. . Canonical

Measurements Variable Canonical loadings Cross
Coefficients g loadings

Engineering CH2042 0.2602 0.7514 0.5048
CH2052 0.2582 0.7852 0.5274

EE2802 0.5670 0.8173 0.5490

EN2852 -0.3581 0.2644 0.1776

ME1822 -0.0713 0.3154 0.2119

ME2012 0.3044 0.7143 0.4798

ME2122 0.0705 0.5390 0.3621

Mathematics MA2013 0.5473 0.6875 0.4618
MA2023 0.7396 0.8433 0.5665

Based on the results of standardized canonical coefficients, canonical loadings and
canonical cross loadings for CH performance in S3 in Table 6.20, it can be seen that
both mathematics modules, MA2013 and MA2023 are significantly correlated with
its first canonical variate of mathematics. Moreover, both mathematics modules are

moderately correlated with first canonical variate of engineering.
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Table 6.21: Canonical Redundancy Analysis — performance of CH in S3 (2010)

Canonical Redundancy Analysis Based on Partial Correlations

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Vvariables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.4027 0.4027 0.1817 0.1817
2 0.1055 0.5082 0.0115 0.1932

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables anonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.5919 0.5919 0.2671 0.2671
2 0.4081 1.0000 0.0444 0.3115

With reference to Table 6.21, the results of the part canonical redundancy analysis
exhibits that amount of variability in engineering performance in S4 explained by the
first canonical variate of mathematics is not sufficient (18.17%). Apart from that the
explainable variability of mathematics and engineering performance by its first

canonical variate are 59.2% and 40.3% respectively.

6.3.1.2. Academic Year 2010/2011 - S4

The dependent set comprises five engineering variables (i.e. five engineering
modules in S4) while the predictor set and the control set contain three mathematics
modules in Level 2 (i.e. MA2013 and MA2023 in S3 and MA2033 in S4) and two

mathematics modules in Level 1.

The results of partial canonical correlation and multivariate statistics for student
performance in S4 are summarized in Table 6.22. The Wilks’ lambda test statistic
reflects that only the first canonical variate pair explains a significant amount of
variability of the predictor and dependent sets.
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Table 6.22: Results of Partial CCA — performance of CH in S4 (2010)

Canonical Correlation Analysis Based on Partial Correlations

Adjusted Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.691400 0.659168 0.063298 0.478034
2 0.277193 0.146514 0.111950 0.076836
3 0.189284 0.116923 0.035828
Likelihood Approximate
Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.9158 0.8326 0.8838 0.8838 0.46459549 3.60 15 168.8 <.0001
2 0.0832 0.0461 0.0803 0.9641 ©0.89008848 0.93 8 124 0.4950
3 0.0372 0.0359 1.0000 0.96417153 0.78 3 63 0.5093
Multivariate Statistics and F Approximations
Statistic Value F Value Num DF Den DF Pr > F
Wilks"' Lambda 0.46459549 3.60 15 168.8 <.0001
Pillai's Trace 0.59069892 3.09 15 189 0.0002
Hotelling-Lawley Trace 1.03622633 4.15 15 110.09 <.0001
Roy's Greatest Root 0.91583537 11.54 5 63 <.0001

Partial canonical correlation of 0.691 confirmed that the mathematics in S3 and S4 in

Level 2 has a significant impact on engineering performance in S4 when the effect of

mathematics in Level 1 is removed from both engineering performance in S4 as well

as mathematics performance in S3 and S4. Moreover, the first canonical variate of

mathematics accounted for 47.8% of the variance in the first canonical variate of

engineering performance.

Table 6.23: Standardized canonical coefficients and canonical structure —
performance of CH in S4 (2010)

Standardized Canonical Canonical
Measurements Variable Canonical loadings Cross
Coefficients g loadings
Engineering CH2043 0.2284 0.7381 0.5103
CH2053 0.1040 0.8277 0.5723
CH2063 -0.0324 0.8233 0.5692
CH2073 0.3377 0.8957 0.6193
CH2083 0.4946 0.9495 0.6565
Mathematics MA2013 0.1737 0.7522 0.5201
MA2023 0.2271 0.6725 0.4650
MA2033 0.7474 0.9589 0.6630
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By referring Table 6.23, the standardized canonical coefficients denote that out of
coefficients related to engineering only one engineering variable (CH2063) are close
to zero. Besides that, the mathematics module in S4 (MA2033) has a significantly
strong correlation with first canonical variate of mathematics (0.959). Furthermore,
all mathematics modules in Level 2 are moderately correlated with first canonical
variate of engineering when the effect of mathematics in Level 1 partialed out of the
both engineering performance in S4 and mathematics performance in Level 2 (S3
and S4).

Table 6.24: Canonical redundancy analysis — performance of CH in S4 (2010)

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.7223 0.7223 0.3453 0.3453
2 0.0642 0.7865 0.0049 0.3502
3 0.0586 0.8451 0.0021 0.3523

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 0.6458 0.6458 0.3087 0.3087
2 0.1612 0.8070 0.0124 0.3211
3 0.1930 1.0000 0.0069 0.3280

According to the results of Table 6.24, the redundancy index of engineering found
that the amount of variability in engineering performance in S4 explained by the first
canonical variate of mathematics in Level 2 is 34.53%. It can be said that the
mathematics in Level 2 has sufficient real effect to explain the engineering

performance in S4.
6.3.1.3. Academic Year 2011/2012 — S3

The analysis comprises two mathematics variables in S3 as the predictor set, four

engineering variables in S3 as the dependent set and two mathematics variables in
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both S1 and S2 (in Level 1) as the control set, which eliminates its influence from
both predictor and dependent sets. Table 6.25 presents the results of partial canonical

correlation and multivariate statistics for student academic performance in S3.

Table 6.25: Results of Partial CCA — performance of CH in S3 (2011)

Canonical Correlation Analysis Based on Partial Correlations

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.662320 0.639266 0.068072 0.438667
2 0.219113 0.161161 0.115446 0.048010

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.7815 0.7310 0.9394 0.9394 0.53438299 5.80 8 126 <.0001
2 0.0504 0.0606 1.0000 0.95198955 1.08 3 64 0.3657

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks"' Lambda 0.53438299 5.80 8 126 <.0001
Pillai's Trace 0.48667762 5.15 8 128 <.0001
Hotelling-Lawley Trace 0.83190598 6.49 8 87.707 <.0001
Roy's Greatest Root 0.78147428 12.50 4 64 <.0001

It is clear that out of two canonical variate pairs only the first canonical variate pair is
statistically significant (p <0.001). It suggests that the first canonical variate pair is
sufficient to explain a significant amount of variability of the predictor set and
dependent variable set. The four multivariate statistics confirmed that the canonical
correlations are significantly different from zero (p<0.001) which indicates that there

is a linear relationship between the mathematics and engineering performance.

As the effect of mathematics in Level 1 is statistically controlled by partial canonical
correlation, the results confirmed that the mathematics in S3 has a moderately strong
relationship with the engineering performance in S3 (0.662). The squared canonical
correlation indicates that 43.8% of variation in the first canonical variate of
engineering is explained by the first canonical variate of mathematics in S3. It can be
said that even after adjusting for mathematics in Level 1, there is a significant effect

of mathematics in S3 on engineering performance in S3.
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The results of standardized canonical coefficients, canonical loadings and canonical
cross loadings for CH performance in S3 are summarized in Table 6.26.

Table 6.26: Standardized canonical coefficients and canonical structure —
performance of CH in S3 (2011)

Standardized . .

. . Canonical Canonical Cross
Measurements Variable Canonical ., .
A loadings loadings
Coefficients

Engineering CH2013 0.6019 0.9254 0.6129
CH2023 0.1548 0.7346 0.4866
CH2033 0.4219 0.8448 0.5595
ME2122 -0.0510 0.5303 0.3512
Mathematics MA2013 0.6801 0.9276 0.6143
MA2023 0.4482 0.8237 0.5456

The results of canonical coefficients denote that ME2122 engineering variable (-
0.051) is close to zero which implies ME2122 is weakly important to first canonical
variate of engineering. Canonical loadings reflect that both MA2013 and MA2023
mathematics variables are significantly correlated with both first canonical variate of
mathematics and engineering performance. Considering the canonical cross-loadings,
ME2122 variable is weakly related with the first canonical variate of mathematics
(0.351). Therefore, it is clear that ME2122 engineering variable has the least
association with mathematics in S3 as revealed by the standardized canonical

coefficients and canonical loadings.

Table 6.27 provides the results of partial canonical redundancy analysis for S3. The
redundancy measure of engineering reflects that the first canonical variate of
mathematics performance accounted for 26.2% of the total variance of student
engineering performance in S3. The explainable variability of performance in
mathematics by its first canonical variate is 76.9%, while the proportion of variance
in student engineering performance explained by its first canonical variate is 59.7%.

These redundancy coefficients denote that the variability of mathematics
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performance in S3 explained by its first canonical variate is higher compared with
the variability of student engineering performance in S3 explained by its first

canonical variate.

Table 6.27: Canonical redundancy analysis — performance of CH in S3 (2011)

Canonical Redundancy Analysis

Variance of the ENG Variables Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 59.7470 59.7470 26.1759 26.1759
2 13.9709 73.7179 .6677 26.8436
Variance of the MAT Variables Explained by
Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Cumulative
Number Proportion Proportion Proportion Proportion
1 76.9339 76.9339 33.7057 33.7057
2 23.0661 100.0000 1.1023 34.8080

6.3.1.4. Academic Year 2011/2012 — S4

The set of dependent variables is the engineering modules in S4 and it consists of
five engineering variables. The set of predictor variables is the three mathematics
variables in both S3 and S4 (in Level 2) and the control set is the two mathematics
variables in Level 1. The results of partial canonical correlation and multivariate
statistics with the effect of mathematics in Level 1 partialed out of both predictor and

dependent sets are shown in Table 6.28.
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Table 6.28: Results of Partial CCA — performance of CH in S4 (2011)

Canonical Correlation Analysis Based on Partial Correlations

Adjusted Approximate Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.691400 0.659168 0.063298 0.478034
2 0.277193 0.146514 0.111950 0.076836
3 0.189284 . 0.116923 0.035828

Likelihood Approximate

Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 0.9158 0.8326 0.8838 0.8838 0.46459549 3.60 15 168.8 <.0001
2 0.0832 0.0461 0.0803 0.9641 0.89008848 0.93 8 124 0.4950
3 0.0372 0.0359 1.0000 0.96417153 0.78 3 63 0.5093

Multivariate Statistics and F Approximations

Statistic Value F Value Num DF Den DF Pr > F
Wilks"' Lambda 0.46459549 3.60 15 168.8 <.0001
Pillai's Trace 0.59069892 3.09 15 189 0.0002
Hotelling-Lawley Trace 1.03622633 4.15 15 110.09 <.0001
Roy's Greatest Root 0.91583537 11.54 5 63 <.0001

These results show that only the first of three canonical variate pairs is statistically
significant (p<0.001) which implies that a significant amount of variability of
predictor and dependent sets can be explained by the first canonical variate pair. In
other words, the second and third canonical variant pairs cannot be relied upon to
describe the data. Furthermore, multivariate statistics revealed that the canonical
correlation is not zero (p<0.001) which indicates that there is a linear relationship
between the mathematics in both S3 and S4 with engineering performance in S4 after
eliminating the influence of mathematics in Level 1 from both sets.

According to Table 6.28, the first partial canonical correlation of 0.691 denotes that
the students’ mathematics performance in both S3 and S4 has a moderately strong
linear relationship with their engineering performance in S4. Moreover, the first
canonical variate of mathematics accounted for 47.8% of the variance in the first
canonical variate of engineering performance. It is clear that, there is a significant
influence of mathematics in both S3 and S4 on students’ engineering performance in

S4 even after the effect of mathematics in Level 1 is removed from both sets.
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Table 6.29: Standardized canonical coefficients and canonical
performance of CH in S4 (2011)

structure

Standardized

Measurements Variable Canonical
Coefficients

Engineering CH2043 0.2284
CH2053 0.1040

CH2063 -0.0324

CH2073 0.3377

CH2083 0.4946

Mathematics MA2013 0.1737
MA2023 0.2271

MA2033 0.7474

Canonical
loadings

Q.
.8277
.8233
.8957
.9495

0
0
0
0

o ©

7381

.7522
.6725
.9589

Canonical Cross
loadings

0.
.5723
.5692
.6193
.6565

[OREOEE IR

® ©

5103

.5201
.4650
.6630

With reference to standardized canonical coefficients in Table 6.29, the CH2063

engineering variable is close to zero. Besides that, canonical coefficient of MA2033

mathematics variable implies that mathematics variable in S4 is the most important,

influential predictor of engineering performance in S4. Based on the canonical

loadings it can be said that both mathematics and engineering variables are equally

and strongly related with their first canonical variate (>0.65), though the effect of

mathematics in Level 1 is removed from both groups. The values of canonical cross-

loadings vary from 0.46 to 0.66 and it denotes that all mathematics and engineering

variables have a moderately strong linear relationship with the opposite first

canonical variate.

Table 6.30: Canonical redundancy analysis — performance of CH in S4 (2011)

Canonical Redundancy Analysis
Variance of the ENG Variables Explained by
The Opposite
Canonical Variables

Proportion
34.5008
.4947
.2107

Variance of the MAT Variables Explained by
The Opposite
Canonical Variables

Their Own
Canonical Variables
Canonical
Variable Cumulative
Number Proportion Proportion
1 72.2146 72.2146
2 6.4289 78.6436
3 5.8455 84.4891
Their Own
Canonical Variables
Canonical
Variable Cumulative
Number Proportion Proportion
1 64.5792 64.5792
2 16.1275 80.7069
3 19.2933 100.0000

Proportion
30.8529
1.2410
.6954

Cumulative
Proportion
34.5008
34.9955
35.2062

Cumulative
Proportion
30.8529
32.0939
32.7894
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According to the results of redundancy indices in Table 6.30, the proportion of
variance in engineering performance in S4 explained by the first canonical variate of
mathematics in both S3 and S4 is 34.5% and it can be concluded that a considerable
amount of variability in student engineering performance in S4 can be explained by
the mathematics performance in Level 2 (both S3 and S4) after adjusted for
mathematics in Level 1 from both sets. Furthermore, the variability of engineering
performance as well as the variability of mathematics performance explained by its

first canonical variate is 72.2% and 64.6% respectively.

6.3.2. Impact on CE Student Performance

As in Section 6.3.2, the analysis was continued to find the individual impact of
mathematics in Level 2 on students’ engineering performance of the remaining
engineering disciplines for two semesters, S3 and S4 in Level 2 separately. The
results of Partial CCA are also summarized mainly focusing on the first pair of

canonical variate.

Table 6.31 depicts the summary of Partial CCA results for each semester (S3 and S4)
in two academic years. With reference to Wilks’ lambda test statistics of S3 in
2010/2011 academic year (in Table 6.31), it can be seen that the first pair of
canonical variate is sufficient to explain a significant amount of variance of both

predictor and dependent sets for all cases except S3 in 2010/2011 academic year.

6.3.2.1. Academic Year 2010/2011 — S3

The partial canonical correlation reflects that mathematics in S3 has a weak impact
on engineering performance in S3 (0.280) with the effect of mathematics in Level 1
partialed out of both engineering and mathematics variables. It can be seen that
MA2023 mathematics module is close to zero. The canonical redundancy index of
engineering suggests that 1.43% of the total variance of engineering performance in
S3 can be explained by the first canonical variate of mathematics when the effect of
mathematics in Level 1 is removed from both engineering and mathematics

performance in S3.
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6.3.2.2. Academic Year 2010/2011 - S4

The partial canonical correlation confirmed that the mathematics in S3 and S4 is
moderately correlated with the engineering performance in S4 (0.686) when the
effect of mathematics in Level 1 is eliminated from both engineering and
mathematics performance. The MA2033 mathematics variable is the most important,
influential predictor of engineering performance in S4. The proportion of variance
explained by the first canonical variate of mathematics is 23.6% of engineering

performance in S4.

6.3.2.3. Academic Year 2011/2012 — S3

The partial canonical correlation indicates that the linear relationship between
students’ mathematics performance and their engineering performance in S3 is
slightly weak (0.448) when the effect of mathematics in Level 1 is eliminated from
both engineering and mathematics performance in S3. The first canonical variate of
mathematics in S3 can be explained only 5.26% of the total variance of engineering
performance in S3 after adjusted for mathematics in Level 1 from both engineering

and mathematics performance in S3.

6.3.2.4. Academic Year 2011/2012 — S4

The partial canonical correlation for S4 in academic year 2011/2012 in Table 6.31
shows that the impact of mathematics in Level S3 and S4 (in Level 2) on engineering
performance in S4 is moderately strong when the effect of mathematics in Level 1 is
removed from both engineering and mathematics performance (0.679). Furthermore,
the proportion of variance explained by the first canonical variate of mathematics is

23.6% of engineering performance in S4.
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Table 6.31: Results of first pair of partial canonical variate — CE student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
gzrr‘roe’l‘:tzﬁ)'n 0.280 0.448 0.686 0.679
?gﬁg::g;ﬁ”omca' 0.079 0.200 0.471 0.461
Wilks’ Lambda 0.901 0.765 0.451 0.486
P-value 0.494 0.0016 <.0001 <.0001
@ 2 ®3) 1 2 @) 1) 2 ®3) 1) ) ®3)
CE2012 0.236 0.369 0.104 | CE2012 0,747 0.908 0.406 | CE2112 0.635 0912 0.626 | CE2112 0430 0797 0541
o CE2022 0340 0.140 0.039 | CE2022 0087 0.010 0.005 | CE2122  -0.064 0530 0.364 | CE2122 (0213 0.706  0.480
Egﬂg’}fﬁg'nncge CE2032 1054 0859 0.241 | CE2032 0001 -0.025 -0.011 | CE2132  0.105 0.698 0479 | CE2132 0212 0707  0.480
CE2042 0229 0399 0112 | CE2042 0253 0552 0.247 | CE2142  -0.117 0.419 0.288 | CE2142 0147 0611 0415
CE2052 0160 0.192 0.054 | CE2052 0305 0.577 0.258 | CE3012 0.504 0.853 0586 | CE3012 (0361 0742  0.504
CE2062 0388 0.012 0.004 | CE2062 0,009 0.335 0.150
Variance extracted 18.16 26.23 50.08 51.13
Redundancy 1.43 5.26 23.60 23.59
() 2 ®3) 1 2 @) 1) 2 ®3) 1) ) ®3)
_ MA2013 1,001 1.000 0.280 | MA2013 (0418 0.762 0.341 | MA2013 0.029 0.206 0.142 | MA2013 (155 0516  0.350
F“,ﬂf:gfﬂ:;f: MA2023 0,008 0.153 0.043 | MA2023 0734 0.929 0416 | MA2023 0.337 0.356 0.244 | MA2023 0300 0.579  0.393
MA2033 0739 0.862 0592 | MA2033 (0330 0.654  0.444
MA3013 0.399 0595 0.408 | MA3013 (0643 0.825  0.560
Variance extracted 51.16 72.19 31.65 42.75
Redundancy 4.02 14.46 14.91 19.72

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




6.3.3. Impact on Student Performance in Other Disciplines

6.3.3.1. Impact on CS Student Performance

The results of Partial CCA for CS student performance in each semester for two
academic years are summarized in Table 6.32. It can be seen that the first pair of
canonical variate of the four cases are statistically significant (p<0.05) which reflect
the first pair of canonical variate is sufficient to explain a significant amount of
variance in both predictor and dependent sets. The partial canonical correlation
exhibits that there is a significant linear relationship between students’ mathematics
performance and their engineering performance in Level 2, after adjusted for
mathematics in Level 1 from both engineering and mathematics performance in
Level 2. The percentages of variability of engineering performance explained by the
linear function of mathematics for the four cases are 35.7%, 39.6%, 36.6% and
56.1% respectively for S3 (2010/2011), S3 (2011/2012), S4 (2010/2011) and S4
(2011/2012). Based on standardized coefficients, it can be concluded that all the
mathematics modules have positive impact on engineering performance in Level 2.
The redundancy measure of engineering indicates that the first canonical variate of
mathematics accounted for 13.8% of the total variance of engineering performance in
S3 after adjusted for mathematics in Level 1. The corresponding percentages for
other three cases are 16.3%, 16.7% and 25.9% respectively for S3 (2011/2012), S4
(2010/2011) and S4 (2011/2012).

6.3.3.2. Impact on EE Student Performance

With reference to the results of Partial CCA for EE student performance in Table
6.33, it is clear that the first canonical variate pair is sufficient to explain a significant
amount of variability of both predictor and dependent sets for all four cases. It is
clear that mathematics in Level 2 has significant impact on engineering performance
in Level 2, when the effect of mathematics in Level 1 is removed from both
engineering and mathematics performance. The squared canonical correlation varied
from 30% in S3 (2011/2012) to 60% in S4 (2010/2011). The canonical redundancy
measure of engineering indicates that the first canonical variate of mathematics can
be explained 12.7%, 9.4%, 26.2% and 12.7% respectively of the total variance of
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engineering performance in S3 (2010/2011), S3 (2011/2012), S4 (2010/2011) and S4
(2011/2012).

6.3.3.3. Impact on EN Student Performance

Table 6.34 depicts the results of Partial CCA for EN student performance in each
semester for two academic years. It can be seen that at least the first pair of canonical
variate is sufficient to explain a significant amount of variance in both predictor and
dependent sets for all cases. The partial canonical correlation indicates that even after
adjusting for mathematics in Level 1, there is a significant effect of mathematics in
Level 2 on engineering performance in Level 2. The first partial canonical
correlations between mathematics performance and engineering performance are
0.657, 0.739, 0.654 and 0.559 respectively for S3 (2010/2011), S3 (2011/2012), S4
(2010/2011) and S4 (2011/2012) and the corresponding squared canonical
correlation are 43.2%, 54.7%, 42.8% and 31.2%. The standardized coefficients
showed that all mathematics modules have positive impact on engineering
performance in Level 2. The canonical redundancy index of engineering suggests
that almost 21% of the total variance of engineering performance in S3 irrespective
of academic year (2010/2011 or 2011/2012) can be explained by the first canonical
variate of mathematics. The corresponding percentage for S4 is 23% in 2010/2011
and 13% in 2011/2012.

6.3.3.4. Impact on ME Student Performance

The results of Partial CCA for ME student performance in each semester for two
academic years are presented in Table 6.35. According to the Wilks’ lambda test
statistics, first pair of canonical variates are statistically significant (p<0.05) for all
cases. The first partial canonical correlation showed that in all four cases: S3
(2010/2011), S3 (2011/2012), S4 (2010/2011) and S4 (2011/2012) the students’
mathematics performance is significantly correlated with their corresponding
engineering performance, when the effect of mathematics in Level 1 is removed from
both engineering and mathematics performance. The squared canonical correlation
varied from 24% in S3 (2010/2011) to 47% in S3 (2011/2012). In all cases the

standardized coefficients of mathematics measurements are all positive with
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exceptional for MA2013 in S4 for both academic years. The canonical redundancy
measure of engineering indicates that the first canonical variate of mathematics can
be explained 7.5%, 11.5%, 16.8% and 15.3% respectively of the total variance of
engineering performance in S3 (2010/2011), S3 (2011/2012), S4 (2010/2011) and S4
(2011/2012) after adjusted for mathematics in Level 1 from both engineering and

mathematics performance.

6.3.3.5. Impact on MT Student Performance

According to the results in Table 6.36, it is clear that first pair of canonical variates
are statistically significant (p<0.05) which reflects first canonical variate is sufficient
to explain a significant amount of variance in both predictor and dependent sets for
S4 student performance in both academic years only. The first partial canonical
correlation indicates that mathematics in S3 and S4 has significantly strong impact
on engineering performance in S4 even after adjusting for mathematics in Level 1.
However, the corresponding values for S3 student performance in both academic
years are 0.554 (p=0.110) and 0.626 (p=0.095) respectively for 2010/2011 and
2011/2012 academic years. The redundancy measure of engineering indicates that
the first canonical variate of mathematics performance accounted for less than 7% of
the total variance of engineering performance for all cases except S4 (2010/2011)
when the effect of mathematics in Level 1 is eliminated from both engineering and

mathematics performance.
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Table 6.32: Results of first pair of partial canonical variate — CS student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.597 0.629 0.605 0.749
Correlation
Squared canonical 0.357 0.396 0.366 0.561
correlation
Wilks’ Lambda 0.596 0.540 0.544 0.394
P-value <.0001 <.0001 0.0005 <.0001
(1) 2 (3) (1) 2 3) (1) (2 3) 1) (2) (3)
CE1822 0.249 0.583 0.348 | CE1822 0.331 0.717 0.451 | CS3022 0.324 0.791 0.478 | CS3022 -0.0001 0.591  0.443
Engineering CS2032 0.013 0.602 0.359 | CS2032 0.519 0.843 0.530 | CS3032 0.067 0.611 0.370 | CS3032 0.440 0.847 0.634
performance CS2042  0.474 0.781 0.466 | CS2042 -0.141 0.339 0.213 | CS3042 0.385 0.733 0.443 | CS3042 0.072 0589 0.441
CS2062 0.227 0.582 0.347 | CS2062 0.310 0.775 0.488 | CS3242 -0.143 0.338 0.204 | CS3242 0.034 0.418 0.313
EN2022 0.441 0.728 0.435 | EN2022 0.224 0.559 0.352 | EN2062 0.362 0.760 0.460 | EN2062 0.505 0.864 0.647
ME1822 0.065 0.375 0.224 | ME1822 0.016 0.464 0.292 | ME1802 0.270 0.717 0.434 | ME1802 0.204 0.660 0.494
Variance extracted 38.68 41.12 45.73 46.17
Redundancy 13.80 16.29 16.72 25.91
(1) (2 3 1) (2) 3) (1) (2) 3 1) (2) (3)
Mathematics MA2023 0.425 0.554 0.331 | MA2053 0.592 0.874 0.550 | MA2023 0.087 0.117 0.071 | MA2053 0.3259 0.718 0.538
performance MA2042 0.842 0.907 0.542 | MA2073 0.562 0.859 0.541 | MA2042 0.363 0.464 0.281 | MA2073 0.0323 0.544  0.407
MA2013 0566 0.787 0.476 | MA2033 0.4122 0.826  0.619
MA2033 0.537 0.738 0.446 | MA2063 0.4717 0.865 0.648
Variance extracted 56.53 75.07 34.83 56.03
Redundancy 20.17 29.73 12.73 31.44

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.33: Results of first pair of partial canonical variate — EE student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
Canonical 0.607 0.544 0.774 0.646
Correlation
Squared canonical
correlation 0.369 0.296 0.599 0.418
Wilks’ Lambda 0.542 0.659 0.305 0.462
P-value 0.0008 0.0005 <.0001 <.0001
(1) 2 (3) (1) (2 (3) (1) 2 (3) 1) (2) 3)
EE2012 0.512 0.784 0.476 | CE1822 -0.046 0.175 0.095 | EE2042 0.410 0.727 0.563 | EE2043  -0.319 0.212 0.137
Engi . EE2022 0.195 0.670 0.407 | EE2013 0.065 0.526 0.286 | EE2052 0.232 0.525 0.406 | EE2053 0.158 0.214 0.138
p:gg‘rﬁ]e;'nnci EE2033 0311 0561 0.341 | EE2023  0.468 0727 0.396 | EE2072  0.062 0.669 0518 | EE2063 0202 0507 0.328
EN2012 0.120 0.682 0.414 | EE2033 0.370 0.631 0.344 | EE2083 0.345 0.762 0.590 | EE2073 0.424 0.722 0.467
EN2022 0.079 0.424 0.258 | EN2012 0.030 0.388 0.211 | EE2132 0.165 0.688 0.532 | EE2083 0.585 0.804 0.519
ME2012 0.310 0.618 0.375 | EN2022 0.096 0.535 0.291 | EE3072 0.060 0.483 0.374 | ME2842 0.280 0.557 0.360
CE1822 -0.153 0.092 0.056 | ME2012 0.449 0.750 0.408 | ME2842 0.184 0.726 0.562
Variance extracted 34.49 31.91 43.78 30.4
Redundancy 12.71 9.45 26.23 12.7
(1) (2 (3) (1) (2 (3) (1) (2 (3) 1) (2 3)
Mathematics MA2013 0.762 0.914 0.555 | MA2013 0.224 0.532 0.290 | MA2013 0.253 0.501 0.388 | MA2013 0.061 0.383 0.247
performance MA2023 0.433 0.700 0.425 | MA2023 0.901 0.978 0.532 | MA2023 -0.064 0.373 0.289 | MA2023 0.454 0.656 0.424
MA2033 0.803 0.936 0.725 | MA2033 0.443 0.712 0.460
MA2042 0.228 0.639 0.494 | MA2053 0.528 0.688 0.445
Variance extracted 66.26 61.93 41.87 38.94
Redundancy 24.43 18.34 25.09 16.26

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.34: Results of first pair of partial canonical variate — EN student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.657 0.739 0.654 0.559
Correlation
Squared canonical 0.432 0.547 0.428 0.312
correlation
Wilks’ Lambda 0.544 0.424 0.483 0.660
P-value <.0001 <.0001 <.0001 0.0002
1) 2 3) 1) 2 3) €Y ) (3) 1) 2 3)
EE2092 0362 0.843 0554 | EE2092 0582 0.830 0.614 | EN2072 0459 0.793 0519 | EN2072 0714 0.805  0.429
Engineering EN2012 0526 0.865 0568 | EN2012  0.378 0.627 0.464 | EN2082 0493 0.809 0529 | EN2082 0725 0.875  0.488
performance EN2022  0.165 0.606 0.398 | EN2022  0.290 0.638 0.472 | EN2142 0287 0.778 0509 | EN2142 0245 0457  0.255
EN2052 -0.071 0496 0.326 | EN2052 -0.360 0.342 0.253 | EN3022 0.039 0.367 0.240 | EN3022 -0.214 -0.025 -0.014
EN2062 0277 0.633 0.416 | EN2062 0296 0.736 0.544
Variance extracted 49.44 42.96 50.55 33.55
Redundancy 21.35 23.49 21.65 12.67
1) 2 (3) 1) 2 3) 1) ) (3) 1) 2 (3)
Mathematics MA2013  0.636 0.849 0.558 | MA2013 0468 0.783 0579 | MA2013 0.287 0.587 0.384 | MA2013 0116 0518 0.289
performance MA2023 0570 0.807 0.531 | MA2023 0697 0909 0.672 | MA2023 0351 0.745 0.488 | MA2023 0623 0.866 0.484
MA2033 0.553 0.787 0.515 | MA2033 0518 0773  0.432
MA2042 0220 0.613 0.401
Variance extracted 68.62 71.94 47.39 53.85
Redundancy 29.64 39.34 20.30 16.81

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.35: Results of first pair of partial canonical variate — ME student performance

Semester 3 Semester 4
Academic Year 2010/2011 Academic Year 2011/2012 Academic Year 2010/2011 Academic Year 2011/2012
Canonical 0.491 0.684 0.675 0.592
Correlation
Squared canonical
correlation 0.242 0.467 0.455 0.350
Wilks’ Lambda 0.693 0.503 0.500 0.533
P-value 0.0009 <.0001 <.0001 <.0001
ey (2 ©)) @ (2 3 @ (2 3 @ (2 3
EE2802 0.306 0571 0.281 | EE2803 0473 0.680 0.465 | ME2032 0.345 0.636 0.429 | ME2032 0.130 0.611 0.362
Engi . EN2852 0.006 0.297 0.146 | EN2852 -0.113  0.091 0.062 | ME3072 0.207 0.582 0.393 | ME2153 0590 0.870 0.515
pgggﬁfne;'nncge ME2012 0.477 0696 0342 | ME2012  0.404 0664 0454 | ME3032 0668 0.862 0582 | ME3032 0240 0529 0.313
ME2022 -0.149 0.369 0.181 | ME2023 0.053 0.246 0.168 | ME3062 -0.330 0.215 0.145 | ME3062 0.275 0.613 0.363
ME2092 0.297 0.605 0.297 | ME2092 0.071 0.331 0.226 | ME2142 0.276 0564 0.381 | ME3073 0.179 0.628 0.372
ME2112 0.535 0.686 0.337 | ME2112 0.598 0.776 0.531
ME2602 -0.436 0.185 0.126
Variance extracted 31.19 24.55 37.02 43.62
Redundancy 7.53 11.47 16.84 15.29
(1) (2 (3) (1) 2 3) 1) (2 3) 1) (2 (3)
Mathematics MA2013 0500 0.732 0.360 | MA2013 0.512 0.835 0.571 | MA2013 -0.112 0.136 0.092 | MA2013 -0.163 0.369 0.218
performance MA2023 0.720 0.881 0.433 | MA2023 0.638 0.897 0.613 | MA2023 0.237 0.490 0.331 | MA2023 0.833 0.728 0.431
MA2033 0.396 0.735 0.496 | MA2033 0.048 0.330 0.195
MA2042 0.680 0.895 0.604 | MA2053 0.692 0.633 0.375
Variance extracted 65.55 75.11 40.01 29.38
Redundancy 15.83 35.11 18.2 10.3

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




Table 6.36: Results of first pair of partial canonical variate — MT student performance

Semester 3

Semester 4

Academic Year 2010/2011

Academic Year 2011/2012

Academic Year 2010/2011

Academic Year 2011/2012

Canonical 0.554 0.626 0.775 0.706
Correlation
Squared canonical 0.307 0.392 0.601 0.498
correlation
Wilks’ Lambda 0.580 0.552 0.210 0.198
P-value 0.110 0.095 0.007 0.0002
1) ) (3) 1) ) 3) 1) 2 3) 1) 2 (3)
EE2802 0250 0.448 0.248 | EE2803 0.169 0410 0257 | ME2142 0127 0.687 0.533 | ME2832 -0.237 -0.067 -0.047
Endineert EN2852 -0.844 -0.036 -0.020| EN2852  0.294 0.107 0.067 | ME2832 0560 0.719 0557 | ME2850  0.035 0.123  0.087
p:r%g;?ne;lnnc% ME1822 0343 0328 0.182 | ME1822 0075 0249 0.156 | ME3062 0538 0.717 0556 | ME3062 -0.275 -0.096 -0.068
ME2012 0435 0.667 0.370 | ME2012 0458 0631 0.395 | MT2032 -0.370 0.450 0.349 | MT2032 0712 0599 0.423
MT2042 1.177 0.610 0.338 | MT2042 -1.190 -0.232 -0.145| MT2072 -0.188 0.381 0.296 | MT2072 0.888 0.666 0.470
MT2122 -0.555 0.474 0263 | MT2122 -0.199 -0.087 -0.055| MT2142 -0.046 0.427 0331 | MT2142 -0.827 0.078 0.055
MT2152 0924 0.324 0203 | MT2152 0.621 0615 0.477
Variance extracted 225 11.51 34.46 13.94
Redundancy 6.92 4.52 20.72 6.94
1) 2) (3) (1) ) 3) 1) ) (3) (1) 2 (3)
Mathematics MA2013 0.884 0967 0536 | MA2013 0.327 0780 0.488 | MA2013 -0.085 0.168 0.131 | MA2013 0.099 -0.178 -0.126
performance MA2023 0268 0543 0301 | MA2023 0773 0964 0.604 | MA2023 0192 0573 0.444 | MA2023 -0.378 -0.539 -0.380
MA2033 0.634 0.894 0.693 | MA2033 -0.631 -0.705 -0.498
MA3013 0477 0708 0.549 | MA3013 0674 0547 0.386
Variance extracted 61.51 76.9 41.41 27.96
Redundancy 18.91 30.18 24.9 13.92

(1) — Standardized canonical coefficients, (2) — Canonical loadings and (3) Canonical cross-loadings




6.4. Comparison of Joint Impact and Individual Impact of Mathematics

In order to identify the level of joint impact as well as individual impact of
mathematics, a comparison is done between the results of unadjusted CCA in chapter
5 and adjusted CCA; Part CCA (in Section 6.1) and Partial CCA (in Section 6.2) for
engineering academic performance in Level 2 (S3 and S4) by engineering
disciplines.

It can be seen that the level of adjusted canonical correlations; partial canonical
correlations and part canonical correlations are reduced due to the relevant
adjustments compared to unadjusted canonical correlations. This implies that the
joint effect of mathematics in Level 1 and Level 2 on engineering performance in
Level 2 is significantly higher compared to the individual effects of mathematics in

Level 1 and Level 2 irrespective of the engineering disciplines.

By comparing the individual effect of mathematics in Level 1 (in Section 6.1) and
Level 2 (in Section 6.2), it is clear that the individual effect of mathematics in Level
2 is significantly higher than the individual effect of mathematics in Level 1 on the
students’ engineering performance in Level 2. Although, redundancy indices of
Partial CCA are reduced compared to redundancy indices of unadjusted CCA (in
chapter 5), the individual effect of mathematics in Level 2 on engineering
performance is significant, even after adjusting for mathematics in Level 1.
However, the individual effect of mathematics in Level 1 on engineering
performance in Level 2 is not sufficient after eliminating the effect of mathematics in
Level 2. Though the individual effect of mathematics in Level 1 is not significant, it
can be a sufficient indirect effect of mathematics in Level 1 on engineering

performance in Level 2.

6.5. Chapter Summary

As there is a significant difference in level of impact of mathematics on engineering
performance among engineering disciplines, individual impact of mathematics in
both Level 1 and Level 2 on the engineering performance in Level 2 is explored

separately by using adjusted canonical correlation analyses, Part CCA and Partial
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CCA in this chapter. It is found the individual effect of mathematics in Level 2 is
considerably higher compared with the individual effect of mathematics in Level 1
on the students’ engineering performance. Besides that, the individual effect of
mathematics in Level 1 on engineering performance in Level 2 can be negligible. It
can be concluded that, there exists a notable indirect effect of mathematics in Level 1
on engineering performance in Level 2. Hence, the next chapter discovers the
underlying relationships between mathematics in Level 1 and Level 2 with

engineering performance in Level 2.
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CHAPTER 7
MODELING THE RELATIONSHIP OF MATHEMATICS AND
STUDENTS’ ENGINEERING PERFORMANCE

The analysis in this chapter examines whether or not the student performance in
mathematics that are followed in Level 1 and Level 2 are sufficiently precise for the
purpose of explaining their engineering performance. As mentioned in Chapter 2, the
explanation or the prediction of a phenomenon (engineering academic performance) is

represented by the general model described in Figure 3.2 (Section 3.4).

These models consist of two unobserved latent variables: (i) students’ mathematics
performance (MAT) as the ‘exogenous reflectively’ measured construct and (ii)
students’ engineering performance (ENG) as the ‘endogenous formatively’ measured
construct. Observed variables related to MAT are marks of mathematics modules in
Level 1 and Level 2 (S3 and S4). The marks of engineering modules in Level 2 (S3
and S4) are the observed variables to construct ENG with respect to the curriculum of

each engineering discipline.

The Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis is done
for academic performance in Level 2 in two academic years, 2010/2011 and
2011/2012 separately by engineering disciplines. In addition, an index is proposed to
measure the mathematical influence on students’ engineering performance. Bootstrap
analysis was done with 5000 subsamples and bias-corrected and accelerated bootstrap

method was utilized.

7.1. Modeling CH Student Performance

7.1.1. Student Performance in Academic Year 2010/2011

As mention in Section 3.1, by the end of Level 2, CH students have followed five
mathematics modules: two modules in Level 1 (MA1013 and MA1023), two modules
in S3 (MA2013 and MA2023) and one module in S4 (MA2033) as well as seven and

five engineering modules in S3 and S4 respectively. Therefore, structural model
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comprises three MAT constructs and two ENG constructs. The MAT constructs are:
Level 1 mathematics modules (L1 _MAT), S3 mathematics modules (S3_MAT) and
S4 mathematics modules (S4_MAT). Similarly, ENG constructs are: seven
engineering modules in S3 (S3_ENG) and five engineering modules in S4
(S4_ENG). The PLS structural model for CH student performance in academic year
2010/2011 is shown in Figure 7.1.

MAT013 CHzpe
— /
CH2052
EE2802
ENZ852
ME1822
ME2012

"
ME2122

MA2013
—
Ma03 &

CH2062
CH2072
CH2082

MAZ2033
CH3082

54 ENG
5S4 MAT CH3102

Figure 7.1:  PLS structural model for CH student performance — 2010

As explained in Section 3.5.3, model evaluation is carried out in two separate

processes for the measurement model and the structural model.

7.1.1.1. Evaluation of the Formative Measurement Model
Table 7.1 summarizes the results of indicator statistics for the formatively measured
constructs: S3_ENG and S4_ENG including the outer weights, outer loadings and

their corresponding p-values.
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Table 7.1:  Indicator statistics of formative constructs — CH performance (2010)

Formative Indicators Ol.Jter P-value Out'er P-value
Constructs Weights Loadings
S3_ENG CH2042 0.213 0.130 0.806 0.000
CH2052 0.223 0.113 0.830 0.000
EE2802 0.614 0.003 0.874 0.000
EN2852 -0.269 0.057 0.370 0.011
ME1822 -0.095 0.393 0.294 0.035
ME2012 0.341 0.012 0.781 0.000
ME2122 -0.074 0.611 0.439 0.004
S4_ENG CH2062 0.192 0.331 0.797 0.000
CH2072 0.123 0.370 0.556 0.000
CH2082 0.437 0.029 0.891 0.000
CH3092 0.229 0.298 0.864 0.000
CH3102 0.224 0.240 0.855 0.000

The weights of EE2802 and ME2012 indicators of S3_ENG construct and CH2082
indicator of S4_ENG construct are significant at the 5% significance level whereas
all the remaining indicators of both constructs are not significant. Since most of the
indicators of S3_ENG and S4_ENG are insignificant, corresponding outer loadings
were considered. According to the outer loadings of S3_ ENG and S4 ENG
indicators, it is clear that all indicators are significantly correlated with their
construct. It implies that these indicators are supporting for capturing the engineering
academic performance. Thus, the indicators in the S3_ENG and S4_ENG formative
constructs can be retained in the model, even though their outer weights are not

significant.

7.1.1.2. Evaluation of the Reflective Measurement Model

The reflective construct, S4_MAT is a single item construct. The results for the
reflectively measured constructs: L1_MAT, S3_MAT and S4_MAT are shown in
Table 7.2.
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Table 7.2: Reliability and validity statistics of reflective constructs — CH
performance (2010)

. Squared Composite Ave_rage
Reflective . Outer Cronbach's S Variance
Indicators : Outer Reliability
Constructs Loadings Loadings alpha (CR) Extracted

g (AVE)
MA1013 0.810 0.656
L1 _MAT 0.653 0.849 0.738
MA1023 0.906 0.820
MA2013 0.835 0.698
S3_MAT 0.507 0.802 0.669
MA2023 0.800 0.641
S4 MAT MA2033 Single Item Construct

By referring Table 7.2, the outer loadings of the indicators in L1_MAT and S3_MAT
constructs denote that all mathematics variables are highly correlated (>0.80) with
their respective construct. Furthermore, MA1023 is the most important mathematics
variable of L1_MAT construct while two mathematics variables: MA2013 and
MAZ2023 are equally important to their S3_MAT construct. The squared outer
loadings suggest that the amount of variation of the indicators in L1 MAT and
S3_MAT constructs explained by their respective construct are considerably higher
(>60%) with an exceptional 82% by MA1023.

With reference to the values of cronbach's alpha in Table 7.2, it can be seen that
cronbach's alpha for both L1_MAT and S3_MAT constructs are less than minimum
requirement of 0.7 (Hair et al., 2016). This may occurred due to the less number of
indicators. However, the values of composite reliability (CR) for both L1_MAT and
S3_MAT constructs are above the cut-off value of 0.7 (Hair et al., 2016). It implies
that high levels of internal consistency reliability among both constructs. Further, the
values of average variance extracted (AVE) which measures the convergent validity
are higher than the required minimum level of 0.50 (Hair et al., 2016) for both
L1 MAT and S3_MAT constructs confirmed that both constructs have high levels of

convergent validity.
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As mentioned in Section 3.5.3.1, two measures were examined for the discriminant
validity: cross-loadings and Fornell-Larcker criterion. The corresponding results of

these two measures are given in Table 7.3 and Table 7.4 respectively.

Table 7.3:  Cross loadings matrix — CH performance (2010)

Constructs Indicators | L1 MAT | S3_ MAT | S4 MAT | S3_ENG S4_ENG
MA1013 0.810 0.418 0.312 0.376 0.363
L1_MAT
MA1023 0.906 0.498 0.417 0.561 0.552
MA2013 0.497 0.835 0.407 0.608 0.537
S3_MAT
MA2023 0.375 0.800 0.279 0.635 0.529
S4_MAT MA2033 0.431 0.422 1.000 0.410 0.534
CH2042 0.453 0.611 0.317 0.806 0.700
CH2052 0.435 0.639 0.325 0.830 0.728
EE2802 0.488 0.663 0.293 0.874 0.711
S3_ENG EN2852 0.227 0.274 0.074 0.370 0.477
ME1822 0.148 0.229 0.144 0.294 0.286
ME2012 0.438 0.592 0.366 0.781 0.574
ME2122 0.122 0.374 0.020 0.439 0.235
CH2062 0.517 0.474 0.438 0.599 0.797
CH2072 0.293 0.387 0.266 0.454 0.556
S4_ENG CH2082 0.455 0.599 0.469 0.633 0.891
CH3092 0.480 0.535 0.499 0.682 0.864
CH3102 0.455 0.574 0.437 0.748 0.855

According to the results of cross loadings in Table 7.3, it is clear that outer loadings
of the indicators with their associated construct are considerably higher than all of
their loadings with all the remaining constructs except EN2852, ME1822, ME2122
indicators in S3_ENG and CH2072 indicator in S4_ENG. Thus, it can be concluded

that the requirement of the first assessment of discriminant validity is satisfied.
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Table 7.4:  Fornell-Larcker criterion — CH performance (2010)
Constructs L1 MAT S3_MAT S4 MAT S3_ENG S4 ENG
L1_MAT 0.859
S3_MAT 0.536 0.818
S4_MAT 0.431 0.422 single item
- construct
S3_ENG 0.559 0.759 0.410 formative
_ construct
S4_ENG 0.546 0.651 0.534 0.771 formative
construct

Note: The diagonal elements in bold, are the square root of AVE

Table 7.4 compares the square root of AVE of all constructs with their cross
correlations between all constructs. It can be seen that the square roots of AVE values
of L1_MAT and S3_MAT constructs are greater than their respective correlations
with any other constructs. It suggests that L1 MAT and S3_MAT constructs share
more variance with their associated indicators than with any other construct. It is
confirmed that requirements of second assessment of discriminant validity are also
satisfied. Therefore, it can be concluded that there was sufficient evidence for
construct validity based on the evidence for both convergent validity and discriminant

validity.

Considering the assessment of formative measurement models as well as assessment
of reflective measurement models jointly, all formative and reflective constructs
exhibit sufficient evidence of quality for the evaluation of the structural model to be

proceeded.

7.1.1.3. Evaluation of the Structural Model

The structural model is evaluated based on path coefficients, coefficient of
determination (R?), effect size (f %) and total effects including direct and indirect
effects. The results are presented in Table 7.5 and Table 7.6.
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Table 7.5:  Results of structural model— CH performance (2010)

Dependent Independent Pgth t-statistics | P-value £2 R2
constructs constructs | coefficients
S3_MAT L1_MAT 0.536 6.389 0.000 0.404 0.288
L1_MAT 0.287 2.608 0.009 0.077
S4 MAT 0.237
S3_MAT 0.268 2.304 0.022 0.067
L1 MAT 0.213 1.817 0.070 0.082
S3_ENG 0.608
S3_MAT 0.645 6.639 0.000 0.755
L1_MAT 0.200 1.951 0.050 0.057
S4_ENG S3_MAT 0.432 3.378 0.001 0.266 0.532
S4_MAT 0.265 2.539 0.011 0.115

Table 7.6:  Direct, Indirect and Total effects assessment— CH performance (2010)

Links Direct Indirect Total
L1 MAT ->S3_MAT 0.536 - 0.536
L1 _MAT ->S3_ENG 0.213 0.346 0.559
L1 MAT ->S4 MAT 0.287 0.144 0.431
L1 MAT ->S4 ENG 0.200 0.346 0.546
S3_MAT ->S3_ENG 0.645 - 0.645
S3_MAT ->S4 MAT 0.268 - 0.268
S3_MAT >S4 ENG 0.432 0.071 0.503
S4 MAT ->S4 ENG 0.265 - 0.265

With respect to Table 7.5, the path coefficients related to S3_MAT and S4 MAT
constructs are statistically significant (p < 0.05). Thus, it can be concluded that the
exogenous construct; L1_MAT significantly contributes to explain the variation in
S3_MAT construct and L1_MAT and S3_MAT constructs significantly contribute to

explain the variation in S4_MAT construct.
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According to the path coefficients of L1_MAT construct related to endogenous
constructs, it is clear that L1_MAT construct is not significant in endogenous model,;
S3_ENG (p=0.07) at 5% level, but it is significant at 10% level. Nevertheless, the
remaining constructs related to S3_ ENG and S4 ENG endogenous models are
statistically significant at 5% level. It concluded that L1 MAT and S3_MAT
constructs significantly contribute to explain the variation in S3_ENG construct and
all constructs significantly contribute to explain the variation in S4_ENG construct. It
can be concluded that mathematics in Level 2 (S3 and S4) is significantly more
influences on the engineering academic performance of CH students in Level 2 than
that of mathematics in Level 1.

By referring the R? values of endogenous constructs in Table 7.5, it can be concluded
that 60.8% of variance in engineering performance in S3 explained by mathematics in
Level 1 and S3. Also, mathematics in Level 1 and Level 2 (S3 and S4) explains

53.2% of the variance in engineering performance in S4.

The values of effect size (f %) in Table 7.5 reveal that L1_MAT construct has small
relative effect on S3_ENG (0.082) and S4_ENG (0.057) endogenous constructs
whereas S3_MAT construct has significant effects on S3_ENG (0.755) and S4_ENG
(0.266) endogenous constructs. This reflects that relative impact of mathematics in S3

on engineering performance is higher than that of mathematics in Level 1.

Examining the direct effects as well as indirect effects is particularly useful when
exploring the differential impact of mathematics on engineering performance. The
results of total effects, direct effects and indirect effects of the L1_MAT, S3_MAT
and S4_MAT constructs on endogenous constructs S3_ENG and S4_ENG are shown
in Table 7.6.

It is clear that indirect effect of L1_MAT construct on both endogenous constructs
S3-ENG and S4_ENG is significantly higher than the direct effect of L1 _MAT
construct on S3-ENG and S4_ENG endogenous constructs. This reveals that even

though mathematics in Level 1 has no significant direct effect on both engineering
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performance in S3 and S4, it has significant indirect effect which suggests that
mathematics in Level 1 is still important for both engineering performance in S3 and
S4.

7.1.2. Student Performance in Academic Year 2011/2012
Accoding to Section 3.1, the engineering modules during 2011/2012 academic year
has chaged in the path diagram. The structural model for CH student performance in

academic year 2011/2012 is depicted in Figure 7.2.

CH2013

MA1013
CH2023

MA1023
CH2083

ME2122

CH2043

CH2053
S3_MAT

CH2063

CH2073
54 ENG

CH2083
Ma2033

54_MAT

Figure 7.2:  Path diagram of structural model for CH student performance — 2011

The corresponding tables for Table 7.1 — Table 7.4 are shown in Table 7.7 — Table
7.10 respectively. As explained in details in Section 7.1.1.1 and Section 7.1.1.2, it is
found that all formative and reflective constructs provide sufficient evidence for the
evaluation of the structural model in student performance in 2011/2012 academic

year. Therefore, only the results of structural model are discussed.
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Table 7.7:

Indicator statistics in formative constructs — CH performance (2011)

Formative Indicators Outer P-value Outer P-value
Constructs Weights Loadings
CH2013 0.361 0.033 0.882 0.000
CH2023 0.216 0.089 0.818 0.000
S3_ENG
CH2033 0.582 0.000 0.946 0.000
ME2122 -0.094 0.506 0.476 0.003
CH2043 0.381 0.022 0.883 0.000
CH2053 0.270 0.224 0.916 0.000
S4_ENG CH2063 0.095 0.706 0.895 0.000
CH2073 0.165 0.322 0.878 0.000
CH2083 0.205 0.348 0.911 0.000
Table 7.8:  Reliability and validity statistics of reflective constructs — CH
performance (2011)
Squared Composite Average
Reflective . Outer Cronbach's - Variance
Indicators . Outer Reliability
Constructs Loadings Loadinas alpha (CR) Extracted
9 (AVE)
MA1013 0.857 0.735
L1_MAT 0.727 0.879 0.784
MA1023 0.913 0.833
MA2013 0.930 0.864
S3_MAT 0.833 0.923 0.857
MA2023 0.922 0.850
S4 MAT MA2033 Single Item Construct
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Table 7.9:

Cross loadings matrix — CH performance (2011)

Constructs Indicators L1 MAT | S3_MAT | S4 MAT | S3 ENG | S4 ENG
MA1013 0.857 0.549 0.489 0.460 0.436
L1 MAT
MA1023 0.913 0.611 0.602 0.635 0.596
MA2013 0.595 0.930 0.754 0.752 0.665
S3_MAT
MA2023 0.622 0.922 0.670 0.709 0.645
S4_MAT MA2033 0.622 0.770 1.000 0.742 0.785
CH2013 0.484 0.717 0.669 0.882 0.732
CH2023 0.496 0.652 0.623 0.818 0.699
S3_ENG
CH2033 0.630 0.736 0.696 0.946 0.744
ME2122 0.211 0.402 0.418 0.476 0.448
CH2043 0.583 0.623 0.683 0.671 0.883
CH2053 0.562 0.640 0.718 0.743 0.916
S4 ENG CH2063 0.528 0.597 0.717 0.736 0.895
CH2073 0.453 0.650 0.692 0.748 0.878
CH2083 0.456 0.654 0.728 0.761 0.911
Table 7.10: Fornell-Larcker criterion — CH performance (2011)
Construct L1_MAT S3_MAT | S4 MAT | S3_ENG | S4_ENG
L1_MAT 0.885
S3_MAT 0.657 0.926
Single
S4_MAT 0.622 0.770 item
construct
S3_ENG 0.628 0.790 0.742 | formative
- construct
S4_ENG 0.592 0.708 0.785 0.805 | formative
construct

Note: The diagonal elements in bold, are the square root of AVE
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7.1.2.1. Evaluation of the Structural Model
Table 7.11 provides the results of structural model for CH academic performance in
academic year 2011/2012.

Table 7.11: Results of structural model — CH performance (2011)

Dependent | Independent Pgth Tostatistics | P-value £2 R2
constructs | constructs coefficients
S3_MAT L1_MAT 0.657 10.793 0.000 0.759 0.431
L1_MAT 0.205 1.765 0.078 0.062
S4_MAT 0.616
S3_MAT 0.635 6.696 0.000 0.598
L1_MAT 0.193 1.840 0.066 0.060
S3_ENG 0.645
S3_MAT 0.663 7.165 0.000 0.704
L1_MAT 0.109 0.917 0.359 0.018
S4_ENG S3_MAT 0.205 1.220 0.223 0.043 0.649
S4_MAT 0.560 4.058 0.000 0.342

The path coefficients of MAT constructs show that the path coefficient of L1_MAT
construct related to S3_MAT construct and S3_MAT construct related to S4 MAT
construct are statistically significant. This reveals that L1 _MAT construct
significantly contribute to explaining the variation in S3_MAT construct and
S3_MAT construct significantly contribute to explaining the variation in S4_MAT
construct. Moreover, path coefficients of L1_MAT construct are not significant in
both endogenous models; S3_ENG (p=0.066) and S4_ENG (p=0.359). The path
coefficients related to endogenous constructs reflect that S3_MAT construct
significantly contribute to explaining the variation in S3_ENG construct while
S4 MAT constructs significantly contribute to explaining the variation in S4_ENG

construct.

With reference to R? values of endogenous constructs, 64.5% of variance in
engineering performance in S3 explained by mathematics in Level 1 and S3 and the
explainable variability in engineering performance in S4 by mathematics in Level 1
and Level 2 (S3 and S4) is 64.9%. The f  values indicate that L1_MAT construct has
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small relative effect on S3_ENG (0.060) and S4_ENG (0.018) endogenous constructs
whereas S3_MAT construct has significant effect on S3_ENG (0.704) and S4_MAT
construct has significant effect on S4_ ENG (0.342). It reveals that the impact of
mathematics in S3 and S4 on engineering performance is higher than that of

mathematics in Level 1.

Table 7.12 shows the results of total effects, direct effects and indirect effects of the

L1 MAT, S3_MAT and S4_MAT constructs on endogenous constructs.

Table 7.12: Direct, Indirect and Total effects assessment— CH performance (2011)

Links Direct Indirect Total
L1 MAT ->S3_MAT 0.657 - 0.657
L1 MAT ->S3 ENG 0.192 0.436 0.628
L1 _MAT ->S4 MAT 0.205 0.417 0.622
L1 _MAT ->S4 ENG 0.109 0.483 0.592
S3_MAT ->S3 ENG 0.663 - 0.663
S3_MAT ->S4 MAT 0.635 - 0.635
S3_MAT ->S4_ENG 0.206 0.355 0.561
S4 MAT ->S4 ENG 0.560 - 0.560

It can be seen that indirect effects of L1 MAT construct on both endogenous
constructs S3-ENG and S4_ENG are significantly higher than the direct effect of
L1 MAT construct on S3-ENG and S4_ENG endogenous constructs. This suggests
that mathematics in Level 1 has significant indirect effect on both engineering
performance in S3 and S4, even though it has no significant direct effect. It can be
concluded that mathematics in Level 1 is still important for both engineering

performance in S3 and S4.
7.2.  Modeling CE Student Performance

As in Section 7.1, the analysis was continued to examine the theoretical model

underlying relationship between students’ mathematics performance in Level 1 and
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Level 2 with their engineering performance for CE discipline. The results of PLS-
SEM for two academic years are summarized in Table 7.13 to Table 7.16.

7.2.1. Evaluation of the Measurement Model
Table 7.13 presents the results for formatively measured constructs S3_ENG and

S4_ENG for two academic years.

Table 7.13: Indicator statistics of formative constructs — CE performance

Academic 2010 2011
Year
Constructs | Indicators V\(/)elijg;ilrts Lc%lélﬁirgs Indicators V\(/)e l:;?]rts Lc%:jtiirgs
S3_ENG CE2012 0.004 0.354 CE2012 0.705* 0.901
CE2022 -0.256 0.405 CE2022 0.194 0.188
CE2032 0.787* 0.948 CE2032 -0.076 0.058
CE2042 0.195 0.685 CE2042 0.366* 0.722
CE2052 0.166 0.534 CE2052 0.104 0.467
CE2062 0.215 0.626 CE2062 0.046 0.435
S4 ENG CE2112 0.548* 0.907 CE2112 0.402* 0.831
CE2122 0.087 0.681 CE2122 0.191 0.747
CE2132 0.139 0.761 CE2132 0.243* 0.778
CE2142 -0.114 0.484 CE2142 0.100 0.625
CE3012 0.452* 0.870 CE3012 0.350* 0.781

*, Outer weight is significant at the 0.05 level
Outer loading in bold is not significant at the 0.05 level

Based on the results of outer weights, it can be seen that only three indicators, one in
S3_ENG construct and two in S4_ ENG construct in 2010 batch as well as five
indicators, two in S3_ENG construct and three in S4_ENG construct in 2011 batch
are statistically significant. Therefore, the outer loadings were considered as there are
number of insignificant indicators in both batches. With respect to outer loadings, all
indicators are significantly correlated (p < 0.05) with their construct except two
indicators in S3_ENG construct in 2011 batch. It implies that the indicators in the
S3_ENG and S4_ENG construct can be retained in the model.

The results for the reflective constructs, L1 MAT, S3_MAT and S4_MAT for two
academic years are presented in Table 7.14 and Table 7.15.
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Table 7.14: Reliability and validity statistics of reflective constructs — CE

performance
. Squared .
Academic Constructs| Indicators Out_er Outer Cronbach’s CR AVE
Year Loadings ) alpha
Loadings

L1 MAT MA1013 0.806 0.649
MA1023 0.905 0.819
S3_MAT MAZ2013 0.745 0.555
2010 - 0.432 0.777 0.636
MA2023 0.846 0.716
S4_MAT MA2033 0.876 0.768
MA3013 0.747 0.558
L1 MAT MA1013 0.731 0.535
MA1023 0.871 0.759
S3_MAT MA2013 0.875 0.766
2011 0.726 0.879 0.785
MA2023 0.897 0.804
S4_MAT MA2033 0.846 0.715

MA3013 0.860 0.740

0.646 0.846 0.734

0.501 0.796 0.663

0.464 0.784 0.647

0.626 0.842 0.728

Table 7.15: Fornell-Larcker criterion — CE performance

2010
L1 _MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1_MAT 0.857
S3_ MAT 0.483 0.797
S4_MAT 0.359 0.230 0.814
S3_ENG 0.539 0.387 0.309 formative
— construct
s4_ENG 0.293 0.344 0.680 0.455 formative
~ construct
2011
L1 _MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1 MAT 0.804
S3_MAT 0.518 0.886
S4_MAT 0.551 0.527 0.853
S3_ENG 0.481 0.571 0571 formative
_ construct
S4_ENG 0.475 0.570 0.719 0.642 formative
—_ construct

Note: The diagonal elements in bold, are the square root of AVE
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The outer loadings of indicators in all reflective constructs for both academic years
are significantly correlated with their respective construct. The squared outer loadings
exhibit that the amount of variation in L1_MAT, S3_MAT and S4 MAT indicators
explained by their respective construct are considerably higher for both academic
years. The values of cronbach's alpha are less than minimum requirement of 0.7. But,
the values of CR, which suggest high levels of internal consistency reliability among
the MAT constructs in both academic years. The values of AVE confirmed the
convergent validity of reflective constructs for two academic years. Moreover, cross
loadings of all indicators and Fornell-Larcker criterion confirmed that requirements
of assessment of discriminant validity are satisfied for two academic years. Based on
the evidence for both convergent validity and discriminant validity, it is clear that

there was sufficient evidence for construct validity.

7.2.2. Evaluation of the Structural Model

Table 7.16 provides the results of structural model for CE academic performance in
academic year 2010/2011 and 2011/2012. The path coefficients of MAT constructs
implies that L1_MAT construct significantly contribute to explaining the variation in
S3_ENG construct in 2010 batch while both L1 MAT and S3_MAT constructs
significantly contribute to explaining the variation in S3_ENG construct in 2011
batch. Furthermore, L1 _MAT construct has a weak relationship with S4 ENG
construct in both academic years. With reference to R® values of endogenous
constructs, the proportion of variability in S3_ENG construct explained by the MAT
constructs are 31% in 2010 and 37% in 2011. Similarly, the amount of variance in
S4 _ENG construct explained by the MAT constructs are 65% in 2010 and 57% in
2011. According to the effect size, it is clear that the effect of mathematics in S3 and
S4 on engineering performance is higher than that of mathematics in Level 1. The
indirect effects of L1_MAT construct on both endogenous constructs S3-ENG and
S4 ENG are significantly higher than its direct effect on S3-ENG and S4_ENG

constructs in both academic years.

134



Table 7.16: Results of structural model— CE performance

Academic | Dependent| Independent Path §2 R? Indirect Total
Year constructs| constructs | coefficient effect effect
S3_MAT L1 _MAT 0.483* 0.304 0.233 - 0.483
L1 _MAT 0.323* 0.093 0.036 0.359
S4_MAT 0.133
S3_MAT 0.074 0.005 - 0.074
2010 L1 MAT 0.459* 0.234 0.080 0.539
S3_ ENG 0.311
S3_MAT 0.166 0.031 - 0.166
L1 MAT -0.043 0.003 0.336 0.293
S4 ENG S3_MAT 0.216* 0.071 0.501 0.048 0.264
S4_MAT 0.646* 0.726 - 0.646
S3_MAT L1 _MAT 0.518* 0.366 0.268 - 0.518
L1 _MAT 0.379* 0.171 0.171 0.481
S4 MAT 0.383
S3_MAT 0.330* 0.130 - 0.439
o011 | S3ENG | LIMAT 0.254* | 0075 | 373 | 0.227 0.551
S3_MAT 0.439* 0.225 - 0.33
L1 MAT 0.031 0.001 0.445 0.475
S4_ENG | s3 MAT 0.254* 0.097 | 0.568 0.188 0.442
S4 MAT 0.568* 0.462 - 0.568

*. Path coefficient is significant at the 0.05 level

7.3.  Modeling CS Student Performance

7.3.1. Evaluation of the Measurement Model

The results for formatively measured constructs S3_ENG and S4 ENG for two
academic years are shown in Table 7.17. By referring outer weights and outer
loadings, it is evident that with the exception of one indicator of S4_ENG construct in
2010, all other indicators of S3_ENG and S4_ENG constructs in both academic years

are supporting for capturing the engineering academic performance.
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Table 7.17: Indicator statistics of formative constructs — CS performance

Academic 2010 2011
Year
Constructs | Indicators V\(/)e lljgt;]:s L(%léitiirgs Indicators V\(/)e l:;i]rts L(())z;:jtiirgs
S3 ENG CE1822 0.214* 0.648 CE1822 0.205 0.678
CS2032 -0.046 0.645 CS2032 0.499* 0.906
CS2042 0.416* 0.806 CS2042 -0.019 0.579
CS2062 0.169 0.666 CS2062 0.261 0.817
EN2022 0.387* 0.780 EN2022 0.281* 0.724
ME1822 0.218 0.647 ME1822 0.007 0.536
S4 ENG CS3022 0.279* 0.811 CS3022 0.041 0.694
CS3032 0.010 0.622 CS3032 0.352* 0.879
CS3042 0.335* 0.728 CS3042 0.082 0.710
CS3242 -0.186 0.268 CS3242 0.009 0.481
EN2062 0.522* 0.884 EN2062 0.566* 0.932
ME1802 0.160 0.697 ME1802 0.109 0.670

*, Outer weight is significant at the 0.05 level
Outer loading in bold is not significant at the 0.05 level

Table 7.18 and Table 7.19 provides the results for the reflective constructs, L1 MAT,
S3_MAT and S4_MAT for two academic years.

Table 7.18: Reliability and wvalidity statistics of reflective constructs — CS

performance
Academic . Outer Squared Cronbach's
Constructs | Indicators . Outer CR AVE
Year Loadings : alpha
Loadings
L1 MAT MA1013 0.773 0.598
0.568 0.819 0.694
MA1023 0.889 0.790
S3_ MAT MA2023 0.787 0.619
2010 0.493 0.797 0.663
MA2042 0.841 0.707
S4 MAT MA2033 0.872 0.760
0.628 0.843 0.728
MA2013 0.834 0.696
L1 MAT MA1013 0.831 0.690
0.521 0.807 0.676
MA1023 0.814 0.663
S3_ MAT MA2073 0.897 0.805
2011 0.766 0.895 0.81
MA2053 0.903 0.815
S4 MAT MA2033 0.914 0.836
0.806 0.911 0.837
MA2063 0.916 0.839
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Table 7.19: Fornell-Larcker criterion — CS performance

2010
L1 MAT S3 MAT S4 MAT S3 ENG S4 ENG
L1 MAT 0.833
S3 MAT 0.554 0.814
S4 MAT 0.514 0.420 0.853
S3_ENG 0.561 0.708 0.482 formative
— construct
S4 ENG 0.563 0.483 0.675 0.667 formative
— construct
2011
L1 MAT S3_MAT S4 MAT S3 ENG S4 ENG
L1 _MAT 0.822
S3_ MAT 0.564 0.900
S4 MAT 0.532 0.673 0.915
S3_ENG 0.545 0.729 0.730 formative
— construct
S4_ENG 0.622 0.686 0.795 0.820 formative
_ construct

Note: The diagonal elements in bold, are the square root of AVE

The outer loadings reveals that all indicators of MAT constructs are significantly
important to their respective construct. Furthermore, CR values confirmed the
internal consistency reliability of three MAT constructs in both academic years. The
convergent validity of MAT constructs is confirmed by AVE values. The Fornell-
Larcker criterion and cross loadings suggest that discriminant validity is satisfied.
Hence, it is clear that there was sufficient evidence for construct validity based on the

evidence for both convergent validity and discriminant validity.

7.3.2. Evaluation of the Structural Model

The results of structural model for CS performance in academic year 2010/2011 and

2011/2012 are shown in Table 7.20.
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Table 7.20: Results of structural model— CS performance

Academic| Dependent | Independent Path §2 R? Indirect | Total
Year constructs constructs | coefficients effect effect
S3 MAT L1 MAT 0.554* 0.444 0.307 - 0.554
L1 MAT 0.406* 0.161 0.108 0.514

S4 MAT 0.291
S3_MAT 0.195* 0.037 - 0.195
L1 MAT 0.244* 0.090 0.317 0.561

2010 S3 ENG 0.542
S3_ MAT 0.573* 0.496 - 0.573
L1 MAT 0.225* 0.065 0.338 0.563
S4 ENG S3_MAT 0.149 0.032 0.534 0.097 0.246
S4 MAT 0.497* 0.375 - 0.497
S3_MAT L1 _MAT 0.545* 0.422 0.297 - 0.545
L1 MAT 0.235* 0.076 0.297 0.532

S4 MAT 0.707
S3_MAT 0.545* 0.410 - 0.545
L1 MAT 0.237* 0.092 0.327 0.564

2011 S3_ENG 0.571
S3_MAT 0.600* 0.589 - 0.6
L1 MAT 0.225* 0.113 0.396 0.622
S4 ENG S3_MAT 0.199* 0.068 0.491 0.295 0.494
S4_MAT 0.542* 0.510 - 0.542

*, Path coefficient is significant at the 0.05 level

According to the results in Table 7.20, it is clear that all MAT constructs are
significantly contribute to explaining the variation in both S3_ENG and S4_ENG
constructs in both academic years except S3_MAT related to S4 ENG in 2010.
Based on the R? values of ENG constructs, the amount of variance in S3_ENG
construct explained by the MAT constructs are 54% in 2010 and 57% in 2011. Also,
the amount of variance in S4_ENG construct explained by the MAT constructs are
53% in 2010 and 49% in 2011. The effect size indicates that the effect of
mathematics in S3 and S4 on engineering performance is higher than that of
mathematics in Level 1. Furthermore, L1_MAT construct has significant indirect
effect on both S3_ENG and S4_ENG constructs, even though it has no significant

direct effect.
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7.4. Modeling EE Student Performance
7.4.1. Evaluation of the Measurement Model
Table 7.21 exhibits the results for formatively measured constructs S3_ENG and

S4 _ENG for two academic years.

Table 7.21: Indicator statistics of formative constructs — EE performance

Aci‘g::“ic 2010 2011
Constructs | Indicators VSe l:;iltcs L(%Léltiirgs Indicators V\C/)e lljéif[s L;‘Létﬁ]rgs
S3_ENG CE1822 -0.140 0.191 CE1822 0.067 0.427
EE2012 0.537* 0.837 EE2013 0.282* 0.781
EE2022 0.143 0.698 EE2023 0.275* 0.696
EE2033 0.190 0.485 EE2033 0.150 0.638
EN2012 -0.009 0.667 EN2012 0.138 0.595
EN2022 0.254 0.643 EN2022 0.039 0.581
ME2012 0.324* 0.706 ME2012 0.421* 0.853
S4_ENG EE2042 0.377* 0.768 EE2043 -0.106 0.430
EE2052 0.233* 0.618 EE2053 0.224* 0.436
EE2072 0.083 0.741 EE2063 0.222* 0.624
EE2083 0.344* 0.817 EE2073 0.462* 0.837
EE2132 0.138 0.721 EE2083 0.338* 0.797
EE3072 0.069 0.592 ME?2842 0.227* 0.674
ME?2842 0.118 0.715

*. Outer weight is significant at the 0.05 level

Outer loading in bold is not significant at the 0.05 level

With reference to outer weights and outer loadings, it is clear that all inidcators of
S3_ENG and S4_ENG constructs in both academic years are supporting for capturing
the engineering academic performance except one indicator of S3_ENG construct in
2010.

Table 7.22 and Table 7.23 present the results for the reflective constructs, L1_MAT,
S3_MAT and S4_MAT for two academic years.
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Table 7.22: Reliability and validity statistics of reflective constructs — EE

performance
Academic . Outer Squared Cronbach's
Constructs | Indicators . Outer CR AVE
Year Loadings ) alpha
Loadings
L1 MAT MA1013 0.772 0.596
0.524 0.805 | 0.675
MA1023 0.868 0.753
S3_MAT MA2013 0.855 0.731
2010 0.628 0.843 | 0.729
MA2023 0.852 0.726
S4_MAT MA2033 0.911 0.830
0.700 0.868 | 0.766
MA2053 0.839 0.703
L1 _MAT MA1013 0.736 0.542
0.472 0.787 | 0.65
MA1023 0.871 0.759
S3_MAT MA2013 0.866 0.750
2011 0.718 0.876 | 0.779
MA2023 0.899 0.809
S4_MAT MA2033 0.926 0.858
0.462 0.769 | 0.632
MA2053 0.638 0.407
Table 7.23: Fornell-Larcker criterion — EE performance
2010
L1 MAT S3_MAT S4_MAT S3_ENG S4 ENG
L1 _MAT 0.822
S3_MAT 0.485 0.854
S4_MAT 0.518 0.536 0.875
S3_ENG 0.514 0.694 0.654 formative
- construct
S4_ENG 0.522 0.561 0.805 0.705 formative
- construct
2011
L1_MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1 _MAT 0.806
S3_MAT 0.655 0.883
S4_MAT 0.597 0.573 0.795
S3_ENG 0.615 0.698 0.671 formative
construct
S4_ENG 0.604 0.633 0.721 0.740 formative
construct

Note: The diagonal elements in bold, are the square root of AVE
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According to the outer loadings in Table 7.22, it can be said that all indicators of
MAT constructs are significantly important to their respective construct. The results
of Table 7.22 confirmed the internal consistency reliability (based on CR) and
convergent validity (based on AVE) of three MAT constructs in both academic years.
The Fornell-Larcker criterion in Table 7.23 and cross loadings suggest that
discriminant validity is also satisfied. Hence, there was sufficient evidence for
construct validity based on the evidence for both convergent validity and discriminant

validity.
7.4.2. Evaluation of the Structural Model
The results of structural model for EE performance in academic year 2010/2011 and

2011/2012 are provided in Table 7.24.

Table 7.24: Results of structural model- EE performance

Academic| Dependent | Independent Path £2 R? Indirect Total
Year constructs constructs | coefficients effect effect
S3_ MAT L1 MAT 0.485* 0.307 0.235 - 0.485
L1 MAT 0.337* 0.139 0.18 0.518
S4 MAT - 0.374
- S3_MAT 0.372* 0.169 - 0.372
2010 3 ENG L1 MAT 0.232* 0.087 0.523 0.282 0.514
- S3_MAT 0.581* 0.541 ' - 0.581
L1 MAT 0.100 0.021 0.422 0.522
S4 ENG S3_MAT 0.153 0.048 0.678 0.25 0.403
S4 MAT 0.671* 0.876 - 0.671
S3_ MAT L1 MAT 0.655* 0.752 0.429 - 0.655
L1 MAT 0.388* 0.147 0.209 0.597
S4 MAT - 0.415
- S3_MAT 0.319* 0.099 - 0.319
2011 $3 ENG L1 MAT 0.276* 0.092 0.531 0.339 0.615
- S3_MAT 0.517* 0.326 ' - 0.517
L1 MAT 0.142 0.025 0.461 0.604
S4 ENG S3_MAT 0.261* 0.089 0.601 0.155 0.416
S4 MAT 0.486* 0.347 - 0.486

*. Path coefficient is significant at the 0.05 level

By referring path coefficients of MAT constructs, it can be seen that L1_MAT and
S3_MAT constructs significantly contribute to explaining the variation in S3_ENG

construct in both academic years. However, the contribution of L1_MAT construct in
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explaining the variation in S4_ENG construct is not significant in both academic
years. According to the R? values of ENG constructs, the amount of variance in
S3_ENG construct explained by the MAT constructs are 52% in 2010 and 53% in
2011. Also, the amount of variance in S4_ENG construct explained by the MAT
constructs are 68% in 2010 and 60% in 2011. The f 2 values in both academic years
illustrate that L1_MAT construct has small relative effect on S3_ENG and S4 ENG
constructs as well as S3_MAT construct also has small relative effect on S4_ENG
construct. The indirect effects of L1_MAT construct on both endogenous constructs
S3-ENG and S4_ENG are significantly higher than its direct effect on S3-ENG and
S4_ENG constructs in both academic years.

7.5. Modeling EN Student Performance
7.5.1. Evaluation of the Measurement Model
The results for formatively measured constructs S3_ENG and S4 ENG for two

academic years are shown in Table 7.25.

Table 7.25: Indicator statistics of formative constructs — EN performance

Acf(igrr“ic 2010 2011
Constructs | Indicators V\(/)e L:;\I:cs Lciléitiirgs Indicators Vvoe l:gt;it[s L(%Léjti?]rgs
S3_ENG EE2092 0.295* 0.881 EE2092 0.484* 0.880
EN2012 0.434* 0.880 EN2012 0.197 0.651
EN2022 0.215 0.759 EN2022 0.230* 0.711
EN2052 -0.062 0.579 EN2052 -0.198 0.581
EN2062 0.296* 0.776 EN2062 0.449* 0.885
S4_ENG EN2072 0.456* 0.816 EN2072 0.694* 0.913
EN2082 0.672* 0.920 EN2082 0.308* 0.662
EN2142 0.023 0.616 EN2142 0.184 0.504
EN3022 -0.017 0.373 EN3022 0.148 0.471

*. Outer weight is significant at the 0.05 level

With respect to outer weights and outer loadings, it is clear that all inidcators of
S3_ENG and S4_ENG constructs in both academic years are supporting for capturing

the engineering academic performance.
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The results for the reflective constructs, L1_MAT, S3_MAT and S4_MAT for two
academic years are presented in Table 7.26 and Table 7.27.

Table 7.26: Reliability and validity statistics of reflective constructs — EN

performance
Academic . Outer Squared Cronbach’s
Constructs Indicators . Outer CR AVE
Year Loadings - alpha
Loadings
L1 MAT MA1013 0.790 0.625
- 0.502 0.8 0.667
MA1023 0.842 0.709
S3_MAT MA2013 0.868 0.753
2010 0.701 0.87 0.77
MA2023 0.887 0.786
S4_MAT MA2033 0.865 0.747
0.539 0.811 0.683
MA2042 0.786 0.618
L1 MAT MA1013 0.666 0.443
- 0.508 0.785 0.652
MA1023 0.928 0.861
2011 S3_MAT MA2013 0.883 0.779
0.768 0.895 0.811
MA2023 0.918 0.842
S4 MAT MA2033 1.000 1.000 Single Item Construct

Table 7.27: Fornell-Larcker criterion — EN performance

2010
L1 _MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1 MAT 0.817
S3_MAT 0.594 0.877
S4_MAT 0.490 0.625 0.826
S3_ENG 0.641 0.785 0.640 formative
— construct
S4_ENG 0.587 0.703 0.669 0.763 formative
— construct
2011
L1 _MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1_MAT 0.808
S3_MAT 0.624 0.900
sS4 MAT 0.615 0.609 single item
— construct
S3 ENG 0.582 0.828 0.718 formative
— construct
S4_ENG 0.490 0.600 0.595 0.706 formative
_ construct

Note: The diagonal elements in bold, are the square root of AVE
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The outer loadings reflect that all indicators of MAT constructs are significantly
important to their respective construct. The results of CR and AVE of three MAT
constructs in both academic years confirmed the internal consistency reliability and
convergent validity respectively. Also, the Fornell-Larcker criterion in Table 7.27 and
cross loadings confirmed discriminant validity of reflective constructs in both
academic years. Based on the evidence for both convergent validity and discriminant

validity, it is clear that there was sufficient evidence for construct validity.
7.5.2. Evaluation of the Structural Model
The results of structural model for EN performance in academic year 2010/2011 and

2011/2012 are provided in Table 7.28.

Table 7.28: Results of structural model— EN performance

Academic | Dependent| Independent Path §2 R? Indirect Total
Year constructs| constructs | coefficient effect effect
S3_ MAT L1 MAT 0.594* 0.546 0.353 - 0.594
L1 MAT 0.183 0.037 0.307 0.49
S4 MAT - 0.413
- S3_MAT 0.516* 0.294 - 0.516
L1 MAT 0.270* 0.140 0.371 0.641
2010 S3_ENG - 0.663
- S3_MAT 0.625* 0.750 - 0.625
L1 MAT 0.200* 0.064 0.387 0.587
S4 ENG S3_MAT 0.373* 0.176 0.606 0.174 0.547
S4 MAT 0.338* 0.170 - 0.338
S3_MAT L1 MAT 0.624* 0.638 0.389 - 0.624
L1 MAT 0.386* 0.169 0.229 0.615
S4 MAT - 0.461
- S3_MAT 0.368* 0.153 - 0.368
L1 MAT 0.108 0.023 0.475 0.582
2011 S3_ ENG 0.692
- S3_MAT 0.761* 1.148 - 0.761
L1 MAT 0.057 0.003 0.433 0.49
S4 ENG S3_ MAT 0.356* 0.121 0.446 0.126 0.482
S4 MAT 0.343* 0.114 - 0.343

*. Path coefficient is significant at the 0.05 level

All MAT constructs are significantly contribute to explaining the variation in both
S3_ENG and S4_ENG constructs in both academic years except L1_MAT construct
related to S3_ENG and S4_ENG constructs in 2011. By referring the R? values of

ENG constructs, the amount of variance in S3_ENG construct explained by the MAT
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constructs are 66% in 2010 and 69% in 2011. Also, the amount of variance in
S4_ENG construct explained by the MAT constructs are 61% in 2010 and 45% in
2011. The f 2 values in both academic years reflect that the effect of S3_MAT and
S4 _MAT constructs on S3_ENG and S4 ENG constructs are higher than that of
L1 MAT construct. Furthermore, L1_MAT construct has significant indirect effect
on both S3_ENG and S4_ENG constructs, even though it has no significant direct
effect.

7.6. Modeling ME Student Performance

7.6.1. Evaluation of the Measurement Model

Table 7.29 show the results for formatively measured constructs S3_ENG and
S4 _ENG for two academic years. All inidcators of S3_ENG and S4_ENG constructs
in both academic years are supporting for capturing the engineering academic
performance except one indicator of S4_ENG construct in 2011.

Table 7.29: Indicator statistics of formative constructs — ME performance

Acf‘(‘::"r“'c 2010 2011

Constructs | Indicators V\?el:;irts Lc(falsjﬁ‘i\rgs Indicators VSeliJgt;?]I;s L(%L:jtienrgs

S3 ENG EE2802 0.239 0.625 EE2803 0.309* 0.706

EN2852 0.091 0.452 EN2852 -0.009 0.344

ME2012 0.207 0.613 ME2012 0.416* 0.757

ME2022 -0.052 0.513 ME2023 0.100 0.459

ME2092 0.627* 0.886 ME2092 0.106 0.476

ME2112 0.260* 0.590 ME2112 0.599* 0.853

ME2602 -0.356* 0.385

S4 ENG ME2032 0.320* 0.683 ME2032 0.210 0.722

ME3072 0.228 0.643 ME2153 0.447* 0.819

ME3032 0.624* 0.871 ME3032 0.368* 0.771

ME3062 -0.310* 0.229 ME3062 0.322 0.713

ME2142 0.267 0.609 ME3073 -0.062 0.513

*. Outer weight is significant at the 0.05 level

Outer loading in bold is not significant at the 0.05 level

Table 7.30 and Table 7.31 present the results for the reflective constructs, L1_MAT,
S3_MAT and S4_MAT for two academic years.
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Table 7.30: Reliability and validity statistics of reflective constructs — ME

performance
Academic . Outer Squared Cronbach's
Constructs | Indicators . Outer CR AVE
Year Loadings ) alpha
Loadings
L1 MAT | MA1013 0.749 0.561
0.499 0.796 0.662
MA1023 0.874 0.764
S3 MAT | MA2013 0.830 0.689
2010 0.592 0.831 0.71
MA2023 0.855 0.731
S4 MAT | MA2033 0.785 0.617
0.575 0.822 0.699
MA2042 0.884 0.781
L1 MAT | MA1013 0.639 0.408
0.436 0.763 0.624
MA1023 0.917 0.841
S3_MAT | MA2013 0.890 0.791
2011 0.768 0.896 0.811
MA2023 0.912 0.832
S4 MAT | MA2033 0.863 0.745
0.413 0.768 0.626
MA2053 0.712 0.507

Table 7.31: Fornell-Larcker criterion — ME performance

2010
L1 _MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1 MAT 0.814
S3_MAT 0.465 0.843
S4 MAT 0.187 0.361 0.836
S3 ENG 0.569 0.595 0.318 formative
_ construct
S4_ENG 0.434 0.417 0.653 0.520 formative
— construct
2011
L1 _MAT S3_MAT S4_MAT S3_ENG S4_ENG
L1 MAT 0.790
S3_MAT 0.555 0.901
S4 MAT 0.468 0.468 0.791
S3_ENG 0.494 0.760 0.444 formative
~ construct
S4 ENG 0.574 0.610 0.535 0.668 formative
_ construct

Note: The diagonal elements in bold, are the square root of AVE
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Based on the outer loadings of MAT indicators, it is clear that all indicators of MAT
constructs are significantly important to their respective construct. The CR and AVE
values in both academic years, reveals that the requirments of internal consistency
reliability and convergent validity are satisfied respectively. Also, the Fornell-
Larcker criterion in Table 7.31 and cross loadings suggest that discriminant validity is
satisfied. Hence, there was sufficient evidence for construct validity based on the

evidence for both convergent validity and discriminant validity.
7.6.2. Evaluation of the Structural Model
Table 7.32 displays the results of structural model for ME academic performance in

academic year 2010/2011 and 2011/2012.

Table 7.32: Results of structural model- ME performance

Academic | Dependent|Independent Path §2 R? Indirect Total
Year constructs| constructs coefficient effect effect
S3_MAT L1 MAT 0.465* 0.275 0.216 - 0.465
L1 MAT 0.025 0.001 0.162 0.187

S4 MAT - 0.131
- S3_MAT 0.349* 0.110 - 0.349
L1 MAT 0.372* 0.202 0.196 0.569
2010 53_ENG S3_MAT 0.422* 0.260 0.463 - 0.422
L1 MAT 0.292* 0.143 0.142 0.434
S4 ENG S3_ MAT 0.074 0.008 0.531 0.2 0.274
S4 MAT 0.572* 0.606 - 0.572
S3_ MAT L1 MAT 0.555* 0.446 0.308 - 0.555

*
s4 MAT L1 MAT 0.301 0.087 0.282 0.167 0.468
- S3_ MAT 0.301* 0.087 - 0.301
L1 MAT 0.104 0.018 0.39 0.494
2011 EN - )

0 S3_ENG S3_ MAT 0.702* 0.822 0.585 - 0.702
L1 MAT 0.266* 0.090 0.308 0.574
S4 ENG S3_ MAT 0.346* 0.151 0.496 0.075 0.42
S4 MAT 0.248* 0.088 - 0.248

*. Path coefficient is significant at the 0.05 level

The path coefficients of MAT constructs implies that all MAT constructs are
significantly contribute to explaining the variation in both S3_ENG and S4_ENG
constructs in both academic years except S3_MAT related to S4 ENG construct in
2010 and L1_MAT related to S3_ENG construct in 2011. With reference to R? values

of endogenous constructs, the proportion of variability in S3_ENG construct
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explained by the MAT constructs are 46% in 2010 and 59% in 2011. Similarly, the
amount of variance in S4_ENG construct explained by the MAT constructs are 53%
in 2010 and 50% in 2011. According to the f 2 values, it is clear that the effect of
mathematics in S3 and S4 on engineering performance is higher than that of
mathematics in Level 1. The indirect effects of L1_MAT construct on both
endogenous constructs S3-ENG and S4_ENG are significantly higher than its direct
effect on S3-ENG and S4_ENG constructs in both academic years.

7.7. Modeling MT Student Performance
7.7.1. Evaluation of the Measurement Model
Table 7.33 shows the results for formatively measured constructs S3_ENG and

S4 ENG for two academic years.

Table 7.33: Indicator statistics of formative constructs — MT performance

Academic 2010 2011
Year
. Outer Outer . Outer Outer
Constructs | Indicators Weights Loadings Indicators Weights Loadings
S3_ENG EE2802 -0.017 0.688 EE2803 0.099 0.581
EN2852 -0.034 0.568 EN2852 0.396 0.383
ME1822 -0.049 0.423 ME1822 0.086 0.335
ME2012 0.574* 0.872 ME2012 0.603* 0.787
MT2042 0.406 0.862 MT2042 -0.034 -0.025
MT2122 0.241 0.836 MT2122 -0.038 0.139
MT2152 0.660 0.404
S4 ENG ME2142 0.016 0.736 ME2832 -0.070 0.540
ME2832 0.540* 0.840 ME2850 0.262 0.679
ME3062 0.513* 0.810 ME3062 0.834 0.904
MT2032 -0.338 0.681 MT2032 -0.030 0.400
MT2072 -0.022 0.655 MT2072 -0.521 0.251
MT2142 0.036* 0.688 MT2142 0.410 0.606
MT2152 0.453* 0.748

*. Outer weight is significant at the 0.05 level

Outer loading in bold is not significant at the 0.05 level

By referring outer weights and outer loadings, it is clear that all inidcators of
S3_ENG and S4_ENG constructs in both academic years are supporting for capturing
the engineering academic performance except two indicators of S3_ENG construct
and two indicators of S4_ENG construt in 2011.
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The results for the reflective constructs, L1 MAT, S3_MAT and S4_MAT for two
academic years are presented in Table 7.34 and Table 7.35.

Table 7.34: Reliability and validity statistics of reflective constructs — MT

performance
Academic Outer Squared Cronbach'
Constructs | Indicators - Outer CR AVE
Year Loadings : s alpha
Loadings
L1 MAT MA1013 0.685 0.470
- 0.574 0.805 | 0.679
MA1023 0.942 0.888
S3 MAT MA2013 0.857 0.734
2010 - 0.678 0.861 | 0.756
MA2023 0.882 0.778
S4 MAT MA2033 0.877 0.769
- 0.65 0.851 | 0.74
MA3013 0.844 0.712
L1 MAT MA1013 0.825 0.680
- 0.631 0.843 | 0.729
MA1023 0.882 0.778
S3 MAT MA2013 0.923 0.852
2011 - 0.847 0.929 | 0.867
MA2023 0.939 0.881
S4 MAT MA2033 0.904 0.817
- 0.483 0.784 | 0.649
MA3013 0.694 0.482
Table 7.35: Fornell-Larcker criterion — MT performance
2010
L1_MAT S3_MAT S4 MAT S3_ENG S4 ENG
L1 MAT 0.824
S3_MAT 0.650 0.870
S4 MAT 0.519 0.606 0.860
S3_ENG 0.628 0.661 0.626 formative
- construct
s4 ENG 0.642 0.640 0.838 0.675 formative
- construct
2011
L1 MAT S3_MAT S4 MAT S3_ENG S4 ENG
L1 MAT 0.854
S3_MAT 0.696 0.931
S4_MAT 0.629 0.695 0.806
S3 ENG 0.488 0.708 0.564 formative
- construct
S4 ENG 0.407 0.621 0.624 0.721 formative
- construct

Note: The diagonal elements in bold, are the square root of AVE

149




The outer loadings reflect that all indicators of MAT constructs are significantly
important to their respective construct. The results of CR and AVE of three MAT
constructs in both academic years confirmed the internal consistency reliability and
convergent validity respectively. Also, the Fornell-Larcker criterion in Table 7.35 and
cross loadings confirmed discriminant validity of reflective constructs in both
academic years. Based on the evidence for both convergent validity and discriminant

validity, it is clear that there was sufficient evidence for construct validity.
7.7.2. Evaluation of the Structural Model
The results of structural model for MT performance in academic year 2010/2011 and

2011/2012 are provided in Table 7.36.

Table 7.36: Results of structural model— MT performance

Academic| Dependent| Independent Path §2 R? Indirect Total
Year constructs| constructs coefficients effect effect
S3_ MAT L1 MAT 0.650* 0.732 0.423 - 0.650
L1 MAT 0.216 0.045 0.302 0.519

S4 MAT 0.394
S3_ MAT 0.465* 0.206 - 0.465
L1 _MAT 0.344 0.138 0.284 0.628

2010 S3_ ENG 0.505
S3_MAT 0.437 0.223 - 0.437
L1 _MAT 0.248 0.144 0.394 0.642
S4 ENG S3_ MAT 0.077 0.012 0.764 0.309 0.385
S4 MAT 0.664* 1.131 - 0.664
S3_ MAT L1 MAT 0.696* 0.937 0.484 - 0.696
L1 MAT 0.281 0.086 0.347 0.629

S4_MAT 0.524
S3_MAT 0.500* 0.271 - 0.5
L1 MAT -0.009 0.000 0.497 0.488

2011 S3 ENG 0.502
S3_ MAT 0.715* 0.530 - 0.715
L1 MAT -0.166 0.025 0.573 0.407
S4 ENG S3_ MAT 0.446 0.152 0.470 0.209 0.655
S4_MAT 0.418 0.157 - 0.418

*. Path coefficient is significant at the 0.05 level

150



The path coefficients of MAT constructs related to endogenous constructs indicate
that only S4_MAT related to S4_ ENG construct in 2010 and S3_MAT related to
S3_ENG construct in 2011 are significantly contribute to explaining the variation in
endogenous constructs in both academic years. By referring the R? values of ENG
constructs, the amount of variance in S3_ENG construct explained by the MAT
constructs are 51% in 2010 and 50% in 2011. Also, the amount of variance in
S4 _ENG construct explained by the MAT constructs are 76% in 2010 and 47% in
2011. The f 2 values in both academic years reflect that the effect of S3_MAT and
S4 _MAT constructs on S3_ENG and S4 ENG constructs are higher than that of
L1 MAT construct. Furthermore, L1_MAT construct has significant indirect effect
on both S3_ENG and S4 _ENG constructs, even though it has no significant direct
effect.

7.8. Proposed Index to Quantify the Influence of Mathematics

The mathematical influence index proposed (Section 3.6) to determine the level of
influence of mathematics modules in Level 1 and Level 2 on student engineering
performance in Level 2 (S3 and S4) based on PLS-SEM approach. The proposed
index is a compromise between communality and redundancy which takes the both
predictive performance of mathematics constructs (MAT) and predictive performance
of structural model into account. The results of mathematical influence index for two
semesters: S3 and S4 by engineering disciplines for two academic years are
computed using the equation 11 in Section 3.6.

Table 7.37: Results of mathematical influenc index

Discipline 2010 2011 Mean
S3 (%) S4 (%) S3 (%) S4 (%)
CH 65.4 65.3 72.7 75.6 69.8
CE 50.7 64.1 56.1 64.3 58.8
CS 66.8 66.7 70.1 65.7 67.3
EE 66.2 75.9 66.9 70.3 69.8
EN 74.9 713 76.6 68.3 72.8
ME 61.9 66.4 70.1 63.9 65.6
MT 65.2 80.5 66.9 65.6 69.6
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Results in Table 7.37 indicate that the influence of mathematics modules in Level 1
and Level 2 on engineering performance in S3 and S4 are greater than 50% for all
disciplines in both academic years. Considering the two academic years in CH
discipline, the impact of mathematics on engineering performance is significantly

increased from 2010 to 2011 compared with other engineering disciplines.

7.9. Chapter Summary

The two facts of the conceptual validity of the theoritical model: measurement
validity and statistical conclusion validity (based on structural model) with respect to
the engineering disciplines are tested using PLS-SEM approach. The measurement
validity of all models is assessed for reflective and formative constructs separately
and it is found that all models possessed the basic requirments for measurement
relaiability and measurement validity. Furthermore, the assessment of structural
model found that all models also possessed the statistical conclusion validity. It is
observed that all models are statisfied with the level of conceptual validity and the
proposition defined in Section 3.1 is accepted. The proposed mathematical influence
index reveals that the impact of mathematics in Level 1 and Level 2 is significantly

high on engineering performance in Level 2 for all seven engineering disciplines.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

The conclusions, recommendations and suggestions based on the results of this study

are given below.

8.1.

Conclusions
The effect of mathematics in Level 1 and Level 2 on engineering performance in
Level 2 for a given discipline was statistically proved in this study.

The first canonical variate of engineering which is a linear combination of the raw
marks of engineering modules in Level 2 (V; = Y;—; b1;Y;) was found as a proxy
estimator for the student engineering performance in Level 2 as it did not

significantly deviate from the normal GPA.

As CCA technique does not consider in removing any effect due to covariate,
Partial CCA and Part CCA can be used as efficient statistical techniques to

eliminate the effect of mathematics in Level 1 and in Level 2 respectively.

PLS-SEM technique can be used to model the underlying relationship between
mathematics and engineering performance based on the results obtained from
Partial CCA and Part CCA.

The proposed index to determine the impact of mathematics on engineering
performance for a given discipline and to compare the impact of mathematics

among the engineering disciplines was \/[%Zi (i » corr?(Xyj, MATi))] * Ry

n; Jj=1

The student overall performance in Level 2 was significantly correlated with the
performance in mathematics modules in both S1 (MA1013) and S2 (MA1023) for
all engineering disciplines except MT discipline.

The association between student overall performance in Level 2 and mathematics
performance in S2 was higher compared with the association between student

overall performance in Level 2 and mathematics performance in S1.
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The level of impact of mathematics varies among engineering disciplines.

In all disciplines only the first canonical pair was found to be sufficient to explain

significant amount of variability of engineering and mathematics performance.

The overall impact of mathematics modules in S1 and S2 in Level 1 and
mathematics modules in S3 and S4 in Level 2 was significant on engineering

performance in S3 and S4 for all disciplines irrespective of two academic years.

When both mathematics modules in Level 1 and Level 2 were considered
simultaneously, the impact from mathematics in S1 (MA1013) was found lower
compared with the impact from mathematics in S2 (MA1023).

The individual effect of mathematics in Level 2 was considerably higher
compared with the individual effect of mathematics in Level 1 on the student

engineering performance in Level 2.

By comparing the joint effect of mathematics in Level 1 and Level 2 with their
individual effects, it was found that the joint effect of mathematics in Level 1 and
Level 2 on students’ engineering performance in Level 2 was significantly higher

compared with both individual effects of mathematics in Level 1 and Level 2.

Based on the results of the testing of hypotheses formulated in Chapter 7, the
influence of mathematics in S3 and S4 were identified as having significant
effects on engineering academic performance in S3 and S4 (in Level 2)

irrespective of the engineering disciplines.

The analysis of direct and indirect effects reveals that although direct effect of
mathematics in Level 1 on engineering performance in S3 and S4 was not
significant, there was a significant effect indirectly, which implied that
mathematics in Level 1 was still important in affecting students’ engineering

performance in Level 2.

The proposed mathematical influence index based on the results of PLS-SEM
approach reflects that the level of impact of mathematics in Level 1 and Level 2
was significantly higher on engineering performance in Level 2 for all seven

engineering disciplines.
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8.2.

8.3.

The impact of mathematics on engineering performance in Level 2 varies among
disciplines. The highest impact of mathematics was found in engineering
performance in EN discipline in S3 for both academic years. However, the least
impact was found in engineering performance in CE discipline irrespective of

academic year and the semester.

Recommendations
Engineering students are encouraged to acquire mathematical concept and
knowledge during their undergraduate level for better performance in engineering

sciences.

The results can be effectively used by both Mathematics and other departments to

improve the students’ performance in all engineering disciplines.

The methodology developed in this study needs to apply for all the compulsory
mathematics modules up to Semester 5 alone with the engineering performance in

Level 3 and Level 4 as well.

Suggestions for Future Research
Further investigation is required to find the impact of preceding engineering

modules on the academic performance of engineering students.

In this study except student performance based on marks other external variables
were not considered. It is essential to validate the underlying relationships
between students’ engineering performance using other influential variables as

well.

This study can be extended for other engineering faculties in Sri Lankan

universities and more academic years before implementing various decisions.
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1. Intro-duction

Higher edwecation is an important toal for the socioe-
conamic and techoological development of any conn.-
try as it provides capable manpower Lo transform the
respaarces inbo wealih. Many ressarchers bave made
extensive =forts o study varioss aspects of shadent
academic performance in kigher ednation. Improving
sndent academic performance is crucial importance
for the universities as their main objective is to pro-
vide qulity sdembion to their undergraduates with the
changes in higher edocation. Thers is an urgency o
loak into the efectiveness of the academic programs.
Thiis will lead to discower the possible Gctors that assist
to improve student academic performance.
Matheratics plays 2 major role in higher sducation
as i assists to enhance students’ knowledge in varioes
disciplines, especially. in engineering fields. Accned.
ing 1o Sazhin (1598), mathematics is a hognage of
expressing physical, chemical, and enginesring laws in
enginesring schences. Maoy ressarchers have revealed
the importance of mathematical knowledge for engi-
neering stadents to deveop therr kogical and analytical
thinking {Harris et al. 2015 Pyle 2001; Saxhin 1938)
Gosald {3012} stated that the mathematical knowledge
gained prior and during engineering edocation is
kighly essential in enginesring practics as they use 2

kigh level of curricolem mathematics and mathemat-
ical thinking in their work. Therefore, developing sta-
demits’ underctanding and improwing their mathemat-
ical thinking is 2 major sk in enginesring education.

In many coumiries incuding 56 Lanka, the pre.
universify requirement for engineering degrees ishased
mestly on mathematics for 21l higher educatiog instibs-
tioms. As a resalt, most of the smdents in the Facalty of
Engineering, University of Moratws=, Sri Lanka have
acquired hagher grades for mathematics in the Genaral
Certificate of Examination {G.C.E) Advanced Level.
However, in a recent study Nanayakkara amd Peinis
(215) have sheown that mathematice performanice of
engineering students in their undergradnate degree
programs af the Femity of Enginesering. University of
Moratuwa varies sgniScantly between and within dif-
ferent engineering disdplines. Consequently, io under-
stand the influence of mathematical knowledge that
enginesring stadent gained from their undergraduate
degree program is desiped.

Im recent decades, when a research problem contains
beoth epogenioes and endogenioes mieasared variahles 2
well as latent variables, Strucural Eguation Modeling
(SEM) 1s considered as cme of the most mseful advanced
methods among the multivariate statisfical ischmignes
to discover the underlying rdationships between them

E!TII' EADLS A& Naaspsbios ﬂn—i.llg'rll.l:m ﬂDq:rl'r-'l of Wi herruatic s, Feculty of Enginering, Univeniy of Worstows, Sort s 104600,
1 Lanftm.
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{Hair Ir et al 2016} Seversl educatiomal researchers
focused on examining the rebtinnships of stndent aca.-
demic performance and s infuental variables using
SEM techniques (Fenallar, Romdn, and Cuestas 2007,
Kusurlar et al 201 3; Bogatt and Chemosit 2005, Saenz
et al. 1999 Hecemily, partial Jeast-squares strucharal
equation modaling (PLS-5FM) has been nsed in vari-
ous applications toexplain the varizbility of the depen-
dzot variables { Bass ot 2. 2003; Cenfztelli and Basselier
2005 Henseler, Ringle, and Sinkovics 3009

I.L Theoretical framework for empirical testing
The mmpact of pre-university mathematical knowledge
on shadent performance in enginesring degree pro-
grams have widdy stadied in the literatare. Several
studies have confirmed that pre-mzthematical knowl-
edge significamly inflzence on enginesring mathemat-
ics courses {Barry and Chapman 2007 Eng, i, and
tulaibka 2010; Ismazil ef al 2012; Larpelon, Besende, and
Rz 2015). Hermon and Cale (2012) conduded that
pre-mniversity mathematical knowledge is an effective
predictor of academic performance in aernspace engi-
neerimg. A stady condocted among nndergradnates of
three engineering programs by Imman, Masor, and Hay-
ati (2011} revealed that stedents” owerall acdemic per-
formance was sgmiSicantly correated with the perfior-
mance in the mathematics and physical scence coarses
taleen in their respeciive programs and the impact was
relatively stromger for the mathematics coursss com-
pared to the physical scence coarses.

Mamy anthors have hesn reporied on the nse of uni-
wersity mathematics support with strong mathematical
tackgrounds. A stady by Les et 2l (2008) conduded
that first year engineering stndents” performance can
be improved with the help obtzined from the eniver-
bemefits of mathematics support in Eniversity engineer-
ing sudemis are well dooumented in several studies
{Pareons and Adams D005% Patd and Ligtle 3005 Pdl
and Crodft J00E.

Recently, Kanzyakkar and Peiris (2016) condded
that the mathematics in Level 1 is sigmificandly corre-
lated to stndent scademic performance im Leyed 2 drre-
spective af the seven engineering disciplines at the Fac-
ulty of Engineering, University of Mombnea, 5o Lanka

Jn the view af the past studies, it can be hypoth-
esized that studenis’ mathematics performance infle-
ences on their academic performance in engineening
Frograms.

gy

12 Purposs of the study

The present smdy i o find the inflsence of mathe-
matics on stzdents’ enginesring perdormance and pro-
pses 2 relationship model betwesn students’ mathe-
matics performance and their academic performance
of engineering sindents in Chemical and Process Engi-
meering. The PLE-SEM approach is employed in arder
todevelop a thearetical modd endertying the relafion-
ship between stadents’ mathematics performance and
their academic performance at the end af Level 2 in
Enginesring programs.

2. Materials and methods

1. Vanebles and data description

The study was conduct=d with 71 engineering under-
graduates who follow the BS5c. engineering degres in
Chemical and Process Engineering (CH) at the Fac-
ulty of Engineering, University of Maoratowa, &ri Lanka
in academic year 20112012 Data were collected fram
Exxmination dnvision, University of Momatuwa, Sba-
denis’ examination marks of mathematics courses in
Level 1 (e, semester 1 (51) and semester I (52]) 2=
well as Level 2 (i.e, semester 3 {53} and semester 4 (54])
an«d all compulsory enginesring coarses in Level 2 were
used. Table | presents the mathematice and engineer-
ing courses in CH which are considered in this smdy.

2. Partial least squares structuml aguation
modeling (PLS-SEM)

The SEM techmique is a non- parametric method which

allows to model smolaneonsly estimate and test

Table 1. ¥athomatics and engincaring couses in CH disdpling.
Subjpriam Serseir [ouneosde (e
Mlathormaticn

By e

Ergireming
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Figura 1. Ganaral FLS structural equation madel

complex theories with empirical data (Hair Jr et al
201 &). Stractural squation models are developed hased
on systematically related hypotheses following the sd-
entific method 1o explain the outcomes. An ordinary
leami-square (VL5)-based method is the estimation
procedure for PLS-SEM. This will estimaie the path
relationship {coefficents) in the model that mad-
mize the explained variance af the endogenous latent
variahles and minimire the unexplined variances.

A smple PLE structumal equation model is depicted
in Fig. 1. This contains two & ements, inner mode] and
outer model The mner mode, also known as the struc-
tural model, represenis the rdationship betwesn con-
structs (Le. varizhles that are not directly measared).
The outer model which is alss referred io as the mea-
sarement modsl represents the relatonship betwesn
the constracts and observed variables (Hair Jr =f 2l
FiLITR

There are two different ways in measarement
mondd: reflective and formative messurement. Refec-
tive measurement indicates that the construct camses
the measarement of the indicators. In contrast, for-
mative measurement is based on the assumption that
indicators canse the chamges in the construct. Aconed-
ing 1o Fig. 1. outer mode| for exngenous laient variable
represenits a formative modd while outer model for
endogenmas bitent variable is a reflective model.

The formative mezsurement model can be repre-
sented 2 follows:

oy + 0 Xa £ o £y £0, (1

where, £ is the exogenmas latent varizble, X; is the fh
exngenizs abserved varable, 1y is the regression coef-
fcient of Xy, £ is the error ferm of formative construct,
and i = 234

Cuier medel for endogenous

lateni virialila

Eguation (2} presents the rdationship betwesn
reflective constrct and its indicators mathematically:
¥ymim+3, (23
whu‘e.l}i:ﬂ:cjﬂladngmuusnbmedwe. §is
ﬂum&ngmnmhhnhm‘hbhljhﬁ:mcﬁdmimp-
resenting effect of 7 on ¥, §; is the measuremaent errar
for ¥y, end j= L3
The stractural model i defined as fallmws:

n=gE -+, (3}

where 8 is the path cosficient and ¢ i the error term
of icmer model.

The evalmtion of estimates of PL5-5FM consists two
separate processes for the mezsurement model and the
stroctural model With reference i assszment of the
measurement maoda, specific milera associzied with
formative and reflective modd evaluate the reliability
ansd validity of the construct measares.

2.3, Assessmant of model validation

The evaluation of estimates of FLS-5EM consists two
szparate processes for the mezsurement model and the
strucinral model. With reference to assessment of mea-
sarement model, spedfic criteria acociated with reflac-
tive and formative models to evaluaie the refiabiliry and
walidity of the construct measares were different proce-
dures and techniques (Fornell and Larcker 1581; Hair
etal. 2016).

Heflective measurement modsls are aseszed on
their intemal consistency relizhility and validity. To
establish indicaior reliahifity, the sqmared standard.
ized outer boadings of the indictors were considered.
Iniernal consistency reliability is measared throogh

160



ARG BTN I ST TS AT S TN, CRATT, JRd ™l: MRIN TL I RTA S ]

Cronbachs alpha, which provides an estimate of
the reliability based om the intercorrelations of the
bility (CR) which takes into accoumt the different
outer loadings of the indicator variables. To evalnate
convergent validity on the constroct level, average
vaniance extracted {AVE) oiteria are comsidered and
cross loadings of the mdicators on inditor kewel and
Fomnell- Larcker criterion on constnact level. Formative
measrement models are assesced for their comergent
validity, the weights and their significance as well =
outer boadings of the indicaters {Hair et al. 2016).

Thee simactural model isassessed afier the assessment
of measurement maodds is established. The coeflicients
of determination (7)), the magnitude, and sgnificnce
of path coefficients are the svaluation crileria for stroc-
tural meode {Hair et al. 2016).

24, Booctsrapping technigus

Ax PLS-REM is a oon-parametric method that does
ot require asmampiions ahowt the dala distribo-
tion, the significance tests cnnot be applied 1o test
whether the ooefidents are signifiemt. Therefore, a
nan-parametric bootstrapping lechnique was used to
test the significnce of varons remlis gsch as path
coeflicients, outer weights, mater loadings, and B val-
wss. [n bootstrapping, subsarmples are randamly drawn
using the remmpling with replacement procedore
The subsample is then ussd to estimate the PLS path
model and this process is repeated for all endom
subsamples. The estimations from the booksirap sub.
samples are used bo aszess the significance of PLE-SEM
resulis.

In this study, PLE-SEM approach was apphied s=p-
arately far both semesters; 53 and 54 in Level L These
mindds consist of two mnobserved bbeni variables:
students’ mathematics performance (MAT) as the
exogenous fommatively measred constroct and their
engineering performance (ENG) as the endogenous
reflectively measmared constroct. Observed variables of
MAT constrisct are prior and core mathemalics comrses
whilz enginesring courses are the observed warizhles
of ENG oomstroct with respect to the oorriculom of
each semester. That is, MAT construct as well 2 EMNG
canstruct have four and five observed varizbles in
the FLS structural model] for 53 and 5, respectively.
B ootstrap anabysis was dome with 5000 subsamples and

A , B
-

(T " | OEE
[T ¥ -
- Ty
LR e = v

Aguess . PLS structurzl medel for student perfomarnca in 2.

bias-corrected and accelerated bootstrap method was
lized

3. Results amd discussion

The PLE stmuciural model for stedent academic per-
formance in 53 and 54 were determined and shown in
Fig. 2 and Fig. 3, respactively.

Table 2 presents the reailis symmary of messre.
ment models in 23 a5 well as 54 inchuding outer weights
outer loadings, povalses, and evalnation oriteria

The weights of MAT indicators in 33 modd are sig-
mificant at the 5% level except MAIOLS {p — [L45EL
Also, this weight is negative and small, which i unac-
cepizhle. it cm be said that mathematics conrses in 53
(MA013 and MAD23) are relatively imporiant com-
pared with mathematics conrses in Levd 1. By refer-
ring the weights of MAT indicators in 54 model, it is
clear that the rdatively most important MAT indica.-
tor is MA B33 {(0712). Moreower, the weights of other
MAT indicators are not significam at the 5% level of
ggnifiance. However, the weight of MAI0I3 is oot
accepiable as in 53 mode. Thss, it is dear that Mathe-
matics conrse {MA1013) in 51 has a weak relationship
with engineering courses in Levd 2.

Since most of the formative indicatoes (MAT) in
beoth models are non-significant, their ooter loadings
were considered and it suggests that MAT mdiciors
can he inclisded in the PLS struchural modd s they are
greater than 050

The outer lcadings of the reflective indictors in 53
as well as 54 models denote that all engineering conrses
are highly correlated (2080} with engineering per-
formance except ME2122 course n 53, Moreover, the
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Tabls 2. Rezults of messwomant models
Forra v memureTeni modd Rt recas rrrsme mondel
WA (Dhsir ERG Cheier Squared Crom  Cronbachu l:nq_;: Foaruill- Lawcher
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LUk — L T LM T T DI s [CBED L T D
Iidory aFIOTE 10 oo [(Hom oEm LT [iT25
oo e 1w Lo Hem  oEn L] nmE
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Woms DOE 0BT DS oy [(Haes omm DT e
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results of sqoared outer loadings which refled the imdi-
cator reliabifity show that the amount of variation in
EMG indicators is exphined by its constract is con-
sudemably higher (=7 for all EMG indicators except
ME2112 indicator with a value of 464 in 53 model and
CH20H3 indicator (0477} in 54 modsl.

With reference to the velues of Croobach’s alpha and
composite rliability, it can be sid that reflective con-
struct in both PLS simciural models bave high lev-
ance extracied [AVE) valoes of 0,705 (in 53) and 0818
{im 54} are higher than the required minimoum level of
0.50. It suggests that ENG comstrudt in both modds
hawe high levels of convergent validity. The valses of
Formedl- Larcker criterion and cross loadings of reflec-
tive indicaiors {engineering courses) provide evidence
fior discriminant validity of reflective constrsct in both
mudels of 53 and 54. However, cross loading of MEZ 122
indicainr is considerably lower compared to other cross
loadings.

Hence, 2l modd evahmation critena provide support
fior the reabdlity and validity of the ENG constnacts in
boith reflective models (53 and 54

With respect o Table 3, the cosficient of determi-
ration (B} of both structural models in 53 and S4
are (L613 and 0647, respectivedy. That is, 61.3% of the
wariance in sudents’ emgineering performance in 53
explained by mathematics in Level 1 and 53. Consid-
ering the 54 performance, the students’ mathematics
performance explains &4 7% of the variance in their
engineering performamce in 54. The path coeficients
of structoral models of 53 (L7883 and 54 (0504}
reveal that the mathematics performance sgnifcanty

Tabda 3. Rezuhts of structural model.

Soamaies Path coeficiond i Paqaare Koy scjurvied
i 1 = 10T LEO LIF
w 1.4 == 10T LEd7 al el

imflsences the engineering academic performance of
CH students.

4. Conclusions and recommendations

This stndy adapted partial | st - square stroctral sgqoa-
tion modding (PLS-SEM]} to investigate the impact
of engineering stsdents’ mathematios performance on
their academic performance in chemical and process
enginesring courses. The results revealed that s demts”
amdemic performance in engineering couress is imfln-
enced by their mathematics performance, explining
1% and &49% of varance In semester 3 and semester 4,
respectively. Furthermore, it was fund that core math.
emabics courses are mare important compared with
prior mathematics courses. B is observed that both
mindelsare satisfied with thelevel of concephml vahdity
and the hypothesis defined is accepted.

The findings of this sudy mn be usefol for varioes
stakehalders im partioularly, the aademic staff of both
departments, Mathematics and Chemical and Process
Engineering to improve the shadents” academic perfor-
mance. The students are encouraged 1o acquire math-
ematical concept and knowlsdge during their under-
gradimte level for better performance i engineering
SCiETICES.

This gudy @n be extended for more engineering
disciplines and more academic years before implement
warimzs decisions, Purthermaore, this study has cansid-
ered only the eSect of mathematics courses which are
tasght in the university. Therefore, folure research can
identify other components that constitute the remain-
ing unexphined varance.
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ABSTRACT

In engineering sciences, mathematical knowledge is highly essential to improve the amalytical thinking of
engineering undergraduates. Therefore, a significant component of advanced mathematics has been included in the
engineering degree programs. The objective of this study is to explore the impact of mathematics in Level 1 on the
academic performance of undergraduate engineering students in Level 2. The study was conducted with engineering
students at the University of Moratuwa, Sri Lanka. Findings revealed that the mathematics performance in Level | was
significantly correlated with students”™ overall performance in all engineering disciplines. The impact of mathematics in
Semester 2 was significantly higher than the impact of mathematics in Semester | on the students’ performance in Level 2.
Furthermore, the impact of mathematics was significantly different among various engineering disciplines. The study
concluded that the performance in mathematics in Level | could indicate the trend towards the student academic

performance in all engineering programs.
KEYWORDS: Engincering Mathematics, Multivariate Multiple Linear Regression, Students” Academic Performance
INTRODUCTION

Mathematics i1s more than a tool for solving problems and it can develop intellectual maturity and logical thinking
of students. The skills in mathematics would certainly assist to enhance students” knowledge in other subjects such as
engineering, physics, accounting, etc. (Imran, Nasor and Hayati 201 1; Aina 2013; Alfan and Othman 2005). Especially. in
engineering sciences, mathematical knowledge is crucial importance to improve the analytical thinking of engineering
undergraduates. Pyle (2001) and Sazhin (1998) stated the importance of mathematical knowledge for engineering students.
A study by Goold and Devitt (2012), with the focus on professional engineers in Ireland, discovered that mathematical
knowledge gained prior and during engineering education is highly essential in engineering practice as they use a high
level of curriculum mathematics and mathematical thinking in their work. It is clear that mathematics is more important

foundation for the education of engineers.

In many countries, the pre-university requirement for engineering degrees 1s based mostly on mathematics for all
higher education institutions. Similarly, in Sri Lanka, for engineering undergraduate degree programs, higher mean Z score
of the individual Z scores of Mathematics, Physics and Chemistry subjects in General Certificate of Education Advanced

Level; G.C.E. (A/L) examination is the pre-requisite.

Pre-university qualification and admission criteria for university entrance, have been widely studied in the
literature and are commonly accepted to have a beneficial effect on students™ subsequent performance in a variety of
academic fields: Engineering (Ali and Ali 2010; Hermon and Cole 2012), Chemistry (Seery 2009), Medicine (Ali 2008;
Hailikari, Katajavuori and Lindblom-Ylanne 2008; Mufti and Qayum 2013), Equine and animal studies (Huws and Taylor

www.iaset.us editor(@iaset.us
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2008), Accounting (Alfan and Othman 2005) and Psychology (Huws, Reddy and Talcott 2006; Thompson and Zamboanga
2004).

Numerous studies have been investigated on the predictive validity of pre-university mathematical knowledge on
student performance in engineering degree programs and revealed that pre-university mathematical knowledge effect on
the performance of engineering students (Barry and Chapman 2007; Hermon and Cole 2012; Ismail, et al. 2012; Lee et al.
2008; Othman et al. 2009). Conversely, Adamson and Chfford (2002) and Todd (2001) found that engineering student
performance in university cannot be reliably predicted from pre-university qualification. A study by Nopiah, Fuaad. Rosli,
Arzilah, and Othman (2013) in Malaysia. was focused on predicting the performance of students in subsequent engineering
mathematics courses using pre-test. They found a weak correlation between the pre-test and performance in engineering

mathematics courses.

A study conducted among undergraduates of three engineering programs by Imran et al. (2011) revealed students”
overall performance in engineering programs were significantly correlated with the performance in the mathematics and
physical science courses taken in their respective programs. This correlation was relatively stronger for the mathematics
courses compared to the physical science courses. However, there 1s a lack of studies related to examining the impact of

mathematics in undergraduate engineering degree programs on student’ academic performance.

According to Sri Lankan education system, students entering university with diverse prior knowledge and
background. However, there is a high probability that the students who admitted to the Faculty of Engineering, University
of Moratuwa, Sri Lanka have obtained higher grades for mathematics in G.C.E. (A/L) examination. Nevertheless,
mathematics performance of engineering students in their undergraduate degree programs varies significantly between and
within different engineening disciplines. Hence, it 1s crucial to understand the impact of mathematical knowledge that
students acquired from their undergraduate degree programs. This knowledge would be useful for educational stakeholders
at different level of decision making. The purpose of this study is therefore to explore the impact of mathematics in Level 1
on the academic performance of undergraduate engineering students in Level 2.

MATERIALS AND METHODS

The study was conducted with 626 engineering students from seven different disciplines at the Faculty of
Engineering, University of Moratuwa, Sri Lanka for the academic year 2011/2012. Data were collected from Examination
division, University of Moratuwa after due permission was taken. Seven different engineering disciplines used for the
study are namely; Chemical and Process Engineering (CH), Civil Engineering (CE), Computer Science and Engineering
(CSE), Electrical Engineering (EE), Electronic and Telecommunications Engineening (ENTC), Materials Science and
Engineering (MT) and Mechanical Engineering (ME).

Students” examination marks of mathematics courses in both semesters in Level 1: semester 1 (51) and semester 2
(52) and all compulsory courses other than mathematics courses in both semesters in Level 2: semester 3 (53) and semester
4 (54) were utilized. Average marks of these courses were considered as the students” academic performance for S3 and 54
separately. Furthermore, academic performance of these courses irrespective of 83 and 5S4 was considered as an average of

53 and S4.

Explanatory data analysis was carried out initially followed by ANOVA to examine the significant differences in
mean marks of mathematics courses in Level | among various engineering disciplines. Regression models were developed

using the stepwise method and furthermore, multivanate regression was applied to the academic performance of 53 and

Impact Factor (JCC): 2.6305 NAAS Rating: 3.19
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RESULTS AND DISCUSSIONS
Explanatory Data Analysis

Table | presents descriptive statistics for each of the explanatory and response vanables irespective of
engineering students’ disciplines. It is clear that both mean and median marks in 51 are higher compared with
corresponding values in 52 indicating student performance of mathematics in S1 1s better than that in S2. However, such a

difference in both mean and median was not observed in average marks in 53 and S4.

Table 1: Descriptive Statistics of Students® Marks

Math_S1 68.9 0.48 69.3
Math_82 57.2 0.54 56.4
Mean_S3 66.3 0.33 66.6
Mean_54 66.4 0.33 66.9
Mean_composite | 66.4 031 6.8

The box plots in Figure | and Figure 2 exhibit the distribution of mathematics marks in 81 and 82 by engineering
disciplines respectively. According to Figure 1, the highest average mark for the mathematics course in 81 is from ENTC
discipline (79.7) followed by CSE discipline (77.1) while the lowest average mark is from MT discipline (48.7). Most of
the mathematics marks (Math_S1) in all disciplines except MT discipline have lied between 50 and 90 region. However,
few students in CE, CH and CSE disciplines have obtained higher marks than the highest mark obtained by ENTC
discipline indicating high marks by individuals were obtained by students in CE, CH and CSE disciplines.
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Figure 1: Distribution of Mathematics Marks in S1 by Engineering Discipline

EE

Figure 2: Distribution of Mathematics Marks in 52 by Engineering Discipline
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Figure 2 shows that the vanations of all distributions of mathematics marks in 52 are higher than that in S1. Most
of the students in all disciplines except CSE discipline, obtained between 40 and 70 percent for mathematics course in 52.
Students of CSE discipline have obtained the highest average mark (73.9) while students from MT discipline have obtained
the lowest average mark (40.1) for mathematics in S2. Comparing both figures 1 and 2, it i1s clear that the performance of
mathematics has decreased from S1 to S2 in all disciplines. The overall best performance in both mathematics courses are
from students of ENTC and CSE disciplines while the least performance is from students of MT discipline.

Comparison Among Engineering Disciplines

ANOVA was conducted for students’ mathematics marks in 81 and 52 separately for a randomly selected sample
size of 100 students in order to compare mathematics marks among engineering disciplines. This was repeated five times
with replacement sampling. The null hypothesis tested was there 1s no significant difference between mean marks of
mathematics course among engineering disciplines. The summary of the ANOVAs carried out for each sample are shown
in Table 2. Results concluded that both mean marks of mathematics courses in 81 and S2 among engineering disciplines
are significantly different.

Table 2: ANOVA for Mathematics Courses

Math_S1 | 0.000 | 0.000 | 0.000 [ 0,000 | 0.000

P - value

Math_S2 | 0.000 | 0.000 | 0.000 | 0,001 | 0.000

Impact of Mathematics Marks on Students® Performance

Table 3 shows the correlation coefficient between marks of mathematics and response variables and found that
correlation coefficients for all pairs are significantly greater than zero (P < 0.01). Furthermore, results indicate mathematics
course in 82 is strongly correlated with students’ overall performance than mathematics course in 81 indicating that more

impact can be expected from marks of Math_S2 on the overall performance in Level 2 than that of marks of Math_S1.

Table 3: Correlation Coefficient Between Marks of Mathematics and Response Variables

Math_S1 ART=* A1R** Ag1**
Math 82 S01*=* 524*= S541*=*
**_Correlation is significant at the 0.01 level (1-tailed).

Table 4: Correlation Coefficient Between Marks of Mathematics and Responses by Discipline

(N=125) | (N=96) | (N=96) | (N=99) | (N=44) | (N=T1) | (N=95)

Mean_S3 Math_S1 0.314*=* | 0.332=* | 0.238* | 0.461*= | 0.393** | 0.483** | 0.482**
Math 82 | 0.485%* | 0.631%* | 0.575%* | 0.606%* | 0.556%* | 0.603%* | 0.501**
Mean S4 Math S1 0.342%* | 0.224* | 0233* | 0.372*%* | (0.198 | 0.446%* | 0.492%*

Math 52 0.490** | 0.617%* | 0.613** | 0.600%* | 0.482*%* | 0.600** | 0.507**
Mean composite | Math S1 0.360** | 0307=* | 0253* | 0.439** | D.308* | 0.486** | 0.507**
Math 52 0.534** | 0.659%* | 0.634%* | 0L635%* | 0.541%* | 0.630** | 0.524%*
**_ Correlation is significant at the 0.01 level (1-tailed)
*_ Correlation is significant at the 0.05 level (1 -tailed)

Furthermore, the correlation between marks of Math_S1 and Math_3S2 and the average marks of the courses in 83

and 54 as well as Level 2 with respect to engineering discipline are shown in Table 4. Results show significant correlation

between predictors and response variables for all disciplines at the 0.05 level except the correlation between mathematics
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course in 51 and average marks of 54 of MT discipline. Moreover, the correlation between mathematics course in 52 and

students’ overall performance are stronger compared with the correlation between mathematics course in 51 and students”
overall performance.

Multiple Linear Regression (MLR)

Stepwise regression analysis was carried out on the three students” academic performance outcomes: average

marks of 53, average marks of 54 and composite of 83 and 54, wrespectively to their discipline. Table 5 denotes model
statistics, ANOWVA F-statistics as well as coefficients.

Table 5: Summary of the Fitted Model Irrespective of the Disciplines

Mean 53 | Mean 5S4 | Mean Composite
Constant 41.185 44.226 42.501
Math_S1 0.198 0.105 0.155
Math_S2 0.200 0.261 0.231
ANOVA F statistic 135.69 127.13 152.52
P-value 0.000 0.000 0.000
Std. Error of the Estimate 6.91 6.88 6.41
R-sq 30.4 29.0 329
R-sq (adj) 30.1 28.8 327

Predictors: (Constant), Math_S1, Math_52
Dependent Variable: Average marks

Models with average marks of 53 (Mean_5S3) and average marks of 5S4 (Mean_S4) as the outcome measure,
explained 30% and 29% of the variation in students’ academic performance respectively. Similarly, model with the
composite outcome explained 33% of vanation in students” academic performance. Though the amount of variance
explained by the fitted model is not sufficient, P-values for the F statistic denote that all three fitted models are significant
at the 0.05 level. Moreover, both predictors: Math_S1 and Math 32 are significant (P < 0.01) in all three models.

However, residual analyses suggest that all fitted models are not adequate due to the violation of normality assumption.

Furthermore, regression analysis was carmied out for engineering student discipline wise, to identify the impact of

mathematics separately. Mean_composite was considered as the response variable and the model statistics, ANOVA

F-statistics and coefficients are provided in Table 6.

Table 6: Summary of the Fitted Model by Discipline

CE ENTC | ME EE MT CH CSE
Constant 45.615 | 40.690 | 37.970 | 41.300 [ 40.250 [ 35.330 [ 19.280
Math 51 0.132 0.174 0.335
Math 52 0249 | 0443 | 0460 | 0293 | 0454 | 0618 | 0.290
ANOVA F statistic 2088 | 7197 | 6332 | 4223 | 1741 | 4549 | 2976
P-value 0.000 | 0000 | 0000 | 0000 | 0,000 | 0.000 | 0.000
Std. Error of the Estimate | 4.42 5.24 4.96 3.84 6.67 8.31 5.84
R-sq 329 43.4 40.3 46.8 294 39.7 39.3
R-sq (adj) 318 42.8 39.7 45.7 27.7 38.9 379

Dependent Variable: Mean composite

R-square values for all seven models, illustrated that the fitted models explained 29% to 47% of the vanation in
students’ academic performance. F statistics of ANOVA output imply that all seven fitted models are significant at the 0.05

level. However, mathematics course in S1 1s significant at the 0.05 level in three fitted models only and that is for CE, EE
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and CSE disciplines. Mathematics course in 52 has the strongest influence on students” academic performance in all
engineering disciplines. Moreover, observations on the t-value indicate that mathematics course in 82 is a high significant
predictor in determining students” performance. Furthermore, residual analysis confirmed that all the fitted models are

adequate.
Multivariate Multiple Linear Regression

In order to determine how mathematics courses in S1 and 52 effect on academic performance in 53 and 5S4,
multivariate multiple linear regression analysis was utilized as it consider multiple responses and multivariate tests provide

a way to understand the relationships of predictors across separate response measures.

Table 7 shows the Pearson correlation between Mean 53 and Mean 5S4 discipline wise. According to these
results, it is clear that academic performance of 53 and 54 (Mean_S3 and Mean_S4) are highly correlated for all
disciplines and this was suggested that multivanate MLE could be applied for Mean_S3 and Mean_ S4 as the outcomes

with respect to engineering disciplines separately.

Table 7: Pearson Correlation Between Mean_S3 and Mean_S4

Discipline CE_|ENTC [ME |EE_|MT |[CH | CSE
Correlation coefficient | 0.665 | 0.793 | 0.738 | 0.813 | 0.834 | 0.817 | 0.851

Table 8 presents the multivariate MLR. model summaries for each discipline separately. Results in Table & show
that Math_S2 is significant at 0.05 level for all fitted models, while Math_S1 is significant only for three disciplines: CE,
EE and CSE in both semesters S3 and 54. F statistics and residual analysis confirmed the adequacy of all fitted models in
both semesters. R-squared values for all models, illustrated that the fitted models explained 23% to 45% of the vanation in
students’ academic performance. Furthermore, these results indicate that in some disciplines, academic performance in 83

1s more predictable than academic performance in $4 from mathematics courses in Level 1.

Table 8: Discipline Wise Multivariate MLR Model Summary

CE ENTC ME EE MT CH CSE
Dependent Variable: Mean S3
Constant 48.31%% | 20.26%* | 34.97** | 30.55%* | 34 43%* | 20 43%+* | |Q.Og**
Math_S1 0.111%* 0.15 0.071 [ 0212** | 0.156 0.207*% | 0.319+#
Math_S2 0.227%% | 0.449%* | 0.429%% | 0.297+% | 0.380%* | 0.466%* | 0.279++
ANOWVA F statistic 22 11%= | 32.82%* | 23.78%* | 39.38%* | 10.27** | 2] B9** | 25.65%*
Std. Error of the Estimate |  4.59 6.11 5.62 4.24 6.41 8.24 6.03
R-sg 26.61 41.38 3384 45.07 33.38 39.17 358
R-sq (adj) 254 40.12 3241 43.92 30.13 37.38 344
Dependent Variable: Mean S4
Constant 42.54%% | 41.91%* | 34 57** | 43.06%* | 42.2]1%* | 2R 40%* | |R.TI**
Math_S1 0.156%*% | 0.015 0.057 [ 0.135%* | -0.03 0.176 | 0.349+*
Math_S2 0.274%% | 383** | 0.463*%% | 0.20%* | 0.466%* | 0.561%* | 0.200++
ANOWVA F statistic 2391%= | 28.7%* | 2R.5%F | 3L.BR¥* | 6.24%% | 20.41%* | 26.79%*
Std. Error of the Estimate |  5.54 5.12 5.46 4.14 787 0.53 6.39
R-sg 28.16 38.16 38.00 39.91 23.33 37.51 36.8
R-sq (adj) 26.98 36.83 36.67 38.66 19.59 35.67 35.43
M test - F statistic 0.73 3.39* 0.05 3.05*% 3.B8* 0.10 0.26
M2 test - F statistic 1.07 1.79 0.31 0.03 0.75 1.06 0.19
* p<0.1; ** p<0.05

The first multivariate test (M1 test) revealed that the parameter for Math_S1 is the same for the academic
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performance of 83 (Mean_53) and 54 (Mean_5S4) in four disciplines; CE, ME, CH and CSE. In other words, the parameter
for Math_S1 is not the same for the academic performance of 53 and 84 in ENTC, EE and MT disciplines. The parameter
for Math S2 is the same for the academic performance of 83 (Mean_53) and 54 (Mean_5S4) in all seven disciplines is

exposed from the second multivanate test (M2 test).

These results suggest that if a student who studied in any engineering discipline, was able to perform well in the

mathematics courses in Level 1, it 1s likely that he/she would perform well in courses in Level 2 as well.
CONCLUSIONS

It can be inferred that students’ performance of mathematics in Level 1 is significantly different among various
engineering disciplines. The impact of mathematics in Semester 2 was significantly higher than the impact of mathematics
in Semester | on the students” academic performance in Level 2 irespective of the engineering disciplines. Moreover, the
effects of mathematics courses in Level 1 are equally performed on students’ academic performance in 83 and S4. The
performance in mathematics in Level 1 is a good indicator to judge student academic performance in engineering programs

in Level 2. This analysis is recommended to carry out for more years before implement various decisions.
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Abstract. Mathematics plays a key role in engineering sciences as it assists to develop the
intellectual maturity and analytical thinking of engineering students and exploring the student
academic performance has received great attention recently. The lack of control over covariates
motivates the need for their adjustment when measuring the degree of association between two
sets of variables in Canonical Correlation Analysis (CCA). Thus to examine the individual
effects of mathematics in Level 1 and Level 2 on engineering performance in Level 2, two
adjusted analyses in CCA: Part CCA and Partial CCA were applied for the raw marks of
engineering undergraduates for three different disciplines, at the Faculty of Engineering,
University of Moratuwa, Sri Lanka. The joint influence of mathematics in Level 1 and Level 2
is significant on engineering performance in Level 2 irrespective of the engineering disciplines.
The individual effect of mathematics in Level 2 is significantly higher compared to the
individual effect of mathematics in Level 1 on engineering performance in Level 2.
Furthermore, the individual effect of mathematics in Level 1 can be negligible. But, there
would be a notable indirect effect of mathematics in Level 1 on engineering performance in
Lewvel 2. It can be concluded that the joint effect of mathematics in both Level 1 and Level 2 is
immensely beneficial to improve the overall academic performance at the end of Level 2 of the
engineering students. Furthermore, it was found that the impact mathematics varies among
engineering disciplines. As partial CCA and partial CCA are not widely explored in applied
work, 1t 1s recommended to use these techniques for various applications.

1. Introduction

The studies on the factors that influence students academic performance has received great attention
among researchers. Several researchers have stated the importance of mathematical knowledge for
engineering students to develop their analytical thinking [1-3]. A study by [4] revealed that
mathematics in Level 1 is significantly influenced on students” overall academic performance in Level
2 irrespective of the seven engineering disciplines at the Faculty of Engineering and the impact of
mathematics varies among engineering disciplines. This study is therefore to determine the individual
effect of mathematics in both Level 1 and Level 2 separately on engineering performance in Level 2.
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2. Materials and Methods

2.1. Data Description

The study was conducted with engineering undergraduates from three different disciplines namely:
Civil Engineeering (CE), Mechanical Engineering (ME) and Electronic and Telecommunications
Engineering (EN) at the Faculty of Engineering, University of Moratuwa, Sri Lanka for the academic
year, 2011/2012. Students’ examination marks of mathematics modules in Level 1 (i.e. semester 1
(S1) and semester 2 (S2)) as well as Level 2 (i.e. semester 3 (53) and semester 4 (S4)) and all
compulsory engineering modules in Level 2 were used. Table 1 presents the mathematics modules
followed in each semester in Level 1 and Level 2.

Table 1. Mathematics modules in Level 1 and Level 2.

Academic Level  Semester  Module Code Module Name
Level 1 S1 MAI1013 Mathematics
s2 MA1023 Methods of Mathematics
Level 2 S3 MA2013 Diftferential Equation
MA2023 Calculus
54 MA2033 Linear Algebra
MA2053 Graph Theory
MA3013 Applied Statistics

2.2. Unadjusted and Adjusted Canonical Correlation Analysis (CCA)

In this study unadjusted CCA and adjusted CCA: partial CCA [5] and part CCA [6] were used. The
CCA was used to examine the joint effects of mathematics in Level 1 and Level 2 on engineering
performance in Level 2.The partial CCA was used to find the individual effect of mathematics in
Level 2 on engineering performance in Level 2, when the effect of mathematics in Level 1 is removed
from both groups, as the students have already completed mathematics in Level 1 at Level 2. The part
CCA was used to determine the individual effect of mathematics in Level 1 on engineering
performance in Level 2 when the effect of mathematics in Level 2 is eliminated from engineering
performance in Level 2.

3. Results and Discussion

3.1. Correlation Analysis

Correlation analysis confirmed data are suitable for CCA as most of the mathematics and engineering
variables are significantly correlated (p<0.05) within their sets as well as between the two sets for all
disciplines. Thus, adjusted CCA (part CCA and partial CCA) for two semesters in Level 2 (S3 and S4)
were done separately for each engineering disciplines.

The marks of all compulsory engineering modules in two semesters (83 and S4) in Level 2 are the
dependent set of variables, but the number of variables in both S3 and S4 varied based the
engineering disciplines. The results of unadjusted and adjusted CCA were summarized mainly
focusing on the mathematics variables.
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3.2. Impact of mathematics in Level 1 and semester 3 on the engineering performance in semester 3
The results of unadjusted and adjusted CCA for student performance in S3 by their engineering
disciplines are summarized in Table 2.

3.2.1. CCA. Mathematics modules in 81 and S2 in Level 1 and S3 are taken as the predictor set. The
p-value of Wilk’s lambda test statistics confirmed that only the first canonical variate pair is
statistically significant (p < 0.05) for all engineering disciplines. It implies that the first canonical
variate pair is sufficient to explain a significant amount of variability of the predictor set and
dependent variable set. According to the first canonical correlation (CC), it is clear that student
mathematics performance is strongly correlated with engineering performance in 53 for all disciplines
(CC =0.6). The proportion of the variance in the first canonical variate of engineering performance
explained by the first canonical variate of the mathematics performance varied from 39% (in CE) to
70% (in EN). The canonical loadings of mathematics variables reflect that all mathematics variables
are strongly associated with its first canonical variate except MAI013 in all disciplines. The
redundancy index of engineering indicates that the explainable variability of engineering performance
by the first canonical variate of mathematics varied from 12% (in CE) to 40% (in EN).

3.2.2. Part CCA. The two mathematics modules in Level 1 are the predictor set while mathematics
modules in 83 are the control set, which eliminates its influence from the dependent set. By referring
p-value of Wilk’s lambda test statistics, it is clear that at least a first canonical variate pair of part CCA
does not explain a statistically significant amount of variability of the predictor and dependent sets for
all disciplines (p=0.1). It implies that the linear relationship between mathematics in Level 1 and
engineering performance in S3 is not statistically significant with the effect of mathematics in S3
partialed out of the engineering performance in S3 for all disciplines. Furthermore, the first part
canonical correlations are found to be less than 0.5 for all disciplines. It confirmed that mathematics in
Level 1 is weakly correlated with engineering performance when the effect of mathematics in 83 is
eliminated from engineering performance in S3. The results of squared canonical correlations indicate
that the variation in the first canonical variate of engineering is explained by the first canonical variate
of mathematics in Level 1 is less than 18% for almost all disciplines. In addition to that, the
redundancy measures in all disciplines imply that amount of variability in mathematics and
engineering sets explained by their opposite first canonical variate are not sufficient.

3.2.3 Partial CCA. The two mathematics variables in 83 as the predictor set and two mathematics
variables in both S1 and S2 (in Level 1) as the control set, which eliminates its influence from both
predictor and dependent sets are comprised in partial CCA. With reference to p-value of Wilk’s
lambda test statistics, it is clear that the first canonical variate pair is sufficient to explain a significant
amount of variability of the predictor set and dependent variable set for all disciplines. Based on the
results of first partial canonical correlations, it can be seen that the mathematics in 83 has moderately
strong linear relationship with the engineering performance in 83 (CC = 0.5) for all disciplines except
CE discipline, when the effect of mathematics in Level 1 is removed. The squared canonical
correlations illustrate that the first canonical variate of mathematics accounted for 20% (in CE) to 55%
(in EN) of the variance in the first canonical variate of engineering and it reflects that mathematics in
S3 is significantly influenced on engineering performance in 83, even after the effect of mathematics
in Level 1 is removed. Moreover, the canonical loadings reveal that mathematics variables are strongly
correlated (=0.75) with their first canonical variates for all disciplines. The redundancy index of
engineering reflects that the proportion of variance in engineering performance in 83 explained by the
first canonical variate of mathematics also varied from 5% (in CE) to 23% (in EN).
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3.3. Impact of mathematics in Level 1 and Level 2 on the engineering performance in semester 4
The summary of results of CCA, Partial CCA and Part CCA for academic performance in 54 is
presented in Table 2 for the same three engineering disciplines.

3.3.1. CCA. As in Section 3.2.1, mathematics in 81 and 82 in Level 1 as well as 83 and 84 in Level 2
are taken as the predictor set. By referring the p-value of Wilk's lambda test statistics, it can be said
that a significant amount of variability of predictor and dependent sets can be explained by the first
canonical variate pair. The first canonical correlations reveal that mathematics in both Level 1 and
Level 2 has a significantly strong linear relationship (CC > 0.7) with the engineering performance in
S4. According to the canonical loadings, mathematics in S1 (MA1013) is weakly correlated with its
first canonical variate whereas the remaining mathematics variables are significantly correlated with
their first canonical variate for all disciplines. The amount of variance in engineering performance in
S4 explained by the first canonical variate of mathematics in both Level 1 and Level 2 varied from
25% (in EN) to 34% (in CE) and it can be concluded that a considerable amount of variability in
engineering performance in S4 can be explained by the mathematics performance in both Level 1 and
Level 2.

3.3.2. Part CCA. The two mathematics variables in Level 1 are considered as the predictor set and the
control set which removes its effect from dependent set, contains mathematics variables in both S3 and
S4 in Level 2. With respect to the p-value of Wilk’s lambda test statistics, the first pair of canonical
variate in Part CCA is not statistically significant (p > 0.05) for all disciplines. This implies that at
least a first canonical variate pair of Part CCA does not explain a statistically significant amount of
variability of the predictor and dependent sets. Based on the results of part canonical correlation, it is
clear that mathematics in Level 1 has a weak association with engineering performance in S4, after
eliminating the effect of mathematics in 83 and S4. It is confirmed by the redundancy indices of
engineering performance, which found less than 5% of the total variance of engineering performance
that can be explained by the first canonical variate of mathematics in Level 1.

3.3.3. Partial CCA. The mathematics modules in 83 and S4 in Level 2 are the predictor set while
mathematics modules in Level 1 are considered as the control set. The first canonical variate pair of
Partial CCA is statistically significant (p < 0.05) as revealed by the p-value of Wilk’s lambda test
statistics. That is, the first canonical variate pair is sufficient to explain a significant amount of
variability of the predictor set and dependent variable set when the effect of mathematics in Level 1 is
eliminated from both mathematics and engineering performance in Level 2. As the effect of
mathematics in Level 1 is statistically controlled by partial correlation, the results confirmed that the
mathematics in S3 and S4 has a significant relationship with the engineering performance in 54
(>0.55). The squared canonical correlations show that the first canonical variate of mathematics
accounted for 31% (in EN) to 46% (in CE) of the variance in the first canonical variate of engineering.
Furthermore, the proportion of variance in engineering performance in S4 explained by the first
canonical variate of mathematics in both §3 and S4 varied from 13% (in EN) to 24% (in CE) after
adjusting for mathematics in Level 1.
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Table 2. Results of unadjusted and adjusted CCA for S3 and S4 for the three selected disciplines.

Mathematics performance

Engineering

performance
Semester Discipline cC E% P-value Canonical Loadings ) )
Variance Varance
Extra  extracted Red. extracted Red,
MAI013 MAI023 MA2013 MA2023 MAZ2033 module
53 CE CCA 0.623 0.388 <.0001 0.428 0.765 0.758 0.862 - - 52.12 20.26 30.39 11.81
Part CCA 0.292 0.085 0.217 0.045 0.966 - - - - 46.74 3.99 2748 2.35
Partial CCA 0.448 0.200 0.002 - - 0.762 0.929 - - 72.19 14.46 26.23 5.26
EN CCA 0.834 0.696 <.0001 0.373 0.698 0.838 0.941 - - 55.38 3853 56.90 39.59
Part CCA 0.339 0.115 0.312 0.055 0.958 - - - - 45.99 5.29 18.80 2.16
Partial CCA 0.739 0.547 <.0001 - - 0.783 0.909 - - 71.94 39.34 42.96 23.49
ME CCA 0.769 0.591 <0001 0.338 0.641 0.860 0.915 - - 52.54 31.04 37.10 21.92
Part CCA 0.415 0.173 0.167 -0.189 0.891 - - - - 41.43 7.15 29.61 5.11
Partial CCA 0.684 0.467 <.0001 - - 0835 0.897 - - 75.11 3511 24.55 11.47
54 CE CCA 0.766 0.587 <.0001 0.374 0.602 0612 0.693 0.736 0.865 44.10 25.90 57.29 33.66
Part CCA 0.146 0.021 0.962 -0.260 0.842 - - - - 3R.H82 0.83 26.18 0.56
Partial CCA 0.679 0.461 <.0001 - - 0516 0.579 0.654 0.825 42.75 19.72 51.13 23.59
EN cCA 0.700 0.490 <.0001 0.203 0.773 0.666 0.865 0.846 - 50.90 2495 433 2474
Part CCA 0.315 0.099 0.146 0.941 0.403 - - - - 44.29 4.40 27.73 3.86
Partial CCA 0.559 0312 0.000 - - 0518 0.566 0.773 - 53.85 16.81 33.55 12.67
ME CCA 0.758 0.575 <.0001 0.329 0.773 0.562 0.791 0.546 0.624 38.92 22.36 52.80 30.34
Part CCA 0.284 0.081 0416 -0.134 0914 - - - - 42.70 3.44 28.82 232
Partial CCA 0.592 0.350 <.0001 - - 0.369 0.728 0.330 0.633 2938 10.30 43.62 15.29




3.4. Comparison

According to the results of unadjusted and adjusted CCA for both academic performance in 83 and 54,
it can be seen that the level of adjusted canonical correlations; partial canonical correlations and part
canonical correlations are reduced due to the relevant adjustments. This implies that the joint effect of
mathematics in Level 1 and Level 2 on engineering performance in Level 2 is significantly higher
compared to the individual effects of mathematics in Level 1 and Level 2. By comparing the results of
partial CCA and part CCA, it is clear that the individual effect of mathematics in Level 2 is
significantly higher than the individual effect of mathematics in Level 1 on the students’ engineering
performance in Level 2. Moreover, redundancy measures of partial CCA indicate that the individual
effect of mathematics in Level 2 on engineering performance is significant, even after adjusting for
mathematics in Level 1. Conversely, the individual effect of mathematics in Level 1 on engineering
performance is not sufficient after eliminating the effect of mathematics in Level 2. Though the
individual effect of mathematics in Level 1 is not significant, it can be a sufficient indirect effect of
mathematics in Level 1 on engineering performance.

4. Conclusion

The joint effect of mathematics in Level 1 as well as Level 2 is significant on engineering performance
in Level 2 irrespective of the engineering disciplines. As expected, the joint effect of mathematics in
Level 1 and Level 2 on engineering performance in Level 2 is significantly higher compared with both
individual effects of mathematics in Level 1 and Level 2. Moreover, the individual effect of
mathematics in Level 1 is extensively lower compared with the individual effect of mathematics in
Level 2 on the students’ engineering performance. This reveals that it is not worth considering only
the individual effect of mathematics in Level 1 on engineering performance. However, there exists a
significant indirect effect of mathematics in Level 1 on engineering performance in Level 2.
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Abstrac—Mathematics plays a major role in higher
education as it is particularly essential to develop the analytical
thinking of students. Investigating the student academic
performance has been a crucial aspect of the educational
research recently. The objective of this study is to explore the
relationships between students’ mathematics performance in
Level 1 and Level 2 with their engineering performance in Level
2 separately. Firstly, Canonical Correlation Analysis was
employed to study the joint impact of mathematics in Level 1 and
Level 2 on engineering performance. The two adjusted analyses;
Partial Canonical Correlation Analysis and Part Canonical
Correlation Analysis were used to determine the unique effect of
mathematics in Level 1 and Level 2 on students’ engineering
performance in Level 2. The study was conducted with
engineering undergraduates from Chemical and Process
Engineering discipline at the Faculty of Engineering, University
of Moratuwa, Sri Lanka. Results revealed that the mathematics
in Level 1 and Level 2 jointly influenced on students’ engineering
performance in Level 2. Adjusted analyses showed that unique
effect of mathematics in Level 2 is significantly higher compared
to the unique effect of mathematics in Level 1 on students’
engineering performance in Level 2. But, there would be a
notable indirect effect of mathematics in Level 1 on engineering
performance in Level 2. It can be concluded that the combined
effect of mathematics in both Level 1 and Level 2 is immensely
beneficial to improve the overall academic performance at the
end of Level 2 of the engineering students.

Keywords Zii ing th tics;  part  canonical
correlation; partial ¢ ical correl, d demi
performance

I. INTRODUCTION

Identification of various factors that influence on student
academic performance has become crucially important in
higher education recently. Mathematics plays a vital role in
higher education as it is particularly essential to develop the
analytical thinking of students. Mathematical skills would
support to enhance students’ knowledge in a wide range of
disciplines, especially, in engineering sciences. Several
researchers have stated the importance of mathematical
knowledge for engineering students to develop their logical
thinking [1-3].

In many countries including Sri Lanka, the pre-university
requirement for engineering degrees is based mostly on
mathematics for all higher education institutions. As a result,
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most of the students in the Faculty of Engineering, University
of Moratuwa, Sri Lanka have acquired higher grades for
mathematics in the General Certificate of Examination
(G.C.E.) Advanced Level. Recently, a study by [4] revealed
that mathematics in Level 1 is significantly influenced on
students’ overall academic performance in Level 2 irrespective
of the seven engineering disciplines at the Faculty of
Engineering, University of Moratuwa, Sri Lanka. Further, it
was found that the level of impact of mathematics varies
among engineering disciplines. In that study, mathematics
marks in Level 2 were also included in the overall academic
performance in Level 2. Therefore, the objective of the present
study is to determine the direct impact of mathematics in both
Level 1 and Level 2 separately on engineering performance in
Level 2.

II. MATERIALS AND METHODS

A. Data Description

The study was conducted with 71 engineering
undergraduates who follow the B.Sc. engineering degree in
Chemical and Process Engineering (CH) at the Faculty of
Engineering, University of Moratuwa, Sri Lanka in academic
year 2011/2012. Data were collected from Examination
division, University of Moratuwa. Students’ examination
marks of mathematics courses in Level 1 (i.e. semester 1 (S1)
and semester 2 (S2)) as well as Level 2 (i.e. semester 3 (S3)
and semester 4 (S4)) and all compulsory engineering courses in
Level 2 were used. Table I presents the mathematics and
engineering courses in CH which are considered in this study.

B. Canonical Correlation Analysis (CCA)

CCA is a powerful multivariate statistical technique for
measuring  the  linear  relationship  between  two
multidimensional systems [5]. Let two vectors X =
Xy, X5, ..., Xp) and ¥V = (Y, Y, ..., ¥;) of random variables,
and there are correlations among the variables, then CCA will
find linear combinations of the X; and ¥; which have maximum
correlation with each other. The CCA computes two projection
vectors, @ and b such that the correlation coefficient:

cov(a"xb"Y) aExyb

R, = =
€ er(afx),uar(hrk'] VaTLyaJbTEyb

(n

is maximized, where Y yy is the covariance matrix between X
and Y, and ¥y and 3, are the covariance matrices of X and ¥
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TABLE L MATHEMATICS AND ENGINEERING COURSES IN CH

DISCIPLINE
Subject Area Acf:l::i'c Semester Cé):;:e Course
sl MAIL013 | Mathematics
Level |
52 MAL1023 | Methods of Mathematics
Mathematics MA2013 | Differential Equation
53
Level 2 MA2023 | Calculus
54 MA2033 | Linear Algebra
CH2013 | Heat and Mass Transfer
CH 2023 | Unit Operations 1
S3 | CH2033 | Thermodynamics
Engineering Drawing &
ME2122 Computer Aided
Modeling
CH 2043 | Particle Technology
Engineering Level 2
CH 2053 | Fuels and Lubricants
CH 2063 Prirlf:iplq of Biological
Engineering
sS4 Fund 1
CH2073 | Polymer Science and
Technology
CH 2083 | Environmental Science
and Technology

respectively. Since R, is invariant to the scaling of vectors a
and b, CCA can be formulated equivalently as,

T
maxa Zxvb (2)

subject to, a’Yya =1 and b"¥yb = 1.

The first pair of canonical variables or first canonical
variate pair (U, Vy) is the pair of linear combinations of X and
¥ respectively, having the highest correlation between the two
systems. If the optimum values of (a,b) are denoted as
(alr, b{) and then, U; = al X and V; = bTY is the pair of first
canonical variables.

The second pair of canonical variables is the pair of linear
combinations U, and V, having unit variances, which has the
highest correlation subject to U,, being uncorrelated with U,
and V,, being uncorrelated with V; (the construction actually
ensures that U,and V, are uncorrelated, as well as are U, and
V,). Therefore, at the k™™ step, the canonical vectors are
obtained as:

(ak, by) = argmaxa”F b (€
ab
subject to,
var(Uy) = var(Vy) =1
corr(U,,U) =0 for k=1
corr(Vi,, V) = 0 for k+1

foralll = 1,2, .., k— 1 and k < min{p, q}.
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Fig. 1. MNlustration of the conceptual framework in CCA

The process continues, until subsequent pairs of linear
combinations no longer produce a significant correlation. The
conceptual framework of the canonical correlation function is
illustrated in Fig. 1.

C. Partial Canonical Correlation Analysis (Partial CCA)

The partial canonical correlation is a multivariate
generalization of ordinary partial correlation, which used to
assess the partial independence of two sets of variables given a
third set of variables [6].

Suppose there is another vector, Z = (Z,,Z,,..,Z,) of
random variables and it is interested to study the relation
between the vectors X and Y partialing out the linear effect of
vector Z from both X and Y vectors. Partial canonical
correlation represents the maximal correlation between the
partial canonical variates U* = a*Tey and V* = b*Tey, of unit
variance where e, and e, represent the residual vectors
obtained after regressing X on Z and ¥ on Z respectively.
Mathematically, this is equivalent to maximizing,

Pxyz = max a* T yy b’ (4)

subject to, a*"¥yya* =1 and b*TY,,,b"=1. The
matrices Y;;» are the covariance matrices of the residual
vectors ey and ey.

The Partial CCA focuses on the real impact of mathematics
in Level 2 on engineering performance in Level 2, when the
effect of mathematics in Level 1 is removed from both groups,
as the students have already completed mathematics in Level 1
at Level 2.

D. Part Canonical Correlation Analysis (Part CCA)

The Part CCA is proposed by [7] as an alternative for
Partial CCA, for the case where the third set of variables
influences only one of the other two variable sets. In other
words, the part canonical correlation estimates the relation
between the vectors X and Y partialing out the linear effect of
vector Z from vector ¥ but not vector X. That is, part canonical
correlation computes linear combinations of the variates ey and
X, U =a"X and V' = b'"ey, of unit variance such that the
correlation between U' and V' is maximal. This is equivalent to
maximizing

Pyrzy = max aLxwnb' (5)
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subject to, a’"¥yxa’ =1 and by b’ = 1.

The Part CCA is to determine the real impact of
mathematics in Level | on engineering performance in Level 2
when the impact of mathematics in Level 2 is eliminated from
engineering performance in Level 2.

III. RESULTS AND DISCUSSION

A. Correlation Analysis

Pearson correlation coefficients between mathematics
variables and engineering variables separately and between the
variables in both sets are calculated and the results noted that
the most pairs are significant and positively correlated (p<0.05)
within the each variable set and between the variable sets. On
the basis of correlation coefficients, the two variable sets are
used for CCA, Part CCA and Partial CCA for two semesters in
Level 2 (S3 and S4) separately.

B. Impact of mathematics in Level 1 and semester 3 on the
engineering performance in semester 3
The dependent set is the engineering modules in S3 and it
contains four engineering variables for all three cases. But, the
predictor set and the control set are varied. The results of
unadjusted and adjusted CCA for student performance in S3
are summarized in Table I1.

1) Canonical Correlation Analysis (CCA)

Mathematics modules in SI, S2 (in Level 1) and S3 are
taken as the predictor set and it contains four mathematics
variables.

The number of canonical variate pairs is equal to four and
the Wilks’ lambda test statistic denote that out of four
canonical variate pairs only the first canonical variate pair is
statistically significant at the 0.01 level. It indicates that the
first canonical variate pair is sufficient to explain a significant
amount of variability of the predictor set and dependent
variable set. According to the results of unadjusted CCA, the
first canonical correlation is 0.816 which implies a strong
linear relationship between students’ mathematics performance
and engineering performance in S3. The proportion of the
variance in the canonical variate of engineering performance
explained by the canonical variate of the mathematics
performance is 66.5%.

The standardized canonical coefficients of ME2122
engineering variable and MAI1013 mathematics variable
obtained negative values which indicate that two variables are
weakly important to their first canonical variate. Considering
the canonical loadings, it reflects that all observed variables in
predictor set as well as dependent set are strongly associated
with its first canonical variate except ME2122 in engineering
set and MA1013 in mathematics set. The redundancy measure

TABLE IL. RESULTS OF UNADJUSTED AND ADJUSTED CCA FOR 53
Unadjusted Adjusted
CCA Part CCA Partial CCA

Canonical Correlation 0.816 0.298 0.662
Squared canonical correlation 0.665 0.089 0.438
Wilks” Lambda 0.295 0.888 0.535
P-value 0.000 0.442 0.000
Engineering performance (n (2) (0 (2) (n (2)

CH2013 0.409 0.889 0.256 0.466 0.603 0.926

CH2023 0.165 0.798 0.081 0.409 0.154 0.734

CH2033 0588 0.946 0.885 0.935 0.421 0.844

ME2122 -0.110 0.467 -0.395 -0.052 -0.051 0.530
Variance extracted 63.51 3149 59.75
Redundancy 4226 279 26.18
Mathematics performance [1)] (2) (1) (2) (1) (2)

MAIL013 -0.058 0.561 -0.303 0.349 - -

MAI1023 0322 0.780 1.142 0.969 - -

MA2013 0.525 0.926 - - 0.680 0.928

MA2023 0.342 0.865 - - 0.448 0.824
Variance extracted 63.19 53.01 76.93
Redundancy 42.04 4.69 3371

(1) - Standardized canonical coefficients and (2) — Canonical loadings
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of engineering denotes that 42.3% of the variance in the
engineering performance is explained by the first canonical
variate of mathematics performance.

2) Part CCA

The two mathematics variables in Level 1 are considered as
the predictor set and it is performed, with the effect of two
mathematics variables in S3 partialed out of the dependent set
of engineering variables.

With reference to Wilks® lambda test statistic, it is clear that
the first canonical variate pair of Part CCA is not statistically
significant (p=0.442). That is, the first canonical variate pair in
Part CCA is not sufficient to explain a significant amount of
variability of the predictor set and dependent variable set.

The first canonical correlation is found to be equal to 0.298
and it confirmed a weak relationship between mathematics in
Level 1 and engineering performance when the effect of
mathematics in Level 2 is eliminated from engineering
performance. Moreover, the amount of variation in the
canonical variate of engineering performance explained by the
canonical variate of the mathematics performance in Level 1 is
8.9%. Also, the redundancy measures in the analysis indicate
that amount of variability in predictor and dependent sets
explained by their opposite canonical variate are not sufficient.

3) Partial CCA

The Partial CCA comprises two mathematics variables in
S3 as the predictor set and two mathematics variables in both
S1 and 82 (in Level 1) as the control set, which eliminates its
influence from both predictor and dependent sets.

The maximum number of canonical variate pairs is two and
out of two canonical variate pairs only the first canonical
variate pair is statistically significant (p <0.01). As the effect of
mathematics in Level | is statistically controlled by partial
correlation, the results confirmed that the mathematics in S3
has a moderately strong relationship with the engineering
performance in S3 (0.662). The squared canonical correlation
indicates that 43.8% of variation in the first canonical variate of
engineering is explained by the first canonical variate of
mathematics in 3.

The ME2122 engineering variable has the least association
with mathematics in S3 as revealed by the standardized
canonical coefficients and canonical loadings. Furthermore, the
redundancy index of engineering reflects that canonical variate
of mathematics performance accounted for 26.2% of the total
variance of student engineering performance in S3.

By comparing the results of the adjusted canonical analysis
(Partial CCA and Part CCA), it can be said that the individual
effect of mathematics in S3 is significantly higher than the
individual effect of mathematics in Level | on the students’
engineering performance in S3 (in Level 2). Despite the
redundancy indices are reduced in Partial CCA compared to
CCA, it indicates that even after adjusting for mathematics in
Level 1, there is a significant effect of mathematics in 83 on
engineering performance. Nevertheless, when considering the
redundancy measures of all three cases, it can be concluded
that though the direct effect of mathematics in Level | is not
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significant, there is a sufficient indirect effect of mathematics
in Level 1 on engineering performance.

C. Impact of mathematics in Level 1 and Level 2 on the
engineering performance in semester 4

As in the case of S3 analysis, dependent set is the
engineering modules in S4 and it consists of five engineering
variables. Table III presents the summary of CCA, Part CCA
and Partial CCA results for the academic performance in S4.

1) CCA
Mathematics in both Level 1 as well as Level 2 is the

predictor set and it contains five mathematics variables (i.e.
two variables in Level 1 and three variables in Level 2).

According to the results of CCA, it can be seen that only
the first pair of canonical variate is statistically significant
(p=<0.01). That is, the remaining four canonical variate pairs are
not sufficient to explain a significant amount of variability of
the predictor set and dependent variable set. The first canonical
correlation is equal to 0.812 which implies a strong relationship
between mathematics in both Level 1 and Level 2 with their
engineering performance in S4. The squared canonical
correlation indicates that 65.9% of variation in the first
canonical variate of engineering is explained by the first
canonical variate of mathematics.

Based on the standardized canonical coefficient of CCA,
the MA2033 mathematics variable has the largest weight,
which is the most important to first canonical variate of
mathematics and the MA1013 mathematics variable is the
weakly important to first canonical variate of mathematics. The
canonical loadings reflect that both engineering and
mathematics variables are strongly correlated (>0.7) with their
first canonical variates except MA1013 mathematics variable.
The redundancy measures of engineering exhibits that the
explainable variability of engineering performance in S4 is
52.8% by the first canonical variate of mathematics. It can be
concluded that the first canonical variate of mathematics is a
good predictor of student engineering performance in S4.

2) Part CCA

The two mathematics variables in Level 1 are considered as
the predictor set while the control set which removes its effect
from dependent set, comprises three mathematics variables in
both S3 and $4.

By referring the Wilks® lambda test statistic, it can be seen
that the first pair of canonical variate in Part CCA is not
statistically significant (p=0.682). This implies that at least a
first canonical variate pair of Part CCA does not explain a
statistically significant amount of variability of the predictor
and dependent sets. The part canonical correlation shows a
weak linear relationship between mathematics in Level 1 and
engineering performance in S4 with the effect of mathematics
in Level 2 partialed out of the dependent set of engineering
variables. In addition, first canonical variate of mathematics in
Level 1 accounted for 8.6% of the variance of the first
canonical variate of engineering. The redundancy index of
engineering found that the amount of variability in engineering
performance in S4 explained by the first canonical variate of
mathematics in Level 1 is 1.4%. According to the results of
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TABLE IIL

RESULTS OF UNADJUSTED AND ADJUSTED CCA FOR 54

Unadjusted Adjusted
CCA Part CCA Partial CCA

Canonical Correlation 0.812 0293 0.691
Squared canonical correlation 0.659 0.086 0.478
Wilks” Lambda 0.265 0.893 0.465
P-value 0.000 0.682 0.000
Engineering performance (1) (2) (1) (2) (1 (2)

CH2043 0.408 0.890 0.706 0.661 0.227 0.737

CH2053 0.259 0913 0.538 0483 0.103 0.828

CH2063 0.117 0.895 0527 0.394 -0.031 0.824

CH2073 0.188 0878 -0.269 0.034 0.337 0.895

CH2083 0.144 0.899 -0.88 -0.085 0.496 0.950
Variance extracted £0.14 16.67 72.21
Redundancy 52.78 1.43 34.50
Mathematics performance (1) 2) (1 (2) (0 (2)

MAIL013 -0.055 0.541 0.034 0.594 -

MAL023 0.212 0.741 0.980 0.999 -

MA2013 0.054 0815 - - 0.174 0.752

MA2023 0.212 0.796 - - 0.227 0.672

MA2033 0.683 0.966 - - 0.747 0.959
Variance extracted 61.50 67.61 64.58
Redundancy 40.50 5.80 30.85

(1) — Standardized canonical coefficients and (2) — Canonical loadings

Part CCA, it can be said that the real effect of mathematics in
Level 1 is not sufficient to explain the engineering performance
in 54.

3) Partial CCA

The predictor set contains three mathematics variables in
both S3 and S4, while the two mathematics variables in Level
| are taken as the control set, which eliminates its effect from
both predictor and dependent sets.

With reference to Wilks® lambda test statistic of Partial
CCA, it confirmed that only the first of three canonical variate
pairs is statistically significant (p<0.01). The first canonical
correlation of 0.691 denotes that the students’ mathematics
performance in both S3 and S4 has a moderately strong linear
relationship with their engineering performance in S4.
Moreover, the first canonical variate of mathematics accounted
for 47.8% of the variance in the first canonical variate of
engineering. It is clear that, there is a significant influence of
mathematics in both S3 and S4 on engineering performance in
S4 even after the effect of mathematics in Level 1 is removed.
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With respect to standardized canonical coefficients,
MA2013 and MA2023 variables which are in S3, have smaller
weights compared to mathematics variable in S4 (ie.
MA2033). It shows that mathematics variable in S4 (MA2033)
is the most important, influential predictor of engineering
performance in S4. The proportion of variance in engineering
performance in S4 explained by the first canonical variate of
mathematics in both S3 and S4 is 34.5% and it can be
concluded that a considerable amount of variability in student
engineering performance in S4 can be explained by the
mathematics performance in both S3 and S4, after adjusted for
mathematics in Level 1.

Based on the results of unadjusted and adjusted CCA, it is
clear that the degrees of part canonical correlation as well as
partial canonical correlation are reduced due to the relevant
adjustments. That is, the combined effect of mathematics in
Level 1 and Level 2 on engineering performance in S4 is
significantly higher compared to the individual effects of
mathematics in Level 1 and Level 2. Furthermore, the amount
of wvariability in the canonical variate of engineering
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performance explained by the canonical variate of predictor set
is reduced from 65.9% to 8.6% and 47.8% in Part CCA and
Partial CCA respectively. It confirmed that the individual effect
of mathematics in Level 2 is noteworthy compared to the
individual effect of mathematics in Level 1 on the students’
engineering performance. Similarly, dependent redundancy
indices of engineering performance are also reduced in both
Part CCA and Partial CCA. It denotes that the proportion of
variance in student engineering performance in S4 explained
by the first canonical variate of mathematics is reduced after
eliminating the effect of mathematics in Level 1 or Level 2. As
expected, it is not worth considering only the individual effect
of mathematics in Level 1 on engineering performance in S4.
But, there is a sufficient indirect effect of mathematics in Level
1 on engineering performance in S4.

IV. CONCLUSION

The students’ performance in mathematics in Level 1 and
Level 2 is positive and strongly correlated with their
engineering performance in Level 2. The joint effect of
mathematics in Level 1 and Level 2 on students” engineering
performance in Level 2 is significantly higher compared with
both individual effects of mathematics in Level 1 and Level 2.
Furthermore, the individual effect of mathematics in Level 2 is
considerably higher compared with the individual effect of
mathematics in Level | on the students’ engineering
performance. Besides that, the individual effect of mathematics
in Level 1 on engineering performance in Level 2 can be
negligible. It can be concluded that, there exists a notable
indirect effect of mathematics in Level 1 on engineering
performance in Level 2. Therefore, students are encouraged to
achieve high marks in mathematics modules for better
performance in engineering.

This study only focuses on academic performance of
students from Chemical and Process Engineering discipline
and it can be further extended to explore the individual impact
of mathematics on academic performance of engineering
students from other engineering disciplines at the Faculty of
Engineering, University of Moratuwa as well. Furthermore, it
is suggested to investigate the impact of preceding engineering
courses on the academic performance of engineering students.
As Partial CCA and Part CCA are not widely used in applied
work, it is recommended to explore this methodology to
various applications in other fields.
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Application of Canonical Correlation Analysis to
Study the Influence of Mathematics on Engineering
Programs: A Case Study

K.A.D.S.A. Nanayakkara and T.S.G. Peiris
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University of Moratuwa
Moratuwa, Sri Lanka

Abstract—Mathematical knowledge is essential to improve the
analytical thinking of engineering undergraduates. Exploring
more information from existing academic data is an essential
aspect of the educational research. The objective of this study is
to explore the impact of mathematics performance on different
engineering programs. The study was conducted with 626
engineering students from seven different disciplines at the
Faculty of Engineering, University of Moratuwa, Sri Lanka.
Canonical Correlation Analysis (CCA) was employed to
investigate the relationship between mathematics courses and
other engineering courses with respect to their disciplines.
Results of CCA revealed that the mathematics performance in
both semester 1 and 2 influences significantly on the students’
academic performance in Level 2 of the seven engineering
discipli considered. Wilk’s lambda test statistic confirmed that
only the first canonical variate pair is significant for all
disciplines. The squared canonical correlations of first canonical
variate pair indicated that the amount of variance between the
mathematics performance and academic performance in Level 2
explained varied among seven disciplines from 42% to 68%. The
impact is higher from mathematics in semester 2 than that from
semester 1 in all disciplines except for Material Science and
Engineering discipline. The explainable variability of student
academic performance in Level 2 by the canonical variate of
mathematics is varied from 27% to 50% among seven disciplines.
Based on preliminary analysis, it can be concluded that the
performance in mathematics in Level 1 could indicate the trend
towards the student academic performance in all engineering
programs.

Keywords—canonical ~ correlati ineering

de demic performance

I. INTRODUCTION

Mathematies is more than a tool for solving problems and it
can develop intellectual maturity and logical thinking of
students. The skills in mathematics would certainly assist to
enhance students” knowledge in other subjects such as
engineering, physics, chemistry, accounting, etc. [1-4]. Pyle [5]
and Sazhin [6] stated the importance of mathematical
knowledge for engineering students to improve their analytical
thinking. The mathematical knowledge gained prior and during
engineering education is highly essential in engineering
practice as they use a high level of curriculum mathematics and

This work was supported by the Senate Research Committee Grant,
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mathematical thinking in their work [7].

The majority of the students who admitted to the Faculty of
Engineering, University of Moratuwa have obtained higher
grades for mathematics in the General Certificate of
Examination (G.C.E.) Advanced Level. In a recent study by
Nanayakkara and Peiris [8] have shown that mathematics
performance of engineering students in their undergraduate
degree programs at the Faculty of Engineering, University of
Moratuwa, varies significantly between and within different
engineering  disciplines. Besides that, performance in
mathematics and its impact on other subjects have not been
studied. Therefore, it is desired to understand the impact of
mathematical knowledge that students acquired from their
undergraduate degree programs.

Much research effort has been devoted to student academic
performance in various subjects and its impact on different
study programs using various statistical techniques in
univariate analysis [1-4] as well as in multivariate analysis [9],
in particularly canonical correlation analysis (CCA). CCA
employed in several studies, have argued that the presence of
joint production, OLS regression, or even a simultaneous
equation system, gives inconsistent estimates while CCA is
more suitable when the research problem has multiple
independent variables and multiple dependent variables [10].

A study carried out in Malaysia, by Ismail and Cheng [10]
used CCA to examine the effects of school inputs,
environmental inputs and gender influence in the production of
a joint educational production function in mathematics and
science subjects for eighth grade students. Gyimah-Brempong
and Gyapong [11] examined the effects of socioeconomic
characteristics of communities in the production of high school
education in the state of Michigan. Rovai and Ponton [12]
investigated how a set of three classroom community variables
was related to a set of two students learning variables in a
predominantly White sample of 108 online African American
and Caucasian graduate students using CCA. A study by
Slinsarenko and Clemmensen [13], applied CCA to explore the
association between the evaluation of the course and the
evaluation of the teacher at the Technical University of
Denmark. Abedi [14] conducted a study on academic
performance to examine the efficiency of the undergraduate
grade average point (GPA) as a predictor of graduate academic
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success and compared it with other predictors. CCA was
applied on three measures of graduate academic success and
eight demographic and undergraduate academic variables
including undergraduate GPA. It was found a weak
relationship among graduate academic success and predictors
and the graduate academic success was not associated with
undergraduate GPA. A study carried out by Dai et al. [9]
focused on the context of student score analysis and CCA was
used to investigate the relationship of scores of different classes
of courses; i.e. basic courses and major courses. The study was
based on course scores of the first and second academic year of
76 college students. It summarized that three mathematical
basic courses were strongly related with major courses.

In our study CCA is explored with a few modification in
order to find the impact of mathematics performance in Level
1 on overall performance in Level 2 for seven engineering
programs conducted by the Faculty of Engineering, University
of Moratuwa.

II. MATERIALS AND METHODS

A. Data Description

The study was conducted with 626 engineering students
from seven different disciplines at the Faculty of Engineering,
University of Moratuwa, Sri Lanka for the academic year,
2011/2012. Data were collected from Examination division,
University of Moratuwa. Seven engineering disciplines used
are: (i) Chemical and Process Engineering (CPE), (ii) Civil
Engineering (CE), (iii) Computer Science and Engineering
(CSE), (iv) Electrical Engineering (EE), (v) Electronic and
Telecommunications Engineering (ENTC), (vi) Materials
Science and Engineering (MSE) and (vii) Mechanical
Engineering (ME). Students’ examination marks of
mathematics courses in both semesters (semester 1 and
semester 2) in Level | and all compulsory courses other than
mathematics courses in both semesters (semester 3 and
semester 4) in Level 2 were used.

B. Canonical Correlation Analysis (CCA)
CCA is a powerful multivariate statistical technique for

measuring  the  linear  relationship  between  two
multidimensional systems [15]. Let two vectors X =
(X1, X2 .., Xp) and Y = (Y1, Vs, ..., Y,) of random variables,

and there are correlations among the variables, then CCA will
find a linear combination of the X; and ¥; which have
maximum correlation with each other. The CCA computes two
projection vectors, a and b such that the correlation coefficient:

cor(aTxpTy) _ aTExyd
var(aTX)var(bTy) V@ Exayb Iyb

is maximized, where ¥ yy is the covariance matrix between X
and Y, and ¥, and ¥, are the covariance matrices of X and ¥
respectively. Since R, is invariant to the scaling of vectors a
and b, CCA can be formulated equivalently as,

R.= (1

max a’ ¥y b
e a’ Yy

)

subject to,a"¥ya =1 and b"¥yb =1
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Fig. 1. [llustration of the conceptual framework in CCA

The first pair of canonical variables or first canonical
variate pair (Uy, V) is the pair of linear combinations of X and
Y respectively, having the highest correlation between the two
systems. If the optimum values of (a,b) are denoted as
(aT,bT) and then,

U, =alx
Vy=blY

is the pair of first canonical variables.

(3
(4

This procedure continues by seeking the second pair of
canonical variables uncorrelated with the first pair of canonical
variables, which has maximal correlation.

Canonical correlation (R;) measures the strength of the
overall relationships between the two canonical variates, which
are the linear combination of the two sets of variables
separately. The statistical significance of R is tested based on
Wilk’s Lambda test statistic. Canonical roots or squared
canonical correlation (RZ) represents the proportion of variance
shared between the two sets of variables. Canonical loading is
the linear correlation between the variable and its respective
canonical variate. Redundancy index is the amount of variance
in a canonical variate (dependent or independent) explained by
the other canonical variate in the canonical function. For an
example, the amount of variance in the dependent variables
explained by the independent canonical variate is represented
by the redundancy index of the dependent variate. The
conceptual framework of the canonical correlation function is
illustrated in Fig. 1.

In this study, mathematics marks in semester 1 and 2 are
taken as the one set of variables (predictor set) while the marks
of all compulsory modules in Level 2 as the dependent set of
variables. CCA was performed separately for seven
engineering disciplines. The maximum number of canonical
variate pairs is two.

III. RESULTS AND DISCUSSION

A. Initial Analysis

Prior to determining the relationship among the two sets,
Pearson correlation coefficients between variables of the two
sets separately as well as between the variables in both sets
were calculated for each discipline. The results noted that the
most pairs are significantly and positively correlated (p < 0.05)
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within the set and between sets for all disciplines. It indicates
that there is a strong significant impact from the mathematics
in semester 1 and 2 on the other modules in Level 2
irrespective of disciplines and the two sets can be used for
CCA separately for each discipline.

The number of variables in the predictor set is two for all
disciplines while the number of variables in the dependent set
is varied among the disciplines. The corresponding number of
dependent variables in CPE, CE, CSE, EE, ENTC, MSE and
ME disciplines are 12, 15, 16, 20, 12, 17 and 16 respectively.

B. Canonical Variates and Canonical Correlations

Table I presents the results of statistical significance tests
of the canonical correlation by engineering disciplines. The
sample size for each discipline is shown in column 2 of Table
L The test statistic Wilk’s lambda is used to test the
significance of canonical correlations and it confirmed that out
of two canonical variate pairs only the first canonical variate
pair is statistically significant (p < 0.005) for all disciplines. It
indicates that the first canonical variate pair is sufficient to
explain a significant amount of variability of the predictor set
and dependent variable set. In other words, the second
canonical variant pair cannot be relied upon to describe the
data.

The results of CCA were summarized mainly focusing on
the student performance in mathematics. Table II illustrates
the results of CCA by engineering disciplines. Results in
Table II indicate that canonical correlations are strong for all
disciplines (R; > 0.64). The highest canonical correlation is in
MSE discipline (0.824) and the lowest is in CE discipline
(0.648). This implies that students’ overall performance in
Level 2 in MSE discipline has the highest impact of the
performance of mathematics in Level | compared with other
disciplines.

The squared canonical correlation (RZ) indicate that the
amount of variation between the mathematics performance
and academic performance in Level 2, explained by the first
canonical variate. Results in Table 1I confirmed that the
amount of variability explained is varied from 42% (in CE) to
68% (in MSE). This is due to the correlation between the two
linear functions in two sets of data. Nevertheless, as the
squared canonical correlation coefficients for all disciplines
(R% > 0.4) suggested that mathematics courses in Level 1 has a
strong and positive impact on the overall performance in Level
2 irrespective of the engineering disciplines.

TABLE L RESULTS OF WILK'S LAMBDA TEST
Discipline Sasl.:gle L‘:;u‘t;: P-value

CPE 71 03648 0.000
CE 125 05122 0.000
CSE 95 0.4614 0.000
EE 99 0.3013 0.000
ENTC 96 0.3306 0.000
MSE 44 0.1486 0.003
ME 96 04133 0.000
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TABLE IL RESULTS OF FIRST CANONICAL CORRELATION

Discipline Cano.nicaj Squared (;anonica]
correlation (R¢) correlation (Rg)
CPE 0.778 0.605
CE 0.648 0.420
CSE 0.686 0.471
EE 0.779 0.607
ENTC 0.783 0.612
MSE 0.824 0.679
ME 0.721 0.520

The results of the canonical and squared canonical
loadings are shown in Table IIL. According to the results of
Table III, the squared canonical loadings, the amount of
variance explained by mathematics course in semester 2
(Math_S2) is higher compared with mathematics course in
semester 1 (Math_S1) for all disciplines except in MSE
discipline. Nevertheless, that difference can be negligible.

The canonical loadings of both mathematics courses are
high in all disciplines (>0.60) with exceptional for Math_S1 for
ENTC and ME disciplines. These results indicate that there is a
significant impact from both Math S1 and Math S2 on the
overall performance in Level 2, irrespective of the discipline
and the impact from Math S2 is higher than that from
Math_S1.

The results of the canonical redundancy analysis are
provided in Table IV. Redundancy analysis is carried out to
assess the effectiveness of canonical analysis in capturing
variances of the original variables by canonical variate pair.

The results indicate that the first canonical variate of
performance in mathematics is a good predictor of the opposite
set of variables. The amount of variance in student academic
performance in Level 2 explained by the first canonical variate
of mathematics is varied from 27.0% (in CE) to 49.6% (in
MSE) and the proportion of variance explained by the first
canonical variate of courses in Level 2 is varied from 12.9% (in
CE) to 29.1% (in CPE) for mathematics performance.

TABLE IIL. CANONICAL LOADINGS OF PREDICTORS
Discipline Canonical loadings Squa:'edﬁa:nn.ical
Math_S1 | Math_S2 | Math_SI | Math_S2

CPE 0.789 0.955 0.623 0912
CE 0.702 0.891 0.493 0.794
CSE 0.778 0.862 0.605 0.743
EE 0.636 0931 0.404 0.867
ENTC 0.491 0.986 0.241 0.972
MSE 0.881 0.825 0.776 0.681
ME 0.366 0.995 0.134 0.990
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TABLE IV.

RESULTS OF CANONICAL REDUNDANCY ANALYSIS

Can. Var. of performance | Can. Var. of performance
Discinl in mathematics in Level 2
pline
% Var % Var % Var % Var

DEP PRE DEP PRE

CPE 46.40 76.73 48.12 29.13
CE 26.99 6433 30.82 12.93
CSE 31.76 6744 43.60 20.53
EE 38.51 63.49 28.31 17.17
ENTC 37.17 60.69 37.23 22.80
MSE 49.56 7292 20.53 13.95
ME 29.24 5627 32.89 17.09

The explainable variability of performance in mathematics
by its canonical variate is varied from 56.3% (in ME) to 76.7%
(in CPE) while the proportion of variance in student academic
performance in Level 2 explained by its canonical variate is

varied from 20.5% (in MSE) to 48.1% (in CPE). These
redundancy coefficients denote that the wariability of
performance in mathematics explained by its canonical variate
is higher compared with the variability of student overall
performance in Level 2 explained by its canonical variate.

The following Fig. 2 illustrates the behavior of the first
canonical variate pair by engineering disciplines. These graphs
indicate that the overall academic performance in Level 2 has a
moderately strong and positive relationship with mathematics
courses in Level | for all disciplines. It was found that all
correlations are high and positive and significantly different
from zero.

In order to determine the students” overall academic
performance in Level 2, the weighted mean was calculated.
The weights were assigned based on the number of credits.
Then, the Pearson correlation between the weighted mean and
the first canonical variate of modules in Level 2 was computed
to discover the relationship between them. The correlation
coefficients by engineering disciplines are shown in Table V.
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Fig. 2. Scatter plots of canonical variate of performance in Level 2 vs canonical variate of performance in mathematics
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TABLE V. PEARSON CORRELATION BETWEEN WEIGHTED MEAN AND
CANONICAL VARIATE OF LEVEL 2 COURSES
Disipine o
CPE 0.822%
CE 0.854%
CSE 0.910*
EE 0.874%
ENTC 0.841*
MSE 0.573*
ME 0.859*

*. Corvelation is significant at the 0.05 level (2-tailed).

The coefficients of correlation reveal that there is a strong
positive significant correlation (p < 0.05) between canonical
variate derived from the students’ marks in Level 2 and the
weighted average of the students’ marks in Level 2,
irrespective of the disciplines. This confirms that the canonical
variate of modules in Level 2 can be considered as a proxy
estimator for the student actual performance. In this study, we
did not compare the values of the canonical variate of level 2
courses and the students GPA in level 2.

The results obtained are not possible to explain why
Math_S2 is more influential than Math_S1 and why the impact
is different between-and-within disciplines as we use only raw
marks.

IV. CONCLUSION

The performance in Mathematics in semester | and 2 has a
significant impact on the performance in Level 2 by all
students irrespective of the engineering discipline. The impact
of mathematics in semester 2 was significantly higher than the
impact of mathematics in semester | on the students’ academic
performance in Level 2 in all the seven engineering disciplines
considered except MSE. It is suggested to continue this study
for more years and find the reasons for the variability of the
impact between-and-within disciplines before implement
various decisions.

It is also suggested to conduct a separate study to find out
why mathematics in Semester 2 is more influential than
mathematics in Semester 1 by discipline wise.
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Impact of mathematics on academic performance of engineering
students: A canonical correlation analysis
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Mathematics plays a key role in higher education as it is particularly essential to
develop the analytical thinking of students. Mathematical skills would certainly assist
to enhance students’ knowledge in a wide range of disciplines, especially, in
engineering sciences. Therefore, exploring the student academic performance has
received great attention among researchers recently. The main objective of this study
is to investigate the impact of mathematics on students’ academic performance at the
end of Level 2, in different engineering programs. The study was conducted with
engineering undergraduates from seven different disciplines at the Faculty of
Engineering, University of Moratuwa, Sri Lanka in academic year 2011/2012.
Students’ examination marks of mathematics courses in Level 1 and Level 2 and all
compulsory engineering courses in Level 2 were used for the study. Explanatory data
analysis techniques and canonical correlation analysis were used to achieve the
objectives. Statistical testing confirmed that only the first canonical function is
significant for all engineering disciplines. The amount of variance between the
students” performance in mathematics and engineering courses in Level 2 explained
is varied from 39% to 73%. The students’ performance in engineering courses in both
semesters of Level 2 is positively and strongly related to mathematics performance
irrespective of the engineering disciplines. Furthermore, the combined effects of
mathematics in Level 1 and Level 2 on students’ performance in engineering courses
in Level 2 are significantly higher compared with the individual effect of
mathematics in Level 1 or Level 2. The combined effects of mathematics in both
Level 1 and Level 2 are immensely beneficial to improve the overall academic
performance at the end of Level 2 of the engineering students. However, the impact
of mathematics varies among engineering disciplines. The students are encouraged
to achieve high marks in mathematics courses for better performance in engineering
courses.

Keywords: Canonical correlation analysis, Engineering mathematics, Students’
academic performance
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Influence of Mathematics in Level 1 on Students’ Performance in Engineering
Programs: A Case Study

K.A.D.S.A. Nanayakkara' and T.S.G. Peiris’

Mathematics is more than a tool for solving problems as it can develop intellectual maturity and
logical thinking of students. In engineering sciences, mathematical knowledge is highly essential to
improve the analytical thinking of engineering undergraduates. Therefore, a significant component of
advance mathematics has been included in the engineering degree programs. The objective of this
study is to explore the impact of mathematics in level 1 on academic performance of undergraduate
engineering students in level 2. The study was conducted with 1256 engineering students from seven
different disciplines at Faculty of Engineering, University of Moratuwa, Sri Lanka for two academic
years 2010/2011 and 2011/2012. Students’ examination marks of mathematics courses in level 1:
semester 1 (S1) and semester 2 (S2) and all compulsory courses from level 2: semester 3 (S3) and
semester 4 (S4) were used. Average marks of subjects were used as the students’ academic
performance for S3 and S4 separately as well as level 2 (combining courses of S3 and S4). The
response variable was the students’ academic performance and the explanatory variables were the
marks of mathematics courses in S1 and S2. Analyses revealed that the marks of mathematics were
significantly positively correlated (P < 0.05) with students’ performance in all engineering disciplines
in S3 and S4 urespective of the engineering discipline. The impact of mathematics in S2 was
significantly higher than the impact of mathematics in S1 on the students’ performance in 83 and S4.
The same trend was found for the overall performance in level 2. Furthermore, the impact of
mathematics was significantly different among various engineering disciplines. A similar trend was
found for the pooled data across the discipline. The study concluded that the performance in
mathematics in level 1 could indicate the trend toward students” academic performance in engineering
programs in level 2. It is recommended to continue this analyze to other years as well.

Keywords: Engineering Mathematics, Student Academic Performance, Correlation,
Stepwise Regression
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APPENDIX 1

Curriculum of B.Sc. Engineering Degree Programme

Table Al.1: Details of Modules - Academic Year 2010/2011

Department | Module code | Module Name

CE2012 Structural Mechanics 11

CE2022 Design of Steel Structures

CE2032 Hydraulic Engineering |

CE2042 Soil Mechanics & Geology |

CE2052 Construction Planning and Cost Estimation
CE2062 Surveying |

CE CE2112 Structural Analysis |
CE2122 Design of Concrete Structures |
CE2132 Soil Mechanics & Geology 1
CE2142 Surveying Il
CE3012 Hydraulic Engineering Il
CE1822 Aspects of Civil Engineering
CH2042 Fuels and Lubricants
CH2052 Transport Phenomena 1
CH2062 Transport Phenomena Il

CH CH2072 Chemical Kinetics and Thermodynamics
CH2082 Mass Transfer Operations 1
CH3092 Environmental Science

CH3102 Polymer Science and Technology

CS2032 Principles of Computer Communication
CS2042 Operating Systems

CS2062 Object Oriented Software Development
CS CS3022 Software Engineering

CS3042 Database Systems

CS3242 Micro-controllers and Applications
CS3032 Computer Networks

199




Table A1.1 continued

EE2802 Applied Electricity

EE2012 Circuit Theory

EE2022 Electrical Machines & Drives |

EE2033 Power Systems |
EE EE2042 Electrical Measurements and Instrumentation

EE2132 Electromagnetic Field Theory

EE2052 Control Systems |

EE3072 Electrical Installations |

EE2072 Electrical Machines & Drives Il

EE2083 Power Systems Il

EN2052 Communication Systems

EE2092 Theory of Electricity

EN3022 Electronic Design and Realization

EN2072 Communications |
EN EN2082 Electromagnetics

EN2142 Electronic Control Systems

EN2022 Digital Electronics

EN2062 Signals and Systems

EN2012 Analog Electronics

EN2852 Applied Electronics

MA1013 Mathematics

MA1023 Methods of Mathematics

MA1032 Numerical Methods for Computer Science
MA MA2013 Differential Equation

MA2023 Calculus

MA2033 Linear Algebra

MA3013 Applied Statistics

MA2042 Discrete Mathematics

ME2022 Manufacturing Engineering |

ME2112 Fluid Dynamics

ME2092 Mechanics of Machines |

ME2012 Mechanics of Materials |

ME2032 Thermodynamics of Heat Engines & Work Transfer Devices
ME ME3072 Manufacturing Engineering 11

ME3032 Mechanics of Machines Il

ME3062 Mechanics of Materials 11

ME2142 Machine Elements and Innovative Design

ME1802 Introduction to Manufacturing Engineering

ME1822 Basic Engineering Thermodynamics
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Table A1.1 continued

ME2122 Engineering Drawing & Computer Aided Modeling
ME2842 Basic Thermal Sciences and Applications
ME2832 Mechanics of Machines
ME3062 Mechanics of Materials Il
MT2122 Principles of Materials Science & Engineering Il
MT2042 Ceramic Science

MT MT2142 Electrical and Magnetic Properties of Materials
MT2072 Metal Forming and Machining
MT2032 Degradation of Materials
MT2152 Polymer Technology
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Table A1.2: Curriculum for Academic Year 2010/2011

Level Semester CE CH CS EE EN ME MT
Level 1 s1 MA1013 | MAL013 | MAIL013 | MAI013 | MA1013 | MAL013 | MALO013
S2 MA1023 | MAL023 | MA1032 | MAL023 | MA1023 | MA1023 | MAL023
athematics < MA2013 | MA2013 | MA2023 | MA2013 | MA2013 | MA2013 | MA2013
" MA2023 | MA2023 | MA2042 | MA2023 | MA2023 | MA2023 | MA2023
Leve MA2033 | MA2033 | MA2033 | MA2033 | MA2033 | MA2033 | MAZ2033
>4 MA3013 MA2013 | MA2042 | MA2042 | MA2042 | MA3013
CE2012 | CH2042 | CE1822 | CE1822 | EE2092 | EE2802 | EE 2802
CE2022 | CH2052 | CS2032 | EE2012 | EN2012 | EN2852 | EN 2852
CE2032 | EE2802 | CS2042 | EE2022 | EN2022 | ME2022 | ME 1822
CE2042 | EN2852 | CS2062 | EE2033 | EN2052 | ME2112 | ME 2012
53 CE2052 | ME2012 | EN2022 | EE2292 | EN2062 | ME2092 | MT 2042
CE2062 | ME2122 | ME1822 | EN 2012 ME 2012 | MT 2122
ME 1822 EN 2022
ME 2012
Engineering | Level 2 CE2112 | CH2062 | CS2212 | EE2042 | EN2142 | ME2032 | ME 2832
CE2122 | CH2072 | CS3022 | EE2132 | EN2072 | ME3072 | ME 2142
CE2132 | CH2082 | CS3032 | EE2052 | EN3022 | ME3032 | ME 3062
CE2142 | CH3092 | CS3042 | EE3072 | EN2902 | ME3062 | MT 2142
s4 CE3012 | CH3102 | CS3242 | EE2072 | EN2962 | ME2142 | MT 2072
CH2952 | CS3952 | EE2083 | EN 2082 MT 2032
EN2062 | EE 2192 MT 2152
ME 1802 | EE 3202

ME 2842




Table Al.3: Details of Modules - Academic Year 2011/2012

Department | Module code | Module name

CE 1822 Aspects of Civil Engineering
CE 2012 Structural Mechanics 11

CE 2022 Design of Steel Structures

CE 2032 Hydraulic Engineering |

CE 2042 Soil Mechanics & Geology |
CE 2052 Construction Planning and Cost Estimation
CE CE 2062 Surveying |

CE 2112 Structural Analysis |

CE 2122 Design of Concrete Structures |
CE 2132 Soil Mechanics & Geology Il
CE 2142 Surveying Il

CE 3012 Hydraulic Engineering Il

CH 2013 Heat and Mass Transfer

CH 2023 Unit Operations 1

CH 2033 Thermodynamics

CH 2043 Particle Technology

CH 2053 Fuels and Lubricants

CH 2063 Principles of Biological Engineering Fundamentals
CH 2073 Polymer Science and Technology

CH

CH 2083 Environmental Science and Technology

CS 2032 Principles of Computer Communication
CS 2042 Operating Systems

CS 2062 Obiject Oriented Software Development
CS CS 3022 Software Engineering

CS 3032 Computer Networks

CS 3042 Database Systems

CS 3242 Micro-controllers and Applications

EE 2013 Circuit Theory

EE 2023 Electrical Machines & Drives |

EE EE 2033 Power Systems |

EE 2043 Electrical Measurements and Instrumentation
EE 2053 Control Systems |
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Table Al1.3 continued

EE 2063 Electromagnetic Field Theory
EE 2073 Electrical Machines & Drives Il
EE 2083 Power Systems Il
EE 2092 Theory of Electricity
EE 2803 Applied Electricity
EN 2012 Analog Electronics
EN 2022 Digital Electronics
EN 2052 Communication Systems
EN 2062 Signals and Systems
EN EN 2072 Communications |
EN 2142 Electronic Control Systems
EN 2082 Electromagnetics
EN 3022 Electronic Design and Realization
EN 2852 Applied Electronics
MA 1013 Mathematics
MA 1023 Methods of Mathematics
MA 2013 Differential Equation
MA 2023 Calculus
MA MA 2033 Linear Algebra
MA 2053 Graph Theory
MA 2063 Differential Equations and Applications
MA 2073 Calculus for System Modeling
MA 3013 | Applied Statistics
ME 2012 Mechanics of Materials 1
ME 2023 Manufacturing Engineering |
ME 2092 Mechanics of Machines |
ME 2112 Fluid Dynamics
ME 2602 Motor Vehicle Technology
ME 2032 Thermodynamics of Heat Engines & Work Transfer Devices
ME 2153 Design of Machine Elements
ME 3032 Mechanics of Machines Il
ME ME 3062 | Mechanics of Materials 1
ME 3073 Manufacturing Engineering 1l
ME 1802 Introduction to Manufacturing Engineering
ME 1822 Basic Engineering Thermodynamics
ME 2122 Engineering Drawing & Computer Aided Modeling
ME 2832 Mechanics of Machines
ME 2842 Basic Thermal Sciences and Applications
ME 2850 Fundamentals of Machine Element Design
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Table Al1.3 continued

MT

MT 2042
MT 2122
MT 2152
MT 2032
MT 2072
MT 2142

Ceramic Science

Principles of Materials Science & Engineering Il
Polymer Technology

Degradation of Materials

Metal Forming and Machining

Electrical and Magnetic Properties of Materials
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Table A1.4: Curriculum for Academic Year 2011/2012

Level Semester CE CH CS EE EN ME MT
S1 MA1013 MA1013 MA1013 MA1013 MA1013 MA1013 MA1013
Level 1 S2 MA1023 MA1023 MA1032 MA1023 MA1023 MA1023 MA1023
Mathematics MA2013 MA2013 MA 2053 MA2013 MA2013 MA2013 MA2013
53 MA2023 MA2023 MA2073 MA2023 MA2023 MA2023 MA2023
Level 2 MA2033 MAZ2033 MA2033 MAZ2033 MAZ2033 MA 2033 | MA 2033
S4 MA3013 MA2063 MAZ2053 MA 2053 | MA 3013
CE 2012 CH 2013 CE 1822 CE 1822 EE 2092 EE 2803 EE 2803
CE 2022 CH 2023 CS 2032 EE 2013 EN 2012 EN 2852 EN 2852
CE 2032 CH 2033 CS 2042 EE 2023 EN 2022 ME 2012 ME 1822
s3 CE 2042 ME 2122 CS 2062 EE 2033 EN 2052 ME 2023 ME 2012
CE 2052 EN 2022 EE 2183 EN 2062 ME 2092 MT 2042
CE 2062 ME 1822 EN 2012 ME 2112 MT 2122
EN 2022 ME 2602 MT 2152
Engineering Level 2 ME 2012
CE 2112 CH 2043 CS 3022 EE 2043 EN 2072 ME 2032 ME 2832
CE 2122 CH 2053 CS 3032 EE 2053 EN 2142 ME 2153 ME 2850
CE 2132 CH 2063 CS 3042 EE 2063 EN 2082 ME 3032 ME 3062
s4 CE 2142 CH 2073 CS 3242 EE 2073 EN 3022 ME 3062 MT 2032
CE 3012 CH 2083 EN 2062 EE 2083 ME 3073 MT 2072
ME 1802 EE 2193 MT 2142
EE 3203
ME 2842




APPENDIX 2

Correlation Coefficient Matrix between Mathematics and Engineering Modules

Table A2.1: Results for CH Performance in S3 (2010)
MA1013 | MA1023 | MA2013 | MA2023 | CH2042 | CH2052 | EE2802 | EN2852 | ME1822 | ME2012 | ME2122
MA1023 | .486" 1.00
MA2013 | .380" 4677 1.00
MA2023 | .301" 3427 339 1.00
CH2042 | 297" 462" 444" 560" 1.00
CH2052 | .250" 469 562" 480" 655" 1.00
EE2802 | .354" 4737 530" 557" 786" | 707" 1.00
EN2852 131 245" 249" 197" 4917 | 418" | 655 1.00
ME1822 | .142 118 .054 3327 509" 259" 4267 | 3047 1.00
ME2012 | .262" 463" 464" 507" 4967 | 5847 | 55427 | 268" 183 1.00
ME2122 014 173 316~ 295" 338" 4007 | 4577 | 3237 262" 536" 1.00
Table A2.2:  Results for CH Performance in S4 (2010)
. MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | CH2062 | CH2072 | CH2082 | CH3092 | CH3102

MA1023 | .486~ 1.00

MA2013 | .380" 467 1.00

MA2023 .301:: .342: .339: 1.00

MA2033 | 311 417 407 279 1.00

CH2062 .345*: .522*** .434: .338: .438: 1.00

CH2072 | .244 261 283 353 266 327 1.00

CH2082 | .2737 4827 508" 4717 469" 646 346" 1.00

CH3092 .368: .4502 .403: .476: .499: .629: .535: .625: 1.00

CH3102 | .286 473 465 476 437 617 434 643 779 1.00




Table A2.3:  Results for CH Performance in S3 (2011)
MA1013 | MA1023 | MA2013 | MA2023 | CH2013 | CH2023 | CH2033 | ME2122

MA1023 | 5717 1.00

MA2013 | 474" 5717 1.00

MA2023 | .544™ 558" 7157 1.00

MA2033 | .489" 602" 754" 6707

CH2013 | .3307 508" 6937 6337 1.00

CH2023 | .386" 482" 576" 632" 727" 1.00

CH2033 | .468" 633" 708" 655" 723" 665" 1.00

ME2122 152 213" 3617 383" 595~ 499™ 4277 1.00

Table A2.4: Results for CH Performance in S4 (2011)

MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | CH2043 | CH2053 | CH2063 | CH2073 | CH2083
MA1023 | 5717 1.00
MA2013 | .474™ 5717 1.00
MA2023 | 544" 558" 715™ 1.00
MA2033 | .489" 602" 754" 6707 1.00
CH2043 | 4307 587" 563" 5917 683" 1.00
CH2053 | 420" 561" 6107 574" 718" 690" 1.00
CH2063 | .391" 530" 560" 545" 7177 6847 | 860" 1.00
CH2073 | .318" 4697 6137 589" 692" 6427 | 8227 | 814" 1.00
CH2083 | .340" 456" 644" 565" 728" 7097 | 8117 | 8477 | .8307 1.00




Table A2.5:  Results for CE Performance in S3 (2010)
MA1013 | MA1023 | MA2013 | MA2023 | CE2012 | CE2022 | CE2032 | CE2042 | CE2052 | CE2062

MA1023 477 1.00

MA2013 296" 233" 1.00

MA2023 388" 3977 2757 1.00

CE2012 -.003 2627 125 158" 1.00

CE2022 125 232" .094 155" 326" 1.00

CE2032 328" 518 3357 2707 329 506" 1.00

CE2042 1927 4017 192" 253" 3727 5477 5717 1.00

CE2052 197" 300 132 153" 357 445" 443" 460" 1.00

CE2062 258" 323" 104 243" 197" 3797 484" 480" 199" 1.00

Table A2.6:  Results for CE Performance in S4 (2010)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA3013 | CE2112 | CE2122 | CE2132 | CE2142 | CE3012

MA1023 477 1.00
MA2013 296" 233”7 1.00
MA2023 388" 3977 275" 1.00
MA2033 192" 356" 230" 171" 1.00
MA3013 168" 2417 .082 .093 334” 1.00
CE2112 181" 299™ 204" 349 623" 3227 1.00
CE2122 194" 401 242" 2427 3917 343" 550" 1.00
CE2132 .092 290" 180" 204" 452" 405~ 638" 583" 1.00
CE2142 -.003 223" 117 .066 325" 232" 470" 4747 565" 1.00
CE3012 .029 2627 150 204" 506" .500™ 610”7 586" 633" 488" 1.00




Table A2.7:

Results for CE Performance in S3 (2011)

MA1013 | MA1023 | MA2013 | MA2023 | CE2012 | CE2022 | CE2032 | CE2042 | CE2052 | CE2062
MA1023 | .302" 1.00
MA2013 | .385" 338" 1.00
MA2023 | .301" 450" 570" 1.00
CE2012 | .257" 400 404" 5177 1.00
CE2022 111 107 104 044 -.028 1.00
CE2032 .069 026 015 017 -.009 3727 1.00
CE2042 204" 380" 350" 3507 424™ .088 168" 1.00
CE2052 024 2137 242" 288" 326" .064 .049 294™ 1.00
CE2062 016 280" 2707 174" 243" .056 017 465" 3617 1.00
Table A2.8:  Results for CE Performance in S4 (2011)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA3013 | CE2112 | CE2122 | CE2132 | CE2142 | CE3012
MA1023 3027 1.00
MA2013 | .385" 338" 1.00
MA2023 | .301" 450”7 570" 1.00
MA2033 | .353" 406" 442" 4397 1.00
MA3013 | .3117 429”7 3517 364" 455~ 1.00
CE2112 202" 392" 4307 512" 4767 498" 1.00
CE2122 2147 368" 275" 386" 402" 5477 535" 1.00
CE2132 243" 395" 326" 344" 4327 566 558" 504" 1.00
CE2142 187" 2377 285" 265" 3507 453" 348" 505" 530" 1.00
CE3012 249 3177 405 4127 452" 494™ 450" 483" 464 460" 1.00




Table A2.9:

Results for CS Performance in S3 (2010)

MA1013 | MA1032 | MA2023 | MA2042 | CE1822 | CS2032 | CS2042 | CS2062 | EN2022 | ME1822
MA1032 | .397" 1.00
MA2023 | .349" 4177 1.00
MA2042 | .303" 423" 327" 1.00
CE1822 192" 3737 318" 430" 1.00
CS2032 193" 380" 256" 4757 369”7 1.00
CS2042 | .263” 430™ 396" 541" 3917 669™ 1.00
CS2062 187" 447 231" 499™ 408™ .389™ AT 1.00
EN2022 227" 419 455™ 469”7 403” 465~ 438 363" 1.00
ME1822 | .266" 4707 300" 376" 294" 399 399 405" 388" 1.00
Table A2.10: Results for CS Performance in S4 (2010)
MA1013 | MA1032 | MA2023 | MA2042 | MA2013 | MA2033 | CS3022 | CS3032 | CS3042 | CS3242 | EN2062 | ME1802
MA1032 | .397” 1.00
MA2023 | .349" 417 1.00
MA2042 | .303" 423" 3277 1.00
MA2013 | .306" 324" 1917 262" 1.00
MA2033 | .4217 4127 4227 285" 458™ 1.00
CS3022 213" 503" 246" 412" 417 507" 1.00
CS3032 176" 380" 101 3247 380" 353" 567" 1.00
CS3042 .166 3977 2517 .309™ .389™ 489 5727 507" 1.00
CS3242 .010 141 .100 243" 062 228" 380" 3107 465~ 1.00
EN2062 | .407" 464™ 3257 4177 513" 4727 607" 480™ 454 263" 1.00
ME1802 | .237" 361 142 360" 445" 392" 554" 566" 485" 3217 5257 1.00




Table A2.11: Results for CS Performance in S3 (2011)

MA1013 | MA1032 | MA2053 | MA2073 | CE1822 | CS2032 | CS2042 | CS2062 | EN2022 | ME1822
MA1032 | .353" 1.00
MA2053 | .484" 308" 1.00
MA2073 | 427" 389" 6207 1.00
CE1822 | .264™ 236" 518" 425" 1.00
CS2032 | .428™ 4177 596" 590" 438" 1.00
CS2042 | 3017 404™ 3757 3127 2627 562" 1.00
CS2062 | .3417 3957 561" 519™ 5727 669 5377 1.00
EN2022 | .3107 480™ 360" 542" .384™ 534 435”7 .398™ 1.00
ME1822 | .217" 2817 326 378”7 303 500™ 2917 4757 355" 1.00
Table A2.12: Results for CS Performance in S4 (2011)
MA1013 | MA1032 | MA2053 | MA2073 | MA2033 | MA2063 | CS3022 | CS3032 | CS3042 | CS3242 | EN2062 | ME1802
MA1032 | .353" 1.00
MA2053 | .484™ .308™ 1.00
MA2073 | 427" 389" 620" 1.00
MA2033 | .432" 3457 5377 606~ 1.00
MA2063 | .445™ 376" 588" 485 674" 1.00
CS3022 | 3777 3617 539" 410 455~ 507" 1.00
CS3032 | .412™ 453 6137 5357 5917 6797 742" 1.00
CS3042 | 3797 4017 525" 418" 459”7 524" 673" 653" 1.00
CS3242 190" 299" 332" 249" 3727 334 495" 501" 442" 1.00
EN2062 | .454™ 530" 563" 535" .688™ 675" 494 6737 564" 3477 1.00
ME1802 | .275" 3127 455”7 359 5177 508" 493” 5357 446" 3917 553" 1.00




Table A2.13: Results for EE Performance in S3 (2010)

MA1013 | MA1023 | MA2013 | MA2023 | EE2012 | EE2022 | EE2033 | EN2012 | EN2022 | ME2012 | CE1822
MA1023 355" 1.00
MA2013 242" 3627 1.00
MA2023 354" 3917 458" 1.00
EE2012 324 417 574 398" 1.00
EE2022 135 368" 427 426 445 1.00
EE2033 162 152 3957 221" 201" 344 1.00
EN2012 .085 330" 400 4427 507" 638" 239" 1.00
EN2022 159 435" 267" 4627 3517 557" 164 507" 1.00
ME2012 187 365" 3797 467 .384™ 4447 218" 505" 4377 1.00
CE1822 -.005 205" 116 .084 200 208" 143 176 3407 255" 1.00
Table A2.14: Results for EE Performance in S4 (2010)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA2042 | EE2042 | EE2052 | EE2072 | EE2083 | EE2132 | EE3072 | ME2842 | EE3202
MA1023 | .355" 1.00
MA2013 242" 362" 1.00
MA2023 | .354" 391 458" 1.00
MA2033 | .3727 4217 386" 545" 1.00
MA2042 | .349™ 344 4027 236" 539”7 1.00
EE2042 260" 306" 3357 244" 576" 559”7 1.00
EE2052 239" 328" 204" 237" 504” 383" 336" 1.00
EE2072 253" 4037 4357 3957 575" 4197 457 4157 1.00
EE2083 376" 4147 5317 4757 658" 396" 4417 3207 6217 1.00
EE2132 243" 356" 362" 305" 5917 4137 438" 285" 512" 600" 1.00
EE3072 167 478" 3257 3357 499 260" 3407 4017 | 4897 | 436 385" 1.00
ME2842 .180 251" 3417 378" 580" 4327 338" 4007 | 6137 | 583" 659" 505" 1.00
EE3202 -.194 -.149 .013 .015 3077 .057 113 .096 158 204" 248" 272" 295" 1.00




Table A2.15: Results for EE Performance in S3 (2011)

MA1013 | MA1023 | MA2013 | MA2023 | CE1822 | EE2013 | EE2023 | EE2033 | EE2183 | EN2012 | EN2022 | ME2012
MA1023 | .308™ 1.00
MA2013 | .395 5177 1.00
MA2023 | .457" 490" 560" 1.00
CE1822 220" 330" 140 297" 1.00
EE2013 340”7 458" 476" 468" 307" 1.00
EE2023 305" 3177 3767 515" 127 436" 1.00
EE2033 .190° 398" 309" 480" 458" 4617 304" 1.00
EE2183 151 130 201" .064 291" 259" .040 169" 1.00
EN2012 | 272" 356" 3257 3797 3177 320" 340 370" 031 1.00
EN2022 219" 3377 281" 430" 299" 3717 362" 484" 262" 388" 1.00
ME2012 | .350" 477 4797 5717 272" 549" 435" 414" 180" 4317 456" 1.00
Table A2.16: Results for EE Performance in S4 (2011)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA2053 | EE2043 | EE2053 | EE2063 | EE2073 | EE2083 | EE2193 | EE3203 | ME2842
MA1023 | .308" 1.00
MA2013 | .395" 517 1.00
MA2023 | 457" 4907 560" 1.00
MA2033 | .403" 609 4907 550" 1.00
MA2053 | .180" 149 237" 197" 3007 1.00
EE2043 | .3107 222" 229" 3097 3197 .042 1.00
EE2053 213" 286 120 154 3747 .158 .143 1.00
EE2063 | .2927 3117 337 484" 455" 110 309" 136 1.00
EE2073 | .3107 546" 4217 546" 526" 390" 387" 195" | 3257 1.00
EE2083 | .2527 408~ 4217 4737 525 4197 522" 184" 4157 | 616™ 1.00
EE2193 132 2127 122 -.004 1917 3117 167" 275 -.088 2447 | 0.139 1.00
EE3203 | -.093 233" 101 143 .098 150 .064 -.049 .039 3307 | 2357 .058 1.00
ME2842 | 1717 4237 3477 4257 5117 1817 3517 197" | 5007 | .4037 | 4237 .080 190 1.00




Table A2.17: Results for EN Performance in S3 (2010)

MA1013 | MA1023 | MA2013 | MA2023 | EE2092 | EN2012 | EN2022 | EN2052 | EN2062
MA1023 | .335™ 1.00
MA2013 | .320™ 522" 1.00
MA2023 | 4117 4397 540" 1.00
EE2092 | .348" 5307 636" 594" 1.00
EN2012 | .4557 434" 607" 622" 705" 1.00
EN2022 | .346" 4797 489" 538" 673" 531" 1.00
EN2052 | .255" 316" 346" 462" 566" 561" 495" 1.00
EN2062 | .4017 459" 549" 499" 572" 533" 489" 4177 1.00
Table A2.18: Results for EN Performance in S4 (2010)
MA1013 | MA1023 | MA2013 | MA2023 | EN2072 | EN2082 | EN2142 | EN3022
MA1023 | .335" 1.00
MA2013 | .320" 522" 1.00
MA2023 | .4117 439”7 540" 1.00
EN2072 | .392" 380" 442" 469 1.00
EN2082 | .4417 4577 5707 626" 5257 1.00
EN2142 149 210" 281" 442" 533" 529" 1.00
EN3022 106 .070 130 122 3317 194" 364" 1.00




Table A2.19: Results for EN Performance in S3 (2011)

MA1013 | MA1023 | MA2013 | MA2023 | EE2092 | EN2012 | EN2022 | EN2052 | EN2062
MA1013 | 1.00
MA1023 | .3417 1.00
MA2013 | .220 548" 1.00
MA2023 | .356 5757 6237 1.00
EE2092 | .263" 4877 6697 652" 1.00
EN2012 | .2517 318" 397" 567" 443" 1.00
EN2022 | .216 402" 489”7 568" 5227 4517 1.00
EN2052 | .215° 464" 368" 462" 554" 6147 503" 1.00
EN2062 | .282" 625" 580" 706" 665" 572" 533" 6127 1.00
Table A2.20: Results for EN Performance in S4 (2011)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | EN2142 | EN2072 | EN2542 | EN3022
MA1023 | .3417 1.00
MA2013 | .220° 548" 1.00
MA2023 | .356 575" 623" 1.00
MA2033 | .357" 598" 485" 602" 1.00
EN2142 -.094 284" 2917 2717 3017 1.00
EN2072 143 483" 406" 588" 533" 3377 1.00
EN2542 116 300" 334" 369" 406" 202" 382" 1.00
EN3022 | .2507 4217 183" 2317 299™ 157 267" 353" 1.00




Table A2.21: Results for ME Performance in S3 (2010)

MA1013

MA1023

MA2013

MA2023

EE2802

EN2852

ME2012

ME2022

ME2092

ME2112

MA1023

*k

.333

1.00

MA2013

ek

Hk

452

1.00

MA2023

280
229"

ek

297

Hk

421

1.00

EE2802

*k

.235

>k

297

*k

.388

*k

281

1.00

EN2852

Hk

316

*

182

154

ek

247

ke

482

1.00

ME2012

154

ek

.280

Hk

406

ek

.320

.215

.020

1.00

ME2022

*

191

>k

290

>k

.260

*k

241

*k

498

*k

444

*

170

1.00

ME2092

*k

*k

553

*k

379

*k

426

*k

334

*k

.249

*k

498

*k

.369

1.00

ME2112

333
178"

Hk

.256

ke

282

Hk

401

ke

442

ke

418

*

190

*k

.536

*k

1.00

Table A2.22: Results for ME Performance in S4 (2010)

MA1013

MA1023

MA2013

MA2023

MA2033

MA2042

ME2032

ME3072

ME3032

ME3062

ME2142

MA1023

*k

.333

1.00

MA2013

ek

.280

ek

452

1.00

MA2023

*

.229

ek

297

ke

421

1.00

MA2033

135

.025

118

*k

.255

1.00

MA2042

.021

*k

.285

*%

.282

*k

.330

*k

404

1.00

ME2032

ek

.330

ek

242

119

ke

251

*k

297

*k

413

1.00

ME3072

*

182

ek

.280

ek

.268

ek

.360

*k

.260

*k

395

*k

430

1.00

ME3032

Hk

278

*%

299

*

210

370

463

513

412

430

1.00

ME3062

.034

113

011

.070

.081

A71

*k

.358

*k

414

*k

293

1.00

ME2142

*

.188

*

.225

*

170

199

*k

.246

*k

414

*k

446

*k

517

*k

406

*k

.554

1.00




Table A2.23: Results for ME Performance in S3 (2011)

MA1013 | MA1023 | MA2013 | MA2023 | EE2803 | EN2852 | ME2012 | ME2023 | ME2092 | ME2112 | ME2602
MA1023 | 279" 1.00
MA2013 | .264™ 430™ 1.00
MA2023 | .365" 488 624" 1.00
EE2803 .108 3417 485~ 490™ 1.00
EN2852 -.022 433" 228" 200" 436" 1.00
ME2012 | .223" 406~ 4377 582" 524™ 3317 1.00
ME2023 135 380 273”7 318 453 426™ 376”7 1.00
ME2092 121 314 366" 274" 421 312" 225" 369" 1.00
ME2112 | 211" 452" 586" 575" 504" 293" 445" 428" 420" 1.00
ME2602 .038 376" 237" 256" 587" 480™ 408™ 643" .389™ 483" 1.00
Table A2.24: Results for ME Performance in S4 (2011)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA2053 | ME2032 | ME2153 | ME3032 | ME3062 | ME3073
MA1023 | 279" 1.00
MA2013 | .264" 430" 1.00
MA2023 | .365" 488™ 624 1.00
MA2033 | .222" 429 456" 449 1.00
MA2053 .018 353" 253" 111 260" 1.00
ME2032 .078 4577 .340™ 414™ 339 353" 1.00
ME2153 207" 499" 310" 481" 332" 487" 487" 1.00
ME3032 | .228" 4777 3457 466" 356" 269”7 4427 4727 1.00
ME3062 | .255 3217 424 530" 288" 165 512" 402" 348" 1.00
ME3073 .089 344™ 163 301 149 416™ 5517 559™ 221" 395" 1.00




Table A2.25: Results for MT Performance in S3 (2010)

MA1013 | MA1023 | MA2013 | MA2023 | EE2802 | EN2852 | ME1822 | ME2012 | MT2042 | MT2122
MA1023 | .401" 1.00
MA2013 | .460" 540" 1.00
MA2023 233 568" 513" 1.00
EE2802 161 4707 409™ 383" 1.00
EN2852 224 4677 244 275 7357 1.00
ME1822 191 241 299" 197 499™ 469”7 1.00
ME2012 245 512" 4917 5777 519™ 352" 329" 1.00
MT2042 .089 .689™ 5217 420™ 7217 .690™ 400™ 5177 1.00
MT2122 248 631" 526" 349" 6817 646" 6017 5177 889”7 1.00
Table A2.26: Results for MT Performance in S4 (2010)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA3013 | ME2142 | ME2832 | ME3062 | MT2032 | MT2072 | MT2142 | MT2152
MA1023 | .401™" 1.00
MA2013 | .460" 540 1.00
MA2023 | .233 568" 513" 1.00
MA2033 | .273" 4327 365" 645" 1.00
MA3013 142 501" 402" 380" 482" 1.00
ME2142 101 4737 344" 524 5517 544" 1.00
ME2832 | .153 648" 278" 485" 581" 6327 590™ 1.00
ME3062 | .368" 487 550" 559™ 624” 514” 684” 458™ 1.00
MT2032 | -.051 601" 416" 407 3737 601" 516" 734" 450" 1.00
MT2072 .032 543 453™ 266" .389™ 553" 526" 592" 4767 8207 1.00
MT2142 .099 5727 423" .399™ .389™ 576" 428” 687" 413" 758" 663" 1.00
MT2152 .025 560" 394" 437 491" 614" 488" 644" 4117 827" 7917 735" 1.00




Table A2.27: Results for MT Performance in S3 (2011)

MA1013 | MA1023 | MA2013 | MA2023 | EE2803 | EN2852 | ME1822 | ME2012 | MT2042 | MT2122 | MT2152
MA1013 1.00
MA1023 | 460" 1.00
MA2013 | .657" 525" 1.00
MA2023 | 461" 581" 7347 1.00
EE2803 196 4417 312" 449 1.00
EN2852 189 3717 242 266" 568" 1.00
ME1822 | .277 .090 178 259" 358" 154 1.00
ME2012 239 5777 458 5777 6277 4377 419 1.00
MT2042 | -.021 228 -.032 .000 454™ 649 266" 353" 1.00
MT2122 181 206 042 139 5177 508" 253" 251" 637" 1.00
MT2152 .096 272" 226 303" 512" 5217 277 436" 7507 6217 1.00
Table A2.28: Results for MT Performance in S4 (2011)
MA1013 | MA1023 | MA2013 | MA2023 | MA2033 | MA3013 | ME2832 | ME2850 | ME3062 | MT2032 | MT2072 | MT2142
MA1023 | .460" 1.00
MA2013 | .657" 525" 1.00
MA2023 | .461" 581" 734" 1.00
MA2033 | .461" 578" 5717 702" 1.00
MA3013 3217 300 382" 336" 319" 1.00
ME2832 187 405~ 211 385" 354™ 296" 1.00
ME2850 .190 360" 243 408™ 370" 519™ 589™ 1.00
ME3062 250 409™ 476 589™ 460 464” 561" 556" 1.00
MT2032 .088 287" 219 143 110 559™ 545" 706 4677
MT2072 -.034 234 .033 074 023 559™ 436" 565" 455~ - 1.00
MT2142 -.047 391" 169 3117 382" 4447 562" 753" 523" - 724" 1.00




APPENDIX 3

Results of CCA — CE Student Performance

Table A3.1: Results of CCA — Performance of CH in S3 (2010)

A WN R

Canonical Correlation Analysis

Adjusted

Canonical Canonical

Correlation Correlation

1 0.592206 0.553967

2 0.255006 0.132121
3 0.185275 .

4 0.039313 -.163882

App

roximate
Standard

Error
0.060285
0.086810
0.089661
0.092704

Co

Squared
Canonical
rrelation

0.350708
0.065028
0.034327
0.001546

likelihood Approximate
io F Value Num DF Den DF Pr > F
24 374.49 <.0001
15 298.54 0.7195

Eigenvalue Difference Proportion Cumulative Rat
0.5401 0.4706 0.8351 0.8351 0.58532466
0.0696 0.0340 0.1075 0.9426 0.90148208
0.0355 0.0340 0.0550 0.9976 0.96418086
0.0015 0.0024 1.0000 0.99845450

2.59
0.76
0.50
0.06

Multivariate Statistics and F Approximations

Statistic Value
Wilks' Lambda 0.58532466
Pillai's Trace 0.45160871
Hotelling-Lawley Trace 0.64678583
Roy's Greatest Root 0.54014026

Standardized Canonical Coefficients
ENG1
CE2012 CE2012 0.1239
CE2022 CE2022 -0.2697
CE2032 CE2032 0.8216
CE2042 CE2042 0.2453
CE2052 CE2052 0.0962
CE2062 CE2062 0.0887

Standardized Canonical Coefficients
MAT1
MA1012 MA1012 0.0320
MA1022 MA1022 0.8050
MA2012 MA2012 0.3458
MA2022 MA2022 0.0755

Canonical St

F Value
2.59
2.33
2.85
9.90

for the

ENG2
-0.8777
-0.0123
0.1226
-0.4245
0.5012
0.5902

for the

MAT2
1.1855
-0.4152
-0.2944
-0.1921

ructure

Num

DF
24
24
24

6

8
3

Den DF
374.49
440
244.36
110

218 0.8544
110 0.9821

Pr > F
<.0001
0.0004
<.0001
<.0001

Engineering Measurements

[OICRGEORGE N

ENG3
.2507
.2183
.9702
.3049
.1097
.8333

ENG4

.1516
.1875
.3174
.2029
.0955
.2081

Mathematics Measurements

MAT3
0.1163
0.1397
0.8304
0.7991

0.
-0.
0.
0.

MAT4
0400
7460
4924
7849

Correlations Between the Engineering Measurements and Their Canonical Variables

ENG1
CE2012 CE2012 0.4491
CE2022 CE2022 0.3965
CE2032 CE2032 0.9515
CE2042 CE2042 0.7002
CE2052 CE2052 0.5146
CE2062 CE2062 0.5450

ENG2
-0.7040
-0.0217

0.0926
-0.1738
0.1583
0.3682

ENG3
0.3195
0.3405
0.1517
0.4133
0.1728
0.6642

ENG4

.2613
.0004
.0938
.0261
.7909
.2823
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Table A3.1 continued

Correlations Between the Mathematics Measurements and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4
MA1012 MA1012 0.5477 0.8257 0.0149 0.1342
MA1022 MA1022 0.9310 0.0054 0.2079 -0.2999
MA2012 MA2012 0.5640 -0.0937 -0.6123 0.5461
MA2022 MA2022 0.5031 0.0218 0.5809 0.6395

Correlations Between the Engineering Measurements and the
Canonical Variables of the Mathematics Measurements

MAT1 MAT2 MAT3 MAT4
CE2012 CE2012 0.2659 -0.1795 0.0592 -0.0103
CE2022 CE2022 0.2348 -0.0055 0.0631 0.0000
CE2032 CE2032 0.5635 0.0236 -0.0281 0.0037
CE2042 CE2042 0.4147 -0.0443 0.0766 0.0010
CE2052 CE2052 0.3048 0.0404 0.0320 -0.0311
CE2062 CE2062 0.3227 0.0939 0.1231 0.0111

Correlations Between the Mathematics Measurements and the
Canonical Variables of the Engineering Measurements

ENG1 ENG2 ENG3 ENG4
MA1012 MA1012 0.3244 0.2106 0.0028 0.0053
MA1022 MA1022 0.5514 0.0014 0.0385 -0.0118
MA2012 MA2012 0.3340 -0.0239 -0.1134 0.0215
MA2022 MA2022 0.2979 0.0056 0.1076 0.0251

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion
1 0.3861 0.3861 0.3507 0.1354 0.1354
2 0.1159 0.5020 0.0650 0.0075 0.1429
3 0.1471 0.6491 0.0343 0.0051 0.1480
4 0.1305 0.7796 0.0015 0.0002 0.1482

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion
1 0.4345 0.4345 0.3507 0.1524 0.1524
2 0.1728 0.6073 0.0650 0.0112 0.1636
3 0.1889 0.7962 0.0343 0.0065 0.1701
4 0.2038 1.0000 0.0015 0.0003 0.1704
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Table A3.2: Results of CCA — Performance of CH in S4 (2010)

Canonical Correlation Analysis

Adjusted Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.723606 0.697686 0.044232 0.523606
2 0.392196 0.303442 0.078566 0.153818
3 0.308681 0.275805 0.084001 0.095284
4 0.159312 0.107476 0.090491 0.025380
5 0.019951 -.186466 0.092811 0.000398
Likelihood Approximate
Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1 1.0991 0.9173 0.7780 0.7780 0.35530797 4.19 30 426 <.0001
2 0.1818 0.0765 0.1287 0.9067 0.74582787 1.64 20 355.83 0.0407
3 0.1053 0.0793 0.0746 0.9813 0.88140316 1.16 12 286.03 0.3081
4 0.0260 0.0256 0.0184 0.9997 0.97423187 0.48 6 218 0.8248
5 0.0004 0.0003 1.0000 0.99960194 0.02 2 110 0.9783
Multivariate Statistics and F Approximations
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.35530797 4.19 30 426 <.0001
Pillai's Trace 0.79848574 3.48 30 550 <.0001
Hotelling-Lawley Trace 1.41263938 4.93 30 271.75 <.0001
Roy's Greatest Root 1.09910257 20.15 6 110 <.0001
Standardized Canonical Coefficients for the Engineering Measurements
ENG1 ENG2 ENG3 ENG4 ENG5
CE2112 CE2112 0.5878 -1.2724 -0.1046 0.1155 -0.1111
CE2122 CE2122 0.0634 0.2017 1.2367 -0.2531 -0.4229
CE2132 CE2132 0.1129 0.4115 0.0021 -0.3958 1.4053
CE2142 CE2142 -0.0973 0.1912 0.0083 1.2370 -0.0759
CE3012 CE3012 0.4418 0.7343 -0.8497 -0.2844 -0.7346
Standardized Canonical Coefficients for the Mathematics Measurements
MAT1 MAT2 MAT3 MAT4 MATS
MA1012 MA1012 -0.1666 -0.5009 0.3157 -0.5501 0.6173
MA1022 MA1022 0.0527 0.5122 0.8070 0.5404 -0.5304
MA2012 MA2012 0.0466 0.1975 0.3560 0.0747 0.5233
MA2022 MA2022 0.3294 -0.4205 -0.1665 -0.5468 -0.7180
MA2032 MA2032 0.6955 -0.5568 -0.3444 0.5136 0.2448
MA3012 MA3012 0.3772 0.7741 -0.2456 -0.5736 0.1233
Correlations Between the Engineering Measurements and Their Canonical Variables
ENG1 ENG2 ENG3 ENG4 ENG5
CE2112 CE2112 0.9186 -0.3607 0.0623 0.1319 0.0689
CE2122 CE2122 0.6652 0.2623 0.6866 -0.0009 -0.1315
CE2132 CE2132 0.7497 0.2900 0.1226 0.0489 0.5800
CE2142 CE2142 0.4882 0.2789 0.1316 0.8094 0.1068
CE3012 CE3012 0.8618 0.4296 -0.1837 -0.0095 -0.1974
Correlations Between the Mathematics Measurements and Their Canonical Variables
MAT1 MAT2 MAT3 MAT4 MAT5S
MA1012 MA1012 0.1966 -0.3380 0.6343 -0.4802 0.3079
MA1022 MA1022 0.4533 0.1409 0.7928 0.1223 -0.2822
MA2012 MA2012 0.2909 -0.0113 0.4927 -0.0412 0.4506
MA2022 MA2022 0.4528 -0.3805 0.2928 -0.4901 -0.4918
MA2032 MA2032 0.8756 -0.2385 -0.0259 0.3321 0.2127
MA3012 MA3012 0.6289 0.6046 -0.0994 -0.4085 0.1568
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Table A3.2 continued

Standardized Variance of the Engineering Measurements Explained by
The Opposite

Standardized Variance of the Mathematics Measurements Explained by
The Opposite

Cor
CE2112 CE2112
CE2122 CE2122
CE2132 CE2132
CE2142 CE2142
CE3012 CE3012
Cor
MA1012 MA1012
MA1022 MA1022
MA2012 MA2012
MA2022 MA2022
MA2032 MA2032
MA3012 MA3012

Canonical

Variable
Number P

1

2

3

a4

5

Canonical

Variable
Number P

uih WN -

relations
Canonical

[ORGIGICR]

relations
Canonical

[OIGIR ORI ]

Their Own

Between the Engineering Measurements and the
Variables of the Mathematics Measurements

MAT1

.6647
.4814
.5425
.3533
.6236

[ OIGRS]

MAT2

.1415
.1029
.1138
.1094
.1685

0.
Q.
Q.
Q.
-0.

MAT3
0192
2119
0378
0406
0567

0.
-0.
Q.
Q.
-0.

MAT4
0210
0001
0078
1289
0015

Between the Mathematics Measurements and the
Variables of the Engineering Measurements

ENG1

.1423
.3280
.2105
.3276
.6336
.4551

-0.
0.
-0.
-0.
-0.
Q.

Canonical Variables

roportion

0.5659
0.1091
0.1083
0.1350
0.0818

Their Own

Cumulative
Proportion

0.5659
0.6750
0.7832
0.9182
1.0000

Canonical Variables

roportion

0.2827
0.1169
0.2283
0.1274
0.1149

Cumulative
Proportion

0.2827
0.3996
0.6279
0.7553
0.8702

ENG2
1326
0553
0044
1492
0935
2371

Canonical
R-Square

0.5236
0.1538
0.0953
0.0254
0.0004

Canonical
R-Square

0.5236
0.1538
0.0953
0.0254
0.0004

(OO EORGI ]

ENG3

.1958
.2447

1521

.0904
.0080
.0307

-0.
0.
-0.
-0.
Q.
-0.

ENG4
0765
0195
0066
0781
0529
0651

Canonical Variables

Proportion

0.2963
0.0168
0.0103
0.0034
0.0000

Cumulative
Proportion

0.2963
0.3131
0.3234
0.3268
0.3269

Canonical Vvariables

Proportion

0.1480
0.0180
0.0218
0.0032
0.0000

Cumulative
Proportion

0.1480
0.1660
0.1877
0.1910
0.1910

MAT5

.0014
.0026
.0116
.0021
.0039

ENG5

.0061
.0056
.0090
.0098
.0042
.0031
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Table A3.3: Results of CCA — Performance of CH in S3 (2011)

A wWN R

Canonical Correlation Analysis

Canonical
Correlation

0.623157
0.260196
0.181356
0.025870

AWN R

Eigenvalue Difference Proportion

0.6349
0.0726
0.0340
0.0007

Statistic

Wilks' Lambda

Pillai's Trace
Hotelling-Lawley Trace
Roy's Greatest Root

0.5622 0.8554
0.0386 0.0978
0.0333 0.0458
0.0009
Multivariate

Adjusted
Canonical
Correlation

.591551
.152498
.135503
.276066

[ G N]

Cumulative

App

roximate
Standard
Error

0.054930
0.083723
0.086849
0.089743

Co

Squared
Canonical
rrelation

0.388324
0.067702
0.032890
0.000669

Likelihood Approximate
io F Value Num DF D

Rat

0.8554 0.55113923
0.9533 0.90103152
0.9991 0.96646286
1.0000 0.99933075

3.12
0.82
0.50
0.03

Statistics and F Approximations

Value

.55113923
.48958516
.74214920
.63485280

Standardized Canonical Coefficients

CE2012
CE2022
CE2032
CE2042
CE2052
CE2062

CE2012
CE2022
CE2032
CE2042
CE2052
CE2062

OO0

ENG1

.6855
.1746
.0847
.3535
.1305
.0854

Standardized Canonical Coefficients

MA1013
MA1023
MA2013
MA2023

Correlations Between

CE2012
CE2022
CE2032
CE2042
CE2052
CE2062

MA1013
MA1023
MA2013
MA2023

CE2012
CE2022
CE2032
CE2042
CE2052
CE2062

0
0
0
0

OO0

MAT1

.0271
.4332
.3350
.4677

ENG1

.8948
1682
.0415
.7237
.4958
L4715

F Value

3.12
2.74
3.52
12.49

for the

ENG2

-0.5350
0.1436
-0.2038
0.0262
-0.0069
0.9490

Num

DF

24
24
24

6

24
15 3
8
3

Den DF

402.4
472
263.26
118

en DF Pr > F

402.4 <.0001
20.63 0.6525
234 0.8533
118 0.9942

Pr > F

.0001
.0001
.0001
.0001

A AN A AN

Engineering Measurements

Q.
Q.
Q.
Q.
Q.
0.

ENG3

0306
5493
0663
4951
8034
0587

0
0
-0
-0
(4
]

ENG4

.2283
.8507
.2047
.6930
.2984
.0310

for the Mathematics Measurements

MAT2

-0.6592
0.6128
0.8024

-0.9232

the Engineering Measurements

ENG2

-0.2980
0.1373
-0.1252
0.2169
0.1676
0.8333

MAT3

-0.8756
-0.3335
-0.0249

0.

0.
Q.
Q.

7525

ENG3

.1128

5639
3133
2781

.6507
.0941

]
-0
]
-0

OO0

MAT4

.1491
.7962
.9217
.1784

and Their Canonical Variables

ENG4

.0172
L7279
.0084
.4534
.2245
.0845
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Table A3.3 continued

Correlations Between the Mathematics Measurements and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4
MA1013 MA1013 0.4276 -0.4430 -0.7595 0.2098
MA1023 MA1023 0.7649 0.2697 -0.2679 -0.5200
MA2013 MA2013 0.7584 0.2295 -0.0457 0.6083
MA2023 MA2023 0.8617 -0.3884 0.3249 0.0338

Correlations Between the Engineering Measurements and the
Canonical Variables of the Mathematics Measurements

MAT1 MAT2 MAT3 MAT4
CE2012 CE2012 0.5576 -0.0775 0.0205 0.0004
CE2022 CE2022 0.1048 0.0357 -0.1023 0.0188
CE2032 CE2032 0.0259 -0.0326 -0.0568 0.0002
CE2042 CE2042 0.4510 0.0564 -0.0504 -0.0117
CE2052 CE2052 0.3090 0.0436 0.1180 0.0058
CE2062 CE2062 0.2938 0.2168 0.0171 -0.0022

Correlations Between the Mathematics Measurements and the
Canonical Variables of the Engineering Measurements

ENG1 ENG2 ENG3 ENG4
MA1013 MA1013 0.2664 -0.1153 -0.1377 0.0054
MA1023 MA1023 0.4767 0.0702 -0.0486 -0.0135
MA2013 MA2013 0.4726 0.0597 -0.0083 0.0157
MA2023 MA2023 0.5369 -0.1011 0.0589 0.0009

Canonical Redundancy Analysis

Standardized Variance of the Engineering Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion
1 0.3037 0.3037 0.3883 0.1180 0.1180
2 0.1488 0.4526 0.0677 0.0101 0.1280
3 0.1564 0.6090 0.0329 0.0051 0.1332
4 0.1322 0.7412 0.0007 0.0001 0.1333

Standardized Variance of the Mathematics Measurements Explained by

Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion
1 0.5214 0.5214 0.3883 0.2025 0.2025
2 0.1181 0.6395 0.0677 0.0080 0.2105
3 0.1891 0.8286 0.0329 0.0062 0.2167
4 0.1714 1.0000 0.0007 0.0001 0.2168
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Table A3.4: Results of CCA — Performance of CH in S4 (2011)

uh wnNnPR

Canonical Correlation Analysis

Adjusted Approximate Squared
Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation
1 0.766469 0.747800 0.037046 0.587475
2 0.285908 0.181809 0.082462 0.081743
3 0.170767 0.062308 0.087184 0.029161
4 0.085904 0.089140 0.007380
5 0.047681 0.089598 0.002273
Likelihood Approximate
Eigenvalue Difference Proportion Cumulative Ratio F Value Num DF Den DF Pr > F
1.4241 1.3351 0.9171 0.9171 0.36421360 4.39 30 458 <.0001
0.0890 0.0590 0.0573 0.9744 0.88288874 0.73 20 382.36 0.7936
0.0300 0.0226 0.0193 0.9937 0.96148341 0.38 12 307.2 0.9691
0.0074 0.0052 0.0048 0.9985 0.99036374 0.19 6 234 0.9796
0.0023 0.0015 1.0000 0.99772654 0.13 2 118 0.8743
Multivariate Statistics and F Approximations
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.36421360 4.39 30 458 <.0001
Pillai's Trace 0.70803259 3.24 30 590 <.0001
Hotelling-Lawley Trace 1.55286626 5.84 30 293.07 <.0001
Roy's Greatest Root 1.42409601 28.01 6 118 <.0001
Standardized Canonical Coefficients for the Engineering Measurements
ENG1 ENG2 ENG3 ENG4 ENG5
CE2112 CE2112 0.3881 -1.0140 -0.4203 -0.1604 -0.5799
CE2122 CE2122 0.2293 0.6729 -0.8222 0.7070 0.2955
CE2132 CE2132 0.2597 0.8338 0.1179 -1.0383 0.0045
CE2142 CE2142 0.0859 -0.0467 0.7647 0.6041 -0.8196
CE3012 CE3012 0.3202 -0.3922 0.5358 0.0423 0.9938
Standardized Canonical Coefficients for the Mathematics Measurements
MAT1 MAT2 MAT3 MAT4 MATS
MA1013 MA1013 -0.0624 0.2776 0.2223 0.0290 1.0543
MA1023 MA1023 0.0985 0.2967 -0.5460 -1.0217 -0.0732
MA2013 MA2013 0.1249 -0.5702 0.7938 -0.5128 -0.3734
MA2023 MA2023 0.2625 -0.5728 -0.8587 0.6942 0.2906
MA2033 MA2033 0.2874 -0.1952 0.2622 -0.0470 0.0256
MA3013 MA3013 0.5716 0.7024 0.1875 0.5444 -0.3957
Canonical Structure
Correlations Between the Engineering Measurements and Their Canonical Variables
ENG1 ENG2 ENG3 ENG4 ENG5
CE2112 CE2112 0.8295 -0.3815 -0.2874 -0.1327 -0.2572
CE2122 CE2122 0.7655 0.3375 -0.3429 0.4238 0.0534
CE2132 CE2132 0.7858 0.4000 0.1235 -0.4319 -0.1436
CE2142 CE2142 0.6215 0.2023 0.5123 0.3742 -0.4126
CE3012 CE3012 0.7655 -0.1580 0.3563 0.1072 0.5006
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Table A3.4 continued

Correlations Between the Mathematics Measurements and Their Canonical Variables

MAT1 MAT2 MAT3 MAT4
MA1013 MA1013 0.3739 0.1251 0.2557 -0.1152 (]
MA1023 MA1023 0.6015 0.1522 -0.4101 -0.6596 0
MA2013 MA2013 0.6116 -0.5292 0.3871 -0.2807 (]
MA2023 MA2023 0.6933 -0.5113 -0.4015 0.1284 0
MA2033 MA2033 0.7361 -0.1607 0.1785 -0.1249 4]
MA3013 MA3013 0.8646 0.4187 0.1086 0.1662 -0
Correlations Between the Engineering Measurements and the
Canonical Variables of the Mathematics Measurements
MAT1 MAT2 MAT3 MAT4
CE2112 CE2112 0.6358 -0.1091 -0.0491 -0.0114 -0.
CE2122 CE2122 0.5868 0.0965 -0.0586 0.0364 0.
CE2132 CE2132 0.6023 0.1144 0.0211 -0.0371 -0.
CE2142 CE2142 0.4764 0.0578 0.0875 0.0321 -0.
CE3012 CE3012 0.5867 -0.0452 0.0608 0.0092 Q.
Correlations Between the Mathematics Measurements and the
Canonical Variables of the Engineering Measurements
ENG1 ENG2 ENG3 ENG4
MA1013 MA1013 0.2866 0.0358 0.0437 -0.0099 0
MA1023 MA1023 0.4611 0.0435 -0.0700 -0.0567 0
MA2013 MA2013 0.4688 -0.1513 0.0661 -0.0241 0
MA2023 MA2023 0.5314 -0.1462 -0.0686 0.0110 0
MA2033 MA2033 0.5642 -0.0459 0.0305 -0.0107 0
MA3013 MA3013 0.6627 0.1197 0.0185 0.0143 -0
Standardized Variance of the Engineering Measurements Explained by
Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion
1 0.5728 0.5728 0.5875 0.3365 0.3365
2 0.0971 0.6699 0.0817 0.0079 0.3444
3 0.1210 0.7908 0.0292 0.0035 0.3480
4 0.1071 0.8979 0.0074 0.0008 0.3488
5 0.1021 1.0000 0.0023 0.0002 0.3490
Standardized Variance of the Mathematics Measurements Explained by
Their Own The Opposite
Canonical Variables Canonical Variables
Canonical
Variable Cumulative Canonical Cumulative
Number Proportion Proportion R-Square Proportion Proportion
1 0.4409 0.4409 0.5875 0.2590 0.2590
2 0.1302 0.5712 0.0817 0.0106 0.2697
3 0.0980 0.6692 0.0292 0.0029 0.2726
4 0.0978 0.7670 0.0074 0.0007 0.2733
5 0.1402 0.9072 0.0023 0.0003 0.2736

MAT5

.8617
.0904
.0456
.2293
.1510
L1127

MAT5
0123
0025
0068
0197
0239

ENG5

.0411
.0043
.0022
.0109
.0072
.0054
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